-
Notifications
You must be signed in to change notification settings - Fork 10
/
Exercise27.3.nb
9275 lines (9083 loc) · 459 KB
/
Exercise27.3.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 470268, 9266]
NotebookOptionsPosition[ 465847, 9105]
NotebookOutlinePosition[ 466259, 9123]
CellTagsIndexPosition[ 466216, 9120]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Some setting", "Chapter",
CellChangeTimes->{{3.7005852421286783`*^9, 3.70058525627621*^9}}],
Cell[CellGroupData[{
Cell["Data and plots", "Subchapter",
CellChangeTimes->{{3.700584793672371*^9, 3.7005847956655293`*^9},
3.700584843103354*^9, 3.7005851900193853`*^9, {3.700809018358264*^9,
3.700809021133368*^9}}],
Cell[CellGroupData[{
Cell["We have 10 data points", "Subsubsection",
CellChangeTimes->{{3.700808861120266*^9, 3.7008088650121107`*^9}, {
3.700809024006008*^9, 3.700809030168421*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"n", "=", "10"}], ";"}]], "Input",
CellChangeTimes->{{3.700786058153408*^9, 3.7007860646222277`*^9}, {
3.7007861353340187`*^9, 3.700786150300865*^9}, {3.70078623260256*^9,
3.7007862651036263`*^9}, {3.700786341741932*^9, 3.700786343992188*^9}, {
3.700786506538178*^9, 3.700786544046609*^9}, 3.700808829559911*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell["Give the data", "Subsubsection",
CellChangeTimes->{{3.700808861120266*^9, 3.7008088650121107`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"x", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"i", "+",
RowBox[{"RandomReal", "[", "]"}]}], ",", " ",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "10"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.7007866524836483`*^9, 3.7007867092644053`*^9}, {
3.700787182154417*^9, 3.7007871823126783`*^9}, {3.7007876387006807`*^9,
3.700787645513109*^9}, {3.700800127183662*^9, 3.700800130848309*^9}, {
3.700800285647437*^9, 3.700800286189247*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0.3015540043315117`", ",", "1.5135274693107992`", ",",
"2.825117947386349`", ",", "3.8655047272749616`", ",",
"4.467339510532865`", ",", "5.267347276334547`", ",", "6.804246153917499`",
",", "7.359823748596948`", ",", "8.696508288619729`", ",",
"9.108018007366667`", ",", "10.216706233581537`"}], "}"}]], "Output",
CellChangeTimes->{
3.7007867100683727`*^9, 3.70078718311707*^9, {3.700787641191503*^9,
3.700787645841221*^9}, 3.7008005650385637`*^9, 3.7008035774979267`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Mean", "[", "x", "]"}]], "Input",
CellChangeTimes->{{3.700788058914679*^9, 3.700788060276269*^9}, {
3.7008072755061913`*^9, 3.700807283850037*^9}}],
Cell[BoxData["5.493244851568492`"], "Output",
CellChangeTimes->{{3.700807278860055*^9, 3.700807284226475*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"t", "=",
RowBox[{"Table", "[", " ",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"x", "[",
RowBox[{"[", "i", "]"}], "]"}], "*", "3"}], "+", "2"}], ")"}], "+",
RowBox[{"RandomReal", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "10"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.700787184612183*^9, 3.7007871941393547`*^9}, {
3.700787452561184*^9, 3.700787484182576*^9}, {3.700787549758554*^9,
3.700787551709464*^9}, {3.700787599443693*^9, 3.700787618123433*^9}, {
3.7007877776989717`*^9, 3.700787795607668*^9}, {3.700787834933622*^9,
3.7007878367308283`*^9}, {3.700787874861507*^9, 3.7007878883444853`*^9}, {
3.700787963923267*^9, 3.700787985020337*^9}, {3.700788045227857*^9,
3.700788102689612*^9}, {3.700788147878883*^9, 3.700788199486343*^9}, {
3.700800265805825*^9, 3.700800324798098*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"1.2509354596010995`", ",", "6.058023292323099`", ",",
"10.953970573590658`", ",", "13.80925808571608`", ",",
"15.242017438779051`", ",", "18.650237382239467`", ",",
"21.372743321277436`", ",", "23.561454716817735`", ",",
"28.92532224820898`", ",", "29.89551866377795`"}], "}"}]], "Output",
CellChangeTimes->{
3.700787190380767*^9, 3.700787618422007*^9, 3.7007876488591347`*^9, {
3.700787778337335*^9, 3.700787796305003*^9}, 3.700787837084461*^9, {
3.700787875558292*^9, 3.700787888902134*^9}, {3.700787975253517*^9,
3.700787985454768*^9}, 3.700788105593429*^9, {3.700788150998023*^9,
3.7007881999145737`*^9}, 3.700800567877626*^9, 3.700803579276779*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"l", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x", "[",
RowBox[{"[", "i", "]"}], "]"}], ",",
RowBox[{"t", "[",
RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "10"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.700787658900222*^9, 3.7007877538046722`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.3015540043315117`", ",", "1.2509354596010995`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.5135274693107992`", ",", "6.058023292323099`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.825117947386349`", ",", "10.953970573590658`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.8655047272749616`", ",", "13.80925808571608`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4.467339510532865`", ",", "15.242017438779051`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5.267347276334547`", ",", "18.650237382239467`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6.804246153917499`", ",", "21.372743321277436`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7.359823748596948`", ",", "23.561454716817735`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8.696508288619729`", ",", "28.92532224820898`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9.108018007366667`", ",", "29.89551866377795`"}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{
3.700787669760433*^9, {3.700787713320163*^9, 3.7007877985877647`*^9},
3.700787839886546*^9, {3.7007878783826523`*^9, 3.700787891419318*^9}, {
3.7007879781706753`*^9, 3.7007879875920467`*^9}, 3.700788110733385*^9, {
3.700788153094955*^9, 3.7007882008409452`*^9}, 3.7008005688785467`*^9,
3.70080358264532*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Plot of the data ", "Subsubsection",
CellChangeTimes->{{3.700808861120266*^9, 3.7008088650121107`*^9}, {
3.7008089441934566`*^9, 3.700808951775867*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "l", "]"}]], "Input",
CellChangeTimes->{{3.7007877581357183`*^9, 3.700787785848898*^9}, {
3.70078791236839*^9, 3.700787917859508*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
PointBox[{{0.3015540043315117, 1.2509354596010995`}, {
1.5135274693107992`, 6.058023292323099}, {2.825117947386349,
10.953970573590658`}, {3.8655047272749616`, 13.80925808571608}, {
4.467339510532865, 15.242017438779051`}, {5.267347276334547,
18.650237382239467`}, {6.804246153917499, 21.372743321277436`}, {
7.359823748596948, 23.561454716817735`}, {8.696508288619729,
28.92532224820898}, {9.108018007366667, 29.89551866377795}}]}, {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0, 9.108018007366667}, {0, 29.89551866377795}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.7007877621422043`*^9, 3.700787807069681*^9},
3.700787841352641*^9, {3.700787879601563*^9, 3.700787918347774*^9}, {
3.70078797940446*^9, 3.700787988860413*^9}, 3.700788111890066*^9, {
3.7007881545119257`*^9, 3.7007882018423777`*^9}, 3.700800571221854*^9,
3.700803584061739*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Variance", "Subsubsection",
CellChangeTimes->{{3.700808861120266*^9, 3.7008088650121107`*^9}, {
3.7008089441934566`*^9, 3.700808951775867*^9}, {3.700809049527309*^9,
3.700809052005125*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Sigma]", "=",
SqrtBox[
RowBox[{"Variance", "[", "t", "]"}]]}]], "Input",
CellChangeTimes->{{3.700788216117633*^9, 3.7007882298782*^9}, {
3.700788436536001*^9, 3.700788437718301*^9}}],
Cell[BoxData["9.37480308217642`"], "Output",
CellChangeTimes->{3.700788438041339*^9, 3.7008005835319347`*^9,
3.7008035866384087`*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[{
"The coefficient 3 is chosen by assumption in the next equation. It gives \
Log ",
Cell[BoxData[
FormBox[
RowBox[{"P", "(",
SubscriptBox["\[Omega]", "i"]}], TraditionalForm]],
FormatType->"TraditionalForm"],
" | t, x, \[Sigma]) "
}], "Subsubsection",
CellChangeTimes->{{3.700804358057231*^9, 3.7008043798595123`*^9}, {
3.7008073625995083`*^9, 3.700807373372596*^9}, 3.700808976072536*^9, {
3.700809059924345*^9, 3.700809122778803*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"term", "=",
RowBox[{
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"2",
SuperscriptBox["\[Sigma]", "2"]}], ")"}]}],
RowBox[{"(",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"t", "[",
RowBox[{"[", "i", "]"}], "]"}], "-", "w0", "-",
RowBox[{"w1", " ",
RowBox[{"x", "[",
RowBox[{"[", "i", "]"}], "]"}]}]}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "10"}], "}"}]}], "]"}], "+",
RowBox[{"3",
RowBox[{"(",
RowBox[{
SuperscriptBox["w0", "2"], "+",
SuperscriptBox["w1", "2"]}], ")"}]}]}], ")"}]}]}]], "Input",
CellChangeTimes->{{3.7007884560874147`*^9, 3.700788612056264*^9}, {
3.700788764104933*^9, 3.7007887674750147`*^9}, {3.700789452126287*^9,
3.70078946753791*^9}, {3.70078972020429*^9, 3.700789739729748*^9}, {
3.700805512330459*^9, 3.700805520414548*^9}, {3.700807294830147*^9,
3.700807301052949*^9}, 3.700807348447371*^9}],
Cell[BoxData[
RowBox[{"0.005689127881724073`", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"29.89551866377795`", "\[VeryThinSpace]", "-", "w0", "-",
RowBox[{"9.108018007366667`", " ", "w1"}]}], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"28.92532224820898`", "\[VeryThinSpace]", "-", "w0", "-",
RowBox[{"8.696508288619729`", " ", "w1"}]}], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"23.561454716817735`", "\[VeryThinSpace]", "-", "w0", "-",
RowBox[{"7.359823748596948`", " ", "w1"}]}], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"21.372743321277436`", "\[VeryThinSpace]", "-", "w0", "-",
RowBox[{"6.804246153917499`", " ", "w1"}]}], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"18.650237382239467`", "\[VeryThinSpace]", "-", "w0", "-",
RowBox[{"5.267347276334547`", " ", "w1"}]}], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"15.242017438779051`", "\[VeryThinSpace]", "-", "w0", "-",
RowBox[{"4.467339510532865`", " ", "w1"}]}], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"13.80925808571608`", "\[VeryThinSpace]", "-", "w0", "-",
RowBox[{"3.8655047272749616`", " ", "w1"}]}], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"10.953970573590658`", "\[VeryThinSpace]", "-", "w0", "-",
RowBox[{"2.825117947386349`", " ", "w1"}]}], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"6.058023292323099`", "\[VeryThinSpace]", "-", "w0", "-",
RowBox[{"1.5135274693107992`", " ", "w1"}]}], ")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1.2509354596010995`", "\[VeryThinSpace]", "-", "w0", "-",
RowBox[{"0.3015540043315117`", " ", "w1"}]}], ")"}], "2"], "+",
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["w0", "2"], "+",
SuperscriptBox["w1", "2"]}], ")"}]}]}], ")"}]}]], "Output",
CellChangeTimes->{{3.7007885940176077`*^9, 3.700788612577209*^9},
3.700788768018365*^9, 3.700789468756526*^9, {3.700789724483275*^9,
3.700789740698069*^9}, 3.700800585417794*^9, 3.700803588169866*^9, {
3.700805520935521*^9, 3.700805531812737*^9}, {3.70080730183349*^9,
3.700807309630288*^9}, 3.700807348937664*^9}]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Posterior ", "Subchapter",
CellChangeTimes->{{3.700584793672371*^9, 3.7005847956655293`*^9},
3.700584843103354*^9, 3.7005851900193853`*^9, {3.700809018358264*^9,
3.700809021133368*^9}, {3.70080938628083*^9, 3.700809437733996*^9}}],
Cell[CellGroupData[{
Cell[TextData[{
"Contour plot of ",
Cell[BoxData[
FormBox[
RowBox[{"P", "(",
SubscriptBox["\[Omega]", "i"]}], TraditionalForm]],
FormatType->"TraditionalForm"],
" | t, x, \[Sigma]) , posterior"
}], "Subsubsection",
CellChangeTimes->{{3.700808861120266*^9, 3.7008088650121107`*^9}, {
3.700809024006008*^9, 3.700809030168421*^9}, {3.70080919279806*^9,
3.7008092185473557`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["1",
RowBox[{"2", "\[Pi]", " ", "\[Sigma]"}]], ")"}],
RowBox[{
FractionBox["n", "2"], "+", "1"}]],
RowBox[{"Exp", "[",
RowBox[{"-", "term"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"w0", ",",
RowBox[{"-", "5"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"w1", ",",
RowBox[{"-", "1"}], ",", "7"}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]], "Input",
CellChangeTimes->{{3.700801070531703*^9, 3.700801070771329*^9}}],
Cell[BoxData[
TemplateBox[{GraphicsBox[
GraphicsComplexBox[CompressedData["
1:eJxsnXlATN///2dqWqaZqVnaF4UkpOzauC9F9jUlZM0ashQKpWSLKEmIVCIh
+14xlygqohBZihZJtO81/eaT9+ve74yff8bDufee83ydc17ndc495+q5dP2s
5QoMBuOiGoPxv9+/fzTJv7814s931326u06D4vv/w0/KFPedGGE6MaJDjJzW
nV5OcXI3vyeQb3dzE8WSrv/9UQTkXt3P41Lcu5uFFN/pvl+b4vH/SzY1oPhj
d3mNKe7GTz0p/vtrKsea5F+dnyi9yKgXGfUio15k1IuMepFRLzLqRUa9yKgX
GfUio15k1IuMemVZkwz/32MmPiFQLzLqRUa9yKgXGfUio15k1IuMepFRLzLq
RUa9yKgXGfUio15Z1iT/XldO6UVGvcioFxn1IqNeZNSLjHqRUS8y6kVGvcio
Fxn1IqNeZNQry5pkt/yIBkovMupFRr3IqBcZ9SKjXmTUi4x6kVEvMupFRr3I
qBcZ9SKjXlnWJLsvu9tJ6UVGvcioFxn1IqNeZNSLjHqRUS8y6kVGvcioFxn1
IqNeZNQry5pkN65DP6JBMepFRr3IqBcZ9SJj+ZCxfMhYPmQsnyzj+KEKsuOH
KsiOH6og689VQdafq4KsP1el8keW9efI2P65INseuSDbHrkg2x65INseuSDb
HrlU/siy7ZErlz8fZPsTH2T7Ex9k+xMfZPsTX678fLny8+XKz5crP1+u/Hy5
8vPlys+nyv/3OiHI+kshyPpLIcj6SyHI+kshyPpLIcj6SyHI+kshyPpLIcj6
SyHI+kshyPpLIcj6SyGlF1nWXwopvRO6n6NF6UVGvcioFxn1IqNeZNSLjHqR
US8y6kVGvcioFxn1IqNeZNQry5pkYfeFOpReZNSLjHqRUS8y6kVGvcioFxn1
IqNeZNSLjHqRUS8y6kVGvbKsSa7tdlB6lF5k1IuMepFRLzLqRUa9yKgXGfUi
o15k1IuMepFRLzLqRUa9soz+11DO/xrK+V9DkI3fDUE2fjcE2fjdEGTjd0OQ
jd8NQTZ+NwTZ+N1Qzt8byvl7Qzl/byjn7w0pvcj3utMF5D2ZcmtS3G2W371A
Nt2UYrz/bz76lP2Q8X55ls//L9eIZdNrxLLpdPnxed3181v43/zil9jrf/+8
pTcgY/rf8dUAMB0Zyyt/P+aP98vnj/fLptfIzRd+UfaUz1+2/nWh+6ermjDu
ru+q//xdK/Gh+74uiv/G5aqA/Lef8in+2441Kcbny95vRPGR//28MKHYrDt/
BbL7x5QJf+e0DWLknG67Z1CM5UXG8iJjeZAxf2TMHxnrHxnrv9tud5VgUve/
cyjG8iJjeZFRPzLmj4z5I2N+3dlMVKPyQ0Z7I6M+ZMwPGfNDlu0v6pS9kLF+
kTE/ZMwPGZ/X/XNXQJUXGe2DjPZBxvpExvpExvIhY/mQMf+/7VdE5Y+M+SNj
/shoH2z/aD/T/+YnmI4sGw+0ErLlpecX8v0H02XjBbo/Ybps/ED3L0yXjSfo
/obpsvEF3f+wPcvGG3R/xPux/cv3T/l0ZBx/8Plo77/+hp6vyPdnTMfxSb5/
YzraG9PRvshoD2TUL3u9LjW/Qb3IOD7J+wNMx/FXvn/+9Z/0fAXTcXyW9xd4
PdoL07H8yFifeD3qkfcnmI71Ke9fMB3LL9//TWXGeU0qHdsjpmN7lPc/mI7l
l/dHmI7l///nLz9fUafqH9Nl5xvqlH/AdNn5B+3PMF12PqIup48vNz9RB9n1
BwFVPmTZ9QgByK5H0P7u7/Po+ZS8/8N02fUKAciuVwhAdr1CQJUP/ReWDxnL
h4zlQ8b6kPd32J+xP2D/77afUP+/+qv7z3/V/eeX2v/zR0xA/tse1Sjufv5O
AcXd9n+hRTE+H/lL9y/jv/aoAMXdXC1GDv1bUAJZtnwKf+t1Vk+Ku39f8P+L
J5WB2W0vNsWYHzKWDxmfj9xdP/N7UIzP/+svOIB6kfF5yGi/v/bXALQfMtoP
WdYeQjl7CMGp+y/tVH38rV9lyp5rujNWp7i7Xs+JKO7+/Y3zsCaqPpAxHa/v
7t8jDKl0tAcypuP13TIIE4oju8vdQtWnVbc9PlPc1n1DyX/zEwZlL2TUi4z2
Q0b9yGhPZLQHMtYXMtoHGesPGfXJtzeZ+5f1ohjjc2wvR7tv4FG8vrs8rP/8
IYuqb2RMx+vRfpiO7QEZ7YmM9YeM9Sufjs9HfZiO9YeMev6Ol2yq/SPLznc4
lF5Mx/6HjPWB16P9MR3tj4zpeD2WH9NRHzLqkS/fXzfCoxj7G7Y/ZGxvyNi+
8H5sX8iYjtejPkzH9oaMeuTL89f/Cij7ImN7wP4v25+EVP3j9egvkVEfMvYv
ZNSLjP0LGfXJl+dv/xZR7RcZy4cs23/qqPFH3n/8bW90/C3jb6j1qXYq/pbp
z9R6VTsVf8uzrH/hgrz/xPEQ4wWZ8WuiKtW/Zde/2ql4XZ5l/ZW2rD+Vxkvy
LOvPDP7x1zLlF+pTjOnon9Af4f0YD2A6xivYvzFewXSsv7/9TZGKXzAdWd7/
4PUYz+H1sv2VKRcfKsj1XyZ1PT5Pdn6rALLzNRbVvvB69M/4PIyf0N/Jrj/R
jP4C4yl5f43xNvq3v+ZXpeJ9vB4Zn4f9A+/H5+H9WB94P7YXZLSH/HxB3v9h
umx7UaXshc+TnR/S/vyvfdUof2T6Xz9B+6D//ftczX/8P96P/UsmHqLmuzyq
/8j7f7wf/Sfmj/1Jxv9T82MeNV7g/fg8vB/thffL6uNT+tC/oT55//zXH6lT
8Tv6e2zveD/6K/nxBfND/4XpsutvdPwvP/5g/uiv8Xno3/B62fU7ATVe4f34
PLwf6wfvR/14v6z/EFLtVZ7R38v6C6Fcf6f9v8x8gZrfMuTilQZq/oH+Gccn
ZNnxuJOQHW87qfkHsuz7Jzr+xXSMb7F86E/kGa/H/o3+B+MzZNn1d4bc+jtD
bv2dIbf+zpBbf6fjUXl7yeQnLT/6R+zf6A+wfuXnR5guu7+AJfc+lCUXH6vK
vb9kyY1PqnLvM1mUP0b/geXB/on+F9OxfrE/Y/0iy64HseXWg9hUPITtHdsT
MrYn2XTuP/4KGev7b/sRyr0/FMi9PxTIvT8UyL2fE1H2wfEK6w/HO9n1WyE1
viDj9dgeZP2xkBqvkDEd88f2gYzXI2P7kC8v9gfMX2Z9Uto+ZfqfNJ6TjaeM
qPLi+pv8fBPtIbseS89P0D7I2P7xeZiOz5Of7+B4ieWXGV+p/qVK5S8//5ex
J7XeJpSbbwgo+2E6tm9kbP9oXywP2u9vuillX3yfg/bCdLSX7PseBsXy/g/T
MT+0n+z+BBZVPnm9WF7Z988ikI3v1eXiNa7c+C2gGPsf2hfbN9oPGcfbv+OV
iGJMlx1fRRRjOvan7nYyUVtu/NeSGw+rCdn1wwZCdjxuImTH1yYq/sf7ZfU1
UOszeD36M2SMV/B+2fXVBmo9B69Hf4yM7R/vR8b7sb/g9TieIeP4je1N9v1N
J7Weg+0Hxztk2XiolZB939NJ4HwBr0f/jIzxEvZf2XiaSTG2V/RX2F6xvSDL
zic4IBs/8Kh4E+MffB76a3ye/PwXGccDZLQPMtoHWXb9SyinVygXn2rKjS+t
BF6P/R8Z7YvtXX5+i/ejXuRu/E3PF5GxPlAP2l92fGbKrU8oUIz1Ixsv0ut/
eD/qw3RsD5iO+pBx/MbrcbxFxnS8HuNlZKxPmfcn0v6DjP5Rfv0O24/seKom
F0/T8QheLzs/V5OL1zhy63d8qrzoP7G9ImN8gu1V1p+oU/ERpmP7RH+L9Yks
O/+n15sxHcuHLLseL5SrPyGVjtfL1peQ8u/YvrG9ob9ClvF3y3pR/gnTsb7+
/ntPitGfYf+Xnd8z5eazinLlYcnFD2pUvIOM4+Xf59HzZ/Qnsvvd1EF2/sGj
7I3jE9obx0/Uh+VD/di+sXwYn6A/x/aK16MeTMfyys5fRVR9Yf6y62/qcvv1
1EF2vsQD2ffRArl4WUC1R/R/svNVkdx8WQSy75vo9/s4XmP8gYz2/1sOLbl4
kQuy8ShP7n0ln1ovkC8fxguy71vo8mC8gP4A80f73mr75v55Lx1PnVbqYWmx
UxFm2p1Z23ZRg1pfQXtxq/TjWT6q8Lphos3MEA1qfeJMydhvQ21r/nk/Gras
OPXbSXVqfrHfVW0ZyeJR9inZsvjesGN8yl9vnHUi/nsjn5p/lA7uGHi4kA/3
vryKEq+tJwZPmTtpRbACDNr38XX5MKld52mXa6UpwIKjpsd37u8Su6lXuuUO
V4HVz0f4DJaWj7v7zPz4YC4wD0x0tduvBqcmWi/5tJ0DwdZr9o6MldaPWUa6
1h4+/LRtqg8dWCHmvyvb+2g7Hx5xzAeAPkmEJmRb14r4IJx0Qoc5q4NwJ+Mf
P2lhglnvmkWMHqowdqo5N5zHhHjHgxL/IFU4tkiYsluZCT3iirfkqvKhfE5e
Ts19BtSL9szifuZD8D3DrG9XGeDGCjYxuq4JUwVhyekDmODSw+MGZ3mjGGLN
xAJtZUiZuWd9yYtP4ogJd8acj2XB4fK6B0F9+VD4cJHdGAkbdgYmHLbyF0Dd
U40nEX3ZMLfxY6KCTQXxeuW84C/rNWBIv/5fJKc6CKeYjiUt+vT7a+WWtjZj
cxZVH+nLykpGuzPh0ZEqA7KHChWfL3t7Yz/zCL0/CdvHpMZiuyFL/8/+b/Me
VwW5yqCbqb0l86oCNT/H8fSi2WbzUS0q0LF552UFbh21v8DqDXNn9igR5R+w
vSdaV29zuaBMtY8fojGzt/lx4f1tpRnWE9X+Wb/j+/30yW1Tg5HWoecCrTXk
9hepwoyM10ceK3Op9t4/ot4suZReD7tSd3/dcHs+7Hq7KenPvHpqPMsYeat4
hK8CGf3WZZlunQqMK3u3mmOrBZfjd7llOSjD3oHtNw4PVgNdxlennEMc0H2h
smh6SRxR+9t5t7gHH8bsKvcwtagmcqr6xwwfpgETLN439u7gwIK27T4Bbxnw
gfFkWMN4HrQWZuy+ms6APBsNhXw7IcytSDng9pwBwSOGqp8pFULejKLRZA4D
5rhm3hKfViD7W8xfv6ZNBXJNlbz7Z1eK+5ZN6vIfpATtvfq4HJ3zVZyyqnZi
0HUWXIq5dcCvSBv8lix/qLJJEU7c0Sl5PUiV1P+s/FpwVNp+Nl+c0bhNibzw
3L6uPVUVJPO9D/kE8KBsk9JxvUzpeGI7wH/ze+k83q/l3b0JqjBlaa9evmnf
iILnI6+l3NSAPUv93Q+EsWCSztOhBV+5wM7Rm6m0VYNUP2q29WkkvV43eX1+
2xQ1JjV/2rli+qFpNxngZLTydlWxNtw3IgSFKxUhYPHDM+7ftKnxhFp//vBi
8N5QVQhzTxo364EaFY/kjTw6Ytn3XALjB4wnDSovm/+aqEG1j0XBs8fnZtPr
VSu0l7a/k9oXxzerDP6pWSr0/piTBgdCJgxiw2SzKXdv3f13fUct54bLz0AO
NR6dnJrwy0yXT7Xf0h0PO6cNYcL5JfZesSO0YefDY5v50ucfVt/07ORBer4q
0B524m17AVEf611ZE6gIS+JsTx+P/0ydl0A9CtVrD0zNVKD8fd8Wtn5CirR/
OgdoWvb4STR6v1nyrlkBhqkkvlwyr41Y8+daho2Ivl5yelbQsAoeCJiVp95t
biFeJ7cmd6xTh/51zzWPfVGApZbW7ywG8mB5SxLptoEJDopXLMX+PGr8uPrm
TfUdqd/iWAdUHlykQcZpPXbmR/GhaqH1/AG9uGRBfNK6n+/4MPWXT8saQpXs
V7/l9MhaPhinj7pb1MEmX5QXr+v9jU/5g6KrE0vIOil7afq2ByiR+VrBq4ZV
88Eexn/Xb1Yk9U7nMzdI7x8pygvXvisRm20et9X5Ex8mvTk99PICJrnhUf6y
Y6V8av12pEn+o4CrfPDZ3Zle8K1NfCTK6HNtNh/Y2Tf8t3xsEPdx7ioaf40P
6/tP//R2Ub24PmWf7bkLfAiZZL1tvaiWcBy+abv9NTo+v9/+ZvbtGQpgn2i0
R3VpMxWv4/gK4/tmHlZVgPt6D1YNuMMAjn3MqmHJTFiTpDBgyHZFSNnhu2XF
GiY4j9i39AWpBfLxew/vhV93XVSC+LxKharXPHJNbrxNz7scYI+d9MRgDI9U
OFaa17WRA04V5k1To1XgRePC7+zhXBhVY3lK/EhJbv+SdJzo6RCk7M+l2nOm
SbDLWD8+5Pj4jZ76o1QcM1HzfO0Gqf2UVk83Cc8X/7GYZls0hU/Fy+Wv1+55
Of//xPOcuj2SEeqQBZlZwl1vifZPdh0vjymCZsfqmoZx58WebheYSxSl/sWh
6Hr9EHq/Zj/xal2DhXwy6mm71bWxPNjwVj1jWwqfPPLp8badGTyq/69cGnj0
XjYbnBtOTP0ZKIA7HptMD/ZhU/X5nTB9dbtCCayTLF7219IEns+kL/ucVWD6
tlnWMdvqxd+zw+zXFSqBcZ3iJc5zNXJ58bX1/tvo/ahntYKj0+LUQDFdojbL
mp4PlWWf/zz9Ob1eb6S6sMiurfGf/Y8W17ODBDeaiOVP69+Hr+f8s/9R37vL
KcK3keKsW7PtXC1biK6m3+Zn2uj1fBwvbZUT+91/TZ9Py9rHTVq9rJk6n2Uc
dTuji9lILN79lfQz+ve81lTOg9oTkc3Eh+KtwqcK9Po91vfq7cZjpzR1EZU2
uuYJRr/+2b+YGtL18UcGff5sc6SOjue2LopP5Or0b4qS+kddTXVe7n3q/sG7
5zfvIh5R/gj7h0Jc3O+UXxJqP2n28dyG5zyaV932DT7SQLPym57CeZ+6KPv2
8/yRMni+hOIspz0r9/eh09f07q1ZVN1F2TfJ3tf2WIiE4htWYSbr13RR9ty6
OKRM1Ebbe8lCq7JFDl3U+uGBpDv626olxJGl+s/3NNHvH9D+ARbH+qxz7yJe
5grvn3hOry8ebudNOJNFn0fDeKQHS8dQ4aQSjL7Qf+itVPr8Ga4/KtsuvzDh
iwo1nrTfMu97IYI+P7czc+CI8RdZIBr5vNBwnwp1P8ZTFY/2X9bIoeMry4jO
gNVr6PcbWztZ5Tmn6fpn1Nvb1tXTvL/C57DOZBa0qdttf7qRPv828sPxui1W
PShGPS4zan+ExdLlb/xxup91IP3+dNSUQu/CFVyq/PV9PJ4ssKbP250NPNm2
56QqJD0U8K+H0ufhNvL3bSAL6fchWqsUov1v/vs+xJ3/LjlGjU3xzQL1V/fm
qUKd4j7yE/Hv+bnzjRX7fYapgtavl25hg578s5+SO2+zk+IBHsUqWulz3Xj0
+xHJ5OAFKlwebKrSbdPXptdvUa/rrX7uLq9prso+/7XBld4vGeN1LTb9LL0e
McjczXuUN83p3xjj7znS7Hrqov5gTZp/zp7151IpfX5vh3r7Y9M7fCCJ3Dsb
Hlb8s//S+MvzOAuBgOKGveo9pxbS5/2eD5odvy6Bnm8ZvY3zsdSg3+/sMfdz
tb9J70ettGgaKfnJp+q/Wve1VbszvV9z9YuhJhuHa1L1u1VH0bPYkN6vaVO0
c+5UVxFcnHp2n2NvAzA3su4KCGsghpnmpAXp1xNhbNbRBXfbCfUnrTrC2CZC
89bG8EtRncTPmMeWfCsF+Bp84XpVRjtBMvg3facqgt3nu/brWjqIm75CA91o
NTBXv7eHF9NOjB+xfF+otB0aRTqrFUV0EJ/r79UzVnJBoF9z+Pr+TiJvc8a0
w6cEcEiFxQ1Mkl7/5INflVAIQ4ZOfWV2oYN4qP7r3KQDQviwMCr85flOojR/
x0MrN21oGGVCFp3pIO5/8fPr2qwP09Yoq6536CD87isc9V7GIO/23jhGa5oC
2Obn9XqZ1SnWTwjYvFhfETbxr3Uqa/4Rl7lbKdlvVYBTanOqt5r+Evv1n2K7
8ZMCPGV1FVcMqxDzWlatTyQUIYLV/0X+MTERa7WXudRLAUziopN0hJnEtaCk
nv7JCtA0Km7tuLmvCHF+1pgTlQpQ/nvWCZvXecSrPr+X3DJXhF4Ht+rFSfSh
xbNVfdQ4RQj0izwv6a8PYY/CMnZ6KMDy/bts97ONYbQP16dQQRH+XH1cX/am
J8w6rqi6dK4izL0XsOmAJ5+cVD9liSuogN2hwJTThzRI33nuXzv+qECzxpTt
PepUyZCU8Kq335XBwbgP55mLKhlZxskfOUIFQi0l0WseqJBx/H0PokNUoGBU
QX+hkQp52U4hrvOzdH4dP+d4wk1tMBsJaf5vVWBFPGfjqoXawNT6qnZ+mwp4
xIsnDVTThs912+fmmKjA1R6c+Atn9GGBle27vhtVYKNl2w7Hph7QXJbIjApU
gRtig7zccC4YjN37Y+cRLoROH6AR1oMLZfGx4eGzubCqyHbKtGQOXOu6bxOv
wwXH9ZNCeLYc2LYg7/uNQg6s+POt/IebECYWBJ7RdOHC8ZsbM2xqBOC+eWH9
mjIOPN/CTDy4TwDrRfYT0jdz4OPDX+pXrmlD/ptnGTEeXCjw5aS5bH5LBE/c
Vvzanw9Bhqeu2bW8JgYo/HnIWcyHOYEuTo5NWUR+ypJTTg58eGV1+MA9bhOh
5PFn6YMtfLD2rQtIedNA5B5+nvlAGl/Fk67eD6PqiZMpZy1Seknj0fS590s8
FCG2YTkjaRUf6nulaqdJ40pH41t2nkZ8MA8Rxpq6c2DujttpkYQ0v6G2jyw2
aZDHFhiOGFUohA2MVxOvreCTu76f8rjgLwSFccErrnmqkGdDQvm2d4Qwy91P
6XCoKrkmuDT+90oh7HFiKuwe2ymeffNLz0vpQhhUumO8MKVLXDHi5eQH64Vw
7MyhN0HGP8SddcMLSqTzPJ8rVjdWVP4Wjx1hf69pqZSLd47a4pROnGybaRvr
KYSR49N/nmJ3EhPHTVFXWdNG3Ews/ThnqQqYW+49tlQa/yybdGf7mZ1s2Fq3
NnL5x2bCOYlj5XtPGS43DClXetNGjOp34sP5Z+pgZe0YNuxXE9F009S9eAkf
ZhadtJnJaSVUw1xv397Bh6frXxZHsVqJWa9y9xWN04C4I1l1/d61EfnV3sF6
gzRBoPAiVVuphSB7q/RvmaUF924VWe4vaCYE59NMSldqglr+DQfVl63ElkuN
FSFXRDBs0469x+a1E2bZa6JjpuiCZ1dQ0PfzzYTG2dwz++/owamJmjenxDcT
9kDuW/xAF6boD8+zS20lPjeqjDeu0YHAMY/yj65qJwYuEBEfyg3h+NF1y77O
aiHGGwfdNDtpBKV1flolfi3E7sxx2eP9DCFxREKxQnEbkd1anh2y2AR2s5Ys
+/69jVBWt17SMLxBHHqY1WGpzYTbu/QUXyXWiw8Y/LB+wWWCMMhu0JdVb8S1
iSUXAx4xgJtyd5z3ztPi6O+XK37tZEBV3PaA9E9vxH3LD36eFsGEAN2LYUqi
csJVM/bASycGzA80HTZ6wk9iqcuOsCm3GWBdEfthi38V4RU1NzK7JxMiLOY2
Dn1XQ5xR+Tzj+hYGhK8YuH3/zSoi7PHviHEmTHi+rce12LIK4uS2yyMk8Uzg
+KR/8DcpI2xHzlx2pZd0fhk48sq9vHbCsr1+4QZLBsS16Ky70tBBuFvsaXmy
XToP2thikaAtIQ4s0I7QesGALT8/VJ2w7iLuHb4wYJVU7/Ekc7/eu5iwP/e9
RqwVAzq8RaOfXmPAL2AVvollwJOADqWslC5i+s3B51h8JozrkdzvgzROPLf8
oG/0Oia4+r3ukV0mApP49oYj4xjwWdCS7pWpBSPdhknymAxoXB91Xn2eFnD7
jn/hL9V3/fOeWNs6I5g4bNLOERsYcPJ1Re2ycEOo7BjecPYnEyz2dE50F/WE
k/3VDo/ay4AT4S2Tgu/1gq/ezZq11xkwq7FBf+hDLjl+5jf1qs8s0O1crCN+
yyFPjFcb/EZTGeZlDTO7065I+uy5M0mviQX79ikfGGiiSMYPfuVpuUYJ3k7Y
9UuynkkOzuozkG2oBJwHK564SNPVlJVLYxSUIfXnE8uuGywyOeu10fsPyvBc
pW/+nP3N4rWVvWtvPmOBTeys47tONonfH3Yf56GkBJdGBMy/cqlRPGbosZOi
cUpg8Oqi8YfUBvHlgpe/03crQeaLxXEByTXi8tRvkhf5LHBvUTQ1CakTH+cW
dpXMUoLyjoBtXy7qwqXF04va5imBfd5RNRtbXXicc0JYVsKC3Q5fXW8qGAEn
UVB5V1r+jntG57jOhlCblho4/zoLplxcN0/1tgl4pLO88kKUQDXuVvCoo0Ly
x5/n90R72GBVvW1wOF9I1giuO2zlq8GEvfYvY8wFZNvGtX9WHWDD5Iq3Dptt
eaT9zpmw0oINL22sRlhd5ZK3HPjjR25lw/SDIf1+9uSS/ZRzp6o8YcPrzyWG
Ccc4ZNyLQ7MLuGowa7vyIq39bPLCusMjzdaxYf3WF0d4ThpQeWHMxzk9OTBJ
u3nftBl80Ne0fLFrlRpkG0zoqST1B3arbe6317NhXUivJedFmtB6aQWPd4oN
Gs0dceNIEdyrOrq0hwMbxs/QPng+SRMGVe1on+KmBhvUchVGxutCu3dMJbuU
DX2fDD1jUK8DfmS5rnN/NjACZ887O8YQfsxa0VswiA1L+6k+eHVfSI5d4ho0
qZoHx6Yd6TN8pJA0fuL1a5+fOohcQolJB4Vk/F5JjOJxDTh1/sqfyqVdhOW2
qkuhH9Qh6VLTKtYpCfH59ReT0QnqcOcaUWKU30kc7JsbVb1OHZwfuSw8s7eL
sCqpO/rirTrkho5ifrnIAAMNjlP+XHXYbDsj3zOcCSp2vVs+f+VB6+z0rhET
2gk3vv2jgCYNEF+63HJjdSdxykASo7pcA+7USrbavFKBT1HrHYpOqkPHfN3I
3QNVoGb4Ye9+Y9XBIWPw9dxQZWC9Sz7n/YcHtmG/eUOPSusxeVPn8gHqMOTs
xrfJWSqw6N2zjOIeGuBp53DfskgD3LOi75XNVoc/wjXzOpI1wIH0H5W6QwOm
BhXwTt0SwYeZGs9LM3gQnuF9ozRbSN5x7dl6aoQAFsePsK9dKSA3eb2/7egn
gNnfV1qO+cEnY/XmHIwfJoDOUVkeQbuF5AabEeqqAmmc5zXhk/kvAUlWFdkT
YgH8iFWwUF7CIS/dCd2bliiA0KiZrk+mc8lJhZe+CVcKYPChuMCA0Tzyl+S5
/eq+AshwPzFfu1aNtPnanGlyUQBnzOaMeNZHjfxYPEXh5yYBbKnREvjMY5O+
JfH2N+wFcPpFQiF855KZwZHnbw8UQqvT5EcGJRzSNLIveemnNP/gu5ml/RRJ
nZ6nk9YdFgA41p+ufa1I7l+uePvbEgGcVBi0SbKVRbZe9BS7DBeAUO9xwJUv
TPLAw35VN/YKoNefYt9kbSZ5fbLjsbiZAjCrmh2cdV2RdA9IHOygKIRgsWDn
vksKZFZmps+shwJ4Nc5qlm18g/j+msNW7vECyL+zjHu2qFH83P1Ew48tAvjQ
JzqD3aNZ/HHq2QfeUwTADBkhMeXWi5Udi/PnRAnAYfrqqWH9a8V7vaam9XQV
wDjd2pObvjWLcxgFBjPtpPOPzU8Gz57QKPaGCR5nvwugaQy7OXFLltj/xvQ5
vhcEED0o9MBTj3zxgHMKalVSe9mSR08OD/0o/hh1J23RaAGc4o4MfeVEild5
h9zJjBYA66h0UH+RRCQG6wrKbAWg1jbJ0+XnezHj1nDLD7pCOD0stMrO9Sfx
OfGn24WdAiiY4NF3aUAp4fTglm2XhQCIF+4dxg9riegfCy0kIIABPKu6sKU/
CPNTRaMWaQhhZcT5EPGwTmL9bdP7Ek8BZC5ynkMKhKTXe6OvLYaaYHB8+aKO
XRzSckvqubxyERgmu/tOvqBGatk6Pz/+VQTHrVft129SJA+atQUYxdP7g1qq
wgddOU/v9w+/GnW2zyX6vK1dH48+hVPp/f4pR7T7GCzooNhimkqvwefp9RCD
kRPOPenXStQq/gkYYsT65zyuz0bdyuo5HRR/79iRkVHZSXGsa9GzPc30+slH
E+OBpYmtFOfMgWuiKfR5ADJ7zoyfnTRfP2GaeM+SPj/ALl2m19FfQp+fn1W5
6kMHzXvJ9fdvv6LXYxY4vbgq0myj9gsZLiAm2HyjzxNMmTtickdVB72/SHi9
qOBnJ8VjrY5/Zz+QULx/ckCZ3X56PWd3ms6rt0mtFF/erDlyyjj6/IFP+ZLR
+T4dFI+fn/Tw5JlOircFO8xzTZJQ/G1m2nG7a/R6UO+s22T/6W1E1IzR6SdW
6oGV/ndfwV0GFB9sGLU6VRfcxiTFpUrjjdsZsWmK6rrQ82Cx13UzBWq96FKv
C2lrT7cS4ybPKOkU0/sJ7bLa0ybs/nc/YUlztrLdNno/YZHX75F3pfXnlh6a
EpTcC7rcS6dk2bZR+5+U8wI6Kvd3UPsHpt22Vj17gD7fHH6qYZhGOX2+2den
9urjPPp88/Uptra7rtLnJxb48T8P+kGvD6nlHRHbrGbS55/nWbrpD1KAimvb
qrxqvv5zHtqwYql6dA19nqIkPTq86hB93oJ3u3fNOgaLYutzydOrN7Go9YmS
rtehvybR+2eiw4y3R92neaax1+oxUvs+t/6iKaotova/rOnFL1/24e0/5zXe
T6/Yt9hbgeJyib5tZR7NjVemVnkPoa+3fzljXt4emu9xjJKmP6PXM9VPj/lw
dSyT4jZN82vR4TSXH1Lfu/czE7JGFY85mFpPlS/02naYadBKccS8F62feQrU
+9JrGi9DfbXo8yTEso9aX//P+e83jRfjyIG6/5wfMbF+Wm8UTJ8H56eWXhno
RZ8H72BZTGsbqQhnVrrFlSbS34NIiZ3TEez67/7SJ8O2181xVwLIL3CYmv3v
efGbMV/3VPeh1/POGPXszEul34etX/veKHe2MuxiK550ekqfH9+UEd3vlcm/
50uW2IwZlrZWheKltwXDw9Xo9I9vKm7sDaF5RrXY0l+VTa0vNfIfSMc3JYpz
mqIuTVZTpjjhs0/x2DnSeWX8rMzq3C7qffJ4xQ1dmrPo8+uT6/IfXnBppXj6
t5E7bOc2/XO+PboxeEjoQmVYkvT2fcBr+rz7GpcuC/cw+jxLot6gfgbW9Pl3
9C9lypITvUNVKH5n8mtUYG82xVPtbm+5G0tf/8zF/1qVAb0f/UPFg1e7CpWg
svVmTKUlfT5G6un0p0+jz9fvC3vJ2rGBPl+P7SXcZfgB5xMqFCemmlx8v4ve
zx79qzOjxVwFFN7bqy1dTe8fnpl93W1ltMk/5/M/2g6e+/oivT78ZLiKBm+9
GsU+SoaCeiaHYrN3g0QfIzkwoX8H74UbfT7HvV/A240c+ny/WGnZpoTD9H60
T7eMk896/Ht+JyjR7c5QQ5rfX7o1+kwjzdGcPVFKQnVqvfJt/50f13qy4d5H
g1qLeBH1fFXPIz83vleh1o+p99GDEu53+dHMv+ElWh7Co3i3RLnppwXNLZNj
P3i9pve/uAkePwiuUaNY5eX92UxPNRA2mNhFsujvEZSu/aKmMVFA8d2yk4Uh
h+jvo5wLriu9kkVfLw23GlfO5f+z/zhmvc35RSE0H/qYnlmiRvMOx2mVK0Pp
80YN9YajPo+k93dxDq3SPVigBklr2gali+jvIaRwwpzZz+j9ftg+Z1mFnrrT
waHY0frM2hkHeDCy154rZbv0qes/5O4ZvOcz/b0ErJ/a7VEXkxTp75+4Bhpa
Jf+f7ykUa36aFxWtDifyMi4/nSD65/sKwb3Mznpt5FNs3FfXLt2I/h5L2dWJ
akXVdHryiO0f2x7TvOlRcpJ2JL0eXnpQ04pXr0Fxi5fJ69h4mrmzLDYOmUGz
yXBr4TOJOuwrHP3QZmoLtR9kyto5q4Yv+/nP+agXR08Xte2m2eyc4dsXrjQH
3z79/IQ5zVvCorkD2fT3ZCK3+finpNPr81YG9TbuXzUofvpFZ8JEZw2wttw7
ts8t+nsSwj5Ly5t60OetMD7c+eTdxMw59HmraNVztf3YNJMrvw6ruEW/L7nS
IAhz+qkO7Qdzrmhk09+jyNUavGrQZBVq/xn2h55Hf/YMD+DD6f6vDhcsEFDX
oz9wNf5yc4wFvf9+/wp+Rdc3+rxa+O7AROsV9PcqVCwtM5/o0ucNXodmPz5T
SJ8/KZ8fu26GgP4eYEHIuFjDXOl80SYyandRyz/ft2ANV+q5JZQ+73Vw/1Lv
ot/0+5v9hw+WPXGg2WUq55Z6pQBKHGYmKGf++ed7GEp6xBWdECHFpysHNBoN
F1Hxy8vtenN2OAqBobJlvpXHW2o/aWNJvzO2yxso1oh4/WLpS/r7GOivhz61
8z8RT58vc1hyIdVqSifFW/y+necodhGN7L1JkzbQ37/p3ytoQN2OWkLf8Utr
HLODAHsbizQ3BoS3ssSj3rQSsXZHbsxtVQSxxzjNSwNaiehPBx3PT2RC/Jh1
riPZHcRi0Vv2Ygc2XLMbNHONZRsxOqcuc1obB5oPJ6+8mtFK2L4uSBo7UA3a
X0G1z8124rrDgeExX1XB/OS512t0OomOO9omB5QEMM3ru/HWVW3EAZP2HAst
IShxVnr6WbUR7Sd78/QWC6C4afbVZzfaicbYsbo/3vHBxSjpQtSHDiJnBXdn
EFMLrF2MvfLSWwl+1qOtl29owb3SU+sT7NqJ1Ytnr6k+ow2btgvuxZ5vJZQL
fpHjv2vBqoCardrW7YRnrd5Ao+laUCH0L1fb1CGtpM6Fzk80QevwRa1l0vlA
5Gqu1sr5epBz76dz+I9WYqhPk3a/G/oQ2bCX/Vy/jRgVeeFH4Bc9CFfqaJrx
tZ04W/qgepqFHnw2U+3v4tZJ+PRoXFixj0Fet1n/wXCOAogqZjXWErXi6s8+
6TOLmcDbUfpWf2ileMuHEQsvRjHBKfUGj+lRK569sS5tRqoCxHv/qT1i9lgc
4GsxfqyLNH6M7jNyZds58aBRd2O+pDCh5oTXXL/zl4gSJjRsMVEApw3fjxz0
yici2aJ0lUVMsF+2U/fxuHSiimyfPFxZGt8avk5cMucIMcIlwnnACQXI39As
yTmUItbc/DGmyUARVh1pud8ujR80NzpY7++vAH1NPJmkuh5cv2vVo32BonQ8
TrILqzaBnwqXy/Zukca33vuy+swUkNP1Ut3mT1KGRWnEApVaNXIM2/m+W54S
GK2HhS1VbFIjx2cpZ4EyuK5ZN3fqH2WyKbF+ShWpBD4tY9O9BrHJx9vGejg0
KkPaMdXlnh4KZIfuyyeFuUrwhB22+ftXJqmW9SspRFsZMv219s6bxyR1t6uF
WUuf97L2VFTeOwZpZtFv848EZRjgF+N0NL1DzL5z3JHxVAmmPV5m56XeJX41
Y+yvgMXKsDbstaYkmUHOVfwzZWCnMgjqd3h8uasFM2OZUX8ylaG+3XDJD2V9
8DAYcGtirjLw3GLf/w7Xg3h/zoNNM6Xx4+2eUxr09eBr0a9Hp/KV4G58RG9G
iD7Ya3xKzHFXhqwrE965vTWCmrCfG+ZMVgbu/IKjw84JyEMT9a24u9WAwV40
yHS8gKwO8P0y44caNNwtzxFV8smZt98fPDaJA2Mbnd/t6c8ntx57xdjzVA0u
+nqblYwRwK25i+s3D+DA9OMdBvUSPizb9jpIo1QNGu/sESim8UHrFPAvnlaD
U2/VVUR+fMhIvX7GwUUNbE5n3ukxVwirHflne+xVA0O73r3jpX735FjPgaMD
udAyPkrnppcAvo2I1rEI5EDLyjEvJj/RAmXHIdarV3AgZ59H/DxCCwocamY+
LFSD+At7/FanaUKSw9U1gunSeKDvrk83SrTgcfmgNctmciBzV4JdrlcdMeDz
BPMDTRpgNmySfXl8LTE0syq2TKwBu8tq7Dvf1hB2N8N1xoRowOuHkTtNP9UR
27f1nBZRpQG9PjkHNO1sIBy5W6fN26EhbR9C/+emTQTnTM60XlwN+DLh61az
h7+JRq01e9ylOk493+zsWlZDCBgjNw624QORHGK7yZ8JrBxbp+KX0vs9zbx7
lzDAQdLXJHK7BiSZp19+O4EBQYO02sb304COoY6WkY8UYHdhu2fhXg1gF7z0
C+rBhLYGt55LhvDBZwjrfsgdNkRVtWU9i9GAlr7hccGHVWG2fc3wdQwN6HdZ
6Qyxlgv9G69q3KtWh9Ieq44NzlGFQfmuD13X82HuMN/oaV8Z5OLxw0f1GCCE
dsWDAZeuMsnklAtjD9cL4Ex+zFLlnQpky0D9KZJUAQzefeBuwLku8ZG+nEXX
jIUQ0tdih+7yTvGVCImwOU8AqzLi3zb2Z5KV85PTT20XguO6XScXW9aKT+y/
+1qoI4Q/l6Z0BAnqxRG3HjZdeC+AEcOuVO7eVSn+bMCePqRRAFcrEp6ST2vE
L2OcWD3XCWGyjsnlrKHNRKT+hl8p+zqJC+ls3hGp3/fRUlvx834bMSh7z+lo
207CqbxJd/+BDsLgTPDMUS0sYG/t7y+42kGoXcrakqPIgpzVFyJjzVuJJrPA
Z/wHStD+xemoWnsbUfbL+nlosXRepGS0x2ZEB6Fh4p+R+1EF/G/PjtSHTiJ1
FjtqeB0PokYeyvMlOohNC3+b/nnBhUbVy08Ct3cSYzyWP1zbyoVQzfnGURGt
xNwIjx3pTuowI1exsE9TG/E0P2H25qkaoMyqZ81X7yDUg8YSlrp8qErWv7iU
0UnUeDRYEr1FUGgXPudUUAdx02W419JTQjhLak/YlNBJWOY0hTxvE8J6R+LP
TsU24pqL8cOM0yIYXXzvutaCdqL32c/bWk01IfTuZOG5nR3EN0fTFV8va8Jl
k4ApnrGdxKjLg4PaO7XBdP/hfozPDcSVoFOV15t0YfuwWl6fxAbino124Zkj
OlB02WpwWWwzoRUrDGUE6UO1Qsq52MxmQtnB5ZgZWw+2TfW88Op8A6Fxe/G1
Ry46cDokem3ljQ5i9KGSVeuMdEBp6un1C2+0EonmfzbALx3w3GLXsnlVO5Gx
7rJn9HNdiHs2Z+kVqT2db75NNiCMABL8fG5caCBubyl61yNVOj/cD5tWlDQT
CSkrZ18dbQyDPRpOxjY1EOY719cPcTUChXNrD/W+2kAUvQ/w/hJpAIfJdaZT
MjsIxyidJUO/GAAhtN+x6WobsS/Ki1/73Ri+vAvVSOrRRiwcP8lasLBNbBk8
7+CYAgX4E+M/zrayTXxwrtfMC8eYcPZG5G6bwGbx9ZSaY/cDFGCA58m1z7Y0
iq+mDd2WwVaE9tmj4nYkfhXnn17uG7tWAey3hDwduqNUPKbj2BDSUBH6DbGL
19pWJu4Xkq97zZkJTyOqtuze9k1sNm9ooflnJhifStvcdOmTuKDw1fZwNwWo
/W3Vfs6yQPxiys9NPc4rwBNICHS+mSdOfaTomVyrAGZ9B3JZa3PEVwb1WGI7
WhEW7Xtt8nh6AcETLmYtzOgk7jbMWz067xsh6cgvcFzTRbDCOvafmfODGAOu
D94ZdBE5lr/Nmr2LCEXjIp+vRxiQ4rizdnpMPaE1wqD12MYuwoKdyIrZUU8c
3D/x6Y7RDGidPb9jTXYDUfpojvKz4wzIjOM32Oo3EaMal0/g1TLAb9u+ExKT
amLM0akjNy2XEEMaHUTHi2uJW5PWx9vGdxFnHqjcmhzRQhBzk9f8ipMQI7YH
RFyXxkkLzxR+zz7VRfwp6yWKq5AQiTrDgt93dhKTHhzmpozsIAb/mm4C0jjd
wGuPaXtjK7Hpffj76zMY8GTAuK6+kmbCb1S5E6eAAQMlgdvNoxShacviGY/7
Sohh4ntd5v4KsFKiuXOHcxfhsao6or+mAkwx3nXcoQcDJEy3yoKTCjBxl3Pr
oeUMOHmKHLPHWBGcykznf0xmwNDh/U4OOa8IjhOa0kwbGLBSo+b42JQuQrKo
49C1ok5i+7PUDY4JDLBpPmmgfEtCOAbvPLZsNRM2Hx550X1vF1G5VTI304EF
xSWLfLUlncScrqkHBQ0sOHH/9qohqRIifW9M2vzzSjDzEHvuNN8u4rSW91Hf
dBUoWPrq8YZxEsLyYeujH2+UgR1rON1wfBchXjh28JgaJTDLuNRebsCAy6l3
M1VHKsHnDwFp1wIYcFy338LX/iw48muWv+83BixI+5Cxu5gD7QWHrvn5SAjn
gBms80ocOBzoU1azoIvYa3Wnz6QTarBzqWfDbW0GLG6KjvHvzYEdqTdC6hYz
IKtUNysmURWGLQv+HaYvIXIKFh4Pmc6G0BDXxEevJMSrrHPLNrewofRqv0W/
d3URKjWcG3VGPFi6Qzv07WQJkdev6dePFzyw+31xL0jj9RiPYrMvm9VBtHBU
ULLUjj2nrlSSOPNhQE1/zdTfncSvst6Jv99rwIrDqxc8yJEQRwf7jSlS0oCz
FkmJ9y5L60/l6GftaeqgtXHV1OKRDFhx0OwSf5AQxgWtbl+2X0JsVF27ODtD
Og+aXZ7dsqqLUOReqEqME0CpUbzV214MuNHcYl4gnZeW7PNbNbhC6l9+ri58
850PCbniM1evS4jGwsKDOSAADx3ldwP8ugjnlJDcrlYh+K/YWGgYKSEUH8Zb
m68WQdjjjM9EUBfhFhSbbDZDE7qYoxOajkiIHoeVB7kWi2DkwmPDAwO7iIEK
5x8t9hVB5NY/Gb2tGPDt/DVRxmNtyIpa7RH1P71PFoRtG6sNnFB38+8tEuJx
P/e9L3K0YNj1bWYligw4UvJe+OWONiSnGIcEdjBg87TYw2PstMB+ZI8f095I
iIIzNwYWmRrAvEldU0tNmaA6/0c+sdYQSop2DNHdpQBNitEflrN7QkubCUPx
hYRQuLM8VuOZiPTrq5Pa87EKbDo2qn/SfSGZr+r8S0lTBaDOPLqhhwZpetw4
R/JOBfqOGpKaW80jnTjTykJ2KYN7luHu/S+45M3tc6/sMFYBk/RJRyp/c8i+
eh73YiJVYNnL9KExZ5XJKe2mfxRDFaGmpqOPoIlFzqlYWxqxgQXudYUGtqNY
5PoVwRGeM1kQ4KuxiyXoEseUzW9Q02WBMOt7wFwRg7zJ2Ve97QkLQn312tZV
ScSfihKEE7WVoN59XZP5zU4x6zY5XMdTCRI+ZRRoMRTInrneWtdTFeFLSdXU
22UMcriDQdCkWSxodX10J2+kMjlu3qvlj5JUYNXNfkaR75TJ1PNaZm3ScX2R
cUr18p7K5PdrHzOE+tJ4PnTSk5HrlEh2SszKAduUYUprYST7AYsc9HSJ6thC
ZQg/02ZWPIZFBpfMOPFGTwUYAyrUt2QrkopdZwxb3VRgw713TRwXRTJY/3ec
yQkVEJpvCFW+2C5W1EoVV15WBNNZC8fzjNvEgzfMVWrTZMGIHVMUNI+1iBdl
N09iB7BgIGeD0qI3DWJ9Se3vg1K/s4OTlnH1QbN46eDGEyprWaB6TNdJd3Kb
+FJ1jz+uBkrwp3xYdZXpT/EETvGbTKn+vPFlx0IX/xavmHwryHEKC9a/m6h5
LvGP2CVE3fJtMgtKNLRId9Pf4oe3R5q7FLNg9XGLM9yr9eIJ8yvnHwlWBJcZ
z0fcO1AnTnhLpo55owhj2Mtyl6ysFXdOPW5Q14MFlk+6VnLH1ojdMtdtPyst
T8jTPvPsSsvEni89gpIPK0Kbk9L3B/ql4sNjD9xKzlYEzxelq61nfhffTL1e
lqzKgk+Tn9be3Vcsfj+kQOfKOBZENxqY1GVni7krfFd+Oa4IYX53rXVXvhV7
LSC2FymzoKVJs68jqQPV9fsfvFzCgqOv+ha+P6YPySfE0KTEgnezTp/kXtOH
eYNfqwTaKEF14bwbu831IbWxd0/GJRYY9ck4/+aEHtzvNSvmPp8F46P3/Jqq
ogdh/rAhaLNU7xxB6ZsqHVgZV1G75LMyHFn1atqGcB1YPVXiUL1VGUpfb/qq
OFQHbqQ9WjZBUxkcTU4fN8nWBf+hM+2iM6Xtaaua+S53XdgYvrH81EwVCH3l
e7/ktw4s+33kSMwnZZi4UdO5X7IBzB6t2zxHoghr9LdFOHFN4FyCT3pNbxbk
jW260nuwiDQhKh4mflaFrWXcbZOHCsmQKQ/dHixQBZZrwEvWHT55cIFPENuW
DbudGH2c3fjk6SZD05+n2aDixWp1aNYgr4Y9y3jexQZN5QjnnAwBqdncso2p
rSr1u5qFe60FJDckjpd+RRUe1DvOnDldRB59WqiZ/44DiybUT7v7VUQaHB22
OHGtGmQuVuw4uUhEFo9jqts3qEGgvpnl/BIhmbBAMj3dlwOlPn4FL3YKycd7
7tY0f+fA+NycQGtDIVl0xeuIxVQuNPl2uonT1Mmr2f2LlixUhWc9Z92+2sIj
K++oT6jPkM4jTIs7RjhzSMWgT4uKdVXBUc1pU2soj/xlufKQeAIbFl0YUhn1
UoWccGGGWt8gVfhjljPu6TdVsqqksvfNYWz4+KPWK0aXQ76fuMhnsbIq1H4r
d6vYr0Z63Po9RclZFdifPzkMbWWTNYY7+lyKVYWe719bBKxmk/571STTqlQB
bB4m3Iniwohfin1+h3GhfecldvxvHvg/+zWE/ZED4l1axzwOqoMeP4C535UD
s34zew3qpQ5pWr/C1/bggFrvvXyvVXzwu8zsnxjKhdNRxQ+8jPjAWpP4NdGe
C/M1t2R8PacBh/tPPnqhigM72/vrFatrgF5l9fik09L58FNXne9+IhASOw6y
m1XhSePGfQ02IuBf6Kr9cFMVshds3frCRxNMk4aE+Tmpwnbbb6dezRCBn6//
gV/+bAjp2TsgjqMN954337rwRRWU+3pHRsZqQyRhpTKNrSbtX2OW3e+vDdVb
F6+7EMqGH1P77n2YqgXHarcGOmmz4eqRKJPdnlowPu5P8VmxKmx+p5Q6SU8L
WqctH9O1ShVG6W12ETzXhOTOT/HzhaqwRDC5Vs9FBN+fr/Df/oQDrlMO3xcu
FMHu6wLj3b04sGGv6Y5xiiJ4MqRp6MXHanCQTCF8k4TAuFM44dViNehd6nBm
7FJNmDro+hV1ay7MyYXj9pkiSDzr9vx6BAcYi9YNFe/SgY++q3h+Uv3nMiqM
3DV1YMjtPSop9tK4Q7WXWPBVBzb1d17pMJwNP5Oj2Rtv6kOW9lH+Qz9V2BFW
P9qyRh/28ScsdxBI5+8n7wid6/WgIuF67kFFNrwk+t33cdaD2ftvqyrNlT7v
o9HG/U4G4KM76qmNqSqs/WKQ9EHXEMh+6qOPjWVDl374sYUJIvJRRIu3TiMX
nvZz8yak/TNpYG/HPC8eJF22TNP1FJGTRqe5uDrw4drGzPgNS0XkbiV3g4Bg
Dbh061afzC8Ccv3DX4tVj/CB5+y+o//4T8RNnz2JYWv5ELn28bHQwmLCPcLT
/eZwPkjqlCMtW0oIRspL00aJBqRO7r+7j+QXsXvHlfJV+/nQUjj6bFH7T2Jr
lbjVeAUfhns6kydbfxCe7nncAkc+bGpd+dW5uYxYkFNqfLgnH/hBZdMYcS2E
bW347FoXPuxnD5uaoNlO9No8dxzZrgFHr7Ads03aCDfdUZ8fpGhA7Mwi63qL
VuJwqon3LT8NuNx429LApoV4upCldsVaA+6dPGDqOK6ZaGdWxCU2q8OzDuvO
n/YSgl81fPL51Xwom/c12T2hg9j+vt8v9lA+3GybYtGXoQz3kvn66xN4wEm6
ahN0QgkW2qdd7LuWBx4u/PGfBimBUs5Km+JhPGB5nxj9LlgZbu2p4fJ288BH
eC6gPkIFeiURS33quRD0kvFoTX8WTBuqXvjyqToszZ2d67VACfS7tm3n91SH
h6uuZ0WZcuD7G4M/s1x4YHln/PTEhxwYF3X2pZKnOlifVDc591UNSjW8b2vV
82DUiKQjdyzU4KzHANGgSB5MY8SWsC5K+1VtTFv9VB4syjo2fHYfNmzYyf9+
T4UH6yND9yXEq8IcXvCL7Y+5sGel1eOGA0qwglP1qsmcD04HD03/ESSNv4+9
WT36ogaU7xnzOv4mC/YZpNTdtNWAYYfmLI+R+rk25xeT3fbwIbDj0URjf2XY
PNpWEKPDB5UhCUMenFeHibeZBvev8EDP7p4kV1rOZZ3nZ7+bxgOLsdlZ5WN4
sNNp0uG6ai48bvphPb9SHYK3rhYuO8WD87x8hkWhAL7klPsnu/Lgw9hx4stO
Qngpcs1/dkAdFpq1TMv0EMA6rQk6j0/wwCa8qxZK+dJ4/u7UFD4PuGN0x+X+
FMIMXpfCeenzX+3aImLsE0Ha/YSZK97z4G6Ob5Oal5BM89Qr3lYsjZsDFmf/
/iQg+w967n0ogg9L360POX5GRKa/G9/+Y5cABnvtSQhhSsczJck7UysB7N+8
aMrwDXxyy0Ofh70b+ZD5xP7d0xYN0uhu+NmMIwJYedCjdcZZPtlSsmPleBsB
vPr8x254oYBM/7Uvp1r6/NFbDthqmimTM5/dPia4LISOCY77et5jkd5V6Y4j
JwqhaIC55eODSuQgk4XPFvKFsNxN72zuYmXy4+lKo8MFAml92mbnHVEkL9z4
xpx4XAgRs2L9E+6yyK9abTuGSu9vGVTSkhLQLs4Te+lcvyuEoXMqFjeGtoj9
nwty9EAIVYadETVEm3izosYGfWUhnP8ueParrl28bjRX0yBHAGu3Hi+PrGwU
V+3k7GNFC6FB9OPTi7ivYmc3uy1KIgH8OHL5RIzLN3HXgcSRB2r48Pakh+P7
eSXiyw8Freqv+PA43uCP+uIy8ZyaHSlHL0vtyw+Ketjno9jpj3D9PBUB+CbO
bj+0Jk9sMnP9prqXfDD0nUGmLc0Ut9/K3nwgUupfeu8LT24qFVtGKE88ECWA
Ec6Pi0x2FIuz2iMi9CcJYGHEC4e7oufE9UXWb6P/SPOfnrey34S3xEufmu8O
SXwYYm52rXHLeyJYbKy765YADKN4b/9UvSSKbp357u8tgIv3Yo6WFjwk7JKM
rvgNFQAz0ORDlvAsMWDE/e3a0vJp3Xi66mRDvLjcp3JIkrR9CGvfvpV0pojj
bxlW2qTwIedpwrYPgRni+XXT4rOP8iFraJRocPQ3wtXqeWxiOx+s81Snrvvy
hXjC//BbS2qPT/Zlm3z3fiAs637Y7Ynjg/2YWZdbMyuI6kNRBq15fPi8dKWK
y9kC4sID2x621wUwvCXlysjRJYSgID/If7AAyo64mYaebiQSTwadefm/deSp
QwaqeTYRChk6Og8vCMCV8STsoX498SFHtTZ9hAC42z4e8O5XS7j2JF5tbuBD
x5q2kFtNf4iu/CFso1Q+bMw9RU772kokvAx5LWiV+tNmx4Hxcc2ElfK6cZHJ
fNiykVPkrichHAat9bsk5gNXsX0mUdRMzIiMrxsRKYC5+o8cc0YrwEBng2Sh
mgC2WgWlrrrFBFbBkknletJ56fW+Let7MOCSwVrriit8sAuNDNFVV4Kat0nX
phfy4aroh2a5RIn0GHQ31F5bBCEOzZ+SvymQZrG2i07WCOH7B1+/5itKpMXd
sqGnr4ngVK+Ka9rLGeSxfCVFzzUiGBt3fIidN4Ose5loN3qtCN47Vs9unK1A
DgmMm/38lxAibSb2nLm6VXx/oe7uSeNFkLHh3PzSRU1izbxVutstRNBR4e/a
0McAFqaXvnUJa6Dev8VldoJ3bDOx8dxA3UfB9P8niN/ryDKYXWAfRe8PVOSP
bxm2ooXaH6hp0/Fe5UgnUbt3WUi06b/fB47I/sF4rMeg3gffC3QzCIih+cvw
F8PtejKBbfzzcV599T/fZ/zSaRAq2dpO7S/c+0prWY/CDmLvvC2Bf2xY/3xv
WFKsnb+C3UaxLTO0yJvJoN4PbzI29ahwp/nSqLRy9/s0f58/2/ONiAlWGwbd
HXjw3+8Vv/GKnNhrXQe9H9F4A+fBrk6iynjic79aDlWeV06Dx8fWKMl9700Z
PjcsvUl6dFB8apRNEuMSne70Ykh82n4JxekuGok2Hl3UfsWh86rCote2Ufzn
2WPxnFEM+nsQwe1huw9J7Xvz5X7RDBXA8uN+jphzi3PPBrZT+x3jZ8/7HBHR
QfF51uyfu851Eg5atzLrhsp9r34dHyrML1b1Okrvj/wxj8FTNaO/j/lWpeH2
9XP0/sWbR3uqhD+j/7+UyBmjo3eMofc71miFHXoqrQ9n0qjjUyr9vXfcP9Rn
29wrFmEdxGVJn0YvZR24yvd9fVIoIQ7f2nx/ywcdYKsJFl/K6yJ23Vr/uzhc
F3qqwO7KBAlxSvnqs9sdOrCXcWkTq7iLeJxqEszeogP2my68u7CTAfEtQzxK
arQhYa/hwqs8Jpyedv06N0cfOs949r/tLSHCu9LSOCJ90BLv+rJY0kWMmp4b
ksXXh7BjFRm5HV1EnNeEPtf1dWF/wYnVRn4K1Pv7NxsyrX2UFOGJ+dd9hwn6
/1Ogvg9g9I19OpVFcdbiHwzr2Upw/3Sg27M05j/fg15wxLb5/l0Fik2S6nW0
hynCwZ8BlyQ3K6jvO1ckOfZ4s4D+XjR+X+rj8SG1hSfp70kb87JFLmvo9EP5
Lf+vrDOPh+qL//+MZRjLbISRJRKFsrRZm1N2KXuSLMmStZJEhYgIRUVFJVuW
SGSJkrmJELKEpIhkrWixr7/5LXPP5/edvzyej3Pv3Jm7nnO87+vZY/oX8suC
FJ2TgbDekRzs8YjCuO9dt98inejMmj/93F7Tpu49XL7/WJILURr6mDjcpk7b
nuUE1Xuv3+pfN4PmlybaWsct+/xBmbJup9OI/Tf0+zPf33c+qbWb2xHmlbXt
IJ4tboJMWxx8dkQNLm+jIFGqkwT5oGQWdvEbZD0BedMiZQ60nqblgrCZuwf0
30gXnNPiWMCCHvn1Q7UBmejv3T8YUkbF9aDMRwncGntOhCUv2/Olf3Q/O8zb
JoYPkGLewfO5PmF7W3IzG3DMoP4z3A79GctVPB4/zGAe96GXf1KTW6jo5zPz
nuTujKhM98HthQbeHuhZgPWV6XZ67ydXsKBkoV2oRYaKfp7GG2c+dwnW/O6w
fz4/Kb85wLqTSU0LF2CeN308b6sxY7zFZFGupUQcAeZ7M58Pco5vAzIw7OCI
T/3DDeysed8Z78qtNi3BvJtIGduMnjHGReqTCraPE1jyv8tyZEVcnuFAgzb3
8j4pCku7cbZQIbs8HuU37XleMrN4YLFJctmlgzU/3KwKoe8dx6Fs8rL5it9R
+P664YueA5mtXMCZLptZ2cKNbs9ZKKNtXzrMH6/wCPCoqII+CHfOABdxEQ6W
PHFjflm3kh7I7y5VuhjZwvxyo2mT418/Qd58TOWGmhLMM89B8u9uNOFCOQ1P
Umzn4Ua53CHsVdBDWF/q5dU+WTgEfUdBp3zv9dbhwLnzP3CTp1nz0L8PxglV
XsSj/COAbXrsFx5UHZgy7RSHvoiphpNz6y7B/PSJTf6rijw8KOOizjTO92LR
38/Mt5NILc4W+gJ9GseuVYZ4H4XtIW9HaaMdkC8/eT/XpwJ9MFcTy552JuCA
2/03mAQeHFp/y9xfJ9pNVXF7uFAOGCH2fEiHLNV8y3+CA+YzPek1Of+oD/ri
arpujFvux6H8sa37MFslY/utpzdH3MSi++u927270ULsLHnwS1M9/QVFXCj/
/nrDsp+PCwQ1vMBts4V58Wn4qL8i66Hfg8PafC33iAhLPnzzbmndG1SYL7/f
tn0oSwvmy/O1OFr6VjLO77e9oyplMG++JKPzRPwY9HU8Cja4yJkBfR0V7/KN
H+6mottj3j+6Io2cETrMhzYuuhD49Q307Wg06e943soJ6nBBR50dYH498/vF
PGpxi73NhbJcRNiFyv/k40/WE25XHIH1u4bEaZcUOsy7j9hGdhUZ4wRJkb67
J2ep6P6Z0anufDIA8/H93L21qZNw/zHXHzC5rrp6Bw++HKw7arAI/SNqbyK+
ehZTUZYJeMoTpQt9fv/nbyMJeVA/cvGbEcwLFCq4R3o9A/mXukVQdTJcPlDA
v+XgLl6wqpe6u3qPAFrPy8wHzbmjGdQYDvPsa1ZTPG0PwHZbbiP/cEV+9H41
6H16T3QJ9HH9NRKv6nDjBYpJ7K8nKTDfX/AynuNVJ/S5vLtVv5zzHbY/7i0a
VI8RQK/H9Tcck3qtYf4/c/v7ZXoORT6D3LHS9U6wFY/2ZwO16KoCN6Dv2cJp
i7n6dsiKEbdOOnbxoozLXbkWeY4XxEYtKIVLQX9MeT1bHqGC1Tfg2FCbtBII
/V/4qsT9xvP84LapS2sG4z78f/vH/GC+vdDqvCOeJe/7kQqboJQSrE9+Vji3
rHmeF2ByFb6W34K+J5PxUeOqXOgzsDK5TH9ZAn0GzHzBLwfSIpA/kKV+dlUJ
WUDuO5YW2NoKfTd92SNl+qZ4kBAmLvnzAvQhMPM+TfsSZE5FQi6tScg9QIVM
zU1QVHjCi/Kt814f7+XCvNvpMx+DcgVhflDXWY3H7NKw3tmvXNqLWA39b8Q5
HsX1R3jAp5yggJvZ0McQEYFrt8kmsvgZlKfofEdxBKBgVuF/hxv6b8au7XoU
VSv4/+fJNa4DTl/MyndUQv+PW5Vyv8cx6NMiJL5ekw/gAa7dtlpsZ6Dfgbm/
bqtjfcBFyA3hmznlHsJ668gi75VCMmQHXUL3AXMeQLzlR5Irgr6usjp2/99L
0DekkGd6972oAFqPzTyfu8fN9w9kw/rsF6dON0u4koED8m3OQofVJ8GxnNLw
xoEfcHa6R7mcEkDzQm/SfwwEnoJ+CebnO2SdEXtlBH0Tr8OLx5BzMJ8k80Vf
obw55Mi/+LOJ8iRA/aKXcb4b+oyY/cvgebbewQxY7+15tu7mYwcyiAtpfS/W
9p7FX3GNO/jDRy9Y720z2pGgo0IC9yMKxwPkod+Ca3fBlcCuRZSnczu9dtv1
ofXczPzeOL065ONFyBp+O50nLSCPpz5i59wCOb6jwzfyF+QPJ2sW1YpgvXfU
CpvrmzmYT9fwk2BWU0IEyYuB2i/6/qDfJ0cEtykz7QdLnt3LVz6bpT3JIKVd
JiSxZpglr98SST5ww4oEZgLqKRbbWH0cG1xqCWUhkAN96EN+vdCvMUEsuWzn
Dfnos+yNuqv8gF9wPqXGdQHdP8x8sCiZwVGHcMgSIrpdS3sgK+x/vXfjCKw3
n3ROP52dBX0ft8t5NWjaROD7J0hriYBBvy+zPfqbof6yPhk0Tg32Ki5h0LxT
f0JAyAgJj9abM/P4VqJ9zd/chyz4rWSXDAfkVs7ng+Ee//n97jqiKuIklBMQ
/arGEljf3luyqb2vlYgysmn8xiyeCDZlHZgTkuVi8Y/Evy7mUXtLAocf1USf
2iTA4iNpptcqPa6G9etnCHHaJFsKyLwzJGfpvcjiKxFbiaxSUYd8I8P7wegi
rG/nNLQMeVBFBrlb5C10yqBvi9mux97Alh0rAPwcP024pELfFXO86SfjcE9G
Ftazqxho/8n4TEbHX0m3uTRd/zP/pVj7lPte0wKN79pIvwGO1YfyxN+q6VQQ
BjTTrMpJ0qx+FJ3Rv8dWkqAfZWDNomOubQnljaJHnNREVlHeKlHE6R6/RuuX
nxLcVo35H3lqWBCuV+AR9RX6HfdrYniNXWH74dC2xuPnV1E+VEk4XHB6Dc2/
70RSLa0fQR/k0d+Fl2XfLqMsMtE286sH+loOJehtDnq0inLirhdHOPzW0Dx8
te5817p86JOU2Hra507FMsqSdmA6qAb6XpKFZIiCyasoC3RwyReeXKMJ73ll
ZhO1jsUHs5Lvfkg1bBlleyuSr001bI/J97LyG1xF328tDMosle2Yoz0JzYh/
UkdFP495PDhL+Fp6VqHfci4osdJuAravmeavtK2s0c48maj8bCgJtkdkJKie
WaClrWzs+c0jAeQ+vR73oi7TXP7Iunr93ABuhnNM2GxYoclqzMpnrG1g8c3E
3cmsaTRjQ8cvIONBd+EldpQHTMhszwAHiLr26cyTyL/o/AYzb/qZVUPbgzjo
26xv5XhgKgnbJbU+Px+8B7nWvCOYfw2yp3ujjrozB/p8SJvS+JxDxkDfDcdS
hvVFyI4iLz3ZRzGgvfrVzc9i8yzzraL4uIwxPchy32NfsidD3kGP7ZT4iQHD
wlGvMz1Z/TnpIfEBL/djgOZwlvjABlafTmjoO0RVBs4Xmj16rchzEDIvvsWp
CYcFE41rX7ww4qDt/h3KmvkqLXk0kg0QxICH7SE/MwUMEN5zcuUN43zoyEnQ
tZfBguM284mYeSo6P7H/5vPkXl7IzOOvpZZ86lc/G3jLfeKiJUYS7E4Olt+6
jxO45reLGQtLgE3VrhkpRhzgktPVyiNG4mCv73Dqb8b6E4/D+fgToX+YOT4Y
1KGHbL3ChfKFP/y0gGBuQGtulDJY4UGXT8s+8HlNBvp9mPn3Ul11op6j0P8T
Bxh9R18ulOfzLVy9ZyD7vHm8FO0K149BXnuUfID5etJu4rbkYQ6UD/E7hcVb
cILPjQLllE8r6Hwb98K2CM7NCyx+oXO2xgopqRygbvZ27U+xn2h7SE69uVHt
MMoip6TXPj6A/iHj6YMH93yF748yr98jyl5nX/dzwfz1m08jPU0gL250fZbL
C/ubfkOxSoX+8P3R5ScVrwKecgA/y1y/Mi3oz8QMDg//ANB3JOTNZaFfRUW3
zzze4Tbim0druFAONQj0AuPw/dFNoenyxHoOcFBz9XF1NqsfKeZMcOmSIR5l
9qvXI/Bf8GC0F59YEQv9m0lX75/pnyWw+JQWs8Y7l67yAK7IsGr/cQF0/FZF
G5HlfcyNLs8/LPD2gQke7U8z78c/3k8csLOCzBWf25OFheweLW6yJ/w/PswT
QxM5wpDPGOZdJT+Bvqa7kQJ2zwiQ/QsEn18NhP5cteCKrOdXoC/T/n34iNIT
mGfIeybt6aHPeFDKfy9Y6xmr76lDstXr5DAe7DHUfWhgWofmpTPzhMd+jG+y
8IccdMhol64ZZKmI/uXDq5Av6D7feaUZcjdHgm9JCgmctxr3GLr6l8Un9SlP
NAbzHz7zqj3niANk/vboulJ5yIG5BUcyBhn9O2NrV5s5DPo+IPP5+knk/VG7
MMiivbEhdjKQ3Zuzc1oEyej9Dyu/2dhVkQB6FsXG/Ap50fHWI6x6tPRJAsv4
9sVwNu/lwwTgGUYRJWph0bxG5vOj/+HDUolOyPgvg02j/pCpvXnYn17wfb14
UaOdR57BPEWZ1XLePUfJwK9L3nqNp5HFj1X4/GSVSjoZtP7pXbdgPf0/fHWS
4N2WJv2D/7CgSvGtoaWEBDq/e8N4S7N/H/RlWbe+IyVNioMxepwBTxdjv01R
nFYZ98+L1v7R773Zgezg8rFtxhT09zHHa7cfn6WlhkC+qyLkeF8ScnJFeUgK
At+3ldFyqskMEEB5wup09VQ/9HGljH47j2uB/K6kK6YhHPJCaENKjBrkLSYv
H5tMklG+YCaOmR+HfoFfNgXj8lYCgI+qKuWsJwn0HGMvD/Ot0jC3c3M2Twog
4jJszePtjP6p7+qFJXkBZN/ZitJ2Dwrg8rjdr5sqgLBrY+YWJ8jATVz/Els+
Bfm3Sp197k0BUfd3T1t7EBFcVfT7fb0UwJEk6RgpSEBen82KcAqlgHn7SEJ6
BT8SbRv81kOBArIt5B4KtxCQb8W914sGyWAIIx6LceJFntarJiY2UcCr8aXm
Qzf5kKhA6uJQEAW06JFT6nECyEXDoTuHnQTA79LoGPWPFCQt/JtRxTEBwL7R
+qbEIBnRKzhdGsDYf1Qp51K9RySk/ya7VdIRRv/6Pv9A4Bkiskej5FfAqgBI
lQ+4PP6DhPhcki5SsBMAtskzo+zdZCTran+rGWP9/BPBF6695UfSbinG6ZkI
gF5a4XH+53xIgMDUq9f6AqA43+lysxsRESJEjskxPi9CgWLgP8mFEI7Smmtl
BIDBiwuiXY+5kE9KtRrFDQKg4xDxcFsHHqktOm8SuhP6uMzdT05dHJ1H/z+t
rZYUseC+Qrto/SpIRh36zZpDdBK/vYZ+s+dOj9OCY6DfbKlNcnvqNeg3Q31k
cW6NbcEYNC+gY1m+w249J4gJP5Hm4QP9zLfnsz9/6IY+NOm4OqXfFZJgJXfs
ZKs/FiwFKxRsY2yP7Usi1m0U+tF6pldvbUyF+RXiD+Oc9AhsgHrqjtD9KuhL
O44vTZ7pWQ/+tO+x1zuHA1uwUp7tauuBYqMv1b+ZE+RqyVBxd8TAgZLxNOw+
LjDJ5peimS/G4k+7/y/z0bgI9K2V3EplT2zgQPfn6eFSdvsaTmCIv5lDP7ke
fX4yl3dmt9VHArjQ/eFjvt3lZRYOaN4imWVwQB/bYNShjgAhMvKKbJk5yrh+
nZweWIs2kpGd106HpjOu39fqXJnK10lI/vKmmJItFEDQOCS0wklCuJSPXSYy
zmeTLTv5h7eSkZr2W/EDIfD96hTbg756vZCvZaS7Kl2igMd8p3AkJeh3Y87X
XPL5os3NAf1NnkNBDqUPYHsoUl+6SZUM9o4+/HstDo/g8TnOeRspYHPqXf6N
ATyI1fidYMdhxvhTI6/s+AluxMP9blr5BgqQuJ4z4+vNhUy9dvG50sd4Lipu
uP1ykAchfz7zJaWRAmKqDAV2XcUjfDFHr7z0ge97P7cymzIqhtwX6f+Q8yjM
3x3xfZPj6gjPb74sOc+yxGWatJXcnewpabAN/9rkbuEK7YYlXsGNwa4tB4t4
GeMjuUpNpInBzPEI8/n7YuZDkhzjfMZdeZi5QxD6iVMM2A9uGoG+OfmaO5qR
jOPJ7B8zt99sq1TP9gv6UqSK8gascjhB0U2LZeti6DNnfv95ox2fXn0jo8dH
oR9/8PAq9NFNENKO1lTD98H1bhiMxJnC+cn8kainxR5EtP+s9tGjZDwE+ok0
wlK7leygHxFjKjp2qh/66CIXjXVd6JCnfazaOjwhU5uffBveBv10M7mfg27n
Q3+dsPn335pi0Fc3Tkiab6bA50/6h0sp9tKC6HyJMaAtkUrmaAGHI5yFMLwg
I4PjcPy5ObQeQjgYnFxYmkH5VPqbplLMAm3/dXwBkkYAibaPKrD/Zml5LfkR
miNkIPzJTsYaO0uTM51cUtlDATlyWwu3np6nfXM+dOXpNjLwXP6oObMV+ugq
jUpPnBSeQXlHFIXfI2+OZrxVhU+MIACk/EWCTqfM0Iar3h5TsxMEKV9H19db
z9BuHUoh3ZmnADVi9RkL43ma34FTvzClQiBdrc/LZWSaZqvdYOG6QwhMzJlJ
aCFztAqXiKYDa4IgcfZCZbfiDJrfJK5fVqDUPUNzuSPv+6tcEqQ/jDUJ2jZD
y0/IGmS7tgFk7eYb6rk5Q2Nfi7hl5SgFzkkJnqvLnKVZ5ny1Ft4jBUImY/t1
IqHfziY6rmc/Pxb8fLSLcsH6J/3Lvf030z2gv66chtxnz15F/XVnHGVW5SIx
wHow3yP/QB992/HGWfbRNZpsrsLQXs/P9C+0wYSonjVayg/ZgrzPXTQtF/0b
Mz0rtD/qTpmVW2to2t+sipPVMeBK4YH3cb7ttJ3KijWL9RgwJ5R4Vv3aM3qE
p4TIo9RV2vH5hoClL4O07F18YoI32UBslobe+fQ+2lroVS+xRTZg/iPBkutS
D81K792V+wALDrPz8XxU7aOpxg6FNSdgQdE1HacPfwdopPbli8sDWFBCDdPU
NBmiTQkJBSqqsAFJ7mMxS9Rh2k+P/FuvfNmAqfr9PuWCEZogz0kjhyzo21My
tju/25IDTCZuRMbliIh1I047/QYnuNpNvpUXy4VouO3MLm1iB+qtVNm5ddxI
Wi+jB0zkBAtdd3GPETxSHLZMjFbgAB4dX7IzLgkDVWvqE9I3XuAcLPFSXlsY
iLCN5LgW8wDegzGKheIiYHVnXNNAGi/4Rxkv4ZhiBw91B+QcOwig7gKWLOHP
DvJS9637kEAAd79TfXcvsIGS+Sw2A1MC8Dqg2mQWwgZeWXD9fsFPANrlxps9
2dlAfYFH37ZmfnC5Y2Cv+3EC4Gu4+Db4AxGoNg1Jz2TzgfuaR8X8RwhgVGek
04NERLpbMoUWGfdr9W0x4dUqBORz4sD2ZGcyiBXZpixgyY98tRM3V5MjA7lp
K2ySIheS+LzXdjej/xoq6BH55gcXovbPl13Llww+7gjG/2WMr75sY38CNMkg
2lqjxigah4Tbs5c9TSODTPmnv7xrOZEW/vx2f28yqF7bSE3AcCLUaotJdTUy
4FIa2+BjjUE2hF5VF5Fg9Lc2iP8ctl2hu55/u6J9nwz+qY/U/0pcpUtEX/2j
5UcGHJZPM2da1+g9SSbDmoZkkC4sXjkZjkHup9Q0jjPW5xU7vHj18DxdaE/L
mwhpMgiPizeJPrRAVzfXlszBkMGRSW2v2h3z9B8nApt7pcjgZx7ZNO37LP2u
orgSfoYELomEPBCNWKJv5L6p3nWTDFLyLm8t+bRAf3pwfcaiLRkgv/U3Pq6d
pO/MaVY4QCWD/XFJl958/UHfc9QoYGyUBLrlvvd9WRyjG5LfIpfLSeCnyYhe
18ooXdZtUTk0kwyO6fFalhRM0Bujb+SUniWDbm1lpxt2v+he+ZslJgzIYP7F
t+Di/im6fvdWMR5xMvi9+8PfnyO/6YV773pyLZOAC6VMNqz/D13oCVslx2cS
8KgqCeNyHKEXbaNlSH+ggNB4snJGwVd6MXVe+vE2Rn9RqLW92ug7/dlh56ES
xvODM+bHdXutdnpQyfuHX/MoIG31+YvL7t9oD/S3C41vpQDBzWNxPCUCyAwt
6RTvFkFwapesJsFgjLboMJX94sYyzT6HW9Pt8SfUd8H8f4XuHoqHNB6y/8ME
xesH19D6uheEMzND44so22RbqZrEz9P2Sc35tMiQWHyNenlk93c2kGX/8lKO
jC6ifD50v7vO5CztrKOyMHcn9DmmWioTOnul0efvPv5V7+KUaTSPjll/hR2e
uwi8scC0kVxjXcyO3Lw8S3zYyQaWyv6eKmrnRP0YzHoH3cFXYXdlIbeQxjAn
3DnQeqdnGYfjJN5gUV7cdYKnTRDm08mLt0xVBbOhfCt95mP/O8jLmyQQjAij
f5BWYbBjog31xfwlJBH2Hh9E2dCjx+8ZpQjmx/2/8frnn3tm1M2hX9Tk9XtX
rChsJ+rHRKWnQFb9nvOAJswGyhp/x4To/mTxTx7cJ3qYegJyYI3C1ZVGyJn7
tF8MKrChHK2dKFLoBH2m4pydv1VmMeCV2xS4FzxJq5WwLBF0wwLdJmx+r8Zv
mr5Bi9P+PCyQH4otG931h1Z/0oAQ/hMLiEvrkGnVvzSju69fViixgXKMg3ft
zlnaxXaKL90MCwp/WxqKFE7Ttmi1J6tUYkHOgJGMt+w/Wld2fF2mFPRhmqse
Hne2wKC8T92yjNoAWfH6mx/cu6Bfk9a8NTwwCrIFz12RsR7ILoZsT23k2YCb
vM7iXb9VFt9mkEHsjTEzyBua9obS70L2Nk7OGNbAQD/np9ELs/chy57YZc21
hgEifaY516150HoftH8V6BgbaAfZXe+s5KbtOHQ+rz9odsO/Uhw6P+RtVnS5
eRYHxlo5zpQaQr/n1FJ7Cb8hEUnu04/UsOcBsWph4uLlBOS9Xr08KZ8HyJ1V
jlKUISDshQZtw/M8oIL36sUfO/jQegdmfZR0xv57pkWQCevMA2ZV8Ci75ZG8
B4shV2u3HWtWgf7QVU1lRe0UfpQNPJ7YvTOEnHBbPtZmDs6HUdU7C1R1+ND6
lxJebF+/Kg/KtPDg4GJFPOARy0z4fYsKXl+xX/gzwgNk2nNsjt3pR+fHmNdn
56mLKsR4yOtqps2rCdD/OTtm5f55CLZ3E8suzleQAHftDMlWaw3N8/IZFDO2
eAz9pczj2dz4SY5vkYhyhcD6iH+pkLPsjw706kBOyHmgVTMG1ycqdQsopROA
zFu7+Mh46ENlzofZux/zf/Qe8k01XYHw85Dr8XLPHGQhL/fizTU7+FF+brTw
6vxzIsprHF86TgDoO6tAlP98I5HAfvDkrqM4P4t/Vd0rswn7AnJw9UT2rjAC
UNh5e+o4nQSch4xfxqkSwQ6L5FNOy1h0/MicT9Odu0DXyod8fPXRwfkLkMM4
2/pKTCDXckesK5aF83Gm6aKyv0eg31XcpOCAHqNfz2Ths31/oudh+/eDh05z
lELuMPPZv/syZMQiYpOnBfSrRLcP9oZ1UYDpm02WG/+NsfhiOfWU2nQvQ99x
9xbFjI4DkLeNdra68MDlzRTK6vIqyWBh64WGWfCRxTe7Ucpw5n//PiY/4rJ/
0/8Gtt+uxHziCIPcxiauyqHD6G9de8lx4kIBfbu1AA6zSAaY39TOJlUZ2taO
GUpHEAXQNR42RuZ9YPHVSggSFt3Cod/WCOmMNN4FWSdi7/Xb/Yz+iPC1GMrq
FO0IL015zx8y6HERDJ7MJyPEIw9+WFEFwfmc6ccnxKSBjczPCxbEedr3tr3a
c/pSYDCu66/0ecb4NfK+a0w8EVHb8g3bnsUJ4q88nRPJEQdRJ9KGdrtwgw2v
/RyUKsnIyR36463lfEDXCoeVsSEjuy1VbrhI8oNmu4V4K911YOd0IqK8hdG/
lWgBbLp/6eXnZR+kCQmAQ/qb0rTNpIHRnu/768QZz8e5L7gG0Q1gVY3qyBWH
A8lGGi5iD8hoPdnj97LpTydILD7SEc/Nnb9m8SiPJfSWSMdAHi+Pu2Ujjkf/
P3d+ooGPrQ36SAeKNuYcCYasfy5kb4k85ALtT595e/hRpnDsCHCJhP7SmfeO
vZZ34fje3d/Q+5wp5B6qymoKDubdPV2XVWeQAfmKROiO96ch28sdybTaC+sH
tK31RWfvQRap8Ei+fBryP9FrImQDyC3BRXdSxchgfPr6oLItBplJr+hyHMEB
vJfhy1uJJGTLUGd7wyNeMPhJTEtNh4Q0Gf9tS1jmBRoOpOwaIxwI3/z9SpcA
BtQSkpW9W3CgKfdtG/8RDDhIl3q5zpwLrNuSJ6qfhgHXVz4/E1fnAR+c5z35
xTCgYdWIvOkaHjgk3VOrO4cB7zLtm79SieAch6dU6w4MsCprDg49TgZi9QZ/
3CQw4I97r3ES4Tst0MBIg7BKBN82Wo3mZXGg//9j1jPMRipuKBHmQplWZ9kd
fZILLKfM6mxO5QbOpwa6/7jwgUDhvXhR3kq6U100SdmNBCzDCp5ppuAQwZAE
mzppbnA/Nyjq8xYconL+qn2pAzdYON3oQu4SAg0FmdcoRZzo/MY+xbBUO18s
ynvmlQ+RXkDWqB3gr+NkQ3l3QkJdkDn0LYZVfypRO4wFCiXpZtc05mhsPXTe
39qM/lNkaMWZ9fO0S1GX1caDsOCojf2GI8vztNVdBq7fyrDo+lv22+199xHm
OVL3Jm70ToSM393CSTAnoOPf8oWbPna5cH6+raTZUOQk5AkfnEzXTlg/4ocN
a1q+DtkbS71OOA7ZDVtstmE3zD8MWjQg16dBvl3QcljxLOQSB8u0G0aQ20if