Skip to content

Latest commit

 

History

History
146 lines (117 loc) · 6.08 KB

7_java_api.md

File metadata and controls

146 lines (117 loc) · 6.08 KB

Documentation

Using Connector in Java

This section describes how to access the functionality of Connector when you write your program in Java. It is assumed that you already familiarized yourself with the previous sections and you understand how Connector works.

Prerequisites

On order to use Java API, you need to add the Java API module to the list of dependencies:

libraryDependencies += "com.datastax.spark" %% "spark-cassandra-connector-java" % "1.0.0-rc3" withSources() withJavadoc()

The best way to use Connector Java API is to import statically all the methods in CassandraJavaUtil. This utility class is the main entry point for Connector Java API.

import static com.datastax.spark.connector.CassandraJavaUtil.*;

Accessing Cassandra tables in Java

CassandraJavaRDD is a CassandraRDD counterpart in Java. It allows to invoke easily Connector specific methods in order to enforce selection or projection on the database side. However, conversely to CassandraRDD, it extends JavaRDD which is much more suitable for the development of Spark applications in Java.

In order to create CassandraJavaRDD you need to invoke one of the cassandraTable methods of a special wrapper around SparkContext. The wrapper can be easily obtained with use of one of the overloaded javaFunctions method in CassandraJavaUtil.

Example:

JavaRDD<String> cassandraRowsRDD = javaFunctions(sc).cassandraTable("ks", "tab")
        .map(new Function<CassandraRow, String>() {
            @Override
            public String call(CassandraRow cassandraRow) throws Exception {
                return cassandraRow.toString();
            }
        });
System.out.println("Data as CassandraRows: \n" + StringUtils.join("\n", cassandraRowsRDD.toArray()));

In the above example, cassandraTable method has been used to create CassandraJavaRDD view of the data in ks.tab. The elements of the returned RDD are of CassandraRow type. If you want to produce an RDD of custom beans, you may use cassandraTable method, which accepts the class of RDD's elements.

Example:

// firstly, we define a bean class
public static class Person implements Serializable {
    private Integer id;
    private String name;
    private Date birthDate;

    // Remember to declare no-args constructor
    public Person() { }

    public Integer getId() { return id; }
    public void setId(Integer id) { this.id = id; }

    public String getName() { return name; }
    public void setName(String name) { this.name = name; }

    public Date getBirthDate() { return birthDate; }
    public void setBirthDate(Date birthDate) { this.birthDate = birthDate; }

    // other methods, constructors, etc.
}
JavaRDD<String> rdd = javaFunctions(sc).cassandraTable("ks", "people", Person.class)
        .map(new Function<Person, String>() {
            @Override
            public String call(Person person) throws Exception {
                return person.toString();
            }
        });
System.out.println("Data as Person beans: \n" + StringUtils.join("\n", rdd.toArray()));

In this example, we created a CassandraJavaRDD of Person elements. While defining bean classes like Person, remember to define no-args constructor. Although, it is not required for it to be the only constructor of such a class.

Using selection and projection on the database side

Once CassandraJavaRDD is created, you may apply selection and projection on that RDD by invoking where and select methods on it respectively. Their semantic is the same as the semantic of their counterparts in CassandraRDD.

Example:

JavaRDD<String> rdd = javaFunctions(sc).cassandraTable("ks", "tab")
        .select("id").map(new Function<CassandraRow, String>() {
            @Override
            public String call(CassandraRow cassandraRow) throws Exception {
                return cassandraRow.toString();
            }
        });
System.out.println("Data with only 'id' column fetched: \n" + StringUtils.join("\n", rdd.toArray()));

Example:

JavaRDD<String> rdd = javaFunctions(sc).cassandraTable("ks", "tab")
        .where("name=?", "Anna").map(new Function<CassandraRow, String>() {
            @Override
            public String call(CassandraRow cassandraRow) throws Exception {
                return cassandraRow.toString();
            }
        });
System.out.println("Data filtered by the where clause (name='Anna'): \n" + StringUtils.join("\n", rdd.toArray()));

Saving data to Cassandra

javaFunctions method can be also applied to any RDD in order to provide saveToCassandra overloaded methods. Because Java lacks default values for arguments and implicit conversions, and for user's convenience, saveToCassandra method is overloaded with a large amount of argument combinations. In the following example, a JavaRDD of Person elements is saved to Cassandra table ks.people.

Example:

List<Person> people = Arrays.asList(
        Person.newInstance(1, "John", new Date()),
        Person.newInstance(2, "Anna", new Date()),
        Person.newInstance(3, "Andrew", new Date())
);
JavaRDD<Person> rdd = sc.parallelize(people);
javaFunctions(rdd, Person.class).saveToCassandra("ks", "people");

Extensions for Spark Streaming

The main entry point for Spark Streaming in Java is JavaStreamingContext object. Like for JavaSparkContext, we can use javaFunctions method to access Connector specific functionality. For example, we can create an ordinary CassandraJavaRDD by invoking the same cassandraTable method as we do for SparkContext. There is nothing specific to streaming in this case - these methods are provided only for convenience and they use SparkContext wrapped by StreamingContext under the hood.

You may also save the data from JavaDStream to Cassandra. Again, you need to use javaFunctions method to create a special wrapper around JavaDStream and then invoke one of the saveToCassandra methods. DStream is a sequence of RDDs and when you invoke saveToCassandra on it, it will follow saving to Cassandra all the RDDs in that DStream.