forked from tkuanlun350/Tensorflow-SegNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
52 lines (45 loc) · 2.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import tensorflow as tf
import model
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('testing', '', """ checkpoint file """)
tf.app.flags.DEFINE_string('finetune', '', """ finetune checkpoint file """)
tf.app.flags.DEFINE_integer('batch_size', "3", """ batch_size """)
tf.app.flags.DEFINE_float('learning_rate', "1e-3", """ initial lr """)
tf.app.flags.DEFINE_string('log_dir', "/tmp3/first350/TensorFlow/Logs", """ dir to store ckpt """)
tf.app.flags.DEFINE_string('image_dir', "/tmp3/first350/SegNet-Tutorial/CamVid/train.txt", """ path to CamVid image """)
tf.app.flags.DEFINE_string('test_dir', "/tmp3/first350/SegNet-Tutorial/CamVid/test.txt", """ path to CamVid test image """)
tf.app.flags.DEFINE_string('val_dir', "/tmp3/first350/SegNet-Tutorial/CamVid/val.txt", """ path to CamVid val image """)
tf.app.flags.DEFINE_integer('max_steps', "20000", """ max_steps """)
tf.app.flags.DEFINE_integer('image_h', "360", """ image height """)
tf.app.flags.DEFINE_integer('image_w', "480", """ image width """)
tf.app.flags.DEFINE_integer('image_c', "3", """ image channel (RGB) """)
tf.app.flags.DEFINE_integer('num_class', "11", """ total class number """)
tf.app.flags.DEFINE_boolean('save_image', True, """ whether to save predicted image """)
def checkArgs():
if FLAGS.testing != '':
print('The model is set to Testing')
print("check point file: %s"%FLAGS.testing)
print("CamVid testing dir: %s"%FLAGS.test_dir)
elif FLAGS.finetune != '':
print('The model is set to Finetune from ckpt')
print("check point file: %s"%FLAGS.finetune)
print("CamVid Image dir: %s"%FLAGS.image_dir)
print("CamVid Val dir: %s"%FLAGS.val_dir)
else:
print('The model is set to Training')
print("Max training Iteration: %d"%FLAGS.max_steps)
print("Initial lr: %f"%FLAGS.learning_rate)
print("CamVid Image dir: %s"%FLAGS.image_dir)
print("CamVid Val dir: %s"%FLAGS.val_dir)
print("Batch Size: %d"%FLAGS.batch_size)
print("Log dir: %s"%FLAGS.log_dir)
def main(args):
checkArgs()
if FLAGS.testing:
model.test(FLAGS)
elif FLAGS.finetune:
model.training(FLAGS, is_finetune=True)
else:
model.training(FLAGS, is_finetune=False)
if __name__ == '__main__':
tf.app.run()