-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
255 lines (199 loc) · 6.44 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import sys
import time
import numpy as np
import torch
#
#_, term_width = os.popen('stty size', 'r').read().split()
term_width = 97# int(term_width)
TOTAL_BAR_LENGTH = 65.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH*current/total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
if msg:
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current+1, total))
if current < total-1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def format_time(seconds):
days = int(seconds / 3600/24)
seconds = seconds - days*3600*24
hours = int(seconds / 3600)
seconds = seconds - hours*3600
minutes = int(seconds / 60)
seconds = seconds - minutes*60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds*1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f
# count_net_parameters
def count_net_parameters(model):
# for name, v in models.named_parameters():
# print(name, np.prod(v.size()))
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6
# AvgrageMeter
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
# calAccuracy
def calAccuracy(output, target, topk=(1,)):
# output, target: torch.Size([96, 10]) torch.Size([96])
maxk = max(topk)
#int
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
# _, pred: torch.Size([96, 5]) torch.Size([96, 5])
#print('output, target, pred:', output.shape, target.shape, pred.shape)
pred = pred.t()
# pred: torch.Size([5, 96])
correct = pred.eq(target.view(1, -1).expand_as(pred))
# correct: torch.Size([5, 96])
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
# combineSample, input: 3, 2 output:[0, 2]
def combineSample(maxNum, sampleNum):
pool = np.r_[0:maxNum]
ret = []
for i in range(sampleNum):
z = np.random.choice(pool, 1)
index = np.where(pool == z)
pool = np.delete(pool, index)
ret.append(z[0])
return ret
# combineSampleRetList, input: 3, 2 output:[0, 2]
def combineSampleRetList(maxNum, sampleNum):
retFlagList = np.zeros(maxNum)
pool = np.r_[0:maxNum]
for i in range(sampleNum):
z = np.random.choice(pool, 1)
index = np.where(pool == z)
pool = np.delete(pool, index)
retFlagList[z[0]] = 1
return retFlagList
#GenerateArch
def GenerateArch(testArchNum = 10):
def SampleArch(sampleNum):
nodeNum = 14
opNum = 6
choice = np.random.choice(opNum, sampleNum * nodeNum)
choice = np.eye(opNum)[choice]
choice = np.array(choice, dtype=np.int8).reshape(sampleNum, nodeNum, opNum)
return choice
def SampleEdge(sampleNum):
cellSize = 4
nodeNum = 14
ret = []
for sampleIndex in range(sampleNum):
start = 0
sampleList = np.zeros(nodeNum)
for cellIndex in range(cellSize):
edgeNum = 2 + cellIndex
# 从edgeNum中选出2条
choice = combineSample(edgeNum, 2)
choice = [i + start for i in choice]
start = start + edgeNum
sampleList[choice] = 1
ret.append(sampleList)
ret = np.array(ret, dtype=np.int8)
return ret
allNormalOp = SampleArch(testArchNum)
allReduceOp = SampleArch(testArchNum)
allNormalEdge = SampleEdge(testArchNum)
allReduceEdge = SampleEdge(testArchNum)
return allNormalOp, allReduceOp, allNormalEdge, allReduceEdge
#combination
def combination(nums, k):
ans = [[]]
for i in range(k):
ans = [pre + [sub]
for pre in ans for sub in nums if i == 0 or sub > pre[-1]]
return ans
# mixup
def mixup_data(x, y, device, alpha=2.0):
'''Compute the mixup data. Return mixed inputs, pairs of targets, and lambda'''
if alpha > 0.:
lam = np.random.beta(alpha, alpha)
else:
lam = 1.
batch_size = x.size()[0]
index = torch.randperm(batch_size).to(device)
mixed_x = lam * x + (1 - lam) * x[index,:]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
def mixup_criterion(y_a, y_b, lam):
return lambda criterion, pred: lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)