-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
247 lines (207 loc) · 10.7 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import sys
import random
import numpy as np
import json
import logging
import utils
import hashlib
import datetime
import os
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
from models.cifardataset import CifarDataset
from models.fixedgenenetwork import FixedGeneNetwork
parser = argparse.ArgumentParser("cifar")
parser.add_argument('--gpu', type=int, default=-1, help='gpu device id, -1 denote use all gpus')
parser.add_argument('--batch_size', type=int, default=96, help='batch size')
parser.add_argument('--numberworks', type=int, default=2, help='numberworks')
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument('--datadir', type=str, default='dataset/cifar', help='location of the data corpus')
parser.add_argument('--init_learning_rate', type=float, default=0.025, help='init learning rate')
parser.add_argument('--auxiliary', type=bool, default=True, help='use auxiliary tower')
parser.add_argument('--auxiliary_weight', type=float, default=0.4, help='weight for auxiliary loss')
parser.add_argument('--cutout', type=bool, default=True, help='use cutout')
parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument('--drop_path_prob', type=float, default=0.2, help='drop path probability')
parser.add_argument('--evaluate_epochs', type=int, default=600, help='train epochs')
parser.add_argument('--init_channels', type=int, default=36, help='num of init channels')
parser.add_argument('--reload_model', type=bool, default=False, help='reload models')
parser.add_argument('--dataset_name', type=str, default='cifar10', help='cifar10 or cifar100')
parser.add_argument('--cell_size', type=int, default=4, help='the number of the intermediate nodes of a cell')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument('--layers', type=int, default=20, help='total number of layers')
parser.add_argument('--arch', type=str, default='HOENAS_A', help='which architecture to use')
args = parser.parse_args()
# warmup 50+5, 16, 8
HOENAS_A = {"normalOpArch": {"randomNum": 0, "op": [6, 4, 3, 4, 4, 3, 4, 4, 3, 4, 6, 0, 0, 0]},
"reduceOpArch": {"randomNum": 0, "op": [5, 2, 4, 5, 4, 5, 1, 5, 5, 3, 1, 5, 4, 1]},
"normalEdgeArch": {"randomNum": 1,
"edge": [{"randomType": False, "edge": [1, 1]}, {"randomType": False, "edge": [1, 0, 1]},
{"randomType": False, "edge": [1, 1, 0, 0]},
{"randomType": False, "edge": [0, 0, 0, 0, 1]}]},
"reduceEdgeArch": {"randomNum": 1,
"edge": [{"randomType": False, "edge": [1, 1]}, {"randomType": False, "edge": [1, 0, 1]},
{"randomType": False, "edge": [1, 1, 0, 0]},
{"randomType": False, "edge": [0, 0, 0, 0, 1]}]}}
# # same model search
HOENAS_B = {"normalOpArch": {"randomNum": 0, "op": [5, 0, 3, 0, 6, 4, 0, 1, 4, 0, 0, 2, 3, 2]},
"reduceOpArch": {"randomNum": 0, "op": [0, 4, 6, 6, 6, 4, 6, 3, 5, 0, 1, 3, 4, 5]},
"normalEdgeArch": {"randomNum": 1,
"edge": [{"randomType": False, "edge": [1, 1]}, {"randomType": False, "edge": [1, 1, 0]},
{"randomType": False, "edge": [0, 1, 0, 1]},
{"randomType": False, "edge": [1, 1, 0, 0, 0]}]},
"reduceEdgeArch": {"randomNum": 1,
"edge": [{"randomType": False, "edge": [1, 1]}, {"randomType": False, "edge": [1, 1, 0]},
{"randomType": False, "edge": [0, 1, 0, 1]},
{"randomType": False, "edge": [1, 1, 0, 0, 0]}]}
}
# evaluate_test_epoch
def evaluate_test_epoch(fixednet, testDataLoader, criterion, device):
fixednet.eval()
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
#
for batch_idx, (testinputs, testtargets) in enumerate(testDataLoader):
testinputs, testtargets = testinputs.to(device), testtargets.to(device)
logits = fixednet(testinputs)
loss = criterion(logits, testtargets)
prec1, prec5 = utils.calAccuracy(logits, testtargets, topk=(1, 5))
n = testinputs.size(0)
objs.update(loss.data, n)
top1.update(prec1.data, n)
top5.update(prec5.data, n)
#break
return objs.avg, top1.avg, top5.avg
# evaluate_train_epoch
def evaluate_train_epoch(fixednet, trainDataLoader, criterion, device, optimizer, bAuxiliary, auxiliary_weight):
fixednet.train()
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
for batch_idx, (traininputs, traintargets) in enumerate(trainDataLoader):
traininputs, traintargets = traininputs.to(device), traintargets.to(device)
optimizer.zero_grad()
logits, logits_aux = fixednet(traininputs)
loss = criterion(logits, traintargets)
if bAuxiliary:
loss_aux = criterion(logits_aux, traintargets)
loss += auxiliary_weight * loss_aux
loss.backward()
nn.utils.clip_grad_norm_(fixednet.parameters(), 5)
optimizer.step()
#
prec1, prec5 = utils.calAccuracy(logits, traintargets, topk=(1, 5))
tmpBatchSize = traininputs.size(0)
objs.update(loss.data, tmpBatchSize)
top1.update(prec1.data, tmpBatchSize)
top5.update(prec5.data, tmpBatchSize)
return objs.avg, top1.avg, top5.avg
if __name__ == '__main__':
# logging
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p')
currenttime = datetime.datetime.now()
logDir = 'recorddir/log/search_%s%s%s%s%s' % (
currenttime.year, currenttime.month, currenttime.day, currenttime.hour, currenttime.minute)
if not os.path.isdir(logDir):
os.makedirs(logDir)
fh = logging.FileHandler(os.path.join(logDir, 'search.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
# set seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
cudnn.benchmark = True
cudnn.enabled = True
# best test accuracy
best_acc = 0
# decision number
decision_number = (sum([(2 + i) for i in range(args.cell_size)]) + (args.cell_size-1))*2
# Device
GPUSTR = '' if args.gpu == -1 else ':%d' % (args.gpu)
device = 'cuda' + GPUSTR if torch.cuda.is_available() else 'cpu'
# dataloader
cifarDataset = CifarDataset(args.datadir, bCutOut=args.cutout, dataset_name=args.dataset_name)
evaluate_train_dataLoader, evaluate_test_dataLoader = cifarDataset.getFixDataLoader(args.batch_size, args.batch_size)
# criterion optimizer
criterion = nn.CrossEntropyLoss().to(device)
# checkpoint dir
modelCheckPointDir = 'checkpoint/'
if not os.path.isdir(modelCheckPointDir):
os.makedirs(modelCheckPointDir)
archInfo = eval(args.arch)
jsonStr = json.dumps(archInfo)
hashArchStr = hashlib.md5(jsonStr.encode('utf-8')).hexdigest()
print('best_acc_arch hashArchStr:', hashArchStr)
# checkpoint file name
modelCheckPointName = 'evaluate_%s.pth' % (hashArchStr)
evaluateModelCheckPointPath = os.path.join(modelCheckPointDir, modelCheckPointName)
# writer, record models performance curve
evaluate_writer = SummaryWriter(log_dir='recorddir/runs/evaluate_runs_%s%s%s%s%s' % (
currenttime.year, currenttime.month, currenttime.day, currenttime.hour, currenttime.minute))
# build models
logging.info('==> Building models..')
fixednet = FixedGeneNetwork(device, criterion, archInfo, C=args.init_channels, stemC=args.init_channels * 3,
layerNum=args.layers, cellSize=args.cell_size, auxiliary=True, num_classes=cifarDataset.datasetNumberClass)
fixednet = fixednet.to(device)
logging.info("param size = %fMB", utils.count_net_parameters(fixednet))
# if use multi gpus
if args.gpu == -1:
fixednet = torch.nn.DataParallel(fixednet)
# optimizer
fixednetOptimizer = optim.SGD(fixednet.parameters(), lr=args.init_learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
# scheduler
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(fixednetOptimizer, args.evaluate_epochs)
start_epoch = 0
# reload model
if args.reload_model:
if os.path.exists(evaluateModelCheckPointPath):
print('==> Resuming from checkpoint:', os.path.abspath(modelCheckPointDir))
checkpoint = torch.load(evaluateModelCheckPointPath)
fixednet.load_state_dict(checkpoint['fixednet'])
scheduler.load_state_dict(checkpoint['scheduler'])
fixednetOptimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
acc = checkpoint['acc']
print('reload model best_acc, startEpoch :', acc, start_epoch)
# begin train
for epoch in range(start_epoch, args.evaluate_epochs):
lr = scheduler.get_lr()[0] # get_last_lr()[0]
logging.info('epoch %d lr %e', epoch, lr)
fixednet.drop_path_prob = args.drop_path_prob * (epoch - start_epoch) / (args.evaluate_epochs - start_epoch)
with torch.autograd.set_detect_anomaly(True):
trainLoss, trainTop1, trainTop5 = evaluate_train_epoch(fixednet, evaluate_train_dataLoader, criterion, device, fixednetOptimizer, args.auxiliary, args.auxiliary_weight)
with torch.no_grad():
testLoss, testTop1, testTop5 = evaluate_test_epoch(fixednet, evaluate_test_dataLoader, criterion, device)
scheduler.step()
evaluate_writer.add_scalars('scalar', {
'trainLoss': trainLoss,
'trainTop1': trainTop1,
'trainTop5': trainTop5,
'testLoss': testLoss,
'testTop1': testTop1,
'testTop5': testTop5
}, epoch)
#
logging.info('HOENAS epoch:%03d', epoch)
logging.info('trainloss:%e top1:%f top5:%f', trainLoss, trainTop1, trainTop5)
logging.info('testloss:%e top1:%f top5:%f', testLoss, testTop1, testTop5)
#
print('Saving model...')
state = {
'fixednet': fixednet.state_dict(),
'scheduler': scheduler.state_dict(),
'optimizer': fixednetOptimizer.state_dict(),
'epoch': epoch,
'acc': testTop1
}
torch.save(state, evaluateModelCheckPointPath)
evaluate_writer.close()