-
Notifications
You must be signed in to change notification settings - Fork 39
/
utils.py
executable file
·226 lines (179 loc) · 8.06 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import numpy as np
import h5py
import json
import torch
from tqdm import tqdm
from collections import Counter
from random import seed, choice, sample
import pickle
def create_input_files(dataset,karpathy_json_path,captions_per_image, min_word_freq,output_folder,max_len=100):
"""
Creates input files for training, validation, and test data.
:param dataset: name of dataset. Since bottom up features only available for coco, we use only coco
:param karpathy_json_path: path of Karpathy JSON file with splits and captions
:param captions_per_image: number of captions to sample per image
:param min_word_freq: words occuring less frequently than this threshold are binned as <unk>s
:param output_folder: folder to save files
:param max_len: don't sample captions longer than this length
"""
assert dataset in {'coco'}
# Read Karpathy JSON
with open(karpathy_json_path, 'r') as j:
data = json.load(j)
with open(os.path.join(output_folder,'train36_imgid2idx.pkl'), 'rb') as j:
train_data = pickle.load(j)
with open(os.path.join(output_folder,'val36_imgid2idx.pkl'), 'rb') as j:
val_data = pickle.load(j)
# Read image paths and captions for each image
train_image_captions = []
val_image_captions = []
test_image_captions = []
train_image_det = []
val_image_det = []
test_image_det = []
word_freq = Counter()
for img in data['images']:
captions = []
for c in img['sentences']:
# Update word frequency
word_freq.update(c['tokens'])
if len(c['tokens']) <= max_len:
captions.append(c['tokens'])
if len(captions) == 0:
continue
image_id = img['filename'].split('_')[2]
image_id = int(image_id.lstrip("0").split('.')[0])
if img['split'] in {'train', 'restval'}:
if img['filepath'] == 'train2014':
if image_id in train_data:
train_image_det.append(("t",train_data[image_id]))
else:
if image_id in val_data:
train_image_det.append(("v",val_data[image_id]))
train_image_captions.append(captions)
elif img['split'] in {'val'}:
if image_id in val_data:
val_image_det.append(("v",val_data[image_id]))
val_image_captions.append(captions)
elif img['split'] in {'test'}:
if image_id in val_data:
test_image_det.append(("v",val_data[image_id]))
test_image_captions.append(captions)
# Sanity check
assert len(train_image_det) == len(train_image_captions)
assert len(val_image_det) == len(val_image_captions)
assert len(test_image_det) == len(test_image_captions)
# Create word map
words = [w for w in word_freq.keys() if word_freq[w] > min_word_freq]
word_map = {k: v + 1 for v, k in enumerate(words)}
word_map['<unk>'] = len(word_map) + 1
word_map['<start>'] = len(word_map) + 1
word_map['<end>'] = len(word_map) + 1
word_map['<pad>'] = 0
# Create a base/root name for all output files
base_filename = dataset + '_' + str(captions_per_image) + '_cap_per_img_' + str(min_word_freq) + '_min_word_freq'
# Save word map to a JSON
with open(os.path.join(output_folder, 'WORDMAP_' + base_filename + '.json'), 'w') as j:
json.dump(word_map, j)
for impaths, imcaps, split in [(train_image_det, train_image_captions, 'TRAIN'),
(val_image_det, val_image_captions, 'VAL'),
(test_image_det, test_image_captions, 'TEST')]:
enc_captions = []
caplens = []
for i, path in enumerate(tqdm(impaths)):
# Sample captions
if len(imcaps[i]) < captions_per_image:
captions = imcaps[i] + [choice(imcaps[i]) for _ in range(captions_per_image - len(imcaps[i]))]
else:
captions = sample(imcaps[i], k=captions_per_image)
# Sanity check
assert len(captions) == captions_per_image
for j, c in enumerate(captions):
# Encode captions
enc_c = [word_map['<start>']] + [word_map.get(word, word_map['<unk>']) for word in c] + [
word_map['<end>']] + [word_map['<pad>']] * (max_len - len(c))
# Find caption lengths
c_len = len(c) + 2
enc_captions.append(enc_c)
caplens.append(c_len)
# Save encoded captions and their lengths to JSON files
with open(os.path.join(output_folder, split + '_CAPTIONS_' + base_filename + '.json'), 'w') as j:
json.dump(enc_captions, j)
with open(os.path.join(output_folder, split + '_CAPLENS_' + base_filename + '.json'), 'w') as j:
json.dump(caplens, j)
# Save bottom up features indexing to JSON files
with open(os.path.join(output_folder, 'TRAIN' + '_GENOME_DETS_' + base_filename + '.json'), 'w') as j:
json.dump(train_image_det, j)
with open(os.path.join(output_folder, 'VAL' + '_GENOME_DETS_' + base_filename + '.json'), 'w') as j:
json.dump(val_image_det, j)
with open(os.path.join(output_folder, 'TEST' + '_GENOME_DETS_' + base_filename + '.json'), 'w') as j:
json.dump(test_image_det, j)
def init_embedding(embeddings):
"""
Fills embedding tensor with values from the uniform distribution.
:param embeddings: embedding tensor
"""
bias = np.sqrt(3.0 / embeddings.size(1))
torch.nn.init.uniform_(embeddings, -bias, bias)
def save_checkpoint(data_name, epoch, epochs_since_improvement,decoder,decoder_optimizer,
bleu4, is_best):
"""
Saves model checkpoint.
:param data_name: base name of processed dataset
:param epoch: epoch number
:param epochs_since_improvement: number of epochs since last improvement in BLEU-4 score
:param decoder: decoder model
:param decoder_optimizer: optimizer to update decoder's weights
:param bleu4: validation BLEU-4 score for this epoch
:param is_best: is this checkpoint the best so far?
"""
state = {'epoch': epoch,
'epochs_since_improvement': epochs_since_improvement,
'bleu-4': bleu4,
'decoder': decoder,
'decoder_optimizer': decoder_optimizer}
filename = 'checkpoint_' + data_name + '.pth.tar'
torch.save(state, filename)
# If this checkpoint is the best so far, store a copy so it doesn't get overwritten by a worse checkpoint
if is_best:
torch.save(state, 'BEST_' + str(epoch) + filename)
class AverageMeter(object):
"""
Keeps track of most recent, average, sum, and count of a metric.
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, shrink_factor):
"""
Shrinks learning rate by a specified factor.
:param optimizer: optimizer whose learning rate must be shrunk.
:param shrink_factor: factor in interval (0, 1) to multiply learning rate with.
"""
print("\nDECAYING learning rate.")
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * shrink_factor
print("The new learning rate is %f\n" % (optimizer.param_groups[0]['lr'],))
def accuracy(scores, targets, k):
"""
Computes top-k accuracy, from predicted and true labels.
:param scores: scores from the model
:param targets: true labels
:param k: k in top-k accuracy
:return: top-k accuracy
"""
batch_size = targets.size(0)
_, ind = scores.topk(k, 1, True, True)
correct = ind.eq(targets.view(-1, 1).expand_as(ind))
correct_total = correct.view(-1).float().sum() # 0D tensor
return correct_total.item() * (100.0 / batch_size)