-
Notifications
You must be signed in to change notification settings - Fork 56
/
main_fair.py
executable file
·422 lines (349 loc) · 18.6 KB
/
main_fair.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import copy
import os
import itertools
import numpy as np
from scipy.stats import mode
from torchvision import datasets, transforms, models
import torch
from torch import nn
import torch.optim as optim
from utils.sampling import fair_iid, fair_noniid
from utils.options import args_parser
from models.Update import LocalUpdate
from models.Nets import MLP, CNNMnist, CNNCifar, ResnetCifar
from models.Fed import FedAvg
from models.test import test_img, test_img_local
import pandas as pd
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils.class_weight import compute_class_weight
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
from helpers import load_ICU_data, plot_distributions, _performance_text
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="3"
import pdb
def run_all(clf_all1, clf_all2, adv_all1, adv_all2, adv_all3):
# parse args
args = args_parser()
args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
# load ICU dataset and split users
# load ICU data set
X, y, Z = load_ICU_data('../fairness-in-ml/data/adult.data')
if not args.iid:
X = X[:30000]
y = y[:30000]
Z = Z[:30000]
n_points = X.shape[0]
n_features = X.shape[1]
n_sensitive = Z.shape[1]
# split into train/test set
(X_train, X_test, y_train, y_test, Z_train, Z_test) = train_test_split(X, y, Z, test_size=0.5, stratify=y, random_state=7)
# standardize the data
scaler = StandardScaler().fit(X_train)
scale_df = lambda df, scaler: pd.DataFrame(scaler.transform(df), columns=df.columns, index=df.index)
X_train = X_train.pipe(scale_df, scaler)
X_test = X_test.pipe(scale_df, scaler)
class PandasDataSet(TensorDataset):
def __init__(self, *dataframes):
tensors = (self._df_to_tensor(df) for df in dataframes)
super(PandasDataSet, self).__init__(*tensors)
def _df_to_tensor(self, df):
if isinstance(df, pd.Series):
df = df.to_frame('dummy')
return torch.from_numpy(df.values).float()
def _df_to_tensor(df):
if isinstance(df, pd.Series):
df = df.to_frame('dummy')
return torch.from_numpy(df.values).float()
train_data = PandasDataSet(X_train, y_train, Z_train)
test_data = PandasDataSet(X_test, y_test, Z_test)
print('# train samples:', len(train_data)) # 15470
print('# test samples:', len(test_data))
batch_size = 32
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(test_data, batch_size=len(test_data), shuffle=True, drop_last=True)
# sample users
if args.iid:
dict_users_train = fair_iid(train_data, args.num_users)
dict_users_test = fair_iid(test_data, args.num_users)
else:
train_data = [_df_to_tensor(X_train), _df_to_tensor(y_train), _df_to_tensor(Z_train)]
test_data = [_df_to_tensor(X_test), _df_to_tensor(y_test), _df_to_tensor(Z_test)]
#import pdb; pdb.set_trace()
dict_users_train, rand_set_all = fair_noniid(train_data, args.num_users, num_shards=100, num_imgs=150, train=True)
dict_users_test, _ = fair_noniid(test_data, args.num_users, num_shards=100, num_imgs=150, train=False, rand_set_all=rand_set_all)
train_data = [_df_to_tensor(X_train), _df_to_tensor(y_train), _df_to_tensor(Z_train)]
test_data = [_df_to_tensor(X_test), _df_to_tensor(y_test), _df_to_tensor(Z_test)]
class LocalClassifier(nn.Module):
def __init__(self, n_features, n_hidden=32, p_dropout=0.2):
super(LocalClassifier, self).__init__()
self.network1 = nn.Sequential(
nn.Linear(n_features, n_hidden),
nn.ReLU(),
nn.Dropout(p_dropout),
nn.Linear(n_hidden, n_hidden),
nn.ReLU(),
nn.Dropout(p_dropout),
nn.Linear(n_hidden, n_hidden)
)
self.network2 = nn.Sequential(
nn.ReLU(),
nn.Dropout(p_dropout),
nn.Linear(n_hidden, 1)
)
def forward(self, x):
mid = self.network1(x)
final = torch.sigmoid(self.network2(mid))
return mid, final
def pretrain_classifier(clf, data_loader, optimizer, criterion):
losses = 0.0
for x, y, _ in data_loader:
x = x.to(args.device)
y = y.to(args.device)
clf.zero_grad()
mid, p_y = clf(x)
loss = criterion(p_y, y)
loss.backward()
optimizer.step()
losses += loss.item()
print ('loss', losses/len(data_loader))
return clf
def test_classifier(clf, data_loader):
losses = 0
assert len(data_loader) == 1
with torch.no_grad():
for x, y_test, _ in data_loader:
x = x.to(args.device)
mid, y_pred = clf(x)
y_pred = y_pred.cpu()
clf_accuracy = metrics.accuracy_score(y_test, y_pred > 0.5) * 100
return clf_accuracy
class Adversary(nn.Module):
def __init__(self, n_sensitive, n_hidden=32):
super(Adversary, self).__init__()
self.network = nn.Sequential(
nn.Linear(n_hidden, n_hidden),
nn.ReLU(),
nn.Linear(n_hidden, n_hidden),
nn.ReLU(),
nn.Linear(n_hidden, n_hidden),
nn.ReLU(),
nn.Linear(n_hidden, n_sensitive),
)
def forward(self, x):
return torch.sigmoid(self.network(x))
def pretrain_adversary(adv, clf, data_loader, optimizer, criterion):
losses = 0.0
for x, _, z in data_loader:
x = x.to(args.device)
z = z.to(args.device)
mid, p_y = clf(x)
mid = mid.detach()
p_y = p_y.detach()
adv.zero_grad()
p_z = adv(mid)
loss = (criterion(p_z.to(args.device), z.to(args.device)) * lambdas.to(args.device)).mean()
loss.backward()
optimizer.step()
losses += loss.item()
print ('loss', losses/len(data_loader))
return adv
def test_adversary(adv, clf, data_loader):
losses = 0
adv_accuracies = []
assert len(data_loader) == 1
with torch.no_grad():
for x, _, z_test in data_loader:
x = x.to(args.device)
mid, p_y = clf(x)
mid = mid.detach()
p_y = p_y.detach()
p_z = adv(mid)
for i in range(p_z.shape[1]):
z_test_i = z_test[:,i]
z_pred_i = p_z[:,i]
z_pred_i = z_pred_i.cpu()
adv_accuracy = metrics.accuracy_score(z_test_i, z_pred_i > 0.5) * 100
adv_accuracies.append(adv_accuracy)
return adv_accuracies
def train_both(clf, adv, data_loader, clf_criterion, adv_criterion, clf_optimizer, adv_optimizer, lambdas):
# Train adversary
adv_losses = 0.0
for x, y, z in data_loader:
x = x.to(args.device)
z = z.to(args.device)
local, p_y = clf(x)
adv.zero_grad()
p_z = adv(local)
loss_adv = (adv_criterion(p_z.to(args.device), z.to(args.device)) * lambdas.to(args.device)).mean()
loss_adv.backward()
adv_optimizer.step()
adv_losses += loss_adv.item()
print ('adversarial loss', adv_losses/len(data_loader))
# Train classifier on single batch
clf_losses = 0.0
for x, y, z in data_loader:
pass
x = x.to(args.device)
y = y.to(args.device)
z = z.to(args.device)
local, p_y = clf(x)
p_z = adv(local)
clf.zero_grad()
if args.adv:
clf_loss = clf_criterion(p_y.to(args.device), y.to(args.device)) - (adv_criterion(p_z.to(args.device), z.to(args.device)) * lambdas.to(args.device)).mean()
else:
clf_loss = clf_criterion(p_y.to(args.device), y.to(args.device))
clf_loss.backward()
clf_optimizer.step()
clf_losses += clf_loss.item()
print ('classifier loss', clf_losses/len(data_loader))
return clf, adv
def eval_performance_text(test_loader_i, local_clf_i, adv_i):
with torch.no_grad():
for test_x, test_y, test_z in test_loader_i:
test_x = test_x.to(args.device)
local_pred, clf_pred = local_clf_i(test_x)
adv_pred = adv_i(local_pred)
y_post_clf = pd.Series(clf_pred.cpu().numpy().ravel(), index=y_test[list(dict_users_train[idx])].index)
Z_post_adv = pd.DataFrame(adv_pred.cpu().numpy(), columns=Z_test.columns)
clf_roc_auc,clf_accuracy,adv_acc1,adv_acc2,adv_roc_auc = _performance_text(test_y, test_z, y_post_clf, Z_post_adv, epoch=None)
return clf_roc_auc,clf_accuracy,adv_acc1,adv_acc2,adv_roc_auc
def eval_global_performance_text(test_loader_i, local_clf_i, adv_i, global_clf):
with torch.no_grad():
for test_x, test_y, test_z in test_loader_i:
test_x = test_x.to(args.device)
local_pred, clf_pred = local_clf_i(test_x)
adv_pred = adv_i(local_pred)
global_pred = global_clf(local_pred)
y_post_clf = pd.Series(global_pred.cpu().numpy().ravel(), index=y_test[list(dict_users_train[idx])].index)
Z_post_adv = pd.DataFrame(adv_pred.cpu().numpy(), columns=Z_test.columns)
clf_roc_auc,clf_accuracy,adv_acc1,adv_acc2,adv_roc_auc = _performance_text(test_y, test_z, y_post_clf, Z_post_adv, epoch=None)
return clf_roc_auc,clf_accuracy,adv_acc1,adv_acc2,adv_roc_auc
lambdas = torch.Tensor([30.0, 30.0])
net_local_list = []
print ('\n\n======================== STARTING LOCAL TRAINING ========================\n\n\n')
for idx in range(args.num_users):
print ('\n======================== LOCAL TRAINING, USER %d ========================\n\n\n' %idx)
train_data_i_raw = [torch.FloatTensor(bb[list(dict_users_train[idx])]) for bb in train_data]
train_data_i = TensorDataset(train_data_i_raw[0],train_data_i_raw[1],train_data_i_raw[2])
train_loader_i = torch.utils.data.DataLoader(train_data_i, batch_size=batch_size, shuffle=False, num_workers=4)
test_data_i_raw = [torch.FloatTensor(bb[list(dict_users_train[idx])]) for bb in test_data]
test_data_i = TensorDataset(test_data_i_raw[0],test_data_i_raw[1],test_data_i_raw[2])
test_loader_i = torch.utils.data.DataLoader(test_data_i, batch_size=len(test_data_i), shuffle=False, num_workers=4)
local_clf_i = LocalClassifier(n_features=n_features).to(args.device)
local_clf_criterion_i = nn.BCELoss().to(args.device)
local_clf_optimizer_i = optim.SGD(local_clf_i.parameters(), lr=0.1)
adv_i = Adversary(Z_train.shape[1]).to(args.device)
adv_criterion_i = nn.BCELoss(reduce=False).to(args.device)
adv_optimizer_i = optim.SGD(adv_i.parameters(), lr=0.1)
net_local_list.append([train_loader_i,test_loader_i,local_clf_i,local_clf_optimizer_i,local_clf_criterion_i,adv_i,adv_criterion_i,adv_optimizer_i])
N_CLF_EPOCHS = 10
for epoch in range(N_CLF_EPOCHS):
print ('======================== pretrain_classifier epoch %d ========================' %epoch)
local_clf = pretrain_classifier(local_clf_i, train_loader_i, local_clf_optimizer_i, local_clf_criterion_i)
# test classifier
# print ('\npretrained test accuracy on income prediction', test_classifier(local_clf_i, test_loader))
# print ()
print ('======================== local classifier pretraining: evaluating _performance_text on device %d ========================' %idx)
eval_performance_text(test_loader_i, local_clf_i, adv_i)
N_ADV_EPOCHS = 10
for epoch in range(N_ADV_EPOCHS):
print ('======================== pretrain_adversary epoch %d ========================' %epoch)
pretrain_adversary(adv_i, local_clf_i, train_loader_i, adv_optimizer_i, adv_criterion_i)
# test adversary
# print ('\npretrained adversary accuracy on race, sex prediction', test_adversary(adv_i, local_clf_i, test_loader))
# print ()
print ('======================== local adversary pretraining: evaluating _performance_text on device %d ========================' %idx)
eval_performance_text(test_loader_i, local_clf_i, adv_i)
print ('======================== by now both the local classifier and the local adversary should do well ========================')
# train both
N_EPOCH_COMBINED = 0 #250
for epoch in range(N_EPOCH_COMBINED):
print ('======================== combined training epoch %d ========================' %epoch)
clf, adv = train_both(local_clf_i, adv_i, train_loader_i, local_clf_criterion_i, adv_criterion_i,
local_clf_optimizer_i, adv_optimizer_i, lambdas)
# test classifier
#print ('final test accuracy on income prediction', test_classifier(clf, test_loader))
# test adversary
#print ('final adversary accuracy on race, sex prediction', test_adversary(adv, clf, test_loader))
print ('======================== local classifier and adversary pretraining: evaluating _performance_text on device %d ========================' %idx)
eval_performance_text(test_loader_i, local_clf_i, adv_i)
print ('======================== by now the local classifier should do well but the local adversary should not do well ========================')
print ('======================== done pretraining local classifiers and adversaries ========================')
class GlobalClassifier(nn.Module):
def __init__(self, n_hidden=32, p_dropout=0.2):
super(GlobalClassifier, self).__init__()
self.global_network = nn.Sequential(
nn.Linear(n_hidden, n_hidden),
nn.ReLU(),
nn.Dropout(p_dropout),
nn.Linear(n_hidden, n_hidden),
nn.ReLU(),
nn.Dropout(p_dropout),
nn.Linear(n_hidden, 1),
)
def forward(self, local):
final = torch.sigmoid(self.global_network(local))
return final
# build global model
global_clf = GlobalClassifier().to(args.device)
global_clf_criterion = nn.BCELoss().to(args.device)
global_clf_optimizer = optim.Adam(global_clf.parameters(), lr=0.01)
# copy weights
w_glob = global_clf.state_dict()
print ('\n\n======================== STARTING GLOBAL TRAINING ========================\n\n\n')
global_epochs = 10
for iter in range(global_epochs):
w_locals, loss_locals = [], []
for idx in range(args.num_users):
print ('\n\n======================== GLOBAL TRAINING, ITERATION %d, USER %d ========================\n\n\n' %(iter,idx))
train_loader_i,test_loader_i,local_clf_i,local_clf_optimizer_i,local_clf_criterion_i,adv_i,adv_criterion_i,adv_optimizer_i = net_local_list[idx]
# train both local models: classifier and adversary
if iter % 2 == 0:
N_EPOCH_COMBINED = 0 #65
for epoch in range(N_EPOCH_COMBINED):
print ('======================== combined training epoch %d ========================' %epoch)
local_clf_i, adv_i = train_both(local_clf_i, adv_i, train_loader_i, local_clf_criterion_i, adv_criterion_i,
local_clf_optimizer_i, adv_optimizer_i, lambdas)
local = LocalUpdate(args=args, dataset=train_loader_i)
w, loss = local.train(local_net=local_clf_i, local_opt=local_clf_optimizer_i, local_adv=adv_i, adv_opt=adv_optimizer_i, global_net=copy.deepcopy(global_clf).to(args.device), global_opt=global_clf_optimizer)
w_locals.append(copy.deepcopy(w))
loss_locals.append(copy.deepcopy(loss))
w_glob = FedAvg(w_locals)
# copy weight to net_glob
global_clf.load_state_dict(w_glob)
for idx in range(args.num_users):
train_loader_i,test_loader_i,local_clf_i,local_clf_optimizer_i,local_clf_criterion_i,adv_i,adv_criterion_i,adv_optimizer_i = net_local_list[idx]
print ('======================== local and global training: evaluating _performance_text on device %d ========================' %idx)
eval_performance_text(test_loader_i, local_clf_i, adv_i)
print ('======================== by now the local classifier should do well but the local adversary should not do well ========================')
print ('======================== local and global training: evaluating _global_performance_text on device %d ========================' %idx)
clf_roc_auc,clf_accuracy,adv_acc1,adv_acc2,adv_roc_auc = eval_global_performance_text(test_loader_i, local_clf_i, adv_i, global_clf)
print ('======================== by now the global classifier should work better than local classifier ========================')
clf_all1.append(clf_roc_auc)
clf_all2.append(clf_accuracy)
adv_all1.append(adv_acc1)
adv_all2.append(adv_acc2)
adv_all3.append(adv_roc_auc)
print ('clf_all1', np.mean(np.array(clf_all1)), np.std(np.array(clf_all1)))
print ('clf_all2', np.mean(np.array(clf_all2)), np.std(np.array(clf_all2)))
print ('adv_all1', np.mean(np.array(adv_all1)), np.std(np.array(adv_all1)))
print ('adv_all2', np.mean(np.array(adv_all2)), np.std(np.array(adv_all2)))
print ('adv_all3', np.mean(np.array(adv_all3)), np.std(np.array(adv_all3)))
return clf_all1, clf_all2, adv_all1, adv_all2, adv_all3
if __name__ == '__main__':
clf_all1, clf_all2, adv_all1, adv_all2, adv_all3 = [], [], [], [], []
for _ in range(10):
clf_all1, clf_all2, adv_all1, adv_all2, adv_all3 = run_all(clf_all1, clf_all2, adv_all1, adv_all2, adv_all3)
print ('final')
print ('clf_all1', np.mean(np.array(clf_all1)), np.std(np.array(clf_all1)))
print ('clf_all2', np.mean(np.array(clf_all2)), np.std(np.array(clf_all2)))
print ('adv_all1', np.mean(np.array(adv_all1)), np.std(np.array(adv_all1)))
print ('adv_all2', np.mean(np.array(adv_all2)), np.std(np.array(adv_all2)))
print ('adv_all3', np.mean(np.array(adv_all3)), np.std(np.array(adv_all3)))