forked from x86-64/seekgzip
-
Notifications
You must be signed in to change notification settings - Fork 2
/
seekgzip.c
721 lines (621 loc) · 21.1 KB
/
seekgzip.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
/*
* SeekGzip utility/library.
*
* Copyright (c) 2010-2011, Naoaki Okazaki
* All rights reserved.
*
* For conditions of distribution and use, see copyright notice in README
* or zlib.h.
*
* The core algorithm for random access originates from zran.c in zlib/gzip
* distribution. This code simply implements a data structure and algorithm
* for indices, wraps the functionality of random access as a library, and
* provides a command-line utility.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <zlib.h>
#include <utime.h>
#include <sys/stat.h>
#include "seekgzip.h"
#define SEEKGZIP_OPTIMIZATION
#define __HALF_MAX_SIGNED(type) ((type)1 << (sizeof(type)*8-2))
#define __MAX_SIGNED(type) (__HALF_MAX_SIGNED(type) - 1 + __HALF_MAX_SIGNED(type))
#define __MIN_SIGNED(type) (-1 - __MAX_SIGNED(type))
#define __MIN(type) ((type)-1 < 1?__MIN_SIGNED(type):(type)0)
#define __MAX(type) ((type)~__MIN(type))
int seekgzip_index_alloc(seekgzip_t *sz);
void seekgzip_index_free(seekgzip_t *sz);
struct tag_seekgzip {
char *path_data;
char *path_index;
FILE *fp;
struct access *index;
off_t offset;
off_t totin;
off_t totout;
int errorcode;
uint64_t rawfilesize; //support for the file which is >2G
};
/*===== Begin of the portion of zran.c ===== {{{*/
/* zran.c -- example of zlib/gzip stream indexing and random access
* Copyright (C) 2005 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
Version 1.0 29 May 2005 Mark Adler */
/* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
for random access of a compressed file. A file containing a zlib or gzip
stream is provided on the command line. The compressed stream is decoded in
its entirety, and an index built with access points about every SPAN bytes
in the uncompressed output. The compressed file is left open, and can then
be read randomly, having to decompress on the average SPAN/2 uncompressed
bytes before getting to the desired block of data.
An access point can be created at the start of any deflate block, by saving
the starting file offset and bit of that block, and the 32K bytes of
uncompressed data that precede that block. Also the uncompressed offset of
that block is saved to provide a referece for locating a desired starting
point in the uncompressed stream. build_index() works by decompressing the
input zlib or gzip stream a block at a time, and at the end of each block
deciding if enough uncompressed data has gone by to justify the creation of
a new access point. If so, that point is saved in a data structure that
grows as needed to accommodate the points.
To use the index, an offset in the uncompressed data is provided, for which
the latest accees point at or preceding that offset is located in the index.
The input file is positioned to the specified location in the index, and if
necessary the first few bits of the compressed data is read from the file.
inflate is initialized with those bits and the 32K of uncompressed data, and
the decompression then proceeds until the desired offset in the file is
reached. Then the decompression continues to read the desired uncompressed
data from the file.
Another approach would be to generate the index on demand. In that case,
requests for random access reads from the compressed data would try to use
the index, but if a read far enough past the end of the index is required,
then further index entries would be generated and added.
There is some fair bit of overhead to starting inflation for the random
access, mainly copying the 32K byte dictionary. So if small pieces of the
file are being accessed, it would make sense to implement a cache to hold
some lookahead and avoid many calls to extract() for small lengths.
Another way to build an index would be to use inflateCopy(). That would
not be constrained to have access points at block boundaries, but requires
more memory per access point, and also cannot be saved to file due to the
use of pointers in the state. The approach here allows for storage of the
index in a file.
*/
#define SPAN 1048576L /* desired distance between access points */
#define WINSIZE 32768U /* sliding window size */
#define CHUNK 16384 /* file input buffer size */
/* access point entry */
struct point {
off_t out; /* corresponding offset in uncompressed data */
off_t in; /* offset in input file of first full byte */
int bits; /* number of bits (1-7) from byte at in - 1, or 0 */
unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */
};
/* access point list */
struct access {
uintmax_t nelements; /* number of list entries filled in */
uintmax_t allocated; /* number of list entries allocated */
struct point *list; /* allocated list */
};
/* Add an entry to the access point list. If out of memory, deallocate the
existing list and return NULL. */
static struct access *addpoint(struct access *index, int bits,
off_t in, off_t out, unsigned left, unsigned char *window)
{
struct point *next;
/* if list is full, make it bigger */
if (index->nelements == index->allocated) {
index->allocated = index->allocated != 0 ? index->allocated : 1;
index->allocated <<= 1;
index->list = (struct point*)realloc(index->list, sizeof(struct point) * index->allocated);
if (index->list == NULL)
return NULL;
}
/* fill in entry and increment how many we have */
next = index->list + index->nelements;
next->bits = bits;
next->in = in;
next->out = out;
if (left)
memcpy(next->window, window + WINSIZE - left, left);
if (left < WINSIZE)
memcpy(next->window + left, window, WINSIZE - left);
index->nelements++;
/* return list, possibly reallocated */
return index;
}
#ifdef SEEKGZIP_OPTIMIZATION
struct point *findpoint(struct access *index, off_t offset)
{
int half, len = index->nelements;
struct point *first = &index->list[0], *middle;
/* equivalent to std::upper_bound() */
while (0 < len) {
half = (len >> 1);
middle = first + half;
if (offset < middle->out) {
len = half;
} else {
first = middle + 1;
len = len - half - 1;
}
}
/* decrement the point */
return (first == &index->list[0] ? NULL : first-1);
}
#endif/*SEEKGZIP_OPTIMIZATION*/
/* Make one entire pass through the compressed stream and build an index, with
access points about every span bytes of uncompressed output -- span is
chosen to balance the speed of random access against the memory requirements
of the list, about 32K bytes per access point. Note that data after the end
of the first zlib or gzip stream in the file is ignored. build_index()
returns the number of access points on success (>= 1), Z_MEM_ERROR for out
of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
file read error. On success, *built points to the resulting index. */
static int build_index(FILE *in, off_t span, struct access **built, seekgzip_t *sz)
{
int ret;
off_t totin, totout; /* our own total counters to avoid 4GB limit */
off_t last; /* totout value of last access point */
uint64_t rawfilesize;
struct access *index = *built; /* access points being generated */
z_stream strm;
unsigned char input[CHUNK];
unsigned char window[WINSIZE];
/* initialize inflate */
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */
if (ret != Z_OK)
return ret;
// Rewind to beginning of file
if( (ret = fseeko(in, 0, SEEK_SET)) == -1)
goto build_index_error;
/* inflate the input, maintain a sliding window, and build an index -- this
also validates the integrity of the compressed data using the check
information at the end of the gzip or zlib stream */
totin = totout = last = rawfilesize = 0;
strm.avail_out = 0;
do {
/* get some compressed data from input file */
strm.avail_in = fread(input, 1, CHUNK, in);
if (ferror(in)) {
ret = Z_ERRNO;
goto build_index_error;
}
if (strm.avail_in == 0) {
ret = Z_DATA_ERROR;
goto build_index_error;
}
strm.next_in = input;
/* process all of that, or until end of stream */
do {
/* reset sliding window if necessary */
if (strm.avail_out == 0) {
strm.avail_out = WINSIZE;
strm.next_out = window;
}
/* inflate until out of input, output, or at end of block --
update the total input and output counters */
totin += strm.avail_in;
totout += strm.avail_out;
rawfilesize += strm.avail_out;
ret = inflate(&strm, Z_BLOCK); /* return at end of block */
totin -= strm.avail_in;
totout -= strm.avail_out;
rawfilesize -= strm.avail_out;
if (ret == Z_NEED_DICT)
ret = Z_DATA_ERROR;
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
goto build_index_error;
if (ret == Z_STREAM_END)
break;
/* if at end of block, consider adding an index entry (note that if
data_type indicates an end-of-block, then all of the
uncompressed data from that block has been delivered, and none
of the compressed data after that block has been consumed,
except for up to seven bits) -- the totout == 0 provides an
entry point after the zlib or gzip header, and assures that the
index always has at least one access point; we avoid creating an
access point after the last block by checking bit 6 of data_type
*/
if ((strm.data_type & 128) && !(strm.data_type & 64) &&
(totout == 0 || totout - last > span)) {
index = addpoint(index, strm.data_type & 7, totin,
totout, strm.avail_out, window);
if (index == NULL) {
ret = Z_MEM_ERROR;
goto build_index_error;
}
last = totout;
}
} while (strm.avail_in != 0);
} while (ret != Z_STREAM_END);
/* clean up and return index (release unused entries in list) */
(void)inflateEnd(&strm);
index->list = (struct point*)realloc(index->list, sizeof(struct point) * index->nelements);
index->allocated = index->nelements;
*built = index;
sz->totin = totin;
sz->totout = totout;
sz->rawfilesize = rawfilesize;
return index->allocated;
/* return error */
build_index_error:
(void)inflateEnd(&strm);
return ret;
}
/* Use the index to read len bytes from offset into buf, return bytes read or
negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
the end of the uncompressed data, then extract() will return a value less
than len, indicating how much as actually read into buf. This function
should not return a data error unless the file was modified since the index
was generated. extract() may also return Z_ERRNO if there is an error on
reading or seeking the input file. */
static int extract(FILE *in, struct access *index, off_t offset,
unsigned char *buf, int len)
{
int ret, skip;
z_stream strm;
struct point *here;
unsigned char input[CHUNK];
unsigned char discard[WINSIZE];
/* proceed only if something reasonable to do */
if (len < 0)
return 0;
/* find where in stream to start */
#ifdef SEEKGZIP_OPTIMIZATION
here = findpoint(index, offset);
if (here == NULL) {
/* possibly out of range. */
return 0;
}
#else
here = index->list;
ret = index->nelements;
while (--ret && here[1].out <= offset)
here++;
#endif/*SEEKGZIP_OPTIMIZATION*/
/* initialize file and inflate state to start there */
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit2(&strm, -15); /* raw inflate */
if (ret != Z_OK)
return ret;
ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
if (ret == -1)
goto extract_ret;
if (here->bits) {
ret = getc(in);
if (ret == -1) {
ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
goto extract_ret;
}
(void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits));
}
(void)inflateSetDictionary(&strm, here->window, WINSIZE);
/* skip uncompressed bytes until offset reached, then satisfy request */
offset -= here->out;
strm.avail_in = 0;
skip = 1; /* while skipping to offset */
do {
/* define where to put uncompressed data, and how much */
if (offset == 0 && skip) { /* at offset now */
strm.avail_out = len;
strm.next_out = buf;
skip = 0; /* only do this once */
}
if (offset > WINSIZE) { /* skip WINSIZE bytes */
strm.avail_out = WINSIZE;
strm.next_out = discard;
offset -= WINSIZE;
}
else if (offset != 0) { /* last skip */
strm.avail_out = (unsigned)offset;
strm.next_out = discard;
offset = 0;
}
/* uncompress until avail_out filled, or end of stream */
do {
if (strm.avail_in == 0) {
strm.avail_in = fread(input, 1, CHUNK, in);
if (ferror(in)) {
ret = Z_ERRNO;
goto extract_ret;
}
if (strm.avail_in == 0) {
ret = Z_DATA_ERROR;
goto extract_ret;
}
strm.next_in = input;
}
ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */
if (ret == Z_NEED_DICT)
ret = Z_DATA_ERROR;
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
goto extract_ret;
if (ret == Z_STREAM_END)
break;
} while (strm.avail_out != 0);
/* if reach end of stream, then don't keep trying to get more */
if (ret == Z_STREAM_END)
break;
/* do until offset reached and requested data read, or stream ends */
} while (skip);
/* compute number of uncompressed bytes read after offset */
ret = skip ? 0 : len - strm.avail_out;
/* clean up and return bytes read or error */
extract_ret:
(void)inflateEnd(&strm);
return ret;
}
/*===== End of the portion of zran.c ===== }}}*/
static char *get_index_file(const char *target)
{
char *idx = (char*)malloc(strlen(target) + 4 + 1);
if (idx == NULL) {
return NULL;
}
strcpy(idx, target);
strcat(idx, ".idx");
return idx;
}
static int write_uint32(gzFile gz, uint32_t v)
{
return gzwrite(gz, &v, sizeof(v));
}
static uint32_t read_uint32(gzFile gz)
{
uint32_t v;
gzread(gz, &v, sizeof(v));
return v;
}
void seekgzip_index_free(seekgzip_t *sz){
if(sz->index == NULL)
return;
if(sz->index->list != NULL)
free(sz->index->list);
free(sz->index);
sz->index = NULL;
}
int seekgzip_index_alloc(seekgzip_t *sz){
if(sz->index != NULL)
seekgzip_index_free(sz);
if( (sz->index = (struct access *)malloc(sizeof(struct access))) == NULL)
return SEEKGZIP_OUTOFMEMORY;
sz->index->nelements = 0;
sz->index->allocated = 0;
sz->index->list = NULL;
return SEEKGZIP_SUCCESS;
}
int seekgzip_index_checkutime(seekgzip_t *sz){
int ret;
struct stat stats_data;
struct stat stats_index;
if( (ret = stat(sz->path_data, &stats_data)) != 0)
return ret;
if( (ret = stat(sz->path_index, &stats_index)) != 0)
return ret;
return (stats_data.st_mtime == stats_index.st_mtime) ?
0 : 1;
}
int seekgzip_index_setutime(seekgzip_t *sz){
int ret;
struct stat stats;
struct utimbuf times;
if( (ret = stat(sz->path_data, &stats)) != 0)
return ret;
times.actime = stats.st_atime;
times.modtime = stats.st_mtime;
if( (ret = utime(sz->path_index, ×)) != 0)
return ret;
return 0;
}
int seekgzip_index_build(seekgzip_t *sz)
{
int len, ret = SEEKGZIP_SUCCESS;
// Build an index for the file.
len = build_index(sz->fp, SPAN, &sz->index, sz);
if (len < 0) {
switch (len) {
case Z_MEM_ERROR:
ret = SEEKGZIP_OUTOFMEMORY;
case Z_DATA_ERROR:
ret = SEEKGZIP_DATAERROR;
case Z_ERRNO:
ret = SEEKGZIP_READERROR;
default:
ret = SEEKGZIP_ERROR;
}
// invalid index, so - free it
seekgzip_index_free(sz);
}
return ret;
}
int seekgzip_index_save(seekgzip_t *sz){
int ret = SEEKGZIP_SUCCESS;
uintmax_t i;
gzFile gz;
// Open the index file for writing.
gz = gzopen(sz->path_index, "wb");
if (gz == NULL)
return SEEKGZIP_OPENERROR;
// Write a header.
gzwrite(gz, "ZSE3", 4);
write_uint32(gz, (uint32_t)sizeof(off_t));
write_uint32(gz, (uint32_t)sz->index->nelements);
gzwrite(gz, &sz->totin, sizeof(off_t));
gzwrite(gz, &sz->totout, sizeof(off_t));
gzwrite(gz, &sz->rawfilesize, sizeof(uint64_t));
// Write out entry points.
for (i = 0;i < sz->index->nelements;++i) {
gzwrite(gz, &sz->index->list[i].out, sizeof(off_t));
gzwrite(gz, &sz->index->list[i].in, sizeof(off_t));
gzwrite(gz, &sz->index->list[i].bits, sizeof(int));
gzwrite(gz, sz->index->list[i].window, WINSIZE);
}
gzclose(gz);
seekgzip_index_setutime(sz);
return ret;
}
int seekgzip_index_load(seekgzip_t *sz){
int ret = SEEKGZIP_SUCCESS;
uintmax_t i;
gzFile gz;
if( (ret = seekgzip_index_alloc(sz)) != SEEKGZIP_SUCCESS)
return ret;
// Check index mod time
switch( (ret = seekgzip_index_checkutime(sz)) ){
case 0: // match
break;
case 1: // not match
return SEEKGZIP_EXPIREDINDEX;
default:
return SEEKGZIP_OPENERROR;
}
// Open the index file for reading.
gz = gzopen(sz->path_index, "rb");
if (gz == NULL)
return SEEKGZIP_OPENERROR;
// Read the magic string.
if (gzgetc(gz) != 'Z' || gzgetc(gz) != 'S' || gzgetc(gz) != 'E' || gzgetc(gz) != '3'){
ret = SEEKGZIP_IMCOMPATIBLE;
goto error_exit;
}
// Check the size of off_t.
if (read_uint32(gz) != sizeof(off_t)) {
ret = SEEKGZIP_IMCOMPATIBLE;
goto error_exit;
}
// Read the number of entry points.
sz->index->nelements = sz->index->allocated = read_uint32(gz);
if(__MAX(uintmax_t) / sizeof(struct point) <= sz->index->nelements){
ret = SEEKGZIP_IMCOMPATIBLE;
goto error_exit;
}
// Allocate an array for entry points.
sz->index->list = (struct point*)malloc(sizeof(struct point) * sz->index->nelements);
if (sz->index->list == NULL) {
ret = SEEKGZIP_OUTOFMEMORY;
goto error_exit;
}
// Read size of unpacked file
gzread(gz, &sz->totin, sizeof(off_t));
gzread(gz, &sz->totout, sizeof(off_t));
gzread(gz, &sz->rawfilesize, sizeof(uint64_t));
// Read entry points.
for (i = 0; i < sz->index->nelements; ++i) {
gzread(gz, &sz->index->list[i].out, sizeof(off_t));
gzread(gz, &sz->index->list[i].in, sizeof(off_t));
gzread(gz, &sz->index->list[i].bits, sizeof(int));
gzread(gz, sz->index->list[i].window, WINSIZE);
}
error_exit:
// Close the index filiiiie.
if (gzclose(gz) != 0) {
ret = SEEKGZIP_ZLIBERROR;
goto error_exit;
}
return ret;
}
seekgzip_t* seekgzip_open(const char *target, int flags)
{
seekgzip_t *sz;
if( (sz = (seekgzip_t *)malloc(sizeof(seekgzip_t))) == NULL)
return NULL;
sz->offset = 0;
sz->errorcode = 0;
sz->index = NULL;
// Open the target gzip file for reading.
sz->fp = fopen(target, "rb");
if (sz->fp == NULL) {
sz->errorcode = SEEKGZIP_OPENERROR;
goto error_exit;
}
if( (sz->path_data = strdup(target)) == NULL){
sz->errorcode = SEEKGZIP_OUTOFMEMORY;
goto error_exit;
}
// Prepare the name for the index file.
sz->path_index = get_index_file(target);
if (sz->path_index == NULL) {
sz->errorcode = SEEKGZIP_OUTOFMEMORY;
goto error_exit;
}
// Load index
sz->errorcode = seekgzip_index_load(sz);
switch(sz->errorcode){
case SEEKGZIP_SUCCESS:
break;
case SEEKGZIP_OPENERROR:
case SEEKGZIP_IMCOMPATIBLE:
case SEEKGZIP_EXPIREDINDEX:
// build index and save it
sz->errorcode = seekgzip_index_build(sz);
if( sz->errorcode == SEEKGZIP_SUCCESS ){
seekgzip_index_save(sz); // return value is not important, maybe we cannot write to file, so
// we rebuild index on every program start. (should be warning somehow shown)
}
break;
default:
goto error_exit;
}
error_exit:
return sz;
}
void seekgzip_close(seekgzip_t* sz)
{
if (sz == NULL)
return;
seekgzip_index_free(sz);
if (sz->fp != NULL){
fclose(sz->fp);
sz->fp = NULL;
}
if (sz->path_index != NULL){
free(sz->path_index);
sz->path_index = NULL;
}
if (sz->path_data != NULL){
free(sz->path_data);
sz->path_data = NULL;
}
free(sz);
}
void seekgzip_seek(seekgzip_t *sz, off_t offset)
{
sz->offset = offset;
}
off_t seekgzip_tell(seekgzip_t *sz)
{
return sz->offset;
}
off_t seekgzip_unpacked_length(seekgzip_t *sz)
{
return sz->totout;
}
off_t seekgzip_packed_length(seekgzip_t *sz)
{
return sz->totin;
}
int seekgzip_read(seekgzip_t* sz, void *buffer, int size)
{
int len = extract(sz->fp, sz->index, sz->offset, (unsigned char*)buffer, size);
if (0 < len) {
sz->offset += len;
}
return len;
}
int seekgzip_error(seekgzip_t* sz)
{
if(sz == NULL)
return SEEKGZIP_OUTOFMEMORY;
return sz->errorcode;
}