-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrack_statistics.go
436 lines (397 loc) · 12.4 KB
/
track_statistics.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/* Copyright (C) 2016 Philipp Benner
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package gonetics
/* -------------------------------------------------------------------------- */
import "fmt"
import "math"
import "sort"
/* -------------------------------------------------------------------------- */
type BinSummaryStatistics func(sum, sumSquares, min, max, n float64) float64
func BinMean(sum, sumSquares, min, max, n float64) float64 {
return sum/n
}
func BinMax (sum, sumSquares, min, max, n float64) float64 {
return max
}
func BinMin (sum, sumSquares, min, max, n float64) float64 {
return min
}
func BinDiscreteMean(sum, sumSquares, min, max, n float64) float64 {
return math.Floor(sum/n + 0.5)
}
func BinDiscreteMax (sum, sumSquares, min, max, n float64) float64 {
return math.Floor(max)
}
func BinDiscreteMin (sum, sumSquares, min, max, n float64) float64 {
return math.Floor(min)
}
func BinVariance(sum, sumSquares, min, max, n float64) float64 {
return sumSquares/n - sum/n*sum/n
}
func BinSummaryStatisticsFromString(str string) BinSummaryStatistics {
switch str {
case "mean":
return BinMean
case "max":
return BinMax
case "min":
return BinMin
case "discrete mean":
return BinDiscreteMean
case "discrete max":
return BinDiscreteMax
case "discrete min":
return BinDiscreteMin
case "variance":
return BinVariance
}
return nil
}
/* -------------------------------------------------------------------------- */
// Compute the sample cross-correlation between track1 and track2. If
// [normalize] is true the result is normalized by mean and variance. The
// arguments [from] and [to] specify the range of the delay in basepairs.
func TrackCrosscorrelation(track1, track2 Track, from, to int, normalize bool) (x []int, y []float64, err error) {
var sequence1 TrackSequence
var sequence2 TrackSequence
if from < 0 || to < from {
err = fmt.Errorf("Crosscorrelation(): invalid parameters")
return
}
if track1.GetBinSize() != track2.GetBinSize() {
err = fmt.Errorf("Crosscorrelation(): track binSizes do not match")
return
}
for _, name := range track1.GetSeqNames() {
sequence1, err = track1.GetSequence(name); if err != nil {
return
}
// skip sequence if it is not present in the second track
sequence2, err = track2.GetSequence(name); if err != nil {
continue
}
if sequence1.NBins() != sequence2.NBins() {
err = fmt.Errorf("Crosscorrelation(): track sequence lengths do not match")
return
}
}
b := track1.GetBinSize()
n := divIntUp(to-from, b) // number of points in the resulting autocorrelation
m := 0.0 // number of data points
// sample mean and covariance
mean1 := 0.0
mean2 := 0.0
variance1 := 1.0
variance2 := 1.0
// allocate result
x = make([]int, n)
y = make([]float64, n)
// compute delays used for indexing (i.e. normalized by binSize)
for j, l := 0, from; l < to; j, l = j+1, l+b {
x[j] = l/b
}
if normalize {
// compute mean and covariance
for _, name := range track1.GetSeqNames() {
sequence1, err = track1.GetSequence(name); if err != nil {
return
}
// skip sequence if it is not present in the second track
sequence2, err = track2.GetSequence(name); if err != nil {
continue
}
s1 := 0.0
s2 := 0.0
t1 := 0.0
t2 := 0.0
// loop over sequence
for i := 0; i < sequence1.NBins(); i++ {
s1 += sequence1.AtBin(i)
s2 += sequence2.AtBin(i)
t1 += sequence1.AtBin(i)*sequence1.AtBin(i)
t2 += sequence2.AtBin(i)*sequence2.AtBin(i)
}
k := float64(sequence1.NBins())
mean1 = m/(m+k)*mean1 + 1/(m+k)*s1
mean2 = m/(m+k)*mean2 + 1/(m+k)*s2
variance1 = m/(m+k)*variance1 + 1/(m+k)*t1
variance2 = m/(m+k)*variance2 + 1/(m+k)*t2
m += k
}
variance1 -= mean1*mean1
variance2 -= mean2*mean2
}
// compute autocorrelation
m = 0
for _, name := range track1.GetSeqNames() {
sequence1, err = track1.GetSequence(name); if err != nil {
return
}
// skip sequence if it is not present in the second track
sequence2, err = track2.GetSequence(name); if err != nil {
continue
}
s := make([]float64, n)
// loop over sequence
for i := 0; i < sequence1.NBins(); i++ {
for j := 0; j < n && i+x[j] < sequence1.NBins(); j++ {
s[j] += (sequence1.AtBin(i)-mean1)*(sequence2.AtBin(i+x[j])-mean2)
}
}
k := float64(sequence1.NBins())
for j := 0; j < n ; j++ {
y[j] = m/(m+k)*y[j] + 1/(m+k)*s[j]
}
m += k
}
// convert delays
for j := 0; j < n ; j++ {
x[j] *= b
y[j] /= math.Sqrt(variance1*variance2)
}
return
}
/* -------------------------------------------------------------------------- */
// Compute crosscorrelation between reads on the forward and reverse strand.
func CrosscorrelateReads(reads ReadChannel, genome Genome, maxDelay, binSize int) ([]int, []float64, int, uint64, error) {
track1 := AllocSimpleTrack("forward", genome, binSize)
track2 := AllocSimpleTrack("reverse", genome, binSize)
// number of reads
n := uint64(0)
// mean read length
readLength := uint64(0)
for read := range reads {
if read.Strand == '+' {
// set length to one
read.Range.To = read.Range.From+1
// add read
if err := (GenericMutableTrack{track1}).AddRead(read, 0); err == nil {
readLength += uint64(read.Range.To - read.Range.From); n++
}
} else
if read.Strand == '-' {
// set length to one
read.Range.From = read.Range.To-1
// move reads on the reverse strand one bp to the right
read.Range.From++
read.Range.To ++
// add read
if err := (GenericMutableTrack{track2}).AddRead(read, 0); err == nil {
readLength += uint64(read.Range.To - read.Range.From); n++
}
}
}
if n == 0 {
return nil, nil, 0, n, fmt.Errorf("computing cross-correlation failed: no reads available")
}
readLength /= uint64(n)
x, y, err := TrackCrosscorrelation(track1, track2, 0, maxDelay, true)
return x, y, int(readLength), n, err
}
/* estimate mean fragment length
* -------------------------------------------------------------------------- */
var ErrFraglenEstimate = fmt.Errorf("estimating fragment length failed")
func EstimateFragmentLength(reads ReadChannel, genome Genome, maxDelay, binSize int, fraglenRange [2]int) (int, []int, []float64, uint64, error) {
x, y, readLength, n, err := CrosscorrelateReads(reads, genome, maxDelay, binSize)
if err != nil {
return -1, nil, nil, n, err
}
// set initial feasible range
from := int(readLength + readLength/2)
to := maxDelay
// check if a feasible range is given
if fraglenRange[0] != -1 {
from = fraglenRange[0]
}
if fraglenRange[1] != -1 {
to = fraglenRange[1]
}
// find peak
i_max := -1
v_max := 0.0
for i := 1; i < len(x)-1; i++ {
// skip everything close to the read length (i.e. fantom peaks)
if x[i] < from {
continue
}
if x[i] >= to {
break
}
// test for local maximum
if y[i-1] < y[i] && y[i] > y[i+1] {
// update global maximum if necessary
if v_max < y[i] {
i_max = i
v_max = y[i]
}
}
}
if i_max == -1 {
return -1, x, y, n, fmt.Errorf("%w: %s", ErrFraglenEstimate, "no crosscorrelation peak found")
}
if v_max < y[len(y)-1] {
return -1, x, y, n, fmt.Errorf("%w: %s", ErrFraglenEstimate, "it seems that maxDelay is too small")
}
return x[i_max], x, y, n, nil
}
/* -------------------------------------------------------------------------- */
// Compute the sample autocorrelation. If [normalize] is true the result is
// normalized by mean and variance. The arguments [from] and [to] specify the
// range of the delay in basepairs.
func TrackAutocorrelation(track Track, from, to int, normalize bool) (x []int, y []float64, err error) {
return TrackCrosscorrelation(track, track, from, to, normalize)
}
/* -------------------------------------------------------------------------- */
type TrackSummaryStatistics struct {
Name string
Mean float64
Max float64
Min float64
N int
}
func (statistics TrackSummaryStatistics) String() string {
var s string
if statistics.Name == "" {
s = fmt.Sprintf("Track summary statistics\n")
} else {
s = fmt.Sprintf("Track `%s' summary statistics\n", statistics.Name)
}
s += "- N : %d\n"
s += "- Maximum: %f\n"
s += "- Minimum: %f\n"
s += "- Mean : %f"
return fmt.Sprintf(s, statistics.N, statistics.Max, statistics.Min, statistics.Mean)
}
func (track GenericTrack) SummaryStatistics() TrackSummaryStatistics {
statistics := TrackSummaryStatistics{}
statistics.Name = track.GetName()
statistics.N = 0
statistics.Max = math.Inf(-1)
statistics.Min = math.Inf(+1)
// compute number of data points
for _, name := range track.GetSeqNames() {
sequence, err := track.GetSequence(name); if err != nil {
continue
}
for i := 0; i < sequence.NBins(); i++ {
if !math.IsNaN(sequence.AtBin(i)) {
statistics.N++
}
}
}
// compute statistics
for _, name := range track.GetSeqNames() {
sequence, err := track.GetSequence(name); if err != nil {
continue
}
for i := 0; i < sequence.NBins(); i++ {
// skip NaN values
if math.IsNaN(sequence.AtBin(i)) {
continue
}
if sequence.AtBin(i) < statistics.Min {
statistics.Min = sequence.AtBin(i)
}
if sequence.AtBin(i) > statistics.Max {
statistics.Max = sequence.AtBin(i)
}
// update mean
statistics.Mean += 1.0/float64(statistics.N)*sequence.AtBin(i)
}
}
return statistics
}
/* -------------------------------------------------------------------------- */
type TrackHistogram struct {
Name string
X []float64
Y []float64
}
func (histogram TrackHistogram) String() string {
s := "Track `%s' histogram\n"
s += "- X: %v\n"
s += "- Y: %v"
return fmt.Sprintf(s, histogram.Name, histogram.X, histogram.Y)
}
func (track GenericTrack) histogramNoBinning() TrackHistogram {
histogram := TrackHistogram{}
m := make(map[float64]int)
for _, name := range track.GetSeqNames() {
sequence, err := track.GetSequence(name); if err != nil {
continue
}
for i := 0; i < sequence.NBins(); i++ {
m[sequence.AtBin(i)]++
}
}
histogram.X = make([]float64, len(m))
histogram.Y = make([]float64, len(m))
{ i := 0
for x, _ := range m {
histogram.X[i] = x; i++
}
}
sort.Float64s(histogram.X)
for i := 0; i < len(histogram.X); i++ {
histogram.Y[i] = float64(m[histogram.X[i]])
}
return histogram
}
func (track GenericTrack) Histogram(from, to float64, bins int) TrackHistogram {
if bins == 0 {
return track.histogramNoBinning()
}
histogram := TrackHistogram{}
if from >= to {
return histogram
}
// allocate memory
histogram.Name = track.GetName()
histogram.X = make([]float64, bins)
histogram.Y = make([]float64, bins)
c := float64(bins)/(to-from)
// compute x values
for i := 0; i < bins; i++ {
histogram.X[i] = from + float64(i)/c
}
// compute y values
for _, name := range track.GetSeqNames() {
sequence, err := track.GetSequence(name); if err != nil {
continue
}
for i := 0; i < sequence.NBins(); i++ {
// skip NaN values
if math.IsNaN(sequence.AtBin(i)) {
continue
}
j := int(math.Floor((sequence.AtBin(i) - from)*c))
if j >= 0 && j < bins {
histogram.Y[j] += 1.0
}
}
}
return histogram
}
func (track GenericTrack) CumulativeHistogram(from, to float64, bins int) TrackHistogram {
histogram := GenericTrack{track}.Histogram(from, to, bins)
// cumulative sum
sum := 0.0
for i := 0; i < len(histogram.Y); i++ {
sum += histogram.Y[i]
histogram.Y[i] = sum
}
return histogram
}