-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathteam_code.py
289 lines (231 loc) · 11.2 KB
/
team_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#!/usr/bin/env python
# Edit this script to add your team's code. Some functions are *required*, but you can edit most parts of the required functions,
# change or remove non-required functions, and add your own functions.
################################################################################
#
# Optional libraries, functions, and variables. You can change or remove them.
#
################################################################################
from helper_code import *
import numpy as np, os, sys
import mne
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
import joblib
################################################################################
#
# Required functions. Edit these functions to add your code, but do not change the arguments of the functions.
#
################################################################################
# Train your model.
def train_challenge_model(data_folder, model_folder, verbose):
# Find data files.
if verbose >= 1:
print('Finding the Challenge data...')
patient_ids = find_data_folders(data_folder)
num_patients = len(patient_ids)
if num_patients==0:
raise FileNotFoundError('No data was provided.')
# Create a folder for the model if it does not already exist.
os.makedirs(model_folder, exist_ok=True)
# Extract the features and labels.
if verbose >= 1:
print('Extracting features and labels from the Challenge data...')
features = list()
outcomes = list()
cpcs = list()
for i in range(num_patients):
if verbose >= 2:
print(' {}/{}...'.format(i+1, num_patients))
current_features = get_features(data_folder, patient_ids[i])
features.append(current_features)
# Extract labels.
patient_metadata = load_challenge_data(data_folder, patient_ids[i])
current_outcome = get_outcome(patient_metadata)
outcomes.append(current_outcome)
current_cpc = get_cpc(patient_metadata)
cpcs.append(current_cpc)
features = np.vstack(features)
outcomes = np.vstack(outcomes)
cpcs = np.vstack(cpcs)
# Train the models.
if verbose >= 1:
print('Training the Challenge model on the Challenge data...')
# Define parameters for random forest classifier and regressor.
n_estimators = 123 # Number of trees in the forest.
max_leaf_nodes = 456 # Maximum number of leaf nodes in each tree.
random_state = 789 # Random state; set for reproducibility.
# Impute any missing features; use the mean value by default.
imputer = SimpleImputer().fit(features)
# Train the models.
features = imputer.transform(features)
outcome_model = RandomForestClassifier(
n_estimators=n_estimators, max_leaf_nodes=max_leaf_nodes, random_state=random_state).fit(features, outcomes.ravel())
cpc_model = RandomForestRegressor(
n_estimators=n_estimators, max_leaf_nodes=max_leaf_nodes, random_state=random_state).fit(features, cpcs.ravel())
# Save the models.
save_challenge_model(model_folder, imputer, outcome_model, cpc_model)
if verbose >= 1:
print('Done.')
# Load your trained models. This function is *required*. You should edit this function to add your code, but do *not* change the
# arguments of this function.
def load_challenge_models(model_folder, verbose):
filename = os.path.join(model_folder, 'models.sav')
return joblib.load(filename)
# Run your trained models. This function is *required*. You should edit this function to add your code, but do *not* change the
# arguments of this function.
def run_challenge_models(models, data_folder, patient_id, verbose):
imputer = models['imputer']
outcome_model = models['outcome_model']
cpc_model = models['cpc_model']
# Extract features.
features = get_features(data_folder, patient_id)
features = features.reshape(1, -1)
# Impute missing data.
features = imputer.transform(features)
# Apply models to features.
outcome = outcome_model.predict(features)[0]
outcome_probability = outcome_model.predict_proba(features)[0, 1]
cpc = cpc_model.predict(features)[0]
# Ensure that the CPC score is between (or equal to) 1 and 5.
cpc = np.clip(cpc, 1, 5)
return outcome, outcome_probability, cpc
################################################################################
#
# Optional functions. You can change or remove these functions and/or add new functions.
#
################################################################################
# Save your trained model.
def save_challenge_model(model_folder, imputer, outcome_model, cpc_model):
d = {'imputer': imputer, 'outcome_model': outcome_model, 'cpc_model': cpc_model}
filename = os.path.join(model_folder, 'models.sav')
joblib.dump(d, filename, protocol=0)
# Preprocess data.
def preprocess_data(data, sampling_frequency, utility_frequency):
# Define the bandpass frequencies.
passband = [0.1, 30.0]
# Promote the data to double precision because these libraries expect double precision.
data = np.asarray(data, dtype=np.float64)
# If the utility frequency is between bandpass frequencies, then apply a notch filter.
if utility_frequency is not None and passband[0] <= utility_frequency <= passband[1]:
data = mne.filter.notch_filter(data, sampling_frequency, utility_frequency, n_jobs=4, verbose='error')
# Apply a bandpass filter.
data = mne.filter.filter_data(data, sampling_frequency, passband[0], passband[1], n_jobs=4, verbose='error')
# Resample the data.
if sampling_frequency % 2 == 0:
resampling_frequency = 128
else:
resampling_frequency = 125
lcm = np.lcm(int(round(sampling_frequency)), int(round(resampling_frequency)))
up = int(round(lcm / sampling_frequency))
down = int(round(lcm / resampling_frequency))
resampling_frequency = sampling_frequency * up / down
data = scipy.signal.resample_poly(data, up, down, axis=1)
# Scale the data to the interval [-1, 1].
min_value = np.min(data)
max_value = np.max(data)
if min_value != max_value:
data = 2.0 / (max_value - min_value) * (data - 0.5 * (min_value + max_value))
else:
data = 0 * data
return data, resampling_frequency
# Extract features.
def get_features(data_folder, patient_id):
# Load patient data.
patient_metadata = load_challenge_data(data_folder, patient_id)
recording_ids = find_recording_files(data_folder, patient_id)
num_recordings = len(recording_ids)
# Extract patient features.
patient_features = get_patient_features(patient_metadata)
# Extract EEG features.
eeg_channels = ['F3', 'P3', 'F4', 'P4']
group = 'EEG'
if num_recordings > 0:
recording_id = recording_ids[-1]
recording_location = os.path.join(data_folder, patient_id, '{}_{}'.format(recording_id, group))
if os.path.exists(recording_location + '.hea'):
data, channels, sampling_frequency = load_recording_data(recording_location)
utility_frequency = get_utility_frequency(recording_location + '.hea')
if all(channel in channels for channel in eeg_channels):
data, channels = reduce_channels(data, channels, eeg_channels)
data, sampling_frequency = preprocess_data(data, sampling_frequency, utility_frequency)
data = np.array([data[0, :] - data[1, :], data[2, :] - data[3, :]]) # Convert to bipolar montage: F3-P3 and F4-P4
eeg_features = get_eeg_features(data, sampling_frequency).flatten()
else:
eeg_features = float('nan') * np.ones(8) # 2 bipolar channels * 4 features / channel
else:
eeg_features = float('nan') * np.ones(8) # 2 bipolar channels * 4 features / channel
else:
eeg_features = float('nan') * np.ones(8) # 2 bipolar channels * 4 features / channel
# Extract ECG features.
ecg_channels = ['ECG', 'ECGL', 'ECGR', 'ECG1', 'ECG2']
group = 'ECG'
if num_recordings > 0:
recording_id = recording_ids[0]
recording_location = os.path.join(data_folder, patient_id, '{}_{}'.format(recording_id, group))
if os.path.exists(recording_location + '.hea'):
data, channels, sampling_frequency = load_recording_data(recording_location)
utility_frequency = get_utility_frequency(recording_location + '.hea')
data, channels = reduce_channels(data, channels, ecg_channels)
data, sampling_frequency = preprocess_data(data, sampling_frequency, utility_frequency)
features = get_ecg_features(data)
ecg_features = expand_channels(features, channels, ecg_channels).flatten()
else:
ecg_features = float('nan') * np.ones(10) # 5 channels * 2 features / channel
else:
ecg_features = float('nan') * np.ones(10) # 5 channels * 2 features / channel
# Extract features.
return np.hstack((patient_features, eeg_features, ecg_features))
# Extract patient features from the data.
def get_patient_features(data):
age = get_age(data)
sex = get_sex(data)
rosc = get_rosc(data)
ohca = get_ohca(data)
shockable_rhythm = get_shockable_rhythm(data)
ttm = get_ttm(data)
sex_features = np.zeros(2, dtype=int)
if sex == 'Female':
female = 1
male = 0
other = 0
elif sex == 'Male':
female = 0
male = 1
other = 0
else:
female = 0
male = 0
other = 1
features = np.array((age, female, male, other, rosc, ohca, shockable_rhythm, ttm))
return features
# Extract features from the EEG data.
def get_eeg_features(data, sampling_frequency):
num_channels, num_samples = np.shape(data)
if num_samples > 0:
delta_psd, _ = mne.time_frequency.psd_array_welch(data, sfreq=sampling_frequency, fmin=0.5, fmax=8.0, verbose=False)
theta_psd, _ = mne.time_frequency.psd_array_welch(data, sfreq=sampling_frequency, fmin=4.0, fmax=8.0, verbose=False)
alpha_psd, _ = mne.time_frequency.psd_array_welch(data, sfreq=sampling_frequency, fmin=8.0, fmax=12.0, verbose=False)
beta_psd, _ = mne.time_frequency.psd_array_welch(data, sfreq=sampling_frequency, fmin=12.0, fmax=30.0, verbose=False)
delta_psd_mean = np.nanmean(delta_psd, axis=1)
theta_psd_mean = np.nanmean(theta_psd, axis=1)
alpha_psd_mean = np.nanmean(alpha_psd, axis=1)
beta_psd_mean = np.nanmean(beta_psd, axis=1)
else:
delta_psd_mean = theta_psd_mean = alpha_psd_mean = beta_psd_mean = float('nan') * np.ones(num_channels)
features = np.array((delta_psd_mean, theta_psd_mean, alpha_psd_mean, beta_psd_mean)).T
return features
# Extract features from the ECG data.
def get_ecg_features(data):
num_channels, num_samples = np.shape(data)
if num_samples > 0:
mean = np.mean(data, axis=1)
std = np.std(data, axis=1)
elif num_samples == 1:
mean = np.mean(data, axis=1)
std = float('nan') * np.ones(num_channels)
else:
mean = float('nan') * np.ones(num_channels)
std = float('nan') * np.ones(num_channels)
features = np.array((mean, std)).T
return features