-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsometools.py
195 lines (173 loc) · 6.58 KB
/
sometools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
import pandas
import statsmodels.api as sm
import matplotlib.pyplot as plt
import talib
import datetime
def getTushareToken():
"""从文件".env"获取tushare token
"""
import os
from dotenv import load_dotenv
if os.path.exists(".env"):
# 存在文件".env"
config = load_dotenv()
if config:
return os.environ.get("TUSHARE_TOKEN")
else:
print("You must set tushare token in file:'.env' first!!!\n see example.env ")
exit(1)
class tools(object):
"""一些用于分析的tool函数"""
def __init__(self):
# pro=ts.pro_api(token='d37e1279d92ac6d0470c5a14eb4dd227e4dfbaa8261e66ce2af19684')
pass
# ===================================================================================================================
def GetHoldRatio(self, df): # 通过大盘强弱得到持仓比例
orghold = 0.1
closed = df['close'].values
price = df['close'].tolist()[-1]
ma20 = talib.SMA(closed, timeperiod=20)
ma60 = talib.SMA(closed, timeperiod=60)
angel20 = self.data_to_deg(ma20[-6:-1])
angel60 = self.data_to_deg(ma60[-6:-1])
if price > ma60[-1] and price > ma20[-1]:
orghold = 1
elif price > ma60[-1] and price < ma20[-1]:
orghold = 0.5
elif price < ma60[-1] and price > ma20[-1]:
orghold = 0.3
elif price < ma60[-1] and price < ma20[-1]:
orghold = 0.1
return orghold
# ===================================================================================================================
# 将输入的数据序列拟合成直线,输出斜率,格式为度
def data_to_deg(self, data):
deg_data = 0
try:
y_arr = data/np.mean(data)
x_arr = np.arange(0, len(y_arr))
x_b_arr = sm.add_constant(x_arr) # 添加常数列1
model = sm.OLS(y_arr, x_b_arr).fit() # 使用OLS做拟合
rad = model.params[1] # y = kx + b :params[1] = k
deg_data = np.rad2deg(rad) # 弧度转换为角度
except:
pass
return round(deg_data, 2)
def GoldenCross(self, fast, slow):
# if not fast or not slow :
# return False
if fast[-1] > slow[-1] and fast[-2] < slow[-2]:
return True
else:
return False
def DeathCross(self, fast, slow):
# if not fast or not slow :
# return False
if fast[-1] < slow[-1] and fast[-2] > slow[-2]:
return True
else:
return False
def LLV(self, data, period):
return data[-1-period:-1].min()
def HHV(self, data, period):
return np.max(data[-1-period:-1])
def EMA(self, c, N):
Y = 0
n = 1
for ci in c[-N:]:
Y = (2 * ci + (n - 1) * Y) / (n + 1)
n += 1
return Y
def EMA2(self, c, N, denominator=1):
if N >= 1:
if denominator == 1:
denominator = sum(range(N + 1))
return N / denominator * c[-1] + EMA2(c[len(c) - N:len(c) - 1], N - 1, denominator)
else:
return 0
def SMA(self, c, N):
pass
def zig(self, df, x=0.10):
ZIG_STATE_START = 0
ZIG_STATE_RISE = 1
ZIG_STATE_FALL = 2
peer_i = 0
candidate_i = None
scan_i = 0
peers = [0]
closed = df['close'].values
#
k = talib.SMA(closed, timeperiod=5)
k = k[5:-1]
# 22年3月修改了代码,由原来的收盘价改为了5日均线价
# 原代码 k=df['close'].values
# k=df['close'].values
d = df["trade_date"]
#d = df['date']
z = np.zeros(len(k))
state = ZIG_STATE_START
while True:
# print(peers)
scan_i += 1
if scan_i == len(k) - 1:
# 扫描到尾部
if candidate_i is None:
peer_i = scan_i
peers.append(peer_i)
else:
if state == ZIG_STATE_RISE:
if k[scan_i] >= k[candidate_i]:
peer_i = scan_i
peers.append(peer_i)
else:
peer_i = candidate_i
peers.append(peer_i)
peer_i = scan_i
peers.append(peer_i)
elif state == ZIG_STATE_FALL:
if k[scan_i] <= k[candidate_i]:
peer_i = scan_i
peers.append(peer_i)
else:
peer_i = candidate_i
peers.append(peer_i)
peer_i = scan_i
peers.append(peer_i)
break
if state == ZIG_STATE_START:
if k[scan_i] >= k[peer_i] * (1 + x):
candidate_i = scan_i
state = ZIG_STATE_RISE
elif k[scan_i] <= k[peer_i] * (1 - x):
candidate_i = scan_i
state = ZIG_STATE_FALL
elif state == ZIG_STATE_RISE:
if k[scan_i] >= k[candidate_i]:
candidate_i = scan_i
elif k[scan_i] <= k[candidate_i]*(1-x):
peer_i = candidate_i
peers.append(peer_i)
state = ZIG_STATE_FALL
candidate_i = scan_i
elif state == ZIG_STATE_FALL:
if k[scan_i] <= k[candidate_i]:
candidate_i = scan_i
elif k[scan_i] >= k[candidate_i]*(1+x):
peer_i = candidate_i
peers.append(peer_i)
state = ZIG_STATE_RISE
candidate_i = scan_i
# 线性插值, 计算出zig的值
for i in range(len(peers) - 1):
peer_start_i = peers[i]
peer_end_i = peers[i+1]
start_value = k[peer_start_i]
end_value = k[peer_end_i]
a = (end_value - start_value)/(peer_end_i - peer_start_i) # 斜率
for j in range(peer_end_i - peer_start_i + 1):
z[j + peer_start_i] = start_value + a*j
# plt.plot(z)
return z
if __name__ == "__main__":
a = tools()