-
Notifications
You must be signed in to change notification settings - Fork 33
/
helper_code.py
241 lines (218 loc) · 7.21 KB
/
helper_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python
# Do *not* edit this script.
# These are helper functions that you can use with your code.
import os, numpy as np
# Check if a variable is a number or represents a number.
def is_number(x):
try:
float(x)
return True
except (ValueError, TypeError):
return False
# Check if a variable is an integer or represents an integer.
def is_integer(x):
if is_number(x):
return float(x).is_integer()
else:
return False
# Check if a variable is a a finite number or represents a finite number.
def is_finite_number(x):
if is_number(x):
return np.isfinite(float(x))
else:
return False
# (Re)sort leads using the standard order of leads for the standard twelve-lead ECG.
def sort_leads(leads):
x = ('I', 'II', 'III', 'aVR', 'aVL', 'aVF', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6')
leads = sorted(leads, key=lambda lead: (x.index(lead) if lead in x else len(x) + leads.index(lead)))
return tuple(leads)
# Find header and recording files.
def find_challenge_files(data_directory):
header_files = list()
recording_files = list()
for f in sorted(os.listdir(data_directory)):
root, extension = os.path.splitext(f)
if not root.startswith('.') and extension=='.hea':
header_file = os.path.join(data_directory, root + '.hea')
recording_file = os.path.join(data_directory, root + '.mat')
if os.path.isfile(header_file) and os.path.isfile(recording_file):
header_files.append(header_file)
recording_files.append(recording_file)
return header_files, recording_files
# Load header file as a string.
def load_header(header_file):
with open(header_file, 'r') as f:
header = f.read()
return header
# Load recording file as an array.
def load_recording(recording_file, header=None, leads=None, key='val'):
from scipy.io import loadmat
recording = loadmat(recording_file)[key]
if header and leads:
recording = choose_leads(recording, header, leads)
return recording
# Choose leads from the recording file.
def choose_leads(recording, header, leads):
num_leads = len(leads)
num_samples = np.shape(recording)[1]
chosen_recording = np.zeros((num_leads, num_samples), recording.dtype)
available_leads = get_leads(header)
for i, lead in enumerate(leads):
if lead in available_leads:
j = available_leads.index(lead)
chosen_recording[i, :] = recording[j, :]
return chosen_recording
# Get recording ID.
def get_recording_id(header):
recording_id = None
for i, l in enumerate(header.split('\n')):
if i==0:
try:
recording_id = l.split(' ')[0]
except:
pass
else:
break
return recording_id
# Get leads from header.
def get_leads(header):
leads = list()
for i, l in enumerate(header.split('\n')):
entries = l.split(' ')
if i==0:
num_leads = int(entries[1])
elif i<=num_leads:
leads.append(entries[-1])
else:
break
return tuple(leads)
# Get age from header.
def get_age(header):
age = None
for l in header.split('\n'):
if l.startswith('#Age'):
try:
age = float(l.split(': ')[1].strip())
except:
age = float('nan')
return age
# Get sex from header.
def get_sex(header):
sex = None
for l in header.split('\n'):
if l.startswith('#Sex'):
try:
sex = l.split(': ')[1].strip()
except:
pass
return sex
# Get number of leads from header.
def get_num_leads(header):
num_leads = None
for i, l in enumerate(header.split('\n')):
if i==0:
try:
num_leads = float(l.split(' ')[1])
except:
pass
else:
break
return num_leads
# Get frequency from header.
def get_frequency(header):
frequency = None
for i, l in enumerate(header.split('\n')):
if i==0:
try:
frequency = float(l.split(' ')[2])
except:
pass
else:
break
return frequency
# Get number of samples from header.
def get_num_samples(header):
num_samples = None
for i, l in enumerate(header.split('\n')):
if i==0:
try:
num_samples = float(l.split(' ')[3])
except:
pass
else:
break
return num_samples
# Get analog-to-digital converter (ADC) gains from header.
def get_adc_gains(header, leads):
adc_gains = np.zeros(len(leads))
for i, l in enumerate(header.split('\n')):
entries = l.split(' ')
if i==0:
num_leads = int(entries[1])
elif i<=num_leads:
current_lead = entries[-1]
if current_lead in leads:
j = leads.index(current_lead)
try:
adc_gains[j] = float(entries[2].split('/')[0])
except:
pass
else:
break
return adc_gains
# Get baselines from header.
def get_baselines(header, leads):
baselines = np.zeros(len(leads))
for i, l in enumerate(header.split('\n')):
entries = l.split(' ')
if i==0:
num_leads = int(entries[1])
elif i<=num_leads:
current_lead = entries[-1]
if current_lead in leads:
j = leads.index(current_lead)
try:
baselines[j] = float(entries[4].split('/')[0])
except:
pass
else:
break
return baselines
# Get labels from header.
def get_labels(header):
labels = list()
for l in header.split('\n'):
if l.startswith('#Dx'):
try:
entries = l.split(': ')[1].split(',')
for entry in entries:
labels.append(entry.strip())
except:
pass
return labels
# Save outputs from model.
def save_outputs(output_file, recording_id, classes, labels, probabilities):
# Format the model outputs.
recording_string = '#{}'.format(recording_id)
class_string = ','.join(str(c) for c in classes)
label_string = ','.join(str(l) for l in labels)
probabilities_string = ','.join(str(p) for p in probabilities)
output_string = recording_string + '\n' + class_string + '\n' + label_string + '\n' + probabilities_string + '\n'
# Save the model outputs.
with open(output_file, 'w') as f:
f.write(output_string)
# Load outputs from model.
def load_outputs(output_file):
with open(output_file, 'r') as f:
for i, l in enumerate(f):
if i==0:
recording_id = l[1:] if len(l)>1 else None
elif i==1:
classes = tuple(entry.strip() for entry in l.split(','))
elif i==2:
labels = tuple(entry.strip() for entry in l.split(','))
elif i==3:
probabilities = tuple(float(entry) if is_finite_number(entry) else float('nan') for entry in l.split(','))
else:
break
return recording_id, classes, labels, probabilities