-
Notifications
You must be signed in to change notification settings - Fork 33
/
evaluate_model.py
executable file
·425 lines (359 loc) · 16.7 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#!/usr/bin/env python
# This file contains functions for evaluating algorithms for the 2021 PhysioNet/
# Computing in Cardiology Challenge. You can run it as follows:
#
# python evaluate_model.py labels outputs scores.csv
#
# where 'labels' is a directory containing files with the labels, 'outputs' is a
# directory containing files with the outputs from your model, and 'scores.csv'
# (optional) is a collection of scores for the algorithm outputs.
#
# Each file of labels or outputs must have the format described on the Challenge
# webpage. The scores for the algorithm outputs include the area under the
# receiver-operating characteristic curve (AUROC), the area under the recall-
# precision curve (AUPRC), accuracy (fraction of correct recordings), macro F-
# measure, and the Challenge metric, which assigns different weights to
# different misclassification errors.
import os, os.path, sys, numpy as np
from helper_code import get_labels, is_finite_number, load_header, load_outputs
def evaluate_model(label_directory, output_directory):
# Identify the weights and the SNOMED CT code for the sinus rhythm class.
weights_file = 'weights.csv'
sinus_rhythm = set(['426783006'])
# Load the scored classes and the weights for the Challenge metric.
print('Loading weights...')
classes, weights = load_weights(weights_file)
# Load the label and output files.
print('Loading label and output files...')
label_files, output_files = find_challenge_files(label_directory, output_directory)
labels = load_labels(label_files, classes)
binary_outputs, scalar_outputs = load_classifier_outputs(output_files, classes)
# Evaluate the model by comparing the labels and outputs.
print('Evaluating model...')
print('- AUROC and AUPRC...')
auroc, auprc, auroc_classes, auprc_classes = compute_auc(labels, scalar_outputs)
print('- Accuracy...')
accuracy = compute_accuracy(labels, binary_outputs)
print('- F-measure...')
f_measure, f_measure_classes = compute_f_measure(labels, binary_outputs)
print('- Challenge metric...')
challenge_metric = compute_challenge_metric(weights, labels, binary_outputs, classes, sinus_rhythm)
print('Done.')
# Return the results.
return classes, auroc, auprc, auroc_classes, auprc_classes, accuracy, f_measure, f_measure_classes, challenge_metric
# Find Challenge files.
def find_challenge_files(label_directory, output_directory):
label_files = list()
output_files = list()
for label_file in sorted(os.listdir(label_directory)):
label_file_path = os.path.join(label_directory, label_file) # Full path for label file
if os.path.isfile(label_file_path) and label_file.lower().endswith('.hea') and not label_file.lower().startswith('.'):
root, ext = os.path.splitext(label_file)
output_file = root + '.csv'
output_file_path = os.path.join(output_directory, output_file) # Full path for corresponding output file
if os.path.isfile(output_file_path):
label_files.append(label_file_path)
output_files.append(output_file_path)
else:
raise IOError('Output file {} not found for label file {}.'.format(output_file, label_file))
if label_files and output_files:
return label_files, output_files
else:
raise IOError('No label or output files found.')
# Load a table with row and column names.
def load_table(table_file):
# The table should have the following form:
#
# , a, b, c
# a, 1.2, 2.3, 3.4
# b, 4.5, 5.6, 6.7
# c, 7.8, 8.9, 9.0
#
table = list()
with open(table_file, 'r') as f:
for i, l in enumerate(f):
arrs = [arr.strip() for arr in l.split(',')]
table.append(arrs)
# Define the numbers of rows and columns and check for errors.
num_rows = len(table)-1
if num_rows<1:
raise Exception('The table {} is empty.'.format(table_file))
row_lengths = set(len(table[i])-1 for i in range(num_rows))
if len(row_lengths)!=1:
raise Exception('The table {} has rows with different lengths.'.format(table_file))
num_cols = min(row_lengths)
if num_cols<1:
raise Exception('The table {} is empty.'.format(table_file))
# Find the row and column labels.
rows = [table[0][j+1] for j in range(num_rows)]
cols = [table[i+1][0] for i in range(num_cols)]
# Find the entries of the table.
values = np.zeros((num_rows, num_cols), dtype=np.float64)
for i in range(num_rows):
for j in range(num_cols):
value = table[i+1][j+1]
if is_finite_number(value):
values[i, j] = float(value)
else:
values[i, j] = float('nan')
return rows, cols, values
# Load weights.
def load_weights(weight_file):
# Load the table with the weight matrix.
rows, cols, values = load_table(weight_file)
# Split the equivalent classes.
rows = [set(row.split('|')) for row in rows]
cols = [set(col.split('|')) for col in cols]
assert(rows == cols)
# Identify the classes and the weight matrix.
classes = rows
weights = values
return classes, weights
# Load labels from header/label files.
def load_labels(label_files, classes):
# The labels should have the following form:
#
# Dx: label_1, label_2, label_3
#
num_recordings = len(label_files)
num_classes = len(classes)
# Use one-hot encoding for the labels.
labels = np.zeros((num_recordings, num_classes), dtype=np.bool_)
# Iterate over the recordings.
for i in range(num_recordings):
header = load_header(label_files[i])
y = set(get_labels(header))
for j, x in enumerate(classes):
if x & y:
labels[i, j] = 1
return labels
# Load outputs from output files.
def load_classifier_outputs(output_files, classes):
# The outputs should have the following form:
#
# #Record ID
# diagnosis_1, diagnosis_2, diagnosis_3
# 0, 1, 1
# 0.12, 0.34, 0.56
#
num_recordings = len(output_files)
num_classes = len(classes)
# Use one-hot encoding for the outputs.
binary_outputs = np.zeros((num_recordings, num_classes), dtype=np.bool_)
scalar_outputs = np.zeros((num_recordings, num_classes), dtype=np.float64)
# Iterate over the recordings.
for i in range(num_recordings):
recording_id, recording_classes, recording_binary_outputs, recording_scalar_outputs = load_outputs(output_files[i])
# Allow for equivalent classes and sanitize classifier outputs.
recording_classes = [set(entry.split('|')) for entry in recording_classes]
recording_binary_outputs = [1 if ((is_finite_number(entry) and float(entry)==1) or (entry in ('True', 'true', 'T', 't'))) else 0 for entry in recording_binary_outputs]
recording_scalar_outputs = [float(entry) if is_finite_number(entry) else 0 for entry in recording_scalar_outputs]
# Allow for unordered/reordered and equivalent classes.
for j, x in enumerate(classes):
binary_values = list()
scalar_values = list()
for k, y in enumerate(recording_classes):
if x & y:
binary_values.append(recording_binary_outputs[k])
scalar_values.append(recording_scalar_outputs[k])
if binary_values:
binary_outputs[i, j] = any(binary_values) # Define a class as positive if any of the equivalent classes is positive.
if scalar_values:
scalar_outputs[i, j] = np.mean(scalar_values) # Define the scalar value of a class as the mean value of the scalar values across equivalent classes.
return binary_outputs, scalar_outputs
# Compute recording-wise accuracy.
def compute_accuracy(labels, outputs):
num_recordings, num_classes = np.shape(labels)
num_correct_recordings = 0
for i in range(num_recordings):
if np.all(labels[i, :]==outputs[i, :]):
num_correct_recordings += 1
return float(num_correct_recordings) / float(num_recordings)
# Compute confusion matrices.
def compute_confusion_matrices(labels, outputs, normalize=False):
# Compute a binary confusion matrix for each class k:
#
# [TN_k FN_k]
# [FP_k TP_k]
#
# If the normalize variable is set to true, then normalize the contributions
# to the confusion matrix by the number of labels per recording.
num_recordings, num_classes = np.shape(labels)
if not normalize:
A = np.zeros((num_classes, 2, 2))
for i in range(num_recordings):
for j in range(num_classes):
if labels[i, j]==1 and outputs[i, j]==1: # TP
A[j, 1, 1] += 1
elif labels[i, j]==0 and outputs[i, j]==1: # FP
A[j, 1, 0] += 1
elif labels[i, j]==1 and outputs[i, j]==0: # FN
A[j, 0, 1] += 1
elif labels[i, j]==0 and outputs[i, j]==0: # TN
A[j, 0, 0] += 1
else: # This condition should not happen.
raise ValueError('Error in computing the confusion matrix.')
else:
A = np.zeros((num_classes, 2, 2))
for i in range(num_recordings):
normalization = float(max(np.sum(labels[i, :]), 1))
for j in range(num_classes):
if labels[i, j]==1 and outputs[i, j]==1: # TP
A[j, 1, 1] += 1.0/normalization
elif labels[i, j]==0 and outputs[i, j]==1: # FP
A[j, 1, 0] += 1.0/normalization
elif labels[i, j]==1 and outputs[i, j]==0: # FN
A[j, 0, 1] += 1.0/normalization
elif labels[i, j]==0 and outputs[i, j]==0: # TN
A[j, 0, 0] += 1.0/normalization
else: # This condition should not happen.
raise ValueError('Error in computing the confusion matrix.')
return A
# Compute macro F-measure.
def compute_f_measure(labels, outputs):
num_recordings, num_classes = np.shape(labels)
A = compute_confusion_matrices(labels, outputs)
f_measure = np.zeros(num_classes)
for k in range(num_classes):
tp, fp, fn, tn = A[k, 1, 1], A[k, 1, 0], A[k, 0, 1], A[k, 0, 0]
if 2 * tp + fp + fn:
f_measure[k] = float(2 * tp) / float(2 * tp + fp + fn)
else:
f_measure[k] = float('nan')
if np.any(np.isfinite(f_measure)):
macro_f_measure = np.nanmean(f_measure)
else:
macro_f_measure = float('nan')
return macro_f_measure, f_measure
# Compute macro AUROC and macro AUPRC.
def compute_auc(labels, outputs):
num_recordings, num_classes = np.shape(labels)
# Compute and summarize the confusion matrices for each class across at distinct output values.
auroc = np.zeros(num_classes)
auprc = np.zeros(num_classes)
for k in range(num_classes):
# We only need to compute TPs, FPs, FNs, and TNs at distinct output values.
thresholds = np.unique(outputs[:, k])
thresholds = np.append(thresholds, thresholds[-1]+1)
thresholds = thresholds[::-1]
num_thresholds = len(thresholds)
# Initialize the TPs, FPs, FNs, and TNs.
tp = np.zeros(num_thresholds)
fp = np.zeros(num_thresholds)
fn = np.zeros(num_thresholds)
tn = np.zeros(num_thresholds)
fn[0] = np.sum(labels[:, k]==1)
tn[0] = np.sum(labels[:, k]==0)
# Find the indices that result in sorted output values.
idx = np.argsort(outputs[:, k])[::-1]
# Compute the TPs, FPs, FNs, and TNs for class k across thresholds.
i = 0
for j in range(1, num_thresholds):
# Initialize TPs, FPs, FNs, and TNs using values at previous threshold.
tp[j] = tp[j-1]
fp[j] = fp[j-1]
fn[j] = fn[j-1]
tn[j] = tn[j-1]
# Update the TPs, FPs, FNs, and TNs at i-th output value.
while i < num_recordings and outputs[idx[i], k] >= thresholds[j]:
if labels[idx[i], k]:
tp[j] += 1
fn[j] -= 1
else:
fp[j] += 1
tn[j] -= 1
i += 1
# Summarize the TPs, FPs, FNs, and TNs for class k.
tpr = np.zeros(num_thresholds)
tnr = np.zeros(num_thresholds)
ppv = np.zeros(num_thresholds)
for j in range(num_thresholds):
if tp[j] + fn[j]:
tpr[j] = float(tp[j]) / float(tp[j] + fn[j])
else:
tpr[j] = float('nan')
if fp[j] + tn[j]:
tnr[j] = float(tn[j]) / float(fp[j] + tn[j])
else:
tnr[j] = float('nan')
if tp[j] + fp[j]:
ppv[j] = float(tp[j]) / float(tp[j] + fp[j])
else:
ppv[j] = float('nan')
# Compute AUROC as the area under a piecewise linear function with TPR/
# sensitivity (x-axis) and TNR/specificity (y-axis) and AUPRC as the area
# under a piecewise constant with TPR/recall (x-axis) and PPV/precision
# (y-axis) for class k.
for j in range(num_thresholds-1):
auroc[k] += 0.5 * (tpr[j+1] - tpr[j]) * (tnr[j+1] + tnr[j])
auprc[k] += (tpr[j+1] - tpr[j]) * ppv[j+1]
# Compute macro AUROC and macro AUPRC across classes.
if np.any(np.isfinite(auroc)):
macro_auroc = np.nanmean(auroc)
else:
macro_auroc = float('nan')
if np.any(np.isfinite(auprc)):
macro_auprc = np.nanmean(auprc)
else:
macro_auprc = float('nan')
return macro_auroc, macro_auprc, auroc, auprc
# Compute a modified confusion matrix for multi-class, multi-label tasks.
def compute_modified_confusion_matrix(labels, outputs):
# Compute a binary multi-class, multi-label confusion matrix, where the rows
# are the labels and the columns are the outputs.
num_recordings, num_classes = np.shape(labels)
A = np.zeros((num_classes, num_classes))
# Iterate over all of the recordings.
for i in range(num_recordings):
# Calculate the number of positive labels and/or outputs.
normalization = float(max(np.sum(np.any((labels[i, :], outputs[i, :]), axis=0)), 1))
# Iterate over all of the classes.
for j in range(num_classes):
# Assign full and/or partial credit for each positive class.
if labels[i, j]:
for k in range(num_classes):
if outputs[i, k]:
A[j, k] += 1.0/normalization
return A
# Compute the evaluation metric for the Challenge.
def compute_challenge_metric(weights, labels, outputs, classes, sinus_rhythm):
num_recordings, num_classes = np.shape(labels)
if sinus_rhythm in classes:
sinus_rhythm_index = classes.index(sinus_rhythm)
else:
raise ValueError('The sinus rhythm class is not available.')
# Compute the observed score.
A = compute_modified_confusion_matrix(labels, outputs)
observed_score = np.nansum(weights * A)
# Compute the score for the model that always chooses the correct label(s).
correct_outputs = labels
A = compute_modified_confusion_matrix(labels, correct_outputs)
correct_score = np.nansum(weights * A)
# Compute the score for the model that always chooses the sinus rhythm class.
inactive_outputs = np.zeros((num_recordings, num_classes), dtype=np.bool_)
inactive_outputs[:, sinus_rhythm_index] = 1
A = compute_modified_confusion_matrix(labels, inactive_outputs)
inactive_score = np.nansum(weights * A)
if correct_score != inactive_score:
normalized_score = float(observed_score - inactive_score) / float(correct_score - inactive_score)
else:
normalized_score = 0.0
return normalized_score
if __name__ == '__main__':
classes, auroc, auprc, auroc_classes, auprc_classes, accuracy, f_measure, f_measure_classes, challenge_metric = evaluate_model(sys.argv[1], sys.argv[2])
output_string = 'AUROC,AUPRC,Accuracy,F-measure,Challenge metric\n{:.3f},{:.3f},{:.3f},{:.3f},{:.3f}'.format(auroc, auprc, accuracy, f_measure, challenge_metric)
class_output_string = 'Classes,{}\nAUROC,{}\nAUPRC,{}\nF-measure,{}'.format(
','.join('|'.join(sorted(x)) for x in classes),
','.join('{:.3f}'.format(x) for x in auroc_classes),
','.join('{:.3f}'.format(x) for x in auprc_classes),
','.join('{:.3f}'.format(x) for x in f_measure_classes))
if len(sys.argv) == 3:
print(output_string)
elif len(sys.argv) == 4:
with open(sys.argv[3], 'w') as f:
f.write(output_string)
elif len(sys.argv) == 5:
with open(sys.argv[3], 'w') as f:
f.write(output_string)
with open(sys.argv[4], 'w') as f:
f.write(class_output_string)