-
Notifications
You must be signed in to change notification settings - Fork 10
/
Exercise27.1.nb
2443 lines (2383 loc) · 123 KB
/
Exercise27.1.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 0, 0]
NotebookDataLength[ 125572, 2442]
NotebookOptionsPosition[ 123005, 2345]
NotebookOutlinePosition[ 123358, 2361]
CellTagsIndexPosition[ 123315, 2358]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Some setting", "Chapter",
CellChangeTimes->{{3.7005852421286783`*^9, 3.70058525627621*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"Bayes", "'"}], " ", "theorem"}], "\[LineSeparator]",
RowBox[{
RowBox[{"P",
RowBox[{"(",
RowBox[{"s", "|", "m"}], ")"}]}], "=", " ",
FractionBox[
RowBox[{"P",
RowBox[{"(",
RowBox[{"m", "|", "s"}], ")"}], "P",
RowBox[{"(", "s", ")"}]}],
RowBox[{"P",
RowBox[{"(", "m", ")"}]}]]}]}], "Subsubsection",
CellChangeTimes->{{3.7004168724935293`*^9, 3.700416914014893*^9}, {
3.700809652822957*^9, 3.7008096692412987`*^9}}],
Cell[CellGroupData[{
Cell["", "Subsection",
CellChangeTimes->{{3.700809737295121*^9, 3.7008097399228067`*^9}}],
Cell[CellGroupData[{
Cell[BoxData["Posterior"], "Subsubsection",
CellChangeTimes->{{3.7004168724935293`*^9, 3.700416914014893*^9}, {
3.700809652822957*^9, 3.700809689056205*^9}}],
Cell[BoxData[
RowBox[{
FractionBox["1",
FractionBox[
RowBox[{"Gamma", "[", "r", "]"}],
RowBox[{"r", "!"}]]],
RowBox[{"Exp", "[",
RowBox[{"-", "\[Lambda]"}], "]"}],
FractionBox[
SuperscriptBox["\[Lambda]", "r"],
RowBox[{"r", "!"}]],
FractionBox["1", "\[Lambda]"]}]], "Input",
CellChangeTimes->{{3.7004342884149513`*^9, 3.7004343216073017`*^9}, {
3.700434414518917*^9, 3.7004344218083963`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"post", "=",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-", "\[Lambda]"}]], " ",
SuperscriptBox["\[Lambda]",
RowBox[{
RowBox[{"-", "1"}], "+", "r"}]]}],
RowBox[{"Gamma", "[", "r", "]"}]]}]], "Input",
CellChangeTimes->{{3.700434442856283*^9, 3.7004344533668327`*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-", "\[Lambda]"}]], " ",
SuperscriptBox["\[Lambda]",
RowBox[{
RowBox[{"-", "1"}], "+", "r"}]]}],
RowBox[{"Gamma", "[", "r", "]"}]]], "Output",
CellChangeTimes->{3.700434453760873*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"],
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"-", "\[Lambda]"}], "]"}],
FractionBox[
SuperscriptBox["\[Lambda]", "r"],
RowBox[{"r", "!"}]],
FractionBox["1", "\[Lambda]"],
RowBox[{"\[DifferentialD]", "\[Lambda]"}]}]}]], "Input",
CellChangeTimes->{{3.70043436099527*^9, 3.700434374428095*^9}}],
Cell[BoxData[
RowBox[{"ConditionalExpression", "[",
RowBox[{
FractionBox[
RowBox[{"Gamma", "[", "r", "]"}],
RowBox[{"r", "!"}]], ",",
RowBox[{
RowBox[{"Re", "[", "r", "]"}], ">", "0"}]}], "]"}]], "Output",
CellChangeTimes->{3.700434376977839*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-", "\[Lambda]"}]], " ",
SuperscriptBox["\[Lambda]",
RowBox[{
RowBox[{"-", "1"}], "+", "r"}]]}],
RowBox[{"Gamma", "[", "r", "]"}]], ",", "\[Lambda]"}], "]"}],
"\[Equal]", "0"}], ",", "\[Lambda]"}], "]"}]], "Input",
CellChangeTimes->{{3.700438490744236*^9, 3.700438509391041*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{"-", "1"}], "+", "r"}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.700438499041547*^9, 3.700438509820201*^9}}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-", "\[Lambda]"}]], " ",
SuperscriptBox["\[Lambda]",
RowBox[{
RowBox[{"-", "1"}], "+", "r"}]]}],
RowBox[{"Gamma", "[", "r", "]"}]], "/.",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{"-", "1"}], "+", "r"}]}], "}"}]}], "//", "Simplify"}]], "Input",\
CellChangeTimes->{{3.700438529476728*^9, 3.7004385358934717`*^9}}]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Laplace approximation", "Chapter",
CellChangeTimes->{{3.7005852421286783`*^9, 3.70058525627621*^9}, {
3.700809931742362*^9, 3.7008099367484694`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Prefactor", ",", " ", "constant"}]], "Subsubsection",
CellChangeTimes->{{3.7004168724935293`*^9, 3.700416914014893*^9}, {
3.700809652822957*^9, 3.700809689056205*^9}, {3.700809765559092*^9,
3.700809766117158*^9}, {3.700809866108429*^9, 3.700809873223444*^9}}],
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"1", "-", "r"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "r"}], ")"}],
RowBox[{
RowBox[{"-", "1"}], "+", "r"}]]}],
RowBox[{
RowBox[{"(",
RowBox[{"r", "-", "1"}], ")"}], "!"}]], "//", "Simplify"}]], "Input",
CellChangeTimes->{{3.700439511805352*^9, 3.700439521960298*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Log", " ", "Posterior"}]], "Subsubsection",
CellChangeTimes->{{3.7004168724935293`*^9, 3.700416914014893*^9}, {
3.700809652822957*^9, 3.700809689056205*^9}, {3.700809765559092*^9,
3.700809766117158*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"L", "=",
RowBox[{"Log", "[",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-", "\[Lambda]"}]], " ",
SuperscriptBox["\[Lambda]",
RowBox[{
RowBox[{"-", "1"}], "+", "r"}]]}],
RowBox[{"Gamma", "[", "r", "]"}]], "]"}]}]], "Input",
CellChangeTimes->{{3.7004397353621264`*^9, 3.700439742794262*^9}, {
3.70043998336804*^9, 3.70043998807486*^9}, 3.700440753868532*^9}],
Cell[BoxData[
RowBox[{"Log", "[",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-", "\[Lambda]"}]], " ",
SuperscriptBox["\[Lambda]",
RowBox[{
RowBox[{"-", "1"}], "+", "r"}]]}],
RowBox[{"Gamma", "[", "r", "]"}]], "]"}]], "Output",
CellChangeTimes->{3.7004397437074966`*^9, 3.7004399885899343`*^9,
3.700440754369371*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Exponential", " ", "factor"}]], "Subsubsection",
CellChangeTimes->{{3.7004168724935293`*^9, 3.700416914014893*^9}, {
3.700809652822957*^9, 3.700809689056205*^9}, {3.700809765559092*^9,
3.700809766117158*^9}, {3.700809881935588*^9, 3.7008098903091097`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"D", "[",
RowBox[{"L", ",", "\[Lambda]"}], "]"}], ",", "\[Lambda]"}], "]"}], "//",
"Simplify"}]], "Input",
CellChangeTimes->{{3.7004407660038643`*^9, 3.7004407845887203`*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"1", "-", "r"}],
SuperscriptBox["\[Lambda]", "2"]]], "Output",
CellChangeTimes->{{3.7004407797286873`*^9, 3.700440784911586*^9}}]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Plot of posterior and its Laplace approximation. ", "Chapter",
CellChangeTimes->{{3.7005852421286783`*^9, 3.70058525627621*^9},
3.700809944742084*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"c", "=",
FractionBox["1",
RowBox[{"r", "-", "1"}]]}], ";",
RowBox[{"r", "=", "10"}], ";",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"-", "\[Lambda]"}], "]"}],
FractionBox[
SuperscriptBox["\[Lambda]", "r"],
RowBox[{"r", "!"}]],
FractionBox["1", "\[Lambda]"], "r"}], ",",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"1", "-", "r"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "r"}], ")"}],
RowBox[{
RowBox[{"-", "1"}], "+", "r"}]]}],
RowBox[{
RowBox[{"(",
RowBox[{"r", "-", "1"}], ")"}], "!"}]],
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
FractionBox["c", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Lambda]", "-",
RowBox[{"(",
RowBox[{"r", "-", "1"}], ")"}]}], ")"}], "2"]}], "]"}]}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "30"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.7004406154544487`*^9, 3.7004406816860437`*^9}, {
3.700440853589733*^9, 3.700440915853568*^9}, 3.7004410008603773`*^9, {
3.700444183039222*^9, 3.700444183186203*^9}, {3.700444275001444*^9,
3.700444275223937*^9}, {3.7005935274145937`*^9, 3.700593528525139*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl3k8Ve8TxyW7kL1EuJZEZb/We2a0WCNEpbJTKIXs1BelKCSEJCEkpKgo
WW5IWVJ2CSFEJEv28Lu/f855vV+vM/PMnJnnM88j7nDR3Jmejo6ukfb4/3uh
v75W8lYWwdMRl//6rJzy8gHF8zrdYUB50/o4fnlJ07nsp+W27jjglh6KFK2I
0Lo/X92wuTsTCqynI0v1t2mT4xXCl7uKwUZTUyTj7GNtUytJ90WlV6A1kTnI
X07VdhPdZjkfXQrdehYtR850aF8bYafMjb2B2ZAzP5I3xrQf5m9Izhwoh49v
b882bV/VLvOc2/InrRJcDDTc2ZLZKb/uXwpcCKbC33adrOBMIcriFfcLPnnv
IIz8QvhUtAyFweGsw9+uajggZF+sValK4T5kf+wSYy00b0rvf5+4n7JT5pTh
rNJ7KDE/nrPcbEKRY7ckPO3qIH2l6+7F9hMU9SkTpenoD3Cicbzi3jVHyqEW
femLbz9Cjt95CWu6CxTzl/uFpsbqodXLbtfFJF+KXZI2p7tAIyRbaEe+KA6h
uAeS6ScPNAHX8OVSl4MRlEBrhQU3z08w84w7VeH0HUoEyv4aT2sG4ZvurjeC
kil3JST7XZo+g6fkI9kVlgyK2Wau8bngL2A7UTh9wO0xpfsvu+ML3hbY1mPH
I9PyjGIzytLnldcCpCQcXnF4RRnuYjyupNMKCzrku0x+5ZRz9fQtM12t0Hl9
yXNPbTVltmzDsOhCG9xhHboufOMjxb/gX60HYzuMDK2+N2r8TNl4sEwopLZD
u1r+hJVXO+X67YXXf5Q6QL2llMK/o4eyJXRO6Vl9B4hmn9H7FjVAifeaLrhg
1wk99/Zt6+4epgg5/Zbet9gJUVVaxRnbflHSLX+l/47ughv8EuQS7WmKtN5P
oaeS3ZD3r2LpgeBfylP14YTzb7uhIlozsqtsiaIiO8i5x/wrMFpEG1/QX6eU
7eiPmBj7CpdrAkJiL9ETyPGNPv+/Hgiuj1T0tGciPqx3BbsJfAMO/9n2IiZ2
wmS6fWH302+w6UWgfh5sJdoHWzzGD/SC1tS2k24+vMTJtuZfuT294OZe+YtC
FiQGaxudXDz7YMiP81j/3R2ES8nH/l0s/fDYzGde0lKMmHr8/sTPtH4wxMVn
q4ckCO971a05qt9hbtN3DaZ8aWL1ZtXhM03fYbvpo3GjeFlCh7D5Eac4AD50
o/JnueQJhtLT6bPBA3CaLm61dZsS8UH+lLX5xwEYjzIf5WdWJW7mWgkV8w4C
U9SNPzet1QkT8RNd3LaD8M/c6aKpjDbBnXIswTNvEKhbmJUtNJFo57E0a5kf
hHPFxc+u5+4nkm8d5VTUGYKPfml7ss4cIk4xmDfGRg2B97UP3Qcu6xM7L5tG
THcNweAYx52380YE3Y8x88e7f4Aox5Bt+nZTYkg/VMQm6AfEWDVL9V4xJ2oL
t4/xffoBr91fPlVRsiSy+YqLG3cOg80hqa5FrRPE9UDDy2Eew2D93OGvTPYp
wmVgSE+jehg419zcovxsCUPdIJ5p3hFIH5Id/dpvT+wp4O3LcR4BPoNvGuE6
TgQnT8Fj69IREBf4YjQzfoaY9jvoxcc6Ctmew57v+l2J1r5e7caTo2AblKIv
tMudeHHAhzmsYBQiJc+HWDh7EAlPOFrV10fBILvFr8PFi/Dlykn9c+QnXN+t
+Dww05s44UOczcn4CWorXB3rAn6E5rdOReu5nzDNIlzr0RhACOtc/Md7aAwu
Hj7zTe19MLGew/yhIXEMRKPbVLYwhhADW9LvhI6NwXCmpZjwl1DinZf6aXXN
cZC6TfeK+8NVIrP7i/SfW+NAsVi54vI7nLhGuM5k941DqYUnZ7tuBHEma1P5
aflfYCjlGb6/6yahz5ZynTf0F2B2P/l7ZjQh66Fk1tD6C9JeGeSzHY8ltnQ2
7AiVnAATC13r+vU7xJSW46ia7wRw9sUck2qMJz5nrD6f+jBBqw+rS3nlXeI5
c0JQ9vZJ6MiyZDHvTSLi3Pfonj43CU5Hd3d+kU4hjmlYf6vn/A11m3+Gbzry
kFB/OJ8dYvcbcu47aj3dnkEIMcZ4qBX/hnzNJ0sLuZnEPzdpranNUzCkJb5V
53gW0felkjHbcgqCRvaw3JDOISrJx7+cejwFmWn3XvVtyyXSU/+k8CxPwetn
/cLeCnmEk4uYQkjqH6junwnM6i4kdJtfr5Cn/sCzLRa1vKXPCb6U3KEF0WlI
b96713Z7McH46a9eq/40HLXNN0pIeEEsbODTp57TsCs9uIMk+4r4qRTNE5ky
DeuVAd9vfishup2/+jnVTEP2I4fT1nmviTeNnvt38M8AmcLV1ptTTuStVzxe
oMzA5ne34xi6K4kURTaO1jMzUKByrKAukUrccjrm9fT2DFwc92Upbn9HBCdl
dkW8ngEBpavNtdI1hHvDlLbT4AyUKH0rZI2pJWzWNDOBbRbo//r132WvI9Cx
7fzCqVkQkv6rzmVSTygmira2XJsFxwdJPdb8jQSp/pza06ezINwrpFe62EQw
yDPQO23MgufUXfmzkV+IeXvTsyAzBwpCEaekH7cQowmpTUJmc8ARsmNIrqOV
+LCiktSSOQfmy4F23M4dhJuURO/ixzkw8fksaPe8k+A05Rbf+WcOvFnTjRK2
dBPHsn/nuWn9BcdPPhVBKz3Eyudvf2Lt/0Je18EdWdG9xIOVepXSG3/hm9Nx
t1SVfmL4SE7l5va/4PvnlnD8wAAREZiwWXblL4jk3nq0t32QkMsO0zcVm4eq
UaWmo21DhNeKTWvq+XlIL493Y1kYJgSkjAVr4ubBRu5DZKjQKPHmiNbp8dfz
EJKv/vrU4Z8EXbbgqCrjAlCv9bzZ0zNOZH1mlDsttwCSw43VMmoThN7K3MUw
swWwtxiyi300ScQc+bLc/GABJoQyFdsK/hBKgZXEfM0CpFupjp7NniY6sgqu
7vi1APlX9S9RLs8QwisRHC7kRagsnWDO0p8jqJJ+5jGnF2Ek52JBu/ZfwvGI
c9LLsEXIC9Tq2qE1T+Rl6Yhv+rwIcuN7nfcfXyTUj6yopJxdgrqCN7eKBP8R
vQFjAdToJSge9Vk0OLNG/JfVWTn6YgmSHumSu96tE3XLxfrKdMsgn82e8eIL
HbhJZkRbSS8Dt4L5DZH4TcBx5Hbrf4eXgWuTZW/raXqwyDp3uil5Gahkta1r
TAyw1GyVMVu5DPebSU4/fjLA/WW90W0jy3CjnSyw9IURhkwkPZwVV4C6/7Ry
ajkzeC73Xl2vX4GUrJimNLotwCfZ+FFyegUKdMhBVbs54LXJGw4jgVUQuBZa
s8WaE+iy7iYlOaxCau6twgzPrZDVfLW3ImIV4qRCfax3cIPesqf4cOEqPJH6
96GigRtiTEzyFVZXYYVHDDZp8YJSgPb0MfF/cPB0X4LCP17oeCSrelnvH3wR
Fe9JreED4WWmqvr4f1DfVFfU6CwAeY+qWh32rEFzfUbZ5n/b4a+QzbV6szWA
izyBT6aEAOL+qSr4rYF9yLRF7NgOaA/RuLf2bg2it1yKaZwVgXXrF7bJx9ch
O2hWYVBJHPQ7zLg3gtehetQ2+H6jOMQfnq52zlyHN4fD8nNdSCCjtVda+fc6
bPrPuk/ouQSYbXs8+SlsA1RNXHzZ/KQh9fahNJXcDRjg2XqbUXUXjDINH7n/
aQNq8oAktLQLKgJjrVS20OGN5Rae5ejdYO76qXzTcTp8zrbkF7q6BxazUvlf
udLhg0yZqxojeyF14NwFl2A6jHOuZh1t3wc/j7OJfc6gw9pVRnZ9RwUI1tW7
mjpJh8ffFdsoBimBeJhA75ENOmQWo14OYlWGuooRlc08m5A39Fmo2n1l4Fa9
NuqqtgnnY9YYD9arQI7EOwO1sE24/HGfwUUzNTCyjc38lbAJnR68rWJeU4Pp
FNvVB483Yd3dzpL4AnXQ4lkvYPi0CUPa5rrqBTXhC53W1lZBenR15eG9I0YB
H20213BZetSMHs/P+U0BIf+v79Qp9LjJ68e6ZhUBzn/8Lj10oMeF3OltfOoI
K30vO88/pcc7nRMZtxj3g8TbfQ+YD2zG2ah6p59CurDVy+mN6fHNeO0eexFz
iS78k0npuHduM/Iu6z8ItdCDzkRGzj0Jm7GhYsv8q/v6cNOr94rpyGYMWne+
HWNhBH67ee7fW96Me4z5FcbZD4PTgF7pEAcDivMs1TJ9OAwUkxd/vMkMyLik
/ouqbwLTu2/a3bvBgGZSDctdFabQN1AVPHSfAbmXZ8B0txk0JM0nyz1nQMUb
oYyDiWaQxWjfUtFN+/61pIKLvzkcH1TbP7SbEftW2ePaLC2gMnlEQq6JEYVm
GwNdQ05A/pEd6D3AiGUaWyRqt1pBMpPZ6Yq/jPi1+nxP3iMr8PIuTzgiwoQu
ogrCmi0nQco0ntH7AhO67WMwUzhsDTzM9eIVYUyYxvCu5O2MNaxXrFOYkpiw
VPpRJ2eKDXTLufkmVzGheNrgUdk5W4hi1vlZvpUZJyeexTA42UNApe9mJilm
PFvGFm1ebQ9nfApEj2gwYxhdXjSJ5ADwQ/DEoD0zHlFdLTo+6gCzlVMfGV8w
o0SVllFIqBNY+abmmViyYD0jl5sgkwuI7X5EpriwYNEGXRPZ1wVGvz2plgti
QSfTyJSeny7gpVPaw5LBgv5K0YlvP7vCzS2tbDWTLNg9I26nVnwOyjOZz6ld
Y8WjU+7JxbUXIcySc1EqiRX3XY6fgV0eoM/Cf5UvjxUzWdOj6Nw9oMOddH/m
Myt6zrO48K96wJQ6pTF/BxsydC2+eSXuBaKfveTEXrDhs1NGluwp3jAaGlDK
WceGJcyyXzV/e9PmbsiBtW425Ly0lnxSxwfUU6JP9ayz4ab7ets8Jn3A1Dn3
VoIhO/qF1ucImvhB2GrfBMsQO6r3CET6YCCM7DIomNnKgTaHY+QGvUNg1rJk
1UeKA2OeHMqOfBECdNckjFY0OJDB85lQx2wICA+sjdM7cuCfAEWX45dCwSK5
eBffKw4sMjXZKhQcBtUswo/IVpx44NHv/bxPr8EXcuRsmTsnXgxnM5RfuAb9
Tgs6EMaJESItAwsQDsvULwN6+Zxo8OPn1Zsd4aAQEL7Tao0T5ZITLnxmuQFp
41P3gjK40MDo/VvJ2EgoEDw9vvGKCxN4QzbvHo6EskP16tcauJBUC5n96jeh
I+NRV9QcF1425/1tM3wTmPYWsH0mbcVXPhP7yw5EATFipz/gvRVzVlgGGSVv
Q4FlQw39dm58Wlyj0fgqDno3Cpj4JbixK8XhEPuvOODIu22way83bt7+rzFj
ZzxcWLf4bKTDjRtKG3StEfGg+Ph7T4IrN+7VvVOsbZ8AJUt/Z6TLuPHEaM8R
CVIiUO+Lihmd4kHe1CkxyR/3oG3QOzj+AS/6WOqky8tmwDQr+i3l8GJIFqpM
GGUApxK7l/VzXryim6X53j0D9MMyzu6q4UX7mh0/24oyoJLUbP52jBeVWMUe
HtPKhFzHXbt/KPPhe+PPa3VHH0HwyNcOpQY+bM8o2vEzORukxgn51gV+PH/u
0BXXs3lwzqrbpD5sGyoz3+WjVBVD78E7Lhd+CGGHLve+zk+l8FJLctu7SSFU
5F188WCgFG4plX7gXRDCK4YuSifnSkFTrE/6DcsOrHq5M7Vo22tIXpUZ2bxv
B4q7/6Z2OrwGi2Kq/T3/HZjx7WLp97+voUl0+mQthzDGHMo6JcpVBlkCV9kE
BYXxRnK31mGxMgjiEChzFRPG8hsHfd0Uy0B2VWs7l7IwUoaTYgOPlkFE540u
qxPCyHgr4NpoYhkcjBa1+JMpjHdNvh/oEnoLb1dMjIXURZD1a4+Kt0A5kOXv
9qvtF0E49undiHQ5FDt+u2h5WAS/MVQk7Fcrh9yms3GxdiKo7ZX9qOJ4OSSm
hXQxRYqg4Pm8uyVJ5eCxv9h+7qsIek/t3pXGWwGSN/l9m4J24p0A5oaslQp4
WHmK+Vf4TrS6b6dtxlIJQnMZycyxO5HiqrJvlL8SuE/ve7s/ayfK5jkY1CtU
wvpePbo3TTuxXOtqsJdzJXxt8b+ZLSKKavlJBfsbKiFme2/alSpRTLXM+usb
WgULjWxjUx9F0WyqfcjuVhXYXNFQtG0VxQuhk/0qd6tg74/EGhgRxUKtiqGU
3Co40ynjHcIohil1DmY2zVXAlP4jWUdODA88C7jXz0YFzeXAimV5MfxGu4eQ
uKhwwZxnqEhFDDPLqkVO8VKhk0FHjkSIoYfWm5m8HVTIcU2roDcTw//u2OrV
ylFBV9lqqMZXDJPrPqr0GlAhMGqaKThIDNk/MCWdN6ZC4cgNOZUQMRygrpTM
mFJBILnEOytSDJ/mS+/tOU6F0X+8zOGpYnhHNuaHhDMVhI7ly1EyxNB4okvi
pAsVTJ7tN53PFkOO95d2hp+jQom95z3nZ2L4TD1z/xtPKlyva5bTrRZDhcsN
RimXqVAmesZ0vU4Md8zPO/iGUGHKf827pFEMX517S9a7SoVjcnsqpTvEMOhn
n8CHCCpIx0aaMo+J4cr+hhaIp0Kd1UGfjxzi6D+uoCWQQ4Ums1dsozziqH7e
Kuh8LhVaDaTTN28Tx8rPxsmv8qjQr8FCu3SIo5rEgpfYMyrMb28Se0UWxwq/
seUTpVRY4aaUtGqJo6Xl4Qu6b6hAx1ZoNI3iSPVk7pJ+S4UtK7d95YzEsXuH
eTy1kgqSPUebMmzFMUC4XOTEeyrIttbaVzmJYwdvWkpfHRUUGlQXe13Fke2C
jOyxj1TQLhMkbfMWx8FjpnFijVTYXxxRqhogjrcWyy55NVFBP2/58NEr4ij5
6WxA6ScqHE355hcTIY5b4tQZdnyhwom4wxwF0eJ4ed9cnEYLFWxuVmTWx4lj
H5OIlVErFdwCH35ieCCOXMsrD/XbqeDhtdWRlCmOGrvY5FQ6qODrFroEj2n5
OhP0vJ1UCDvpKBFUJI6g2p6X10WFCPP218kl4mi9duSGYzcVYgwPmZS8Fcex
Kck6rq9USNhf8qONKo5rt4Tcn9E4RXNXwMx7cRxx5grb30OFdKVkTq5GcRSd
XWKrp3GOLGvWni/iaGr7g+PANyoUkAI1DDvEUcRtJvY5jYuEJprP9tD8KZ5O
4e6l9QvPaafw7+LYz3FJ4QyNy9k+LWcOi2O53X2rQhpX0xO3qePiqHnBVPgX
jT+uFEr2T4kjp7zEf9v7qNA8K1q2OieOtlJlEdo0bv8Ve2T7sjjuUmyBozTu
Gdo0Ql4Xx3NOGvnWNB7o8Qq02ExCj67ullM0Hm39weXFQsKR4LwyYxpPNlhk
3+Yg4fx8xXllGs9Wv9d8ykNC2zNqf7bQeKmM/KVBkITO+kcMemjxrBc/dh4T
JmETmofdpzFD/rZVRhIJ62bTM0xpzPYoMlZiFwnr254VLtPy33p/RUpnDwl9
N5iKEmksEH/urY0iCR3Z9z/fRWPhW72mwWQSdvdwvSyg/U/SVePRe1okfOWl
VCtFY5mgyqBSJCH7pytjcbR67Lskz91xiIRDBb0yf2n1UzmXnjNrSMLNXrrR
BjSGU2Etey1JmKdwdegLrf49pyO9lU+S8PXyn2omGnvbxApq2NLyuf3aQpHW
L3n2adYHXUnIGDCX79RGhUOO2XSGF0io+sgq1J3WbwNOBY+OXCLho3l6mXO0
fuR3KRs/eZmEOw+UsB76TIXnru+i7MJISEwqWYo3U8Hw3Ef5MzdIuP6xK26W
1u8hFzp9PO+QUJBDhsm7gQoT3rObIrJJqH+Q+e1cLU0vfJezovNI6Od4Jdy/
hgpi/nT68c9IGB3x+vrsO5o+BHHGpL0hoS6pzbSOth/fhcoKvfpEq9+G7Ppv
2n4+fVWxoqyVhE69A/4iJVRYuKZuR+0i4fcUL6/9L6mwJ0I3p3GQhGsH9jG7
P6dCUoyD0tA8CbW5+8oP0fRDKda14+cKCd/lTCmT/q8vdzz8f2/QWFfC5+8j
KtDfvVK5xCqB/J0BwYEPqeB+P8WQa6cE1nyfKORIpMKB3FYHbV0J1O4K1rUK
penPk6+M+40k0NwmYznxChX88wdy9UwlcH3TR/7GIJr+Fk5NmZ+UQOcbssUC
vlTY/ootyPWCBL6SvZeq7UaFP+/2xycmSmCWFI9NE02fQ+iJuEP3JfCa6asz
z2j6zXNA487fhxKo3xj95KYhrf618rfNn0jgzeIqOtmDtPXqhG9xlksg64DD
ry1qNH1rXAi7PiiBJz8/dzxHmxc87Xlevnsk8a1fIV98RRU84svxlFKURJ4i
W7Gbr6pAxTLDo11VEnWDGfsvPa2CY51JF5RAElNCAl+LPqiClO5rblNmkvgy
b2miJ6gKJPpsHM74SSKzU/vZP2Sa/SiP+bFqScyzfEHPk1UJSe9/vnP7IIlV
YTOBL+5VwkpWueJ/TZJo3XeBUf92JVAdz3DndkqieuTDZ4aBlXB48M2X5V+S
KCpf+/v1kUpw6rU78oBXCo85JD43XqqAhNbCw8NOUqj4Y9/Nf1gBc5WGel7M
0shlKnf88qu3oG8ZpzFC3oXbPCfuqUS/BsF0HYeX/8mgQ/9PPcHllyBiemn6
evVu5KwbMRK8WQSvK14GPf8ji+KzHyveizyFT9+tKWTyHhzk0zn6zPIx+FUJ
/OM5uxcjateROy8TbhY8Dq48txftGs0lFO5lQto99TVXj714Ifw1/8mITKi7
dHKdGrAX8znPS38+kwl8Mml0F6P2YrkeXRdFMhOex0oxNhbtxfM7v5rsyciA
MXsVzqv/9uJEibLV/kfpcILBXGzuzj6c/BKm+ur2AyBiy7kZkvahSz2HyqLH
A5AQ3rWZP3Uf3uZe/m1m/gCmlP+NkHP2IcWxw8uM/wFcc8zJDyzbh/qHptv9
UlPhWfUKmf7HPhQ+4+Z48tl9YAp9ZMytIo+xrA1R5J/34MXa30D5Tnl8mWyV
KfQgEWI+Hv043iOP0xT3d2PhieAWX8yf9V0ea4auqzdcSATSbo/n28bl0eCn
IusHTIQ4i4mRTf/kUcqgUe7xyF143eEh82urArpfNRJZVroLiXvOxpeTFfBx
BX/Dw2/xwBAnULZdQwFvPmbVrauLB6/F9wO+Wgp4Xz5jaL0oHkyqJfcpogLu
dUi2zKGd1xlPDH3MNlDAeKExlk/kePC+ar0ec1oBTcrHGz0S48C856irfZgC
iuwatG1wuAO7uTz0Z64pYOm1okd3TO4A3cGoXaE3FNCAqa3ovOYdKHxaO5Ie
pYBZdw8vWfPcAdZQVYeBRAV8cza8XK4mFqi7BE/Z5itgLL9srItMLOz16Tls
3a6ALZRVbX76GGDIW5D73amAyl3Htjr2R0NPPw/75a8K+Dn2okxHWTRE6BvV
p/Yr4CWLunIp72gY3lF+qHdMAfsHR277jEVBSvUD4tSaAmpzlr563XULWLba
K1hJKyKO8xvyfYmEJwb6An0yimh4d0ejQVEkGF6V/2cnp4hGlyf5HsZFQvTC
2gcXBUU8Jm6cnmsZCTx9Kbb+mop4ZLJ2WKUvAoTz2mOSTBRRcgmeCs/eAIWD
+r87fBUxsIPt8xWl69ByWb7NKkAR368M8l0RvA5epQJv+oIUUU30klDKv3B4
JTtybSREEe2eRzDKfAgHTe4w4fmbirgoVFKdbB0OB/vfGvE9VMSJ4fJ9b25f
Ayt/+TzzD7R46FnMzFmugm/LViK/XhE3jliFms2GQZzsbMvmJkXkvvJ+79ne
MGjofbn88osihqy5FnU8DwNtHU0DwR5FJNKWHSpOhoEY26Gxb5OKeIBhLPRx
cSj8vH9S2plHCZPw5x8XrxBgmNcqq+BTQh4VxYd8tiEgZiJiIiCohEdJU9Ht
RiFwgm7A58MOJXRQdRiOlQqBBifn97ullDB0hUti7sV/ULjXw2lKTQk5K+i+
LkZdAZ+q8Ew/ayXcMXV5PvVUMKz8bJuit1PC9IBV9jFyMIRsJWnRRgb6FXI2
W/MEw037yrass0q4hSn32cf6IEjfvMjQ6qmEN77JuyZpBkGTnsvZPdeV0Kjz
KNe8RCCQvhjuGSxUwozY4OP3+PwhdynZ/3yREm769KR84q8f7BX/Wbv4Qgm3
fppvd+zwA3Wvq9acb2j2efXXaxP9wJivPEarRgm1v1o0HdjhB/4n9s7c7VLC
PTcMdm6X84XmAa4SQzplDHatsdjp7A3NMiee59Er42MTR+NCI2/47JGex8ao
jDA5vPuUkjd8oVN82MCqjE0uWSLsdN7QKmYeYcirjFltEv3U1EvQZZdw0lBa
GY3X533OffOCgYFtGwaHlfH7gPab9fOeMCBjv/zERBmHeC+tzB/zhEGPJ3Os
ZsroZp9XyaTjCUN0mmP1lsoYJaft6s3vCcNip1oMbJXxOIgFXa7ygHG7B48M
vJSR8Zm+t8I2D5gdENc3SFbGo+dkc7+WuEPFXlWDBynK+MC4P+fGHXeICNQ3
nElVxmPP2OvtzrvDTr6Lh+9lKGNcsunHeJI7GOqVm47nKSOLedbvxdjzkPn0
mFVkhTKWrNqKxvucA/PAW271Q8roVZJ6f+q0K4h8SDsnMqKMkb+uJhdqu8IY
b/F5z5/K6Gf890qCsCtcedp9YfukMm7vFXVr6XWBvAGpS67ztHzy3p5nt3UB
ej1qECuLCtKnfpaxcTsLRbzzUQZ7VZB7u8cZn/vOMCzvo/tFXgWrVfiVD192
hm2H5zeOKangL9vjAoa2zhBybd7LSU0FDfp1z5VJOIPp/PyJ/3RU0Ibb3sGl
0AmmOxckX1mq4NX5O89aGxxBPmWpXOyKCvJ/mmgu3ukADiX+vo9DVHDHdG+p
IKMDJLYuye+7qoIOvyWt0ybsYZ1tOVMrQgX1zxhob31jD81ByxHH4lQw1P7B
bKilPVywXrGIylHBTP+JP4EJdvBU7N/kYrMKyu8q8PI8agOnT/taHG1Rwbqq
tbAVWRvYkjz9trBNBQcUeXaU0NuAG9fITeduFWS5QlqrKbYG6fVPMm2DKmiu
4HpEhd8a0r49dCr8S4tvH7cA+ccpiE080OskpIqjbodSMNMKoLXiAFVYFTNm
2OOe/WcFUxzq+TtEVfGcsoiJobUVHA7fE9gqoYpXrgfr02+3AlZv/m24VxVP
3u2q8407AWFmP4/uQFXM88xI0I0+Dt5bbjW2OKtidMnFKYUMS4gS9JqwdVHF
7JvROTqhlpBFsmKfclPFfc9EPlyxt4R29V1GbB6quIvxjs1lkiWoONc07A9U
xYWVhKrwHAuYr1itfxFD40TZ73ElR8H34vmPd0tVUcp7/fuueTOICTw6JlFG
i/9hjP7pHjPICddkKS5XxT1P6fxKqsyg8z6LfvM7VWy4XmP37aYZkD9mfWBq
UkWHE9U8QyQzWBTrq/MbUMW2tB90b6xMwb/V+L0VKxl7GngS7lQbA/vavvhy
djLeP2ZOV5BsDGm7ttqLcpLx7M0/xusXjOF9cOu/YR4yrny76m8gbAw8u46r
eAiTkX4t46ZXwGEoCLJ7dF2ejP9Up5LaKUYwIHkp9IUlGfnYt6ty/daHS0cs
jgicIONRfRv97Hp9YApUFQk4ScadjWGS53L0Ye/nxdeELRnD2pj1wu30ITAg
eLrehYwxx7FoslMP+JrDbQeCyKjJ7k9TJF3Q80umcGSS0U72yMxa10HIyjnI
45RFxhENbskXZQeBvnN6tCyHjNnnRa/ffnAQKlUMYl3yyTgYsMxb4XgQVGaX
h2peknHK+gPj6MwBILmfigj8QMa4Yw8vHuI/AP8cdrb9nCSjseXz1gVfHTgZ
1/CY+EPGZ9fop8k2OlD6zjf47gwZKUe4wpIP6YCX2GepAwtkdB+8dbKKTwfG
+/7zT9sgY/5R7QNJLxE6TwyKWPKoodyZVxFJfwGKTLJcqtXUcPOH79G2GhTw
N66YN9JUw9xgy1/btlCAONwZ1qGthtZ0zOb837WhyYDlwZiOGtYNE586wrVh
9OD5Fs7DaqhoudPiXKcWCGmpaJ6yU8OA/lH5e1c14dquWva/EWrIJ3Rzayq7
OhhK9yVfvqWGYsPlR9lG1YBbakGKOUYNHVb8m59T1SCNJINC8Wpotr9+T7av
GrwRifLGB2q4tU90jjRChilei76oIjUsGC2RkW9Spc274UKpHjWUGcvJDaMq
Q8rOxfGrvWpYqNgj4fdIGXq12aSG+tWwiK7uXsJ1ZbANULif9kMN4yMrUgyM
leHMbPANwd9qGCrwnj6xVwm8h/ntWOnUUV/3U1skvRLc+ajH/VtKHdPEnEV8
3RSgdfTkYSMZdRwKmCuRNFcAPsYLN57IqqPJb9s/8xoKkKyTsOYsr46KoVmh
G6wKkF42MN6vro4GTxZVLI7LQ2FBQPUXI3U8oLUv0+3XXmiIzb/00lMdP3Tt
4RoCOfC5Inf2kLc61oWFLnbwyoHY+fyTnb7qyMym68I5Jgs+evk6S0HqeHG/
rrHRHVkQW8/j0r6ujsuf52V/je4G33N5+TUp6lgyF7z7TJoMkHSf/GitUccX
QuonqrWk4ZPy7i7HOnVkkM98HyUoDf7iTxr+flTHPvemLbFzUvDpX26RQLM6
Tn7+3gYFUuD/Ive/k93qGCaWzaUlJgXNYrk7hibVMchgF/8JHkkIWM05OsOv
gRPuskH0IiSY+j1j7LtNAydvWy10bIiD04C2/qqQBvIe1PjcOSQOJu9btRnF
NPB1woko2yfiQLq9LrVdVgNNWwbGwtXFoYl0bAkJDbw8vpf+t40Y7DRkfBB7
huZP6tmHbwkiEK9tmsTvqoGtYSyOQ04iwCJ//07KOQ2cWj1JVlEVgVlexetZ
Hho4l77nXWmnMHzoO33xdaAGutNbKSiJCIOH50udgRgN1GPLpSaUCkFNsuOo
fKkGDvh8tVAS3QYv83JjIt9o4NpEybtLK4KQVf6b/OOtBlY78VlPdAjCtQG/
G4lUDTxDfjkZFC0IujJRMmv1GpiwViMhtCEAH0tfujX0aqDw0HI/6yQ/NHcy
/nGi18SNW0Hbqn/xQuWYYVIlgyZyfHokp93EC4Urt2EbsyauuzXH/3jKC7d3
CsU2smviwyV7uzeevGB6Zp+iEr8mkv5T+RWwygNt88cubezSxI5bFl8FBXmg
my938Z6xJlZX0AuIu28FxQWrE9Kmmig7q7301Gwr3Oxif1Nsrol36zdOniVv
BUrKxcDG45rIqOsWZUO3FTJF1db+2WtiJ2e3ZuEeLjgvW0dv56uJunMFXucT
OGATDnNIP9RE/e+TU+0P2eCkeOKF4gxNVJWJ+m/rJTZ4Sa//mcjSRBPlSbm7
umxw5n1+7PEnNPv9hez+U6zQZHiJN/KFJrYd2u+XpMMKiZb02yc/aKL3kdr8
b3+ZQfacmGTxtCa+TIP42ChGWD/XpMQ7p4mZZ23eX3djhLbz/jre85ro8NSO
UqTPCMEXvtiQV2jrHSXVZzAyQrNnyL2yzVqoieJTY6EM4Ok/wFkjoIUKpTdr
P13dDK/D05fbtLUwT+rK++W8TRB1/TCLKmjhbf2vbr9iNoH9jSWBRB0ttDig
eYHp0iZgizRVOaGrhe+uL9yq0toEp6PoLvYe0UJZpxVx+c90QBdvNzzsoEXT
I73n91Y3CL10sc/zEVp41CRoo2z6HzGanTRseEsLw05Kf3ev+Udcy+dceRit
hdy3f352TvxHVJf8kzSM00KD+xLGEpR/BPGpOzDtvhYeXDUpqo9eJVRXYqX1
CrXQYy/rR3etFULCYtOV5DYtvBl09Hbw+0Wi2so//neHFh7fJOkjkL5I2Nn+
yd3fTYvv2vtX44GLRJpbX9tkrxaySj+f1VRcJIRC3+zWGdXCWdwn+V/6AsFd
6NkxvkTL94oDWTdynthgHtqjtVMbSZMnLbJD5wimvvcr1WLaWKRNfqVoN0dw
Fj/5aCihjf99X9qyQMwRO097Op2U0cZj9UJkqbVZgnhOlxqgpI31KJzOGzxL
BJ8QZX+tq42SPklSw1dniJXc0+MqF7WR8P7Gw+f1h6C/gqXlnto4W9cx06/1
h2A7Khl+0Fsb7UKUOBiZ/hDb1ybELAK08VLSVJbd/SlC3SzoxKWr2mjtSiUO
Nfwm/JbvfShK0kZLDx8dXfVJ4q9BV/Y+qjb6pxkqnjEbJ/yIV+K3qrVx86lK
GR+ZcWJFKf7Bz1pt3PPg3ZfajTGCTvjI3fR6bXzcp5Yt+WyM2DJVd42nTRs/
Tlk9+rZ1jJCMK3FcGNFG1/jjv1q/jxIWPXfFK9kpWJb6Zc7hyTDR1XzpgRAn
BfPVhre03hgmTtaYbffbSsGNY/J+vmeGCbsCDm4Ffgq2D67OW0sOE+evhNNl
7qSgsAy8Ssv8QVwj+XwPV6RgyPCW6IzcIeKlm8UD4+MUbJlWEE3qHiCo9CVn
pq0oOL3Ne2L8zQDRmCKoEH+agh8ra2wv3R8ghhp6qrvtKVgj6/dexnaA4Jaz
H3M8T/PPP5kg3fqduDDhrhwYSsGY2k8f9nH0E7vP36jPyadgzrb36YuNPYQK
w3icQSEFdW4wRk6l9BCYanh68jkFC511DlPceogTTRx/FEsoqHLcef07aw9x
fU8CXwWVgte/7AjfbfyVGJ5Mt23roOCh110rRj+6iOlr9Lt9uylY7nC3NrC0
i1gVdprd9o2CmbFU3aVbXQSP8a5wmwEKDv4VM+5T7SJ0nj7NG/9FQYqNVxhG
dxKHD3F5R/2moKxH6O5Ox07iRJ8HRX6agqO9XOYlmp2EB4fKF+95CpJVREUs
xjuI4Oy79wSXKPhW70b51ncdxA3KokPZCgWndmt28d/rIOI6TuyxXqNg0UzL
bwfPDiLNvWx+Y4OWj3V16KJBB/E/mN2JNA==
"]]},
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVlnk4lG8Xx2WJFEKoSGMrsg5jjJl57vtoEbJlC1GEpCQkWYoSKluyp0Jl
i5IkUZZJUpb8LIVsSQlla6Hs77x/Pdfnupdzzvec59xH5sgpCzdODg4OcS4O
jv9/Zwca6uSjsxHNZrJdYuEAnttF9tTrDsOOy6Y2/2nZYrfnI9YbuxOww9qZ
ySVPW3xzpraRq/su/k8DCl8N2mJqokbEXFcJTn1FT+drscPcR9yP/Omqxdir
VJ3KOoiF9zjbnOapw6v0kEgdhwOWVjxo9EvzNZZYJ1naqeeAaZOmmtOxb3Dv
qFd97GsHfDKIyjm+qxmfIvsdcOhwxCcaONt+drXjqsyzKtncTvjX8xWjx14d
OEW77uleJScc8GCxzpvnPY7durBCMXXCkddmy6c0P+D63oHayTQnnGX9PWsi
tgs7xT1KHCc74/ef27zHdvXh5JLLNaG+R7D0efMr011DWGnk4cUkshvm+DJq
kaf0Bf98p3bY0dUNDxlc3HIo+Au+p11uEJ/qhnM2lJQ0SX/F7XU1Ajorbljl
gWh/rtswFjjgonyr4yim93aSHX+P4Lvaddfdrh/DUnqnFkX3jGI3nsEh+aZj
eDmX901jyij+2hb9nx2PB37pS3Og0cfwV/Rf4PZgD2zAnx4pevE7FsrG6u6e
x7GNrmNvg+AE9rp80lfuqCemZc7kXHCawIb5FS2peZ54M0+ct07JBJYca9kQ
N+aJ+1ureXKsJ3G/DS2a69RJ7HqMpHHh1hS2t+gJU7zghSuafHZKiv3EYqXq
C7yHvPGbeUpq293f2Bv53xdu9cXHFeT6/r79jf2zxP9Nz/piQXNhGemp31iH
ZRmxQfo0tsmZKDjO+INFjfPeKp08jb+a5VZzvf+DXxkazKcI+mGOHIlv2jyz
+KR/+WLzoTOYZjZPSXf/h89Wdn3W1QnAfYGjgazYf7jn5Z931u4BODS7s/rb
k384rWrd65epAbh+rsRAi2MO15Ln7aLnArBV9gmH5rQ5fOcRb+sUKxD7zPVd
Wm6YxzqVh39aHg7GBfdq2o+oLOEAjZwJ3B+C/2w+FN6wfwlX9iXJ/REPxThh
UVvj7BK+lKlHW7U/FL+/oHtj6eUSljbNDdpeH4qXHZ8cTjuwjFM2aR07YH8B
79+YN/4ubAVfFyErhOy/iM/p7710a5wDUl54Lae6XMIyYeJ9ZiscIGl7O84h
8hKurxqmcImsAplNopct71/Cwtrh3zx0VoGLgt+pj1OXcK7cS0OdsFXwRaTG
wig0HLdyMNa3S3AC55PA72N5EVjuhdpt3l1c8KEcrToucwWv93WtMD/ABZV1
l687mF7Bi4rpH26c4AIbB4rj9eAruDOFR1AliQsS73DG13ZewVG+fSHmw1xQ
0FpVaRh/FU8rRTnduMwNp+t0Qresj8bVacNyys08UMEMWnbZHYcLzSTBb5AH
jkqoTawNisNpq/c7VP3hgdaNzwSWHsVhX7/KJLMtq6Gtvr/0hdQ1rGCeyOPn
tRpyKVx6xXPXcAyv3kjlel7gZr7c1zYYj+38bxWYWvPB95/5R0JfJ2CS0j0q
cYwP7oyZOc4NJeBvvfdrlYP5oPqoQUsyRyL21XvWw3eHD/ZrmBygMhNx1Lp2
/lfjfMC1c2uPxNNEXHmX94RO+BoQCGusO/4wCW/9z1eZ9IQffB+n3CovT8Hf
LgY+E6znh5VZNYfMnhT8gHJh11I3PzSb8bsULKZgWnrswZ5lfpgXj/ZT1UvF
5m750UlGayHwv8j+0aZUHLbQ/4NvaC1oFmW3EaNpeHi74YOf6wVgpbx6323m
TfzLumzhjIIAXDeSNbQ/ehNzhMvtm9cVADfXEold8Tex1ODSGKeLAFxysEZp
X29iq7SS7RueCoCTgy5t/7VbuJZP6h7VThBqKljfOSZu44yxyRvBd4RAUEBW
p8g1Cz+wbnzFuUkYapK+e/qE3cN9Kw9Wi8kJQ95HxUP6t+5hgYJrhttVhWFg
qTtLvewe9lq2+m+fnjA0G9j8Rt/vYXLep54kD2E4x/HvoZllNi779+fntufC
4NDe3aCulINZN7eS9h0UgWGLK6bXv+Tijs9+5xJvi4LIRvsW42sFWGEMqbfP
ikHdO/2TXdyP8Qm7btOGsI3gX6Ravt7qKe7bff2Y15fN0Gs6E7DToAKXMuQ3
vhzfDC/44o2UDlTgaM1nb0RnN8N2xur4NUcrMJ3Uv62CTxK2rqVvLbtUgdMW
FIe51NhMT/xRWV2BrUpYzjcCJEGR4JDz0nqOm7dO29cJSEHarWOx9eIvcLb4
JX4JCSnIe96c9Vj+BQ4WEH/uQZKCdZL63omaL/COBcYmIS0piLntPUE3fYGv
dF7usrOVgg+t9bwSES/w7titVlN3pUCuUWzdz+kX+MW8qclm2hZIktkYmsaq
xFT15AGdnVvApHHdzV0tlbjEpfeUtfEW4BZ7UTrYW4nzm90T4p22QLO2W+D0
bCVOybjQtfrqFmjyaPFzUanC3jtLnH9/3AJdWVMfLyRVYfkoMf/mYGmoffv4
63fbapxZfZD3e4Q0fMmpG852rcabf99J442XhtKIN+9MvKuxsIPai53Z0iD2
ePvsicvVeFl1L0dFszR83aS3vau0Gn9sC4jK2bIVlo8UOVuvq8Fxm/oyQmq2
QtWTKD37hzV4tol/dPLtVoikW7MUymrwoRBd8uF29n5Pj3WD1TVY9UvKKzy8
FYJvubSQWmvw0U5Fvws8JGCMepm0/azBq7O+pOkpk+A/tZUb0xtZmD4XVDWn
ToKXAV6oQYqFvSxEhh5TSLBWbKwjjcTCndx6yrKIBKyZjDIpRRbO9cio4txP
gqbp6owyKgvra9kNvfInwdjZUCNVCxYOiplefS6YBJyGTt99rFm4aPiyMuUC
CWZ39W14aMvC4mllftlXSXCpgv5r9WEW/rYoyhtxiwTj5XpqBidYeLNNoTJx
hwTqFbph4MXCpo92ms/kkODu0VwtdR8WLnP2ueH2iAQCeldvTPmzcGR9i7J+
LQm0Yj99WrjIws+3HjVfrieB/nWf2NxwFp4MWPIrayLBsFTMqb2XWdhGWaV6
2wcS+E+oVJ+IYeFt8VfNeUdJYGnwmBOlsHC93e4zbwVk4Df/KTOefBZu3v+U
/5uIDByMevGYWcDC7Ybbsrg2yoDWzio49oCFB3T5mpCsDMgrkNtvFrPwzKZm
0lOqDDwpTtvjV87C88JEWTtDBtao375m/JyFOfiL9k2DDOD56C8bK1l43fw1
f+V9MpDDm38jtoaF5Xssm+8cloHXmXNd316z8I72OucaVxnoH65cc/gNC2s0
av/t85ABr198Sk1vWZj5XEJ2o58M7Hr2Vy60iYV3llx5ph0oA4PDFXP1zSxs
UDBnbBkiA7N9ux5ztrCwZXrv2bgrMvBcV/CFdSsL2yYYCzyIlYHwj5jvZBsL
H4qqutuQIANObyVVA9pZ+HhQ5jvu2zLQ/q7zj8d7Fvb2Xe8ie1cGWLxBieYf
WNj/+MV/OE8G6r+ZrVLuZOEwexe54McyELGEdr3oYuErFu/L08pk4KbOtKhP
NwvHGe0xLXshAz3buR9u/sjCSTvLvnSw2HrQ1giUszmdvj3w52sZGPXM1zTs
YeEszTRBoSa2/8dypFrYnLtjTbZKqwxwnR5o0O9l4QeyQbpGH2TAINBY9wmb
H2/+0eLeIwOWYlzHRfvY9SLi4BrxSQZcr2kcdGdzJf+7ubtfZcDt85Z1j9hc
y4muscZkILJC7dx3Nr+dL5IfmJQB33OfCzb1s3DLr63PF37LwI69/6Uy2fz+
e7zZpjkZODNduNOSzT1Dq4apyzKwtEa/0JHNgz2+QVZcsvBvMLLtIJu/tX8R
8uWThcgQ36cmbB5vtMq5JiALN/K2H9Bi86/a1/SHIrIQ3fepbB2b/z2ntjZK
yIKJ7dT7j2x/lkvy3EalZEFF6PXjdDZzF25c4JFlrz/8bmLGZv57V+PltsvC
/STugr/s+NffnFfQU5GFup62+kQ2iyeeeHGILAvTe1Ry5NgsFd1nfo4qCxQj
Pv08tp6yl0y+3WDIwgDPmQJpNisGVwc/A1m4TdzquMrOh9ppdeEPe2TB1La2
dpSdP8qJrNxfRrLgZq8fyGAzPhjWpmotC1ulPHZWsvPf43DVT8teFlaK/hlN
suvD71C8hO5hWTCsjUzYwOYC5wzH3R6yUEHqHSY6WHiPSw6HkZcsnGeenwF2
vQ26PrhndloWjnl+2Edj16PYsedj9udlYSTk5Aeu/1i42ONljFOYLLwwNBHo
fsfCRifeqh+9LAv8Y7LJWex6v+DVecbnOtve9EKGYCML//D7tepKjixcamke
PVTH7hf+c9mxBbIg+l1i4kMtC5MCOAwSH8nCf/7HbPVesvtDsGBcRoUs5L72
9JmpYuGXF3dsfvpOFlg7I4Q6yljY4RK56nm7LDwR6Xw4UcrCs+E0J1aXLMhu
htbFEhZWuaKf2/SZfX/hw8f/ilg4Ne6I5tCMLHgd1znknsvCmvEeH0bmZWGT
05/Ebdns/nLdO2BiRRbWKDd499xhYc7kkOp/a+TAYPSPJuk2C5+8mW4kJC0H
cmcWXOUTWXhXfvsRpr4cuJ6f3r7hPLv/3P/Is3OfHFxd8MWkIBYOKBzM32su
B/9dNraWOcvuv0WTkxb2cqCX8jWJk90/Nz3lD/bwkoPGT3HiO11ZeOrlzsSU
FDmQVni76oUBWz9OlLDnphzMqX/httvDwiK7dK//yWTvLx7qmNBj579O/ZrF
fTmwYXBNLtDZ9uqlogUr5aA11+ZlgQq7vzXNhkV+lgPxfP8oW0H2+fcFvv4q
8oDGFMoNU2rwvQ25PgpkeRjQnblpEVuDKdZ3vN9ry4P10LdOo/AabNOZ6qWJ
5UGP4XB9jW8NTu8OPz65Xx74Dth0vzSuwXL9h44cPSsPic8+LyuvVGPKNxEL
m1p5+LTMJ36I/f6mvh55efyNPHSvthaKMK7G89mV5NBmefhaGDyXDtWY5XJU
OL9THkI6YlcSFaux8eeK1rnv8tAcJXq66m8Vdu1zMrstqgBDHFmmXIlVOKm9
yPirqwJs+nbMh7+6Ev+uNtrry7sNevY/UK778RwbWCfoDlO3w/T37QrD0s+w
RJbekdJQRbhj9l6yobYEbzE/PR1ZqwTCE+vDu+gPcXlVaXDx1A6Y3FFwTB9y
MRx5kdD4ZwfMFR9UlZXPxW9X197/OrcDmmvdbwrz5eKPZv91beRWBqZ8/GPl
1hw8/3lM6+JGZXhoHHnc1DkHE6u3ju/XU4aRJgt3+8vZuNb0qsPvBGWofFr2
fmjoLn73yZGgUlUgp+uHstmTTGz8yrZ4jq4CnltL8mKuZOLGXEu5KqwCqmb5
a6cdM/Hbk4ZrdhuqgGUOTlZck4lrFygf9juogHJB6oCTcwYul1h38mSYClx7
z9E5ufE2vmv2/FZ2iwosHb5G889OxyStp0LHOlSAdTe481RIOs4ULw5T7laB
mJ6r0tds0/Gt/pxjJZ9VQFfmUyISSMepJ65TWH9UwObNU2ungBs45vKx5t7N
qiCk5RGWb52Gz9aIL4q4qwJHWQE/v0oKjnqQd676hCr7PX7bZbY2BWfcoC15
eKtCLvnlg/Lvybj+tP0yK1AVVI57MH/fT8YbFDM4TsWogtb3gWj+Hcm4OF6B
p+mxKpBBZXuZRhIedaYIXlpUBdHbDaz0Awl40fR1nNoqNbjHn6y/jZGAhZg2
Qj08arD59+Rsu3QCpooHrCcLqQG3+9j1a9+u4/DGFyKfZNSAShauSzx7nR3/
LgnGXjWYPhdhVJ4Zj225LUi/r6vBay5ae49QHEbxlcLcqWrg8+SmX1tPLJaT
2s4ldksN+Bc9ItbnxuJJrcVhaq4ayJOnt7gTsTjcJbcw6LkaXH9lY+Z9KgY/
qp2ncn5Rg5Id52VeDUbh1RfvmQhT1IE3O/7pl9nLeHydIJbVVYdqFridb7yM
29ICNLSQOkic/HHBNuMyvlVsImptoA5N807C7fqXMXnwb3eagzo44Fr55vRI
7ICNXUkR6pBVelEt3zQCP1n6E6TeqQ7y92wIh69hOO6t5duxHnU4I9VsIlMb
ho8nlohlf1KH2XDDjo1ZYVhWybt445g6OH+4dTbDIQwnWP0YXrWoDjdGaiqX
uy7i8g/eit/Xa0CszMr4SNcFnKLinlhJ1YBzq4zzeGbPY+4E8eebdDUgIPpr
0Mmq89j37+tBf4YGvJW49Vk14jw2rZVXI4MGlBZUD5aJncc8tkNvcww14Dre
NDNAP4f9LjkuxzlowLVUpZ2ayUHYosfSwzlMA7aoGXTrXT6LlYS8DX6Ga4D5
7s/2ctZnMcfumO0XL2uw50lP1iG5s7joYd1wVowGOLp9sPnM8sdrLmofGUzR
ADOrZ4/4OPwxa7vEwcOFGpC3fLI7IM4Ppzpo0aceasByr5zES2c/7HXdbFNo
sQZcsq3/dFDbD0suXO7KeKoBA+FDepf7T2P/ln+WAzUaEPnrZ3U++TRWPdNj
7PheA+LoGD8Z9cHcBbPKE50aYOkc82SS5YN7BkTWnv+oAdt4LbLO3PDBVwz2
Ndwa0ICx/FIl130++Ktk5Z6+UQ1IsP07/6zEG6fX3kYHlzRgfi/e92zLKcy3
3lnDbhsZDB8s/LD/cxzfNzQQ71ckQ9C35S7NZ8ex0SX1RSdlMggJTo6GBR3H
sbNLb45pkCF5s1XUFc7jWKQ//XAAnQwXV6zdxTZ6YKmC93GppmTYoxNRmmTr
jqu+vPCT3E+Go6ocB9Jk3fGhLffsMy3JQNh7lfBNHMV34n225dmSIex+b5vK
paN421nB6rIjZLD8wRF9qtQNa+w2mPjgT4b20y6rDHa44rbz6h12gWQQDT75
/fW8C/Z9Jl7RH0yGotnYzpwmF/x0x3D48AUycPf2y131csF04TCpmSgyWJFG
HjaVH8G7B17s25BJhpC3vc+fHHLGdgHqBRZvyCC/btYps8sR+7etR4UNZHhr
qRWenuiIE3b8auNqJsO4kuEraXNH3NhXOlfaSgbOco+F6kYHzNSjG0r0kIGm
KOO4p/4gJvHvGe0dJ4Pt8KPqnA92mOmy7Rxligy1S9/63t6ww3aVvOtjf5LB
uOidqvshO5zg1aiDZtn3C30SERmzxdwdZpezVtgVnDnasYbbFo/ctN/mJqIJ
drvkZ5vMbDD3DON51QZNSHeihoKkDSaZbjEVl9CEvLJ5Z7kRa2zLMXjmjaQm
rAv5KEu+YI0bXd1eKylowsY/YHbgmRUuUvV2ndTRBMOu9ynbdS3xmZqIu2cd
NaHIa3drZ4Q5nh/pmOR00oSfnjHvjO3N8YX1sgz2iAK1ml8+K6mb4yjn6o5s
d02gb3Fbr1JqhrO4/nK3+2gCd7k5xh6muHnvMXeVSE2QLBt9HPt3H7bwLnvy
7IomhIytKNx+sA93pXFz7IrWBCZRWeZ8ZB8eGstKs4vXBFIFsZO71Qj/jf7Y
EJmuCTlNwhsjnxhi2VYjlc9FmvBN0M+bSN+L8/+lBXg+1oQzym4Sv+z2YlWZ
kbq/T9j63J/avWfzXkzzveQoWKEJWNTn88tb+thkQ2Uc45UmvHzY6DSVvwcH
2Kr+TO5i7/+xdXaxbxduGRQqM+LQAlLfkztHCgG3KNoWF3BqQUBduOGNUMD/
eWcV8PNowciGqgqaFeBWDnJm4xotcOZIWXZYwridZHHFSFQLMjhNYl8UI9zl
lGRvtE0Lzsl0vJVlMnF3fp9VgaIWiPqMSA5OM3D3tLwZv7IWhL5LLLPKZeCe
C093NaprgYWXU7KjKAP3ZXWqGOlqgVbo9QOvZnTx4ODGFUNjLeC2zPuS0KOD
BxWd5+6basGl1XtFhdN18Gfv+7/X7NeCVQOaIur2OniIgz7aYK0FJq8GFnf3
UfFX0sE2w8Na4Hc3KrZkRBuPOd2+Z+irBQkiX6VPbqbgX4MyBoZpWrC8+LDx
3jcNXKWqbXg7XQt4dYpnoss18JUgA6Oft9gcuf/TSJQGlt5wyvjGHS14+NSj
d1ZDAxvtrTQfK9CCkhgRVgG3Or770MbuapUWTF5O9/fzVcEn5z3s+2u0YMWs
l9Iqp4Jpe88fJNdqwftT/Sl/Piiz9b/n+LFeC9b2mYjEM5XxvOhPZ6VWLTjd
qrt7UGQHtgiKPt4wpAVuAgMrLkPb8ZY3GSe2DGvBu8IRcmDmdjwqWuLpM6IF
gjKn3jEct+OQh91em8a1oOJK6mhtzzZcMKhw2mNGC+TOFs496FfAnHtZwWv4
KLDqFB9xe5U8fiw6E2OoSoHCyg2pv5+R8Ff1M/qt6hSoWxyWar5EwhuNZ1Zs
NCnwUfPFK4Y5CV8In/F11aFA31Kxf+mHrdh8ZsY2VI8CacNBm9pNpPF056z8
U2sKrI34qMnrK4nlf/sPMGwpkCCpn68tKYlthf6m1tpToKFbt87l9WbM2vuX
v/UwBUadD1FKpTbj+PK/0989KPCp/Cijr3MjVk//V0kKoUDSwLdgobPi+EhZ
gH/eBQoo6Jyz51IXxynt/9TVLlHAL8Ga1TIihpf55+4yrlAgZLpgbOigGG4J
nrtik0CB+AIB15cmG7CX47xVTC4FDHdc8/WyEcF3A4MERe9TYDF6T3LbZhHc
mTz/5kYhBSzd/vsw9kkYo5Z5el4xBWoN9ZrJnsJYEC+Qap9TQGlkh9tYzHr8
kLQ4/reFAoEWRocLewSwg4O/lWUbBaa8Nv7rCxHA69KmXxR1UECVZTcsLi+A
jwsNR7l1U8Bz6VhTms86vG35nWLHZwoYRDxIvrpxLc7ozXQt+kOB9Fvtvj2J
fNhEYnPzmr8UGCxRoNjs5cOLFklabnMUkLv059DjBV5s33iFU2qZAl9+1l5d
PMqLJSp8sq7yakOtwUxWzt7VOD5lV5/rZm141fkywFydm/3DVu1iSWmDoO9n
49IpLjwpQCuU3KoNR56Oeb0v5sLGESpB7XLa7Pf+Y5yeNhde4ye2EVS14dMn
7z+p+pw4bP+IpSRoAz388e+oqxyYHOv8wn+nNpSPGsg1W3Hgwbe9su27tSEq
Gd8oJHFgBK0/rxhqg6u199Q5vxW0oFZxbdZCGzKEXtxcM7aE/NZFN7W5se0Z
PDpszreAYiR8fxw+pg2BfKfk39yfR9mydmsnj2vDUd/V3meM59F72vZ9/N7a
kCPxrswjeQ5R3F417gzShkP5Yjz7tP+hmaqFhidx2lCZbPT08/0ZJNgwNKZ3
XRt2XzsssN1xBm1737CmNVEbojdIDnoKzyCb76mG42naYP3KLWTi3B9UJk5p
kL+nDSDJND55+DfyP+X5NvmZNnTi6Jpus58oLshyVO65NngZTRW/FP6JciPo
fCWV2pBI3bnl/Ptp1HmTz6DlpTZke55a5ewwjahvs9+sbtYG/rnFYuUfk+gv
qb/+7KA2LMu8sVVI/YHWq9R94/nC1rN7/+4ZzR9IUadwddIwW48zwtFbWr8j
W5NA/eLv2vBmYWnITfA7Kg8Uqx/9ow2NYmOJh9NHUUC7yWu7NVTY/fOvvNf4
MFq7pJZYuZYKvULvquXvDKOM7eudtwpSQVBom0urzTB6fa598asIFbQDJ0kL
dV+RyPYDFG8pKrSepSaYPviCHgQ73YtUp4L17oGDV7I/I5yr5zNGpkKdlJ/G
TvfPqL1VFhtTqJBBkfv3esdnNKcw3COsS4X37pZZMqWDSL/VQ+T2TiqMtzer
vMv8hAblT198Yk2Fi2GtMaaWfei0mZWZuC0VOF2/3OiY6kWrg7S3BNpToUY7
OD07thep/ve3HB2mgtLLVdqb3/WgoMBz0w3HqKB2btvNr/Yf0YaWiMODwVSA
1HV/7hR1orx/R1V3hVDhRI3BEfFDnYguZ7CQc4EKM/vKPqcLdiLnAP7UExFU
kPoYlFDv+wEVyV5rmY2jwpmzRx2N975He8+mEQJ3qUDrS9YxlW5H2bm7RVyz
qdDyRHoocqANcXZOf3ueSwV7x6IDyZltqJpiGH+skApzLB8JJfk2RPk1N/Sq
lAo+YmvrvlBbkezJg1eC3lCh0lXdfZ7jHbpwi9exrYEKxZWffJpuNKP+pidk
xWYqeD3d7zmv1YzSdqzr/dBKhVPKp0qcPJuQ0GilKrmHHf+i4I/O8Qa0eES6
Y2ScCg0un1I7Fd8g+4TGPDRFhWW6vmzSh3r07KX/ueSfbD3/yJudulSPfEn/
KeyapcLBz6ObvIdeo7H+0ICMFSocGFS+SXtYhzptP2+xFtEBt9dhyj99axHl
Suyvwg06sNLUzjehXosSnum+4ZTQAcsjZ0+1TbxEJuIJ3sWSbP7PeHyv50tU
17Hz1VoFHVi1RlE1/TQLPTbNPlarowNqvIHrGi2qUIBJ1cw+ug7UmXxxJA1U
ImTcGfaBqQP1BqdCNU9UomZDvtujejowt1tS1yfqBfq227NN0FgHQLjFuKiv
Aj3YFXEozVQHEoquGtPOVKDTOzN+yOzXgcAJi92mQhWIA1p5tG10wGrS7iGv
QTnazKDQDzrpQP4Ax1WJpjI0qGvy5usRHShcuTfkfqoM5dGOWnm56cBPGxLe
JFaGKNQ0r4vHdWBX+/xAlOtTZEZevJvnpwN+x7kTSaKlKHx73do/V3SATij3
cBY+Rkbb+tPOR+tA6LmHq3e4PEbCCrMKvHE6sOO5KslD6jHKkFWEzYk6sC7n
yYR0QjGq2BLjB7fZ/i/335wRfYQuSOWsaszUAYm4oaLhpCKkL1kdZ3lXBzbr
R1S8kShC7zdO5x/N04EkCxvWbrmHaFLUqj/msQ6cDlvt4WheiEpFTh4XL9WB
vm1vrSUGC1CwcOTfzDIdyAvT7o72KUB8QuXCT16w9S3+VBZ14z6S45fS//ha
B/ovJ0aqL+UhW46vRQo9OtBbrJbcI5CD0qX/jl3q04GB9XNcqpXZqI/JrzA0
oAOKM3dTHp3IRocDNW5mfNGBA50X91Na7qGjv85dlpjQgamkR9YNWXeR31cx
pzUcNAj+LFTwLCALlXEq3XTnpIF5bfI5dVoW+kdidr7mpsEk+cdBys9MFOx4
xDhsDQ3CK8W2nfmXgcI6i2gLIjRwkZ5xS5a6ja6/3Ss8oUCDt5EBH989vYHa
v9kb71OkQS0f013C/AbawON1+f4OGvRtF2v78iMNpeklLbmp06A+XMx0ansa
yno+ODZAo8FPnrs3GY9T0FD3b3mCQYMn/vwaqw+kIPm/q51uEjTIuxBSqLSc
jPK0VDsP7KRBZvCVYnfzZFT0ILC2dR8N1h48Jk7nTkLTjTFLaqY08PBzit5T
mog0xzJpsebs+GRo+8LdEtFThfoiQ2saPDB5KBTVlIAqM0Ru1h6igXBdbQ3K
uY4a4wtPl/rQoES8rT9I4ho6E6LsvsePBswQ2QvF1+IQybPQvtOfBjxO27Vl
+OPQmb2Fev+CadDovIkznicWkZYLhJiRNOBbXf36kVg0avqxg+vdFRp4XXS/
15ARhfw/Fsw6RtNgRFXHvEcpCjWVFvSHxtMgZs8vO9aeq8j/REHhq3QalF9x
zH6TeBnJ2O3ItLpNA+NMSlKN8mXUrF+QMJxJg/chXwd9XkciGdmCQN4cGhyb
DQ0cW4pAzd339+57xM6ff/+kW1g4ktW//6X9FQ0OeT799KvjInqnpdTlUk+D
p6W2s8HhF1GAzP3GP29poPXf/jx7Knt9Mf+xeAsN7PU4hzkzLqCAJ/mh9t00
uPAtsKjjXwiSu6N4+kcPDTLC5W03eIWglrj8o+f6afAVLTx6MHweyR3PN8kY
osEz13d5Vb3nUAspX3JonAZj6lkVdkNBKFBQUej0FA2m9S1YZh5BSH4xj5P7
Fw223/hcafkrEAV25Y0p/KXBjw6boy78gUg+Lu+ZxypdYPQshVfsP4sCF3It
f4rpQn7uuenjVD80OfHTxH+jLuy5+Jyu3HcauQ4yDRY268KMRegz70unkenr
diYPSRdceR5s8+30RbLXlhU27dCF2+nmVtmxPij1oiEpQ0WXPW9s/TuEfNA6
v6TNcuq68NIxacX/pzf6a7tDSJWiCzfTRMSv2nujZlmbf4B0wXFu39j5s15I
T+zOr9egCzWqkaFykydRGe/4uNEuXQgVCkzc6n4SZY1f/GxloAt078Gtfw57
ojNlDxuPWeiCzLrWCh7P40jaiOd2/FFd2HcjfGph+ChKZJqninnogkq7d2zt
+aOIT/3m9fQTunB1IHHOUuIo+iVKjsz21oVjJuK/ys3c0Jt+h1PlQbowolTH
U/3eBTFb8zyI87qw/pVi97ogF1RS+8ulNlQX/IXTJsdJLuhW3hXb5nBdmObL
2a1/+gjy9inVG4zThXfOJ1bfV3JGwy4rDLfrutDt25bd3OOE7G2MqN8TdYHU
svaXaawT2sMY3PEnjZ2P88lHiscPo8086zbw3dOF/eZX9KseOaJXaS7f1J/p
wq9VRZdl8u1QaUF+3NUKXeia4n8sqGuHsisnqF9esP0NXRP6rskWhQ+evZzC
0oWU43FP784eQPqKMYpLDbrgs++B91cnG0Slt7XaNOuCVI3gh5QVa7TNWDyw
uEUX3Kui+L5kWiNe76wGlw5dKMyqH1cbtkJvn5Ueb+zTBV/npJSvFy1RecOc
iPwnXfib15FfqmKJ7veiF+c/68K2FBvliW4LFLXydi35my4khaomXdC2QPv2
9j9IndKFxt/77ZOXzVFLJ8+UKycdZpSC99WkmqDqUaPUam46lMrMc7iLmaCi
+Wt4Iy8dLvjsN2IkG6Nr0pvjm9bS4dBUbfeem/uQ+VE1sqYYHfKq/1lN1xgi
CDj9MVqCDpP0+o1rTA0ROar84vAmOryLvujLP2CARIp2tqdJ02Gz0+ihPC4D
1DFjc3plOx3y+T1V/Vz1UR3vLUm7HXQYFh9rmefQR6WbPr8qUaHDmsGQ9WqZ
e1AScWLDUTIdquuT8kIGdyObiNCnzXQ6qEoLpK3134W6N+T/vWFCh+g+ASf9
EUDkWTvbbeZ08J4nr9JNBhTVtbaixIION91EyUW7ARHpp4KaDtBBbKTu3hpz
jO5u1VladKZDR+R+O8sVJlrgGHO86koHrt2Si+M+TGQ1lF4t5k4HBY+yZbkR
BuLNWQ5V86SDK6/KcfpHOvLcUc/p5M+O94Sben0PDb1eG+AyHkAHIyHTvNXO
NCQ9oVQXEEyH0TXPiKgxHdT2KDbi+gU6vPzNpU9epYOo2tZ8r6Lo8HDfZcY3
Q220Cr4KbMukA3nws8JTmiayl0nxKrlDB57N32RyBsiolNPgP5RNh97v8Rl7
Isno6OvC+AP36VDZWt8Y0KOBmo1Oi159QoeFLSFV+crqSEFFwU+sjA6M+8p3
RuLVUIhA1/s75XS4VvhCW3hOFZFb6SnPq+jw47Kp9GSbCkqx5tw0/oYO8pys
0cPZO9ijXWlgQCMd7ApNrl/augMZbDzaw/2ODq96s0yUbyuhhZ6Gm1va6aAt
fG2sK1MROTldlzbro8Obp9uT3F9uQztOkORLpunQP6I7K+oph5ZPNGuK/mbn
Y5Ki3LReDnV4Buj5zdDh6EnXbLlnsuicV+sh6jwdpo0ept3kk0UtPhduPOdi
gJeXV8HXKhK666uSL7maAU55L3cOeZHQ2dPdZef4GFAVdDHJSIaESGc03iMB
BvjFyISGb9iKfAIGBV+JM8BM4YjU3m4ppB8Ys0V+EwO0kzyE0syk0OYgmkqE
JAPSkwZohxskUW1wvOFeEgM8j180lq/bjDaEQniTEgPkcylRTh82ovKIrLkO
JgMcF2K0xx3FUEykMZ82ZsCdrdHnPv7dgJwv/xNP0WOAcMQRnzuJGxD/VXOK
rT4DqKlla7JaRZFDDMepPjP2esl5e//DIkgj9sF5woIB3c7kkza8IognzjYm
w4oBldJUofZiYVR0rfi+kx0DRl+6/QnhE0YciU5fvx5hnx/YlPkhUQi9T1z3
e48bO97KEs66BUF0P6l8VZ47A1a5nU4PPiqILFLWb/XwZID3NuKD6G4BlH2D
ZTdxhgE7DX5dS5Bei/Zmkf6bucKA2kfK7q/1edG3nNSvRtEMcBd1oCx0rUbh
hYLzmbEMEGnBDZonVqPaskV5owS2nie14VIqD0LvuoMybjIgUdUq6+lqbtTf
bhb/+zYDPrR1N3LncaFz3fU5Blls/Vr7rgobcqHnX0pbf2Uz4MKNC867EziR
9nz8tr1FDNAvSVZj0Fah9yu8zFvFbPt1B5/fGeZAvjyh+3+WMIBPzuZsVBIH
Kl5/8tzNZwyQ1JN1jZtYIVS2G7ZPsRggV1PZ4ZG2RMhZrQpJ62DAmu/WU1PH
54hau4DEiQ8M+J5aQRaZ/kc4HZ7K39nNgHDfpuSzZ/8RGcf7O8b7GNC868Gp
oZi/xOaLFUp63xhA2nFeVKZthqiI1MApowz42eJXvct9hrCNybP68Z0BwUrS
Jw6u/CFSUpNDk6cY0L4ucmiP9h9CuMjnw9g/BlzLGs3e8OwXUfxk9DtaYPvz
UCn5x8FfhGnFYY6kJQY8ndr44DTnLyKmzkQZcTKhZo+ebIDVT4KvV+liwlom
nKU8jA1dO02s8A6pMKSZwCG/7lJVyA9idf/r+VoSE0xcWG98x78TgiX33xrJ
MaEtdcP9rY7fCWkHH1d7RSZcbRi4JL93jEDFHLcCNZmgmHEJDJgjhH7EV49V
2kzwmv04p8D6Rpjav9W5qsMEx3tivNH63whH7viONCYT+ioc557ZDxPnbLeu
Lddnwo6t4Z93Z34hwlW5PmJDJoi9UxThon4hYjhHct/sY4L0l7LQ0ZYh4taD
op1d5kzYH7hisbR6iHjBgYJm7ZmgUhtsp3htkJjPdxijnGLC6IyS//eJXoIz
BJ5V+jAh0gjlfLbpJfgt5SN2+zGhgKcrara2h9i09INkFciEsFrBm7rZHwna
/mDb05eYcHrbz3n/q10EbDu8bSGCCd51GrWFa7oIg4Wdf8KuMCH5pbddZEwn
YZvDH58QywStV1FnZm98IM7O3XjzOJUJ+ukxGZbtHURIy/lk3XQmxPJNKusf
7SAi7zm7vLzFhK2iNcyAxXYixURppfUOE7qnqZ6e6u1E2Z1y6nQhE6I1evc6
FLUSfwy7ctRYTDA02NkaK9hMnEVPZaJrmVBUKhOZFtJEzGsm3h6pY8LEOkX1
Mz8bCQ4ps+SsBibk+Hw/dvJTA7Fusj5cpIMJq4P4OEZ63hDXhrI5Tn1gQpX4
yb/rnN4QIl1h55q6mDC0Q//E7ZF6YiML+YX3MeGbZlxEy9JrQj6hzGV2mAlx
w07DmnvqiLzIpE8Wo0wo210Y4dn3itgR7Hvw0XcmCLAu3n925hWh4apmeWyK
Cbe+VfXaFdUSTGruzp5/TMjVHBWppL4krHqSZarXEkAr90OLOlVEV8vp25sF
CXjidM30Y2YlYf9q/6az6wlIWbVOoYq/knB6ICCsIUZA3MkWXcex54RnSATH
XWkC+q5idOJtOTHl63JumUSABDZ9MKpfTvi66/2zlyPg17Sv0uKbZ0SA+dKU
qCIBs/JiY4/byohw2TOfIsgETLuv3ba86inBK2F5cEiLAJUph4n/EkuJqLXk
LkQlQPtJrnjX9lIi/s94y186AX6DjufsbJ4Qt+pdqz12E3BqZP4RT/NjovS4
1W2TAwScUThW8Fi2iGBxlh2dtiNgQOTqMbLPQ6IpXUIj0YEAISnsU/zqATHU
2FPb7UwAFwO9tfArJISVnUddPAmgWr/v+W/VfULqVe3j1acI+NYWWjZxMp9Q
PCgffN+HgJ22sw9d+vMIiB4RmPJnf66J566rzyW8fpzUCrpIgGEpS9y+MpsI
uvTfolQ4AfKxJlqEXjYRKUmur4kk4GVK0eKPt/eI2/v+2PLEEGDzI/nwycG7
RHNhUEh8CgF7LvU0HlC7Q3Tv6turdYMAu8+9GpNvsogvvYRw500C+Cas3Hpc
soj5tauyJe8QELbexXV5dyah5Hm5IbeQgMmT60lqp28RFO6xBMMiAnYNC3NO
vGUfvGXkMF5MQIfOhpbrsjcJ22aBKXIZARrHHQnK5xtEpErShioWAVsP7vxz
5WoqkVA303/4FQFTG34LkxZTiAyHA3mc9QQEjkec+uuTQjyN2Uw3aCKA7vrI
T8o9mfg6nnW44wO7Pny95ozPJBLT4ZxK/t0EtPl6e0yvJBALUq6/NvYSEKT3
1cUwNoEQMdkecWiQgJDLI3n9j64Teg8fFox9J0DYsVxlUiSeMN4j5BczQQBy
ND5AcblG2PZ7E+rTBFyg9VkI5cQR3gKUVr8ZArh9r6/7ph1LnMtJviHxj4B7
TYNbH4XHEJeJv0eezxPQutz7Prkrmkj4YKviuESAVqMlLUwtmsg4+XxmZYWA
yD3GnxyuRhH/A8uvdnI=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 30}, {0., 0.13175555098503358`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.700440653787277*^9, 3.70044067355027*^9},
3.700440931470456*^9, 3.7004410015357113`*^9, 3.7004441841900997`*^9,
3.700444275714836*^9, 3.700593528831459*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{"%2", ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"HoldForm", "[", "\[Mu]", "]"}], ",",
RowBox[{"HoldForm", "[", "P", "]"}]}], "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"GrayLevel", "[", "0", "]"}], "}"}]}]}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl3k8Ve8TxyW7kL1EuJZEZb/We2a0WCNEpbJTKIXs1BelKCSEJCEkpKgo
WW5IWVJ2CSFEJEv28Lu/f855vV+vM/PMnJnnM88j7nDR3Jmejo6ukfb4/3uh
v75W8lYWwdMRl//6rJzy8gHF8zrdYUB50/o4fnlJ07nsp+W27jjglh6KFK2I
0Lo/X92wuTsTCqynI0v1t2mT4xXCl7uKwUZTUyTj7GNtUytJ90WlV6A1kTnI
X07VdhPdZjkfXQrdehYtR850aF8bYafMjb2B2ZAzP5I3xrQf5m9Izhwoh49v
b882bV/VLvOc2/InrRJcDDTc2ZLZKb/uXwpcCKbC33adrOBMIcriFfcLPnnv
IIz8QvhUtAyFweGsw9+uajggZF+sValK4T5kf+wSYy00b0rvf5+4n7JT5pTh
rNJ7KDE/nrPcbEKRY7ckPO3qIH2l6+7F9hMU9SkTpenoD3Cicbzi3jVHyqEW
femLbz9Cjt95CWu6CxTzl/uFpsbqodXLbtfFJF+KXZI2p7tAIyRbaEe+KA6h
uAeS6ScPNAHX8OVSl4MRlEBrhQU3z08w84w7VeH0HUoEyv4aT2sG4ZvurjeC
kil3JST7XZo+g6fkI9kVlgyK2Wau8bngL2A7UTh9wO0xpfsvu+ML3hbY1mPH
I9PyjGIzytLnldcCpCQcXnF4RRnuYjyupNMKCzrku0x+5ZRz9fQtM12t0Hl9
yXNPbTVltmzDsOhCG9xhHboufOMjxb/gX60HYzuMDK2+N2r8TNl4sEwopLZD
u1r+hJVXO+X67YXXf5Q6QL2llMK/o4eyJXRO6Vl9B4hmn9H7FjVAifeaLrhg
1wk99/Zt6+4epgg5/Zbet9gJUVVaxRnbflHSLX+l/47ughv8EuQS7WmKtN5P
oaeS3ZD3r2LpgeBfylP14YTzb7uhIlozsqtsiaIiO8i5x/wrMFpEG1/QX6eU
7eiPmBj7CpdrAkJiL9ETyPGNPv+/Hgiuj1T0tGciPqx3BbsJfAMO/9n2IiZ2
wmS6fWH302+w6UWgfh5sJdoHWzzGD/SC1tS2k24+vMTJtuZfuT294OZe+YtC
FiQGaxudXDz7YMiP81j/3R2ES8nH/l0s/fDYzGde0lKMmHr8/sTPtH4wxMVn
q4ckCO971a05qt9hbtN3DaZ8aWL1ZtXhM03fYbvpo3GjeFlCh7D5Eac4AD50
o/JnueQJhtLT6bPBA3CaLm61dZsS8UH+lLX5xwEYjzIf5WdWJW7mWgkV8w4C
U9SNPzet1QkT8RNd3LaD8M/c6aKpjDbBnXIswTNvEKhbmJUtNJFo57E0a5kf
hHPFxc+u5+4nkm8d5VTUGYKPfml7ss4cIk4xmDfGRg2B97UP3Qcu6xM7L5tG
THcNweAYx52380YE3Y8x88e7f4Aox5Bt+nZTYkg/VMQm6AfEWDVL9V4xJ2oL
t4/xffoBr91fPlVRsiSy+YqLG3cOg80hqa5FrRPE9UDDy2Eew2D93OGvTPYp
wmVgSE+jehg419zcovxsCUPdIJ5p3hFIH5Id/dpvT+wp4O3LcR4BPoNvGuE6
TgQnT8Fj69IREBf4YjQzfoaY9jvoxcc6Ctmew57v+l2J1r5e7caTo2AblKIv
tMudeHHAhzmsYBQiJc+HWDh7EAlPOFrV10fBILvFr8PFi/Dlykn9c+QnXN+t
+Dww05s44UOczcn4CWorXB3rAn6E5rdOReu5nzDNIlzr0RhACOtc/Md7aAwu
Hj7zTe19MLGew/yhIXEMRKPbVLYwhhADW9LvhI6NwXCmpZjwl1DinZf6aXXN
cZC6TfeK+8NVIrP7i/SfW+NAsVi54vI7nLhGuM5k941DqYUnZ7tuBHEma1P5
aflfYCjlGb6/6yahz5ZynTf0F2B2P/l7ZjQh66Fk1tD6C9JeGeSzHY8ltnQ2
7AiVnAATC13r+vU7xJSW46ia7wRw9sUck2qMJz5nrD6f+jBBqw+rS3nlXeI5
c0JQ9vZJ6MiyZDHvTSLi3Pfonj43CU5Hd3d+kU4hjmlYf6vn/A11m3+Gbzry
kFB/OJ8dYvcbcu47aj3dnkEIMcZ4qBX/hnzNJ0sLuZnEPzdpranNUzCkJb5V
53gW0felkjHbcgqCRvaw3JDOISrJx7+cejwFmWn3XvVtyyXSU/+k8CxPwetn
/cLeCnmEk4uYQkjqH6junwnM6i4kdJtfr5Cn/sCzLRa1vKXPCb6U3KEF0WlI
b96713Z7McH46a9eq/40HLXNN0pIeEEsbODTp57TsCs9uIMk+4r4qRTNE5ky
DeuVAd9vfishup2/+jnVTEP2I4fT1nmviTeNnvt38M8AmcLV1ptTTuStVzxe
oMzA5ne34xi6K4kURTaO1jMzUKByrKAukUrccjrm9fT2DFwc92Upbn9HBCdl
dkW8ngEBpavNtdI1hHvDlLbT4AyUKH0rZI2pJWzWNDOBbRbo//r132WvI9Cx
7fzCqVkQkv6rzmVSTygmira2XJsFxwdJPdb8jQSp/pza06ezINwrpFe62EQw
yDPQO23MgufUXfmzkV+IeXvTsyAzBwpCEaekH7cQowmpTUJmc8ARsmNIrqOV
+LCiktSSOQfmy4F23M4dhJuURO/ixzkw8fksaPe8k+A05Rbf+WcOvFnTjRK2
dBPHsn/nuWn9BcdPPhVBKz3Eyudvf2Lt/0Je18EdWdG9xIOVepXSG3/hm9Nx
t1SVfmL4SE7l5va/4PvnlnD8wAAREZiwWXblL4jk3nq0t32QkMsO0zcVm4eq
UaWmo21DhNeKTWvq+XlIL493Y1kYJgSkjAVr4ubBRu5DZKjQKPHmiNbp8dfz
EJKv/vrU4Z8EXbbgqCrjAlCv9bzZ0zNOZH1mlDsttwCSw43VMmoThN7K3MUw
swWwtxiyi300ScQc+bLc/GABJoQyFdsK/hBKgZXEfM0CpFupjp7NniY6sgqu
7vi1APlX9S9RLs8QwisRHC7kRagsnWDO0p8jqJJ+5jGnF2Ek52JBu/ZfwvGI
c9LLsEXIC9Tq2qE1T+Rl6Yhv+rwIcuN7nfcfXyTUj6yopJxdgrqCN7eKBP8R
vQFjAdToJSge9Vk0OLNG/JfVWTn6YgmSHumSu96tE3XLxfrKdMsgn82e8eIL
HbhJZkRbSS8Dt4L5DZH4TcBx5Hbrf4eXgWuTZW/raXqwyDp3uil5Gahkta1r
TAyw1GyVMVu5DPebSU4/fjLA/WW90W0jy3CjnSyw9IURhkwkPZwVV4C6/7Ry
ajkzeC73Xl2vX4GUrJimNLotwCfZ+FFyegUKdMhBVbs54LXJGw4jgVUQuBZa
s8WaE+iy7iYlOaxCau6twgzPrZDVfLW3ImIV4qRCfax3cIPesqf4cOEqPJH6
96GigRtiTEzyFVZXYYVHDDZp8YJSgPb0MfF/cPB0X4LCP17oeCSrelnvH3wR
Fe9JreED4WWmqvr4f1DfVFfU6CwAeY+qWh32rEFzfUbZ5n/b4a+QzbV6szWA
izyBT6aEAOL+qSr4rYF9yLRF7NgOaA/RuLf2bg2it1yKaZwVgXXrF7bJx9ch
O2hWYVBJHPQ7zLg3gtehetQ2+H6jOMQfnq52zlyHN4fD8nNdSCCjtVda+fc6
bPrPuk/ouQSYbXs8+SlsA1RNXHzZ/KQh9fahNJXcDRjg2XqbUXUXjDINH7n/
aQNq8oAktLQLKgJjrVS20OGN5Rae5ejdYO76qXzTcTp8zrbkF7q6BxazUvlf
udLhg0yZqxojeyF14NwFl2A6jHOuZh1t3wc/j7OJfc6gw9pVRnZ9RwUI1tW7
mjpJh8ffFdsoBimBeJhA75ENOmQWo14OYlWGuooRlc08m5A39Fmo2n1l4Fa9
NuqqtgnnY9YYD9arQI7EOwO1sE24/HGfwUUzNTCyjc38lbAJnR68rWJeU4Pp
FNvVB483Yd3dzpL4AnXQ4lkvYPi0CUPa5rrqBTXhC53W1lZBenR15eG9I0YB
H20213BZetSMHs/P+U0BIf+v79Qp9LjJ68e6ZhUBzn/8Lj10oMeF3OltfOoI
K30vO88/pcc7nRMZtxj3g8TbfQ+YD2zG2ah6p59CurDVy+mN6fHNeO0eexFz
iS78k0npuHduM/Iu6z8ItdCDzkRGzj0Jm7GhYsv8q/v6cNOr94rpyGYMWne+
HWNhBH67ee7fW96Me4z5FcbZD4PTgF7pEAcDivMs1TJ9OAwUkxd/vMkMyLik
/ouqbwLTu2/a3bvBgGZSDctdFabQN1AVPHSfAbmXZ8B0txk0JM0nyz1nQMUb
oYyDiWaQxWjfUtFN+/61pIKLvzkcH1TbP7SbEftW2ePaLC2gMnlEQq6JEYVm
GwNdQ05A/pEd6D3AiGUaWyRqt1pBMpPZ6Yq/jPi1+nxP3iMr8PIuTzgiwoQu
ogrCmi0nQco0ntH7AhO67WMwUzhsDTzM9eIVYUyYxvCu5O2MNaxXrFOYkpiw
VPpRJ2eKDXTLufkmVzGheNrgUdk5W4hi1vlZvpUZJyeexTA42UNApe9mJilm
PFvGFm1ebQ9nfApEj2gwYxhdXjSJ5ADwQ/DEoD0zHlFdLTo+6gCzlVMfGV8w
o0SVllFIqBNY+abmmViyYD0jl5sgkwuI7X5EpriwYNEGXRPZ1wVGvz2plgti
QSfTyJSeny7gpVPaw5LBgv5K0YlvP7vCzS2tbDWTLNg9I26nVnwOyjOZz6ld
Y8WjU+7JxbUXIcySc1EqiRX3XY6fgV0eoM/Cf5UvjxUzWdOj6Nw9oMOddH/m
Myt6zrO48K96wJQ6pTF/BxsydC2+eSXuBaKfveTEXrDhs1NGluwp3jAaGlDK
WceGJcyyXzV/e9PmbsiBtW425Ly0lnxSxwfUU6JP9ayz4ab7ets8Jn3A1Dn3
VoIhO/qF1ucImvhB2GrfBMsQO6r3CET6YCCM7DIomNnKgTaHY+QGvUNg1rJk
1UeKA2OeHMqOfBECdNckjFY0OJDB85lQx2wICA+sjdM7cuCfAEWX45dCwSK5
eBffKw4sMjXZKhQcBtUswo/IVpx44NHv/bxPr8EXcuRsmTsnXgxnM5RfuAb9
Tgs6EMaJESItAwsQDsvULwN6+Zxo8OPn1Zsd4aAQEL7Tao0T5ZITLnxmuQFp
41P3gjK40MDo/VvJ2EgoEDw9vvGKCxN4QzbvHo6EskP16tcauJBUC5n96jeh
I+NRV9QcF1425/1tM3wTmPYWsH0mbcVXPhP7yw5EATFipz/gvRVzVlgGGSVv
Q4FlQw39dm58Wlyj0fgqDno3Cpj4JbixK8XhEPuvOODIu22way83bt7+rzFj
ZzxcWLf4bKTDjRtKG3StEfGg+Ph7T4IrN+7VvVOsbZ8AJUt/Z6TLuPHEaM8R
CVIiUO+Lihmd4kHe1CkxyR/3oG3QOzj+AS/6WOqky8tmwDQr+i3l8GJIFqpM
GGUApxK7l/VzXryim6X53j0D9MMyzu6q4UX7mh0/24oyoJLUbP52jBeVWMUe
HtPKhFzHXbt/KPPhe+PPa3VHH0HwyNcOpQY+bM8o2vEzORukxgn51gV+PH/u
0BXXs3lwzqrbpD5sGyoz3+WjVBVD78E7Lhd+CGGHLve+zk+l8FJLctu7SSFU
5F188WCgFG4plX7gXRDCK4YuSifnSkFTrE/6DcsOrHq5M7Vo22tIXpUZ2bxv
B4q7/6Z2OrwGi2Kq/T3/HZjx7WLp97+voUl0+mQthzDGHMo6JcpVBlkCV9kE
BYXxRnK31mGxMgjiEChzFRPG8hsHfd0Uy0B2VWs7l7IwUoaTYgOPlkFE540u
qxPCyHgr4NpoYhkcjBa1+JMpjHdNvh/oEnoLb1dMjIXURZD1a4+Kt0A5kOXv
9qvtF0E49undiHQ5FDt+u2h5WAS/MVQk7Fcrh9yms3GxdiKo7ZX9qOJ4OSSm
hXQxRYqg4Pm8uyVJ5eCxv9h+7qsIek/t3pXGWwGSN/l9m4J24p0A5oaslQp4
WHmK+Vf4TrS6b6dtxlIJQnMZycyxO5HiqrJvlL8SuE/ve7s/ayfK5jkY1CtU
wvpePbo3TTuxXOtqsJdzJXxt8b+ZLSKKavlJBfsbKiFme2/alSpRTLXM+usb
WgULjWxjUx9F0WyqfcjuVhXYXNFQtG0VxQuhk/0qd6tg74/EGhgRxUKtiqGU
3Co40ynjHcIohil1DmY2zVXAlP4jWUdODA88C7jXz0YFzeXAimV5MfxGu4eQ
uKhwwZxnqEhFDDPLqkVO8VKhk0FHjkSIoYfWm5m8HVTIcU2roDcTw//u2OrV
ylFBV9lqqMZXDJPrPqr0GlAhMGqaKThIDNk/MCWdN6ZC4cgNOZUQMRygrpTM
mFJBILnEOytSDJ/mS+/tOU6F0X+8zOGpYnhHNuaHhDMVhI7ly1EyxNB4okvi
pAsVTJ7tN53PFkOO95d2hp+jQom95z3nZ2L4TD1z/xtPKlyva5bTrRZDhcsN
RimXqVAmesZ0vU4Md8zPO/iGUGHKf827pFEMX517S9a7SoVjcnsqpTvEMOhn
n8CHCCpIx0aaMo+J4cr+hhaIp0Kd1UGfjxzi6D+uoCWQQ4Ums1dsozziqH7e
Kuh8LhVaDaTTN28Tx8rPxsmv8qjQr8FCu3SIo5rEgpfYMyrMb28Se0UWxwq/