From 508690b2c4567b330e4f5341b6bff1b601639726 Mon Sep 17 00:00:00 2001 From: Kiki Date: Tue, 26 Jan 2016 12:17:34 -0500 Subject: [PATCH 1/7] Updated explanation --- .../DataExploration-checkpoint.ipynb | 3020 +++++++++++++++++ DataExploration.ipynb | 3020 +++++++++++++++++ test.csv | 419 +++ thinkplot.pyc | Bin 0 -> 19381 bytes thinkstats2.pyc | Bin 0 -> 85372 bytes train.csv | 892 +++++ 6 files changed, 7351 insertions(+) create mode 100644 .ipynb_checkpoints/DataExploration-checkpoint.ipynb create mode 100644 DataExploration.ipynb create mode 100644 test.csv create mode 100644 thinkplot.pyc create mode 100644 thinkstats2.pyc create mode 100644 train.csv diff --git a/.ipynb_checkpoints/DataExploration-checkpoint.ipynb b/.ipynb_checkpoints/DataExploration-checkpoint.ipynb new file mode 100644 index 0000000..59cdf73 --- /dev/null +++ b/.ipynb_checkpoints/DataExploration-checkpoint.ipynb @@ -0,0 +1,3020 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Shivali Chandra\n", + "Data Exploration\n", + "1/25/16" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale2210A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female3810PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale2600STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female351011380353.1000C123S
4503Allen, Mr. William Henrymale35003734508.0500NaNS
5603Moran, Mr. JamesmaleNaN003308778.4583NaNQ
6701McCarthy, Mr. Timothy Jmale54001746351.8625E46S
7803Palsson, Master. Gosta Leonardmale23134990921.0750NaNS
8913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female270234774211.1333NaNS
91012Nasser, Mrs. Nicholas (Adele Achem)female141023773630.0708NaNC
101113Sandstrom, Miss. Marguerite Rutfemale411PP 954916.7000G6S
111211Bonnell, Miss. Elizabethfemale580011378326.5500C103S
121303Saundercock, Mr. William Henrymale2000A/5. 21518.0500NaNS
131403Andersson, Mr. Anders Johanmale391534708231.2750NaNS
141503Vestrom, Miss. Hulda Amanda Adolfinafemale14003504067.8542NaNS
151612Hewlett, Mrs. (Mary D Kingcome)female550024870616.0000NaNS
161703Rice, Master. Eugenemale24138265229.1250NaNQ
171812Williams, Mr. Charles EugenemaleNaN0024437313.0000NaNS
181903Vander Planke, Mrs. Julius (Emelia Maria Vande...female311034576318.0000NaNS
192013Masselmani, Mrs. FatimafemaleNaN0026497.2250NaNC
202102Fynney, Mr. Joseph Jmale350023986526.0000NaNS
212212Beesley, Mr. Lawrencemale340024869813.0000D56S
222313McGowan, Miss. Anna \"Annie\"female15003309238.0292NaNQ
232411Sloper, Mr. William Thompsonmale280011378835.5000A6S
242503Palsson, Miss. Torborg Danirafemale83134990921.0750NaNS
252613Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...female381534707731.3875NaNS
262703Emir, Mr. Farred ChehabmaleNaN0026317.2250NaNC
272801Fortune, Mr. Charles Alexandermale193219950263.0000C23 C25 C27S
282913O'Dwyer, Miss. Ellen \"Nellie\"femaleNaN003309597.8792NaNQ
293003Todoroff, Mr. LaliomaleNaN003492167.8958NaNS
.......................................
86186202Giles, Mr. Frederick Edwardmale21102813411.5000NaNS
86286311Swift, Mrs. Frederick Joel (Margaret Welles Ba...female48001746625.9292D17S
86386403Sage, Miss. Dorothy Edith \"Dolly\"femaleNaN82CA. 234369.5500NaNS
86486502Gill, Mr. John Williammale240023386613.0000NaNS
86586612Bystrom, Mrs. (Karolina)female420023685213.0000NaNS
86686712Duran y More, Miss. Asuncionfemale2710SC/PARIS 214913.8583NaNC
86786801Roebling, Mr. Washington Augustus IImale3100PC 1759050.4958A24S
86886903van Melkebeke, Mr. PhilemonmaleNaN003457779.5000NaNS
86987013Johnson, Master. Harold Theodormale41134774211.1333NaNS
87087103Balkic, Mr. Cerinmale26003492487.8958NaNS
87187211Beckwith, Mrs. Richard Leonard (Sallie Monypeny)female47111175152.5542D35S
87287301Carlsson, Mr. Frans Olofmale33006955.0000B51 B53 B55S
87387403Vander Cruyssen, Mr. Victormale47003457659.0000NaNS
87487512Abelson, Mrs. Samuel (Hannah Wizosky)female2810P/PP 338124.0000NaNC
87587613Najib, Miss. Adele Kiamie \"Jane\"female150026677.2250NaNC
87687703Gustafsson, Mr. Alfred Ossianmale200075349.8458NaNS
87787803Petroff, Mr. Nedeliomale19003492127.8958NaNS
87887903Laleff, Mr. KristomaleNaN003492177.8958NaNS
87988011Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)female56011176783.1583C50C
88088112Shelley, Mrs. William (Imanita Parrish Hall)female250123043326.0000NaNS
88188203Markun, Mr. Johannmale33003492577.8958NaNS
88288303Dahlberg, Miss. Gerda Ulrikafemale2200755210.5167NaNS
88388402Banfield, Mr. Frederick Jamesmale2800C.A./SOTON 3406810.5000NaNS
88488503Sutehall, Mr. Henry Jrmale2500SOTON/OQ 3920767.0500NaNS
88588603Rice, Mrs. William (Margaret Norton)female390538265229.1250NaNQ
88688702Montvila, Rev. Juozasmale270021153613.0000NaNS
88788811Graham, Miss. Margaret Edithfemale190011205330.0000B42S
88888903Johnston, Miss. Catherine Helen \"Carrie\"femaleNaN12W./C. 660723.4500NaNS
88989011Behr, Mr. Karl Howellmale260011136930.0000C148C
89089103Dooley, Mr. Patrickmale32003703767.7500NaNQ
\n", + "

891 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "5 6 0 3 \n", + "6 7 0 1 \n", + "7 8 0 3 \n", + "8 9 1 3 \n", + "9 10 1 2 \n", + "10 11 1 3 \n", + "11 12 1 1 \n", + "12 13 0 3 \n", + "13 14 0 3 \n", + "14 15 0 3 \n", + "15 16 1 2 \n", + "16 17 0 3 \n", + "17 18 1 2 \n", + "18 19 0 3 \n", + "19 20 1 3 \n", + "20 21 0 2 \n", + "21 22 1 2 \n", + "22 23 1 3 \n", + "23 24 1 1 \n", + "24 25 0 3 \n", + "25 26 1 3 \n", + "26 27 0 3 \n", + "27 28 0 1 \n", + "28 29 1 3 \n", + "29 30 0 3 \n", + ".. ... ... ... \n", + "861 862 0 2 \n", + "862 863 1 1 \n", + "863 864 0 3 \n", + "864 865 0 2 \n", + "865 866 1 2 \n", + "866 867 1 2 \n", + "867 868 0 1 \n", + "868 869 0 3 \n", + "869 870 1 3 \n", + "870 871 0 3 \n", + "871 872 1 1 \n", + "872 873 0 1 \n", + "873 874 0 3 \n", + "874 875 1 2 \n", + "875 876 1 3 \n", + "876 877 0 3 \n", + "877 878 0 3 \n", + "878 879 0 3 \n", + "879 880 1 1 \n", + "880 881 1 2 \n", + "881 882 0 3 \n", + "882 883 0 3 \n", + "883 884 0 2 \n", + "884 885 0 3 \n", + "885 886 0 3 \n", + "886 887 0 2 \n", + "887 888 1 1 \n", + "888 889 0 3 \n", + "889 890 1 1 \n", + "890 891 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38 1 \n", + "2 Heikkinen, Miss. Laina female 26 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 \n", + "4 Allen, Mr. William Henry male 35 0 \n", + "5 Moran, Mr. James male NaN 0 \n", + "6 McCarthy, Mr. Timothy J male 54 0 \n", + "7 Palsson, Master. Gosta Leonard male 2 3 \n", + "8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27 0 \n", + "9 Nasser, Mrs. Nicholas (Adele Achem) female 14 1 \n", + "10 Sandstrom, Miss. Marguerite Rut female 4 1 \n", + "11 Bonnell, Miss. Elizabeth female 58 0 \n", + "12 Saundercock, Mr. William Henry male 20 0 \n", + "13 Andersson, Mr. Anders Johan male 39 1 \n", + "14 Vestrom, Miss. Hulda Amanda Adolfina female 14 0 \n", + "15 Hewlett, Mrs. (Mary D Kingcome) female 55 0 \n", + "16 Rice, Master. Eugene male 2 4 \n", + "17 Williams, Mr. Charles Eugene male NaN 0 \n", + "18 Vander Planke, Mrs. Julius (Emelia Maria Vande... female 31 1 \n", + "19 Masselmani, Mrs. Fatima female NaN 0 \n", + "20 Fynney, Mr. Joseph J male 35 0 \n", + "21 Beesley, Mr. Lawrence male 34 0 \n", + "22 McGowan, Miss. Anna \"Annie\" female 15 0 \n", + "23 Sloper, Mr. William Thompson male 28 0 \n", + "24 Palsson, Miss. Torborg Danira female 8 3 \n", + "25 Asplund, Mrs. Carl Oscar (Selma Augusta Emilia... female 38 1 \n", + "26 Emir, Mr. Farred Chehab male NaN 0 \n", + "27 Fortune, Mr. Charles Alexander male 19 3 \n", + "28 O'Dwyer, Miss. Ellen \"Nellie\" female NaN 0 \n", + "29 Todoroff, Mr. Lalio male NaN 0 \n", + ".. ... ... ... ... \n", + "861 Giles, Mr. Frederick Edward male 21 1 \n", + "862 Swift, Mrs. Frederick Joel (Margaret Welles Ba... female 48 0 \n", + "863 Sage, Miss. Dorothy Edith \"Dolly\" female NaN 8 \n", + "864 Gill, Mr. John William male 24 0 \n", + "865 Bystrom, Mrs. (Karolina) female 42 0 \n", + "866 Duran y More, Miss. Asuncion female 27 1 \n", + "867 Roebling, Mr. Washington Augustus II male 31 0 \n", + "868 van Melkebeke, Mr. Philemon male NaN 0 \n", + "869 Johnson, Master. Harold Theodor male 4 1 \n", + "870 Balkic, Mr. Cerin male 26 0 \n", + "871 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) female 47 1 \n", + "872 Carlsson, Mr. Frans Olof male 33 0 \n", + "873 Vander Cruyssen, Mr. Victor male 47 0 \n", + "874 Abelson, Mrs. Samuel (Hannah Wizosky) female 28 1 \n", + "875 Najib, Miss. Adele Kiamie \"Jane\" female 15 0 \n", + "876 Gustafsson, Mr. Alfred Ossian male 20 0 \n", + "877 Petroff, Mr. Nedelio male 19 0 \n", + "878 Laleff, Mr. Kristo male NaN 0 \n", + "879 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56 0 \n", + "880 Shelley, Mrs. William (Imanita Parrish Hall) female 25 0 \n", + "881 Markun, Mr. Johann male 33 0 \n", + "882 Dahlberg, Miss. Gerda Ulrika female 22 0 \n", + "883 Banfield, Mr. Frederick James male 28 0 \n", + "884 Sutehall, Mr. Henry Jr male 25 0 \n", + "885 Rice, Mrs. William (Margaret Norton) female 39 0 \n", + "886 Montvila, Rev. Juozas male 27 0 \n", + "887 Graham, Miss. Margaret Edith female 19 0 \n", + "888 Johnston, Miss. Catherine Helen \"Carrie\" female NaN 1 \n", + "889 Behr, Mr. Karl Howell male 26 0 \n", + "890 Dooley, Mr. Patrick male 32 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S \n", + "5 0 330877 8.4583 NaN Q \n", + "6 0 17463 51.8625 E46 S \n", + "7 1 349909 21.0750 NaN S \n", + "8 2 347742 11.1333 NaN S \n", + "9 0 237736 30.0708 NaN C \n", + "10 1 PP 9549 16.7000 G6 S \n", + "11 0 113783 26.5500 C103 S \n", + "12 0 A/5. 2151 8.0500 NaN S \n", + "13 5 347082 31.2750 NaN S \n", + "14 0 350406 7.8542 NaN S \n", + "15 0 248706 16.0000 NaN S \n", + "16 1 382652 29.1250 NaN Q \n", + "17 0 244373 13.0000 NaN S \n", + "18 0 345763 18.0000 NaN S \n", + "19 0 2649 7.2250 NaN C \n", + "20 0 239865 26.0000 NaN S \n", + "21 0 248698 13.0000 D56 S \n", + "22 0 330923 8.0292 NaN Q \n", + "23 0 113788 35.5000 A6 S \n", + "24 1 349909 21.0750 NaN S \n", + "25 5 347077 31.3875 NaN S \n", + "26 0 2631 7.2250 NaN C \n", + "27 2 19950 263.0000 C23 C25 C27 S \n", + "28 0 330959 7.8792 NaN Q \n", + "29 0 349216 7.8958 NaN S \n", + ".. ... ... ... ... ... \n", + "861 0 28134 11.5000 NaN S \n", + "862 0 17466 25.9292 D17 S \n", + "863 2 CA. 2343 69.5500 NaN S \n", + "864 0 233866 13.0000 NaN S \n", + "865 0 236852 13.0000 NaN S \n", + "866 0 SC/PARIS 2149 13.8583 NaN C \n", + "867 0 PC 17590 50.4958 A24 S \n", + "868 0 345777 9.5000 NaN S \n", + "869 1 347742 11.1333 NaN S \n", + "870 0 349248 7.8958 NaN S \n", + "871 1 11751 52.5542 D35 S \n", + "872 0 695 5.0000 B51 B53 B55 S \n", + "873 0 345765 9.0000 NaN S \n", + "874 0 P/PP 3381 24.0000 NaN C \n", + "875 0 2667 7.2250 NaN C \n", + "876 0 7534 9.8458 NaN S \n", + "877 0 349212 7.8958 NaN S \n", + "878 0 349217 7.8958 NaN S \n", + "879 1 11767 83.1583 C50 C \n", + "880 1 230433 26.0000 NaN S \n", + "881 0 349257 7.8958 NaN S \n", + "882 0 7552 10.5167 NaN S \n", + "883 0 C.A./SOTON 34068 10.5000 NaN S \n", + "884 0 SOTON/OQ 392076 7.0500 NaN S \n", + "885 5 382652 29.1250 NaN Q \n", + "886 0 211536 13.0000 NaN S \n", + "887 0 112053 30.0000 B42 S \n", + "888 2 W./C. 6607 23.4500 NaN S \n", + "889 0 111369 30.0000 C148 C \n", + "890 0 370376 7.7500 NaN Q \n", + "\n", + "[891 rows x 12 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Import needed libraries and get data\n", + "%matplotlib inline\n", + "\n", + "import thinkstats2\n", + "import thinkplot\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "titanic_df = pd.read_csv('train.csv')\n", + "titanic_df" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassAgeSibSpParchFare
count714.000000714.000000714.000000714.000000714.000000714.000000714.000000
mean448.5826330.4061622.23669529.6991180.5126050.43137334.694514
std259.1195240.4914600.83825014.5264970.9297830.85328952.918930
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%222.2500000.0000001.00000020.1250000.0000000.0000008.050000
50%445.0000000.0000002.00000028.0000000.0000000.00000015.741700
75%677.7500001.0000003.00000038.0000001.0000001.00000033.375000
max891.0000001.0000003.00000080.0000005.0000006.000000512.329200
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Age SibSp \\\n", + "count 714.000000 714.000000 714.000000 714.000000 714.000000 \n", + "mean 448.582633 0.406162 2.236695 29.699118 0.512605 \n", + "std 259.119524 0.491460 0.838250 14.526497 0.929783 \n", + "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", + "25% 222.250000 0.000000 1.000000 20.125000 0.000000 \n", + "50% 445.000000 0.000000 2.000000 28.000000 0.000000 \n", + "75% 677.750000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 5.000000 \n", + "\n", + " Parch Fare \n", + "count 714.000000 714.000000 \n", + "mean 0.431373 34.694514 \n", + "std 0.853289 52.918930 \n", + "min 0.000000 0.000000 \n", + "25% 0.000000 8.050000 \n", + "50% 0.000000 15.741700 \n", + "75% 1.000000 33.375000 \n", + "max 6.000000 512.329200 " + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic_df.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Looking at the above data, a few factors immediately stand out to me to visualize. These include pclass, sex, age, and fare. I also thought it could be potentially useful or illuminating to create a visualization of passenger survival rate by cabin number, but there does not seem to be enough data to be able to gain any information. However, for each of the factors I will be analyzing I would like to keep the data size the same, so I will filter out those passengers who have NaN in any of the columns I chose to analyze. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale2210A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female3810PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale2600STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female351011380353.1000C123S
4503Allen, Mr. William Henrymale35003734508.0500NaNS
6701McCarthy, Mr. Timothy Jmale54001746351.8625E46S
7803Palsson, Master. Gosta Leonardmale23134990921.0750NaNS
8913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female270234774211.1333NaNS
91012Nasser, Mrs. Nicholas (Adele Achem)female141023773630.0708NaNC
101113Sandstrom, Miss. Marguerite Rutfemale411PP 954916.7000G6S
111211Bonnell, Miss. Elizabethfemale580011378326.5500C103S
121303Saundercock, Mr. William Henrymale2000A/5. 21518.0500NaNS
131403Andersson, Mr. Anders Johanmale391534708231.2750NaNS
141503Vestrom, Miss. Hulda Amanda Adolfinafemale14003504067.8542NaNS
151612Hewlett, Mrs. (Mary D Kingcome)female550024870616.0000NaNS
161703Rice, Master. Eugenemale24138265229.1250NaNQ
181903Vander Planke, Mrs. Julius (Emelia Maria Vande...female311034576318.0000NaNS
202102Fynney, Mr. Joseph Jmale350023986526.0000NaNS
212212Beesley, Mr. Lawrencemale340024869813.0000D56S
222313McGowan, Miss. Anna \"Annie\"female15003309238.0292NaNQ
232411Sloper, Mr. William Thompsonmale280011378835.5000A6S
242503Palsson, Miss. Torborg Danirafemale83134990921.0750NaNS
252613Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...female381534707731.3875NaNS
272801Fortune, Mr. Charles Alexandermale193219950263.0000C23 C25 C27S
303101Uruchurtu, Don. Manuel Emale4000PC 1760127.7208NaNC
333402Wheadon, Mr. Edward Hmale6600C.A. 2457910.5000NaNS
343501Meyer, Mr. Edgar Josephmale2810PC 1760482.1708NaNC
353601Holverson, Mr. Alexander Oskarmale421011378952.0000NaNS
373803Cann, Mr. Ernest Charlesmale2100A./5. 21528.0500NaNS
383903Vander Planke, Miss. Augusta Mariafemale182034576418.0000NaNS
.......................................
85685711Wick, Mrs. George Dennick (Mary Hitchcock)female451136928164.8667NaNS
85785811Daly, Mr. Peter Denismale510011305526.5500E17S
85885913Baclini, Mrs. Solomon (Latifa Qurban)female2403266619.2583NaNC
86086103Hansen, Mr. Claus Petermale412035002614.1083NaNS
86186202Giles, Mr. Frederick Edwardmale21102813411.5000NaNS
86286311Swift, Mrs. Frederick Joel (Margaret Welles Ba...female48001746625.9292D17S
86486502Gill, Mr. John Williammale240023386613.0000NaNS
86586612Bystrom, Mrs. (Karolina)female420023685213.0000NaNS
86686712Duran y More, Miss. Asuncionfemale2710SC/PARIS 214913.8583NaNC
86786801Roebling, Mr. Washington Augustus IImale3100PC 1759050.4958A24S
86987013Johnson, Master. Harold Theodormale41134774211.1333NaNS
87087103Balkic, Mr. Cerinmale26003492487.8958NaNS
87187211Beckwith, Mrs. Richard Leonard (Sallie Monypeny)female47111175152.5542D35S
87287301Carlsson, Mr. Frans Olofmale33006955.0000B51 B53 B55S
87387403Vander Cruyssen, Mr. Victormale47003457659.0000NaNS
87487512Abelson, Mrs. Samuel (Hannah Wizosky)female2810P/PP 338124.0000NaNC
87587613Najib, Miss. Adele Kiamie \"Jane\"female150026677.2250NaNC
87687703Gustafsson, Mr. Alfred Ossianmale200075349.8458NaNS
87787803Petroff, Mr. Nedeliomale19003492127.8958NaNS
87988011Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)female56011176783.1583C50C
88088112Shelley, Mrs. William (Imanita Parrish Hall)female250123043326.0000NaNS
88188203Markun, Mr. Johannmale33003492577.8958NaNS
88288303Dahlberg, Miss. Gerda Ulrikafemale2200755210.5167NaNS
88388402Banfield, Mr. Frederick Jamesmale2800C.A./SOTON 3406810.5000NaNS
88488503Sutehall, Mr. Henry Jrmale2500SOTON/OQ 3920767.0500NaNS
88588603Rice, Mrs. William (Margaret Norton)female390538265229.1250NaNQ
88688702Montvila, Rev. Juozasmale270021153613.0000NaNS
88788811Graham, Miss. Margaret Edithfemale190011205330.0000B42S
88989011Behr, Mr. Karl Howellmale260011136930.0000C148C
89089103Dooley, Mr. Patrickmale32003703767.7500NaNQ
\n", + "

714 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "6 7 0 1 \n", + "7 8 0 3 \n", + "8 9 1 3 \n", + "9 10 1 2 \n", + "10 11 1 3 \n", + "11 12 1 1 \n", + "12 13 0 3 \n", + "13 14 0 3 \n", + "14 15 0 3 \n", + "15 16 1 2 \n", + "16 17 0 3 \n", + "18 19 0 3 \n", + "20 21 0 2 \n", + "21 22 1 2 \n", + "22 23 1 3 \n", + "23 24 1 1 \n", + "24 25 0 3 \n", + "25 26 1 3 \n", + "27 28 0 1 \n", + "30 31 0 1 \n", + "33 34 0 2 \n", + "34 35 0 1 \n", + "35 36 0 1 \n", + "37 38 0 3 \n", + "38 39 0 3 \n", + ".. ... ... ... \n", + "856 857 1 1 \n", + "857 858 1 1 \n", + "858 859 1 3 \n", + "860 861 0 3 \n", + "861 862 0 2 \n", + "862 863 1 1 \n", + "864 865 0 2 \n", + "865 866 1 2 \n", + "866 867 1 2 \n", + "867 868 0 1 \n", + "869 870 1 3 \n", + "870 871 0 3 \n", + "871 872 1 1 \n", + "872 873 0 1 \n", + "873 874 0 3 \n", + "874 875 1 2 \n", + "875 876 1 3 \n", + "876 877 0 3 \n", + "877 878 0 3 \n", + "879 880 1 1 \n", + "880 881 1 2 \n", + "881 882 0 3 \n", + "882 883 0 3 \n", + "883 884 0 2 \n", + "884 885 0 3 \n", + "885 886 0 3 \n", + "886 887 0 2 \n", + "887 888 1 1 \n", + "889 890 1 1 \n", + "890 891 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38 1 \n", + "2 Heikkinen, Miss. Laina female 26 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 \n", + "4 Allen, Mr. William Henry male 35 0 \n", + "6 McCarthy, Mr. Timothy J male 54 0 \n", + "7 Palsson, Master. Gosta Leonard male 2 3 \n", + "8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27 0 \n", + "9 Nasser, Mrs. Nicholas (Adele Achem) female 14 1 \n", + "10 Sandstrom, Miss. Marguerite Rut female 4 1 \n", + "11 Bonnell, Miss. Elizabeth female 58 0 \n", + "12 Saundercock, Mr. William Henry male 20 0 \n", + "13 Andersson, Mr. Anders Johan male 39 1 \n", + "14 Vestrom, Miss. Hulda Amanda Adolfina female 14 0 \n", + "15 Hewlett, Mrs. (Mary D Kingcome) female 55 0 \n", + "16 Rice, Master. Eugene male 2 4 \n", + "18 Vander Planke, Mrs. Julius (Emelia Maria Vande... female 31 1 \n", + "20 Fynney, Mr. Joseph J male 35 0 \n", + "21 Beesley, Mr. Lawrence male 34 0 \n", + "22 McGowan, Miss. Anna \"Annie\" female 15 0 \n", + "23 Sloper, Mr. William Thompson male 28 0 \n", + "24 Palsson, Miss. Torborg Danira female 8 3 \n", + "25 Asplund, Mrs. Carl Oscar (Selma Augusta Emilia... female 38 1 \n", + "27 Fortune, Mr. Charles Alexander male 19 3 \n", + "30 Uruchurtu, Don. Manuel E male 40 0 \n", + "33 Wheadon, Mr. Edward H male 66 0 \n", + "34 Meyer, Mr. Edgar Joseph male 28 1 \n", + "35 Holverson, Mr. Alexander Oskar male 42 1 \n", + "37 Cann, Mr. Ernest Charles male 21 0 \n", + "38 Vander Planke, Miss. Augusta Maria female 18 2 \n", + ".. ... ... ... ... \n", + "856 Wick, Mrs. George Dennick (Mary Hitchcock) female 45 1 \n", + "857 Daly, Mr. Peter Denis male 51 0 \n", + "858 Baclini, Mrs. Solomon (Latifa Qurban) female 24 0 \n", + "860 Hansen, Mr. Claus Peter male 41 2 \n", + "861 Giles, Mr. Frederick Edward male 21 1 \n", + "862 Swift, Mrs. Frederick Joel (Margaret Welles Ba... female 48 0 \n", + "864 Gill, Mr. John William male 24 0 \n", + "865 Bystrom, Mrs. (Karolina) female 42 0 \n", + "866 Duran y More, Miss. Asuncion female 27 1 \n", + "867 Roebling, Mr. Washington Augustus II male 31 0 \n", + "869 Johnson, Master. Harold Theodor male 4 1 \n", + "870 Balkic, Mr. Cerin male 26 0 \n", + "871 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) female 47 1 \n", + "872 Carlsson, Mr. Frans Olof male 33 0 \n", + "873 Vander Cruyssen, Mr. Victor male 47 0 \n", + "874 Abelson, Mrs. Samuel (Hannah Wizosky) female 28 1 \n", + "875 Najib, Miss. Adele Kiamie \"Jane\" female 15 0 \n", + "876 Gustafsson, Mr. Alfred Ossian male 20 0 \n", + "877 Petroff, Mr. Nedelio male 19 0 \n", + "879 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56 0 \n", + "880 Shelley, Mrs. William (Imanita Parrish Hall) female 25 0 \n", + "881 Markun, Mr. Johann male 33 0 \n", + "882 Dahlberg, Miss. Gerda Ulrika female 22 0 \n", + "883 Banfield, Mr. Frederick James male 28 0 \n", + "884 Sutehall, Mr. Henry Jr male 25 0 \n", + "885 Rice, Mrs. William (Margaret Norton) female 39 0 \n", + "886 Montvila, Rev. Juozas male 27 0 \n", + "887 Graham, Miss. Margaret Edith female 19 0 \n", + "889 Behr, Mr. Karl Howell male 26 0 \n", + "890 Dooley, Mr. Patrick male 32 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S \n", + "6 0 17463 51.8625 E46 S \n", + "7 1 349909 21.0750 NaN S \n", + "8 2 347742 11.1333 NaN S \n", + "9 0 237736 30.0708 NaN C \n", + "10 1 PP 9549 16.7000 G6 S \n", + "11 0 113783 26.5500 C103 S \n", + "12 0 A/5. 2151 8.0500 NaN S \n", + "13 5 347082 31.2750 NaN S \n", + "14 0 350406 7.8542 NaN S \n", + "15 0 248706 16.0000 NaN S \n", + "16 1 382652 29.1250 NaN Q \n", + "18 0 345763 18.0000 NaN S \n", + "20 0 239865 26.0000 NaN S \n", + "21 0 248698 13.0000 D56 S \n", + "22 0 330923 8.0292 NaN Q \n", + "23 0 113788 35.5000 A6 S \n", + "24 1 349909 21.0750 NaN S \n", + "25 5 347077 31.3875 NaN S \n", + "27 2 19950 263.0000 C23 C25 C27 S \n", + "30 0 PC 17601 27.7208 NaN C \n", + "33 0 C.A. 24579 10.5000 NaN S \n", + "34 0 PC 17604 82.1708 NaN C \n", + "35 0 113789 52.0000 NaN S \n", + "37 0 A./5. 2152 8.0500 NaN S \n", + "38 0 345764 18.0000 NaN S \n", + ".. ... ... ... ... ... \n", + "856 1 36928 164.8667 NaN S \n", + "857 0 113055 26.5500 E17 S \n", + "858 3 2666 19.2583 NaN C \n", + "860 0 350026 14.1083 NaN S \n", + "861 0 28134 11.5000 NaN S \n", + "862 0 17466 25.9292 D17 S \n", + "864 0 233866 13.0000 NaN S \n", + "865 0 236852 13.0000 NaN S \n", + "866 0 SC/PARIS 2149 13.8583 NaN C \n", + "867 0 PC 17590 50.4958 A24 S \n", + "869 1 347742 11.1333 NaN S \n", + "870 0 349248 7.8958 NaN S \n", + "871 1 11751 52.5542 D35 S \n", + "872 0 695 5.0000 B51 B53 B55 S \n", + "873 0 345765 9.0000 NaN S \n", + "874 0 P/PP 3381 24.0000 NaN C \n", + "875 0 2667 7.2250 NaN C \n", + "876 0 7534 9.8458 NaN S \n", + "877 0 349212 7.8958 NaN S \n", + "879 1 11767 83.1583 C50 C \n", + "880 1 230433 26.0000 NaN S \n", + "881 0 349257 7.8958 NaN S \n", + "882 0 7552 10.5167 NaN S \n", + "883 0 C.A./SOTON 34068 10.5000 NaN S \n", + "884 0 SOTON/OQ 392076 7.0500 NaN S \n", + "885 5 382652 29.1250 NaN Q \n", + "886 0 211536 13.0000 NaN S \n", + "887 0 112053 30.0000 B42 S \n", + "889 0 111369 30.0000 C148 C \n", + "890 0 370376 7.7500 NaN Q \n", + "\n", + "[714 rows x 12 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic_df = titanic_df.dropna(subset=['Survived','Pclass','Sex','Age','Fare'])\n", + "titanic_df" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total males: 453 num survived: 93 survival rate: % 20.5298013245\n", + "total females: 261 num survived: 197 survival rate: % 75.4789272031\n" + ] + } + ], + "source": [ + "males = titanic_df[titanic_df.Sex == 'male']\n", + "females = titanic_df[titanic_df.Sex == 'female']\n", + "\n", + "male_sur = (males[males.Survived == 1])\n", + "female_sur = (females[females.Survived == 1])\n", + "\n", + "males_survived_perc = float(len(male_sur)) / float(len(males)) * 100\n", + "females_survived_perc = float(len(female_sur)) / float(len(females)) * 100 \n", + "\n", + "print 'total males: ', len(males), ' num survived: ', len(male_sur), ' survival rate: %', males_survived_perc\n", + "print 'total females: ', len(females), ' num survived: ', len(female_sur), ' survival rate: %', females_survived_perc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is clear from these survival rates that a higher percentage of females survived; however, there are nearly twice as many men as women, so the distribution is not proportionally represented by survival rate. Therefore, it will be helpful to create a graphic representation. " + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHEJJREFUeJzt3X+UVXW9//HnCwSFFBrhinwBgTK54L0GWFT++HrUIuWb\nUt27iHSVZqGpePW2Mgf7XhmkBE3NftEP6raor6bUrZjMH6jDkHVL/AGKgTKQg4r8EBER9ArI+/vH\n2UxHmJl9Zpx9zhnm9VjrLPb57M/e533OOszr7M/+pYjAzMysNd3KXYCZmVU+h4WZmaVyWJiZWSqH\nhZmZpXJYmJlZKoeFmZmlKklYSOom6TFJtcnzKkkLJT0t6V5JfQv6TpPUIGmlpPGlqM/MzFpXqi2L\ny4EVBc+rgfsjYgRQB0wDkDQKmASMBM4E5khSiWo0M7MWZB4WkgYDE4AfFzRPBOYl0/OAjyfTZwO3\nR8TuiGgEGoBxWddoZmatK8WWxTeBK4HCU8UHRMRGgIjYAByRtA8Cnivoty5pMzOzMso0LCT9H2Bj\nRCwDWhtO8jVHzMwq2EEZr/9E4GxJE4BewGGSfg5skDQgIjZKOhLYlPRfBwwpWH5w0vYWkhwuZmbt\nEBHt2g+c6ZZFRFwdEUdFxLuAyUBdRHwG+B1wftLtPGBBMl0LTJbUU9Jw4GhgSQvr9qODHtOnTy97\nDQfSw5+nP8tKfbwdWW9ZtGQ2MF/SBcBa8kdAERErJM0nf+TULuCSeLvv0MzM3raShUVELAYWJ9Nb\ngA+30G8WMKtUdZmZWTqfwW3kcrlyl3BA8efZcfxZVg51xlEeSR6dMjNrI0lEO3dwl2ufhZl1McOG\nDWPt2rXlLqNLGDp0KI2NjR26Tm9ZmFlJJL9qy11Gl9DSZ/12tiy8z8LMzFI5LMzMLJXDwszMUjks\nzMw6yOc+9zmuueaacpeRCR8NZWZl8x/XLcp0/TOvPjXT9Xcl3rIwM7NUDgsz6/KGDx/OjTfeyHvf\n+14OO+wwpkyZwqZNm5gwYQJ9+vRh/PjxvPLKKwBMmjSJgQMHUlVVRS6XY8WKFS2u984772TMmDFU\nVVVx0kknsXz58qZ5119/PYMHD6ZPnz6MHDmSRYuy3cp6uxwWZmbAr3/9ax544AFWrVpFbW0tEyZM\nYPbs2WzevJk333yTb3/72wBMmDCBNWvWsGnTJsaOHcu5557b7PqWLl3K5z//eebOncuWLVu46KKL\nOPvss9m1axerVq3ie9/7Ho8++ijbtm3j3nvvZdiwYSV8t23nsDAzAy677DL69+/PwIEDOfnkk/nA\nBz7AcccdR8+ePfnEJz7B0qVLATj//PPp3bs3PXr04JprruHxxx/n1Vdf3W99c+fO5Ytf/CLve9/7\nkMRnPvMZDj74YP7yl7/QvXt3du7cyZNPPsnu3bs56qijGD58eKnfcps4LMzMgAEDBjRN9+rVa7/n\n27dvZ8+ePVRXV3P00Ufzzne+k+HDhyOJzZs377e+tWvXctNNN3H44Ydz+OGHU1VVxfPPP88LL7zA\nu9/9bm655RZqamoYMGAA55xzDuvXry/J+2wvh4WZWZFuu+02amtrqaurY+vWrTQ2NrZ4Y6EhQ4bw\n1a9+lS1btrBlyxZefvlltm/fzqc+9SkAJk+ezIMPPth0vazq6uqSvpe2cliYmRVp+/btHHLIIVRV\nVbFjxw6mTZuG1PyllqZMmcIPfvADlizJ3+xzx44d3HXXXezYsYNVq1axaNEidu7cSc+ePenVqxfd\nulX2n2OfZ2FmZVMp50Hs+we/pQD47Gc/yz333MOgQYPo168fM2fO5Ic//GGzfY8//njmzp3L1KlT\nWb16Nb169eKkk07ilFNO4Y033qC6upqnnnqKHj16cMIJJ/CjH/2ow99XR/JVZ82sJHzV2dLJ4qqz\n3rKwzM+i7Woq5deyWUfKdJBM0sGSHpK0VNJySdOT9umSnpf0WPI4o2CZaZIaJK2UND7L+szMrDiZ\nbllExBuSTo2I1yR1B/4k6e5k9s0RcXNhf0kjgUnASGAwcL+k93jMycysvDLf/R4RryWTB5MPp71/\n+JsbN5sI3B4RuyOiEWgAxmVdo5mZtS7zsJDUTdJSYANwX0Q8nMyaKmmZpB9L6pu0DQKeK1h8XdJm\nZmZlVIotiz0RMYb8sNI4SaOAOcC7ImI0+RC5Kes6zMys/Up2NFREbJNUD5yxz76KucDvkul1wJCC\neYOTtv3U1NQ0TedyOXK5XAdWa2bW+dXX11NfX98h68r0PAtJ/YFdEfGKpF7AvcBs4LGI2JD0+Xfg\n/RFxTrLVcSvwAfLDT/cB++3g9nkWHcuHznYsHzrbPJ9nUTpZnGeR9TDUQGCRpGXAQ8C9EXEXcIOk\nJ5L2U4B/B4iIFcB8YAVwF3CJU8HMSmHVqlWMGTOGvn378t3vfrdkr9utWzf+9re/lez12ivrQ2eX\nA2Obaf9sK8vMAmZlWZeZVYbqulWZrn/2accU3feGG27gtNNOa7oUeam0dGmRSlPZV64yMyuRtWvX\ncuyxx5b8dTvL4InDwsy6vNNPP51FixZx6aWX0qdPHxoaGvjyl7/M0KFDGThwIJdccglvvPEGAIsX\nL2bIkCF84xvfYMCAAQwaNIgFCxZw9913M2LECPr378+sWX8fHHn44Yc54YQTqKqqYtCgQVx22WXs\n3r272Tp27tzZ4uu+9NJLnHXWWVRVVdGvXz9OOeWU7D+YAg4LM+vyHnjgAU4++WTmzJnDtm3bmDNn\nDqtXr+aJJ55g9erVrFu3jmuvvbap/4YNG9i5cycvvPACM2bMYMqUKdx6660sXbqUP/zhD8ycObPp\nPhXdu3fnlltuYcuWLfz5z3+mrq6OOXPmNFvHVVdd1eLr3nTTTQwZMoSXXnqJTZs2cd1112X/wRRw\nWJiZJfYOCc2dO5dvfvOb9O3bl3e84x1UV1fzi1/8oqlfz549ufrqq+nevTuTJ09m8+bNXHHFFfTu\n3ZtRo0YxatQoHn/8cQDGjh3LuHHjkMRRRx3FhRdeyOLFi5t9/dZet0ePHqxfv55nnnmG7t27c+KJ\nJ2b8abyVrzprZlbgxRdf5LXXXuP4449vatuzZ89b9i3069evacd0r169ADjiiCOa5u+9DStAQ0MD\nX/rSl3jkkUd4/fXX2b1791vWXezrXnnlldTU1DB+/HgkMWXKFK666qoOfOet85aFmVmB/v3707t3\nb/7617823RJ169atvPLKK+1a38UXX8zIkSNZs2YNW7du5etf/3qzO7XTXvfQQw/lxhtvZM2aNdTW\n1nLzzTezaFHpzpFyWJiZFdj7q/2KK67gxRdfBGDdunUsXLiwXet79dVX6dOnD7179+app57i+9//\nfrte9/e//z1r1qwB4LDDDuOggw4q6a1YPQxlZmXTlvMgslZ4vsPs2bO59tpr+eAHP8hLL73EoEGD\nuPjiixk/vvlb7LR2W9Ybb7yRCy+8kBtuuIExY8YwefJk6urqmu17/fXXM2PGjGZft6GhgalTp7J5\n82aqqqq49NJLS3pElG+rar7cRwfz5T6a58t9lE5nvNyHmZkdABwWZmaWymFhZmapHBZmZpbKYWFm\nZqkcFmZmlsrnWZhZSQwdOrTT3Luhsxs6dGiHr9NhYWYl0djYWO4S7G3wMJSZmaVyWJiZWapMw0LS\nwZIekrRU0nJJ05P2KkkLJT0t6V5JfQuWmSapQdJKSc1fiMXMzEoq07CIiDeAUyNiDDAaOFPSOKAa\nuD8iRgB1wDQASaOAScBI4ExgjrxHzMys7DIfhoqI15LJg8nvUA9gIjAvaZ8HfDyZPhu4PSJ2R0Qj\n0ACMy7pGMzNrXeZhIambpKXABuC+iHgYGBARGwEiYgOw9xZTg4DnChZfl7SZmVkZZX7obETsAcZI\n6gP8RtKx5Lcu3tKtreutqalpms7lcuRyubdRpZnZgae+vp76+voOWVfJzrOIiG2S6oEzgI2SBkTE\nRklHApuSbuuAIQWLDU7a9lMYFmZmtr99f0jPmDGj3evK+mio/nuPdJLUC/gIsBKoBc5Pup0HLEim\na4HJknpKGg4cDSzJskYzM0uX9ZbFQGCepG7kg+mOiLhL0l+A+ZIuANaSPwKKiFghaT6wAtgFXOJb\n4pmZlV+mYRERy4GxzbRvAT7cwjKzgFlZ1mVmZm3jM7jNzCyVw8LMzFI5LMzMLJXDwszMUjkszMws\nlcPCzMxSOSzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwslcPCzMxSOSzMzCyVw8LMzFI5LMzMLJXD\nwszMUjkszMwslcPCzMxSOSzMzCxVpmEhabCkOkl/lbRc0mVJ+3RJz0t6LHmcUbDMNEkNklZKGp9l\nfWZmVpyDMl7/buBLEbFM0qHAo5LuS+bdHBE3F3aWNBKYBIwEBgP3S3pPRETGdZqZWSsy3bKIiA0R\nsSyZ3g6sBAYls9XMIhOB2yNid0Q0Ag3AuCxrNDOzdCXbZyFpGDAaeChpmippmaQfS+qbtA0CnitY\nbB1/DxczMyuTrIehAEiGoH4FXB4R2yXNAa6NiJD0NeAm4AttWWdNTU3TdC6XI5fLdVzBZmYHgPr6\neurr6ztkXcp6d4Ckg4A7gbsj4lvNzB8K/C4ijpNUDUREXJ/MuweYHhEP7bOMd2N0oP+4blG5Szig\nzLz61HKXYNYsSUREc7sAUpViGOo/gRWFQSHpyIL5nwSeTKZrgcmSekoaDhwNLClBjWZm1opMh6Ek\nnQicCyyXtBQI4GrgHEmjgT1AI3ARQESskDQfWAHsAi7xJoSZWfllGhYR8SegezOz7mllmVnArMyK\nMjOzNvMZ3GZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqmKCovkBLnUNjMzOzAVu2XxX820\n/aojCzEzs8rV6kl5kv4ROBboK+mTBbP6AIdkWZiZmVWOtDO4RwAfA94JnFXQ/iowJauizMyssrQa\nFhGxAFgg6UMR8ecS1WRmZhWm2GtDrZZ0NTCscJmIuCCLoszMrLIUGxYLgAeB+4E3syvHzMwqUbFh\n0Tsirsq0EjMzq1jFHjp7p6QJmVZiZmYVq9iwuJx8YLwuaZukVyVty7IwMzOrHEUNQ0XEYVkXYmZm\nlauosJD0v5trj4g/dGw5ZmZWiYrdwX1lwfQhwDjgUeC0Dq/IzMwqTlH7LCLirILHR4B/Al5OW07S\nYEl1kv4qabmkf0vaqyQtlPS0pHsl9S1YZpqkBkkrJY1v7xszM7OO095LlD8PjCyi327gSxFxLPAh\n4NLkelPVwP0RMQKoA6YBSBoFTErWfSYwR5LaWaOZmXWQYvdZfAeI5Gk3YDTwWNpyEbEB2JBMb5e0\nEhgMTAROSbrNA+rJB8jZwO0RsRtolNRAfsjroSLfj5mZZaDYfRaPFEzvBn4REX9qywtJGkY+ZP4C\nDIiIjZAPFElHJN0GAYXXoFqXtJmZWRkVe+jsPEk9gWOSpqfb8iKSDiV//4vLky2M2KfLvs9T1dTU\nNE3ncjlyuVxbV2FmdkCrr6+nvr6+Q9ZV7DBUjvxwUSMgYIik84o5dFbSQeSD4ufJVWwBNkoaEBEb\nJR0JbEra1wFDChYfnLTtpzAszMxsf/v+kJ4xY0a711XsMNRNwPiIeBpA0jHAL4Dji1j2P4EVEfGt\ngrZa4HzgeuA88hcq3Nt+q6Rvkh9+OhpYUmSNZhWhum5VuUs4YMw+7Zj0TlYSxYZFj71BARARqyT1\nSFtI0onAucBySUvJDzddTT4k5ku6AFhL/ggoImKFpPnACmAXcElEtHmIyszMOlbRO7gl/Rj4f8nz\nc3nrTu9mJTvBu7cw+8MtLDMLmFVkXWZmVgLFhsXFwKXAvyXPHwTmZFKRmZlVnGKPhnoDuDl5mJlZ\nF1PUGdySPiZpqaQtvkS5mVnXU+ww1C3AJ4Hl3uFsZtb1FHttqOeAJx0UZmZdU7FbFl8B7pK0GHhj\nb2NEeB+GmVkXUGxYfB3YTv5eFj2zK8fMzCpRsWHxvyLinzKtxMzMKlax+yzu8o2IzMy6rmLD4mLg\nHkmv+9BZM7Oup9iT8g6TdDjwHvL7LczMrAsp9hLlXwAuJ3/J8GXAB4H/Bk7PrjQzM6sUxQ5DXQ68\nH1gbEacCY4BXMqvKzMwqSrFh8T8R8T8Akg6OiKeAEdmVZWZmlaTYQ2efl/RO4LfAfZJeJn8fCjMz\n6wKK3cH9iWSyRtIioC9wT2ZVmZlZRSl2y6JJRCzOohAzM6tcxe6zMDOzLsxhYWZmqTINC0k/kbRR\n0hMFbdMlPS/pseRxRsG8aZIaJK305UXMzCpH1lsWPwU+2kz7zRExNnncAyBpJDAJGAmcCcyRpIzr\nMzOzImQaFhHxR+DlZmY1FwITgdsjYndENAINwLgMyzMzsyKVa5/FVEnLJP1YUt+kbRD5O/LttS5p\nMzOzMmvzobMdYA5wbUSEpK8BNwFfaOtKampqmqZzuRy5XK6j6jMzOyDU19dTX1/fIesqeVhExIsF\nT+cCv0um1wFDCuYNTtqaVRgWZma2v31/SM+YMaPd6yrFMJQo2Ech6ciCeZ8Enkyma4HJknpKGg4c\nDSwpQX1mZpYi0y0LSbcBOaCfpGeB6cCpkkYDe4BG4CKAiFghaT6wAtgFXBIRkWV9ZmZWnEzDIiLO\naab5p630nwXMyq4iMzNrD5/BbWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwW\nZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZm\nlsphYWZmqTINC0k/kbRR0hMFbVWSFkp6WtK9kvoWzJsmqUHSSknjs6zNzMyKl/WWxU+Bj+7TVg3c\nHxEjgDpgGoCkUcAkYCRwJjBHkjKuz8zMipBpWETEH4GX92meCMxLpucBH0+mzwZuj4jdEdEINADj\nsqzPzMyKU459FkdExEaAiNgAHJG0DwKeK+i3LmkzM7MyO6jcBQDRnoVqamqapnO5HLlcroPKMTM7\nMNTX11NfX98h6ypHWGyUNCAiNko6EtiUtK8DhhT0G5y0NaswLMzMbH/7/pCeMWNGu9dVimEoJY+9\naoHzk+nzgAUF7ZMl9ZQ0HDgaWFKC+szMLEWmWxaSbgNyQD9JzwLTgdnALyVdAKwlfwQUEbFC0nxg\nBbALuCQi2jVEZWZmHSvTsIiIc1qY9eEW+s8CZmVXkZl1Jv9x3aJyl2AJn8FtZmapHBZmZpbKYWFm\nZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmap\nHBZmZpbKYWFmZqkq4R7c7VJdt6rcJRwwepS7ADOreN6yMDOzVA4LMzNL5bAwM7NUZdtnIakReAXY\nA+yKiHGSqoA7gKFAIzApIl4pV41mZpZXzi2LPUAuIsZExLikrRq4PyJGAHXAtLJVZ2ZmTcoZFmrm\n9ScC85LpecDHS1qRmZk1q5xhEcB9kh6W9IWkbUBEbASIiA3AEWWrzszMmpTzPIsTI2K9pH8AFkp6\nmnyAFNr3eZM/zvtO0/RR7x3HUaM/kE2VZmadVOPflrH2mWUdsq6yhUVErE/+fVHSb4FxwEZJAyJi\no6QjgU0tLX/SeZeVqFIzs85p2LtGM+xdo5ueP1j3s3avqyzDUJJ6Szo0mX4HMB5YDtQC5yfdzgMW\nlKM+MzN7q3JtWQwAfiMpkhpujYiFkh4B5ku6AFgLTCpTfWZmVqAsYRERzwCjm2nfAny49BWZmVlr\nfAa3mZmlcliYmVkqh4WZmaVyWJiZWSqHhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVyWJiZWSqH\nhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVyWJiZWSqHhZmZpXJYmJlZqooMC0lnSHpK0ipJV5W7\nHjOzrq7iwkJSN+C7wEeBY4FPS/rH8lZ1YGv827Jyl3BAeXbZQ+Uu4YDh72blqLiwAMYBDRGxNiJ2\nAbcDE8tc0wFt7TP+D9mRnn18SblLOGD4u1k5KjEsBgHPFTx/PmkzM7MyqcSwMDOzCqOIKHcNbyHp\ng0BNRJyRPK8GIiKuL+hTWUWbmXUSEaH2LFeJYdEdeBo4HVgPLAE+HREry1qYmVkXdlC5C9hXRLwp\naSqwkPww2U8cFGZm5VVxWxZmZlZ5OsUObklVkhZKelrSvZL6ttCvUdLjkpZK8vGL+yjmZEdJ35bU\nIGmZpNGlrrGzSPssJZ0iaaukx5LH/y1HnZ2FpJ9I2ijpiVb6+LtZhLTPsr3fzU4RFkA1cH9EjADq\ngGkt9NsD5CJiTESMK1l1nUAxJztKOhN4d0S8B7gI+EHJC+0E2nDi6B8iYmzy+FpJi+x8fkr+82yW\nv5tt0upnmWjzd7OzhMVEYF4yPQ/4eAv9ROd5T6VWzMmOE4GfAUTEQ0BfSQNKW2anUOyJo+066qQr\niog/Ai+30sXfzSIV8VlCO76bneUP6xERsREgIjYAR7TQL4D7JD0saUrJquscijnZcd8+65rpY8Wf\nOPqhZMjk95JGlaa0A5a/mx2rzd/NijkaStJ9QOEvBZH/49/ceFpLe+VPjIj1kv6BfGisTFLWrNQe\nBY6KiNeSIZTfAseUuSYzaOd3s2LCIiI+0tK8ZGfNgIjYKOlIYFML61if/PuipN+QHy5wWOStA44q\neD44adu3z5CUPlbEZxkR2wum75Y0R9LhEbGlRDUeaPzd7CDt/W52lmGoWuD8ZPo8YMG+HST1lnRo\nMv0OYDzwZKkK7AQeBo6WNFRST2Ay+c+1UC3wWWg6k37r3uE/e4vUz7JwPF3SOPKHqTsoWidaHkv3\nd7NtWvws2/vdrJgtixTXA/MlXQCsBSYBSBoIzI2Ij5EfwvpNcimQg4BbI2JhuQquNC2d7Cjpovzs\n+FFE3CVpgqTVwA7gc+WsuVIV81kC/yrpYmAX8DrwqfJVXPkk3QbkgH6SngWmAz3xd7PN0j5L2vnd\n9El5ZmaWqrMMQ5mZWRk5LMzMLJXDwszMUjkszMwslcPCzMxSOSzMzCyVw8Ksg0k6S9JXOmhdr3bE\neszeLp9nYdYOkrpHxJsleJ1tEdEn69cxS+MtC+vSksvE3JncMOsJSZMkPSPp8GT+8ZIWJdPTJf1M\n0oPAzyX9WdLIgnUtkjRW0nmSviOpj6TGfV7rWUndJb1L0t3JFZIXSzom6TNM0n8rfxOvmaX9NMxa\n5rCwru4MYF1yw6zjgHvY/6rGhc9HAqdHxDnk72PxKYDkApdHRsRje5eJiG3AUkmnJG0fA+5Jtkh+\nBEyNiPcDVwLfT/p8C/heRLwXWN+Rb9Ts7XBYWFe3HPiIpFmSTkr+wLd2Y5jaiNiZTP8S+JdkehLw\nq2b6z+fv196ZDNyRXOjyBOCXkpYCP+Tvl+c/kXwIAfy8PW/ILAud5UKCZpmIiAZJY4EJwExJdeQv\nsLb3h9Qh+yyyo2DZFyS9JOmfyQfCRc28RC3wdUlVwFjytwU+FHg5IsY2VxJ/35LxnfasYnjLwrq0\n5MrFr0fEbcCN5P+gNwLvS7r8SwuL7nUH8BWgT0Tsd0n8iNgBPEJ+eOnOyHsVeEbSvxbUcVwy+Sfg\n08n0ue16U2YZcFhYV/fPwJJkOOgaYCZwLfAtSUuA3SnL/xf5rYo7WulzB/k//LcXtJ0LfD65teWT\nwNlJ+xXApZIeBwa29c2YZcWHzpqZWSpvWZiZWSqHhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVy\nWJiZWSqHhZmZpfr/pEDnUlg85McAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hist = thinkstats2.Hist(males.Survived)\n", + "hist1 = thinkstats2.Hist(females.Survived)\n", + "thinkplot.PrePlot(2)\n", + "thinkplot.Hist(hist, align='left', width=0.5, label='males')\n", + "thinkplot.Hist(hist1, align='right', width=0.5, label='females')\n", + "thinkplot.Show(xlabel='survived', ylabel='amount')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this, it is easier to see the relationship between survival rate and sex. Overall, females had a higher chance of surviving, which makes sense because when the Titanic was being evacuated there was an emphasis placed on getting the women and children on lifeboats first. " + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEPCAYAAABBUX+lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFHFJREFUeJzt3X2QXXWd5/H3NySBRAgE0QwSSDI4KLorEhAcHobrE2LG\nYYd5EJFCYYDSKSOZnS2XVregU9ZaUCUjOrClJA7luuJuyaBkrAwPSq4yKoKQQCCEjDiJIAimAoHE\nGR6/+8c9xKbTndxO+txzm9/7VdXV597ce36fvt359OnfOfecyEwkSa98k5oOIEnqDQtfkgph4UtS\nISx8SSqEhS9JhbDwJakQtRZ+RBwWESsj4q7q8+aIuKDOMSVJI4teHYcfEZOAh4FjM/OhngwqSdqm\nl1M67wYetOwlqRm9LPzTgW/2cDxJ0hA9mdKJiCnAI8CbMvM3tQ8oSdrO5B6N8z7gztHKPiI8oY8k\njVFmxlge36spnTPYyXROZvbVx8UXX9x4home6eMXLum7TP36WpnJTGP92BW1F35ETKezw/a6useS\nJI2u9imdzPwt8Jq6x5Ek7ZjvtB1Fq9VqOsJ2zNSdfswE/ZnLTN3px0y7omdvvNphiIjshxwaXwsH\nlnLFJec1HUN6RYoIcow7bXt1lI6kgs2dO5cNGzY0HWNCmjNnDuvXrx+XdVn4kmq3YcOGXT6ypHQR\nY9qI3yHn8CWpEBa+JBXCwpekQlj4kjQOzjnnHC666KKmY+yQO20lNWLhwNJa1+8hwdtzC1+SCmHh\nSyravHnz+PznP88RRxzBPvvsw/nnn8/jjz/OggULmDFjBieffDKbN28G4AMf+AAHHnggM2fOpNVq\nsWbNmlHX+93vfpcjjzySmTNncsIJJ7B69ept/3bppZcye/ZsZsyYweGHH86KFStq/zrBwpckrrvu\nOr7//e+zbt06li1bxoIFC7jkkkvYuHEjL7zwAl/60pcAWLBgAQ8++CCPP/448+fP58wzzxxxfStX\nruTcc89lyZIlbNq0iY9+9KOceuqpPPfcc6xbt44rr7ySO++8k6eeeoobb7yRuXPn9uTrtPAlFe8T\nn/gEBxxwAAceeCAnnngixx57LG95y1uYOnUqp512GitXrgTg7LPPZvr06UyZMoWLLrqIu+++m6ef\nfnq79S1ZsoSPfexjHH300UQEZ511FnvuuSe33XYbe+yxB88++yz33nsvzz//PIcccgjz5s3ryddp\n4Usq3qxZs7YtT5s2bbvbW7Zs4cUXX2RgYIDXv/717LfffsybN4+IYOPGjdutb8OGDVx22WXsv//+\n7L///sycOZOHH36YRx55hEMPPZTLL7+cwcFBZs2axYc+9CEeffTRnnydFr4kdeGaa65h2bJl3HLL\nLTz55JOsX79+1IuRHHzwwXzmM59h06ZNbNq0iSeeeIItW7Zw+umnA/DBD36QW2+9ddv5hQYGBnry\nNVj4ktSFLVu2sNdeezFz5ky2bt3Kpz71qVHPc3P++efz5S9/mdtvvx2ArVu3snz5crZu3cq6detY\nsWIFzz77LFOnTmXatGlMmtSbKvY4fEmN6Jfj5IeX9mgl/uEPf5gbbriBgw46iFe/+tV89rOf5Stf\n+cqIjz3qqKNYsmQJCxcu5Oc//znTpk3jhBNO4KSTTuKZZ55hYGCAtWvXMmXKFI477jiuuuqqcf+6\nRuL58FUbz4evl1Tnbm86xoQ02mu3K+fDd0pHkgph4UtSISx8SSqEhS9JhbDwJakQtRd+ROwbEd+K\niPsj4r6IOLbuMSVJ2+vFcfhfBJZn5l9GxGRgeg/GlNRH5syZM64X4y7JnDlzxm1dtRZ+RMwATszM\nswEy83ngqTrHlNR/1q9f33QEUf+UzjxgY0RcHRF3RcRVETGt5jElSSOoe0pnMjAf+Hhm/iwiLgcG\ngIuHP3BwcHDbcqvVotVq1RxNkiaOdrtNu93erXXUemqFiJgF/CQzf7+6fQJwYWb+ybDHeWqFVyBP\nrSDVp+9OrZCZjwEPRcRh1V3vAka/JpgkqTa9OErnAuAbETEF+AVwTg/GlCQNU3vhZ+bdwNvqHkeS\ntGO+01aSCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9J\nhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQkyue4CI\nWA9sBl4EnsvMY+oeU5K0vdoLn07RtzLziR6MJUkaRS+mdKJH40iSdqAXRZzAzRFxR0Sc34PxJEkj\n6MWUzvGZ+WhEvIZO8d+fmf8y/EGDg4PbllutFq1WqwfRJGliaLfbtNvt3VpHZOb4pOlmsIiLgacz\n8++G3Z+9zKHeWDiwlCsuOa/pGNIrUkSQmTGW59Q6pRMR0yNi72r5VcDJwL11jilJGlndUzqzgG9H\nRFZjfSMzb6p5TEnSCGot/Mz8N+CtdY4hSeqOh0tKUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4\nklQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9J\nhbDwJakQFr4kFcLCl6RCWPiSVIieFH5ETIqIuyJiWS/GkyRtr1db+IuANT0aS5I0gtoLPyJmAwuA\npXWPJUkaXVeFHxHzurlvFF8APgnkGHJJksbZ5C4f94/A/GH3XQsctaMnRcQfA49l5qqIaAEx2mMH\nBwe3LbdaLVqtVpfRNFYLB5ZyxSXnNR1jhyZCRqmX2u027XZ7t9axw8KPiDcCbwb2jYg/G/JPM4C9\nulj/8cCpEbEAmAbsExH/OzM/PPyBQwtfkvRywzeEFy9ePOZ17GwL/w3A+4H9gD8Zcv/TwPk7W3lm\nfhr4NEBEnAT8t5HKXpJUvx0WfmZeD1wfEX+YmT/pUSZJUg26ncP/eUR8Gpg79DmZ+VfdDpSZPwB+\nMKZ0kqRx023hXw/cCnwPeKG+OJKkunRb+NMz88Jak0iSatXtG6++Wx1pI0maoLot/EV0Sv/fI+Kp\niHg6Ip6qM5gkaXx1NaWTmfvUHUSSVK+uCj8i/mik+zPzh+MbR5JUl2532n5yyPJewDHAncA7xz2R\nJKkW3U7pDH2XLRFxMHB5LYkkSbXY1dMjPwwcPp5BJEn16nYO/+/53emNJwFvBe6qK5Qkafx1O4f/\nsyHLzwPfzMwf1ZBHklSTbufwvxYRU4HDqrseqC+SJKkO3U7ptICvAevpXMTk4Ij4iIdlStLE0e2U\nzmXAyZn5AEBEHAZ8k51c8UqS1D+6PUpnyktlD5CZ64Ap9USSJNWh6522EbEU+D/V7TN5+Y5cSVKf\n67bw/xr4OHBBdftW4H/VkkiSVItuj9J5Bvi76kOSNAF1NYcfEe+PiJURscnTI0vSxNTtlM7lwJ8B\nqzMzd/ZgSVL/6fYonYeAey17SZq4ut3C/+/A8oj4AfDMS3dmpnP6kjRBdFv4/xPYQudc+FPriyNJ\nqku3hf+6zPxPY115ROwJ/JDOL4nJwLWZuXis65Ek7b5u5/CXR8TJY115dTjnOzLzSDqnVH5fRBwz\n1vVIknZft4X/18ANEfHvYz0sMzN/Wy3uSWcr3x2/ktSAbt94tU9E7A/8AZ15/K5FxCQ61789FLgy\nM+8Yc0pJ0m7r9vTI5wGLgNnAKuDtwI+Bd+3suZn5InBkRMwAvhMRb8rMNcMfNzg4uG251WrRarW6\niaYeWziwlCsuOa/pGFJx2u027XZ7t9bR7U7bRcDbgNsy8x0R8Ubgc2MZKDOfiogVwCnADgtfkvRy\nwzeEFy8e+/Ev3c7h/0dm/gd0jrzJzLXAG3b2pIg4ICL2rZanAe8B1o45pSRpt3W7hf9wROwHfAe4\nOSKeADZ08bwDga9V8/iTgP+Xmct3LaokaXd0u9P2tGpxsJqW2Re4oYvnrQbm73o8SdJ46XYLf5vM\n/EEdQSRJ9ep2Dl+SNMFZ+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgL\nX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFqLXw\nI2J2RNwSEfdFxOqIuKDO8SRJo5tc8/qfB/42M1dFxN7AnRFxU2aurXlcSdIwtW7hZ+avM3NVtbwF\nuB84qM4xJUkj69kcfkTMBd4K/LRXY0qSfqfuKR0Aqumca4FF1Zb+dgYHB7ctt1otWq3WTte7cGAp\nV1xy3viElKQ+1m63abfbu7WO2gs/IibTKfuvZ+b1oz1uaOFLkl5u+Ibw4sWLx7yOXkzp/AOwJjO/\n2IOxJEmjqPuwzOOBM4F3RsTKiLgrIk6pc0xJ0shqndLJzB8Be9Q5hiSpO77TVpIKYeFLUiEsfEkq\nhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY\n+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RC1Fr4EfHViHgsIu6pcxxJ0s7VvYV/\nNfDemseQJHWh1sLPzH8BnqhzDElSd5zDl6RC9E3hDw4Obvtot9tNx3mZhQNL+36cXmWcCPrxtejH\nTJpY2u32y3pyV0we30i7ble/AEkqQavVotVqbbu9ePHiMa+jF1v4UX1IkhpU92GZ1wA/Bg6LiF9G\nxDl1jidJGl2tUzqZ+aE61y9J6l7f7LSVJNXLwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAl\nqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IK\nYeFLUiEsfEkqRO2FHxGnRMTaiFgXERfWPZ4kaWS1Fn5ETAKuAN4LvBk4IyLeWOeY46XdbjcdYTtm\n6s6vfvlA0xFG1I+vlZm604+ZdkXdW/jHAP+amRsy8zng/wL/peYxx0U/foPN1B0Lv3tm6k4/ZtoV\ndRf+QcBDQ24/XN0nSeoxd9pKUiEiM+tbecTbgcHMPKW6PQBkZl467HH1hZCkV6jMjLE8vu7C3wN4\nAHgX8ChwO3BGZt5f26CSpBFNrnPlmflCRCwEbqIzffRVy16SmlHrFr4kqX80utO2X96UFRFfjYjH\nIuKeIffNjIibIuKBiLgxIvbtYZ7ZEXFLRNwXEasj4oKmM1Xj7xkRP42IlVWui/sk16SIuCsilvVD\nnirD+oi4u3qtbu+HXBGxb0R8KyLur362jm345/yw6vW5q/q8OSIu6IPX6b9GxL0RcU9EfCMipjad\nqcq1qPp/t8ud0Fjh99mbsq6ucgw1AHwvM98A3AJ8qod5ngf+NjPfDPwh8PHqtWkyE5n5DPCOzDwS\neCvwvog4pulcwCJgzZDbTecBeBFoZeaRmXlMn+T6IrA8Mw8HjgDWNpkpM9dVr8984ChgK/DtJjNF\nxOuATwDzM/MtdKa9z2gyU5XrzcC5wNF0/u+9PyIOHXOuzGzkA3g78M9Dbg8AFzaYZw5wz5Dba4FZ\n1fLvAWsbzPYd4N19lmk68DPgbU3mAmYDNwMtYFm/fO+AfwNePey+Jl+nGcCDI9zf+GtVjX0ycGvT\nmYDXARuAmXTKflk//N8D/gJYMuT2/wA+Cdw/llxNTun0+5uyXpuZjwFk5q+B1zYRIiLm0vmNfhud\nb2yjmarpk5XAr4GbM/OOhnN9gc4P/tCdUY2/TlWemyPijog4rw9yzQM2RsTV1RTKVRExveFMQ50O\nXFMtN5YpMx8BLgN+CfwK2JyZ32syU+Ve4MRqCmc6sAA4eKy5fONV93q+dzsi9gauBRZl5pYRMvQ8\nU2a+mJ0pndnAMdWfmo3kiog/Bh7LzFXAjo5HbuLIhOOzM1WxgM6U3Ikj5OhlrsnAfODKKtdWOn9V\nN/4zFRFTgFOBb42SoWeZImI/Oqd/mUNna/9VEXFmk5kAMnMtcCmdv2aXAyuBF0Z66I7W02Th/wo4\nZMjt2dV9/eKxiJgFEBG/Bzzey8EjYjKdsv96Zl7fD5mGysyngDZwSoO5jgdOjYhfAN8E3hkRXwd+\n3fTrlJmPVp9/Q2dK7hia/f49DDyUmT+rbv8jnV8A/fAz9T7gzszcWN1uMtO7gV9k5qbMfIHOPoXj\nGs4EQGZenZlHZ2YLeJLOe5zGlKvJwr8DeH1EzImIqcAH6cyXNSV4+VbiMuDsavkjwPXDn1CzfwDW\nZOYX+yVTRBzw0lEAETENeA+dOcRGcmXmpzPzkMz8fTo/P7dk5lnAPzWR5yURMb3664yIeBWd+enV\nNPj9q/7sfygiDqvuehdwX5OZhjiDzi/slzSZ6ZfA2yNir4gIOq/TmoYzARARr6k+HwKcRmcKbGy5\nernjYYQdEafQ+S31r8BAgzmuAR4BnqHzDT+Hzk6b71X5bgL262Ge4+n8ubaKzp9ud1Wv1f5NZapy\n/ecqyyrgHuAz1f2N5qoynMTvdto2/TrNG/K9W/3Sz3Yf5DqCzobWKuA6YN8+yDQd+A2wz5D7ms50\nMZ0NmXuArwFTms5U5fohnbn8lXSOABvza+UbrySpEO60laRCWPiSVAgLX5IKYeFLUiEsfEkqhIUv\nSYWw8CWpEBa+JBXCwlfRIuLb1RktV790VsuIOLe6oMRt1Vklv1Tdf0BEXBudi8D8NCKOaza9NDa+\n01ZFi4j9MvPJiNiLzmkH3gv8iM4pqbcAK4BVmXlBRHyDztkmfxwRBwM3ZuabGgsvjVGtFzGXJoC/\niYg/rZZnA2cB7czcDBAR3wL+oPr3dwOHVyfVAtg7IqZn5m97mljaRRa+ihURJwHvBI7NzGciYgWd\nk2YdPtpTqsc+16uM0nhyDl8l2xd4oir7N9K57ObewB9VF/yeDPz5kMffROf6uQBExBE9TSvtJgtf\nJbsBmBIR9wGfA35C50IhnwNuB26lc23azdXjFwFHR8TdEXEv8NHeR5Z2nTttpWEi4lWZuTUi9qBz\nxaOv5u+uOiZNWG7hS9sbrC7UvprO5e4se70iuIUvSYVwC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAW\nviQV4v8D4frhjknO3JMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hist = thinkstats2.Hist(male_sur.Age)\n", + "thinkplot.Hist(hist, label='males')\n", + "thinkplot.Show(xlabel='age', ylabel='amount')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this visualization of surviving males, it can be seen that the majority of males who survived were between the ages of mid-20's to mid-30's. Interestingly, there are also 2 children under the age of 10, supporting the theory that children were a higher priority. However, this conclusion cannot be made without visualizing the ages of males who unfortunately did not survive. " + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFihJREFUeJzt3X2QXXWd5/H3F5JAIgQSKCMSSKJOkGUHJCAwPMgdQGAy\nMzjO1ipCgWSAUosAO7PF0kgVdJe1U3FXVlScUgKmGNe4tSJK1mJ4MrkuyiAPSUggQFQmCQgkk00E\nkhkDId/9457uaTqd9O2He8/p5P2q6sq9554+59O3b+dzz8P9nchMJEl7t33KDiBJKp9lIEmyDCRJ\nloEkCctAkoRlIEmixWUQEXdGxPqIWNFn+tUR8VxErIyIea3MIEka2JgWL38B8A3g77snREQN+HPg\nDzNze0Qc2uIMkqQBtHTLIDN/DmzuM/kLwLzM3F7Ms7GVGSRJAyvjmMFM4GMR8VhELImIE0vIIEnq\npdW7iXa1zkmZeUpEfBT438AHSsghSSqUUQYvAfcAZOYTEbEjIg7JzP/Xd8aIcOAkSRqCzIzBzN+O\n3URRfHX7MXAWQETMBMb2VwTdMrPyXzfffHPpGfp+XXX9/N3mvOr6+f3O0+pMzayzis/naMxozr03\n51C0dMsgIhYCNeCQiFgH3Ax8B1gQESuBbcClrcwgSRpYS8sgMy/axUOXtHK9kqTB8RPII6BWq5Ud\noSnmHDmjISOYc6SNlpxDYRmMgNHyAjHnyBkNGcGcI2205ByKMs4mkiQApk+fztq1a8uOMWpNmzaN\nNWvWjMiyLANJpVm7du2Qz34RRAzq7NHdcjeRJMkykCRZBpIkLANJark5c+Zw0003lR1jtzyALKlS\n5nbc0dLl3zbvipYuf7Ryy0CSZBlI0q7MmDGDr3zlKxx33HEceOCBXHnllWzYsIHZs2czceJEzj33\nXF5//XUAPvWpT3HYYYcxadIkarUaq1at2uVyf/KTn3D88cczadIkTj/9dFauXNnz2Je//GWmTp3K\nxIkTOfroo1myZEnLf06wDCRpt+655x5++tOfsnr1ahYtWsTs2bOZN28eGzdu5J133uHrX/86ALNn\nz+Y3v/kNGzZsYNasWVx88cX9Lm/ZsmVcfvnlzJ8/n02bNvG5z32OCy64gLfffpvVq1fzzW9+k6ee\neoo33niDBx54gOnTp7fl57QMJGk3rr76ag499FAOO+wwzjjjDE4++WSOPfZYxo0bxyc/+UmWLVsG\nwGWXXcaECRMYO3YsN910E08//TRvvvnmTsubP38+n//85znxxBOJCC655BL2228/HnvsMfbdd1/e\neustnnnmGbZv386RRx7JjBkz2vJzWgaStBtTpkzpuT1+/Pid7m/ZsoUdO3bQ0dHBhz70IQ4++GBm\nzJhBRLBx486XeF+7di233HILkydPZvLkyUyaNImXX36ZV155hQ9+8IPceuutdHZ2MmXKFC666CJe\nffXVtvycloEkDdPChQtZtGgRixcv5ne/+x1r1qzZ5YVmjjjiCG688UY2bdrEpk2b2Lx5M1u2bOHT\nn/40ABdeeCGPPPJIz5hNHR0dbfkZLANJGqYtW7aw//77M2nSJLZu3coNN9ywy3GDrrzySr71rW/x\n+OOPA7B161buu+8+tm7dyurVq1myZAlvvfUW48aNY/z48eyzT3v+m/ZzBpIqpUqfA+j7H/qu/oO/\n9NJLuf/++zn88MM55JBD+NKXvsS3v/3tfuc94YQTmD9/PnPnzuXXv/4148eP5/TTT+fMM89k27Zt\ndHR08PzzzzN27FhOPfVUbr/99hH/ufoTVR4xMCKyyvmqbG7HHbv9o+r+YE87//DKWKeqLSIctXQY\ndvX8FdMHNaSpu4kkSa0tg4i4MyLWR8SKfh77zxGxIyImtzKDJGlgrd4yWACc13diREwFPg54iSNJ\nqoCWlkFm/hzY3M9DXwWua+W6JUnNa/sxg4i4AHgpM1cOOLMkqS3aemppRIwHvkhjF1HP5HZmkCTt\nrN2fM/ggMB14Ohon7E4FnoqIkzJzQ3/f0NnZ2XO7VqtRq9Van3IvNJTTPj1VVMM1bdq0Eb2o+95m\n2rRpANTrder1+rCW1Y4yiOKLzHwGeF/PAxH/BMzKzP6OKwDvLgNJe5Y1a9aUHWGP0PeNcldX16CX\n0epTSxcCjwIzI2JdRMzpM0vibiJJKl1Ltwwy86IBHv9AK9cvSWqOn0CWJFkGkiTLQJKEZSBJwjKQ\nJGEZSJKwDCRJWAaSJCwDSRKWgZo0t+OOnoHpWr0eSe1nGUiSLANJkmUgScIykCRhGUiSsAwkSVgG\nkiQsA0kSloEkiRaXQUTcGRHrI2JFr2n/LSKei4jlEfHDiJjYygySpIG1estgAXBen2kPAsdk5keA\nXwE3tDiDJGkALS2DzPw5sLnPtIczc0dx9zFgaiszSJIGVvYxg78C/qHkDJK01xtT1ooj4kbg7cxc\nuLv5Ojs7e27XajVqtVprg41C3SN93jbvipKTSCpDvV6nXq8PaxmllEFEXAbMBs4aaN7eZSBJ2lnf\nN8pdXV2DXkY7yiCKr8adiPOB64CPZea2NqxfkjSAVp9auhB4FJgZEesiYg7wDeAA4KGIWBoRf9fK\nDJKkgbV0yyAzL+pn8oJWrlOSNHhln00kSaoAy0CSZBlIkiwDSRKWgSQJy0CShGUgScIykCRhGUiS\nsAy0F5rbcUfPSK+SGiwDSZJlIEmyDCRJWAaSJCwDSRKWgSQJy0CShGUgScIykCTR4jKIiDsjYn1E\nrOg1bVJEPBgRL0TEAxFxUCszSJIG1uotgwXAeX2mdQAPZ+ZRwGLghhZnkCQNoKVlkJk/Bzb3mfwJ\n4K7i9l3AX7QygyRpYGUcM3hvZq4HyMzXgPeWkEGS1MuYsgMAubsHOzs7e27XajVqtVqL41RP9wib\nt827otRljPQ62pFJ2hvU63Xq9fqwllFGGayPiCmZuT4i3gds2N3MvctAkrSzvm+Uu7q6Br2Mduwm\niuKr2yLgsuL2Z4F725BBkrQbrT61dCHwKDAzItZFxBxgHvDxiHgBOLu4L0kqUUt3E2XmRbt46JxW\nrleSNDh+AlmSZBlIkiwDSRKWgSQJy0CShGUgSaLJMoiIGc1MkySNTs1uGfywn2l3j2QQSVJ5dvuh\ns4j4MHAMcFBE/GWvhyYC+7cymCSpfQb6BPJRwJ8BBwN/3mv6m8CVrQql8o2WEUX75hwtuaWq2W0Z\nZOa9wL0R8UeZ+Y9tyiRJarNmxyb6dUR8EZje+3sy869aEUqS1F7NlsG9wCPAw8A7rYsjSSpDs2Uw\nITOvb2kSSVJpmj219CcRMbulSSRJpWm2DK6lUQj/GhFvRMSbEfFGK4NJktqnqd1EmXlgq4NIksrT\nVBlExMf6m56Z/3dk40iSytDsAeTret3eHzgJeAo4a8QTSZLartndRL0/fUxEHAHcOpwVR8RfA5cD\nO4CVwJzMfGs4y5QkDc1Qh7B+GTh6qCuNiPcDVwOzMvNYGqV04VCXJ0kanmaPGXwDyOLuPsBHgKXD\nXPe+wHsiYgcwAXhlmMuTJA1Rs8cMnux1ezvw/cz8xVBXmpmvRMQtwDrgX4AHM/PhoS5PkjQ8zR4z\nuCsixgEzi0kvDGelEXEw8AlgGvA6cHdEXJSZC/vO29nZ2XO7VqtRq9WGs2qNco5KKu2sXq9Tr9eH\ntYxmdxPVgLuANUAAR0TEZ4dxauk5wIuZualY/j3AqcBuy0CStLO+b5S7uroGvYxmdxPdApybmS8A\nRMRM4PvACYNeY8M64JSI2B/YBpwNPDHEZUmShqnZs4nGdhcBQGauBsYOdaWZ+TiNy2YuA56msbVx\n+1CXJ0kanqYPIEfEHcD/LO5fzLsPKg9aZnYBg9+WkSSNuGbL4AvAVcA1xf1HgL9rSSJJUts1ezbR\nNuB/FF+SpD1MU8cMIuLPImJZRGxyCGtJ2vM0u5voVuAvgZWZmQPNLEkaXZo9m+gl4BmLQJL2TM1u\nGfwX4L6I+BmNzwUAkJkeQ5CkPUCzZfBfgS00rmUwrnVxJEllaLYM3p+Z/76lSSRJpWn2mMF9EXFu\nS5NIkkrTbBl8Abg/Iv7VU0vVTnM77ugZqbSM7x/qMkZive1YptSt2Q+dHRgRk4E/oHHcQJK0B2l2\nCOsrgGuBqcBy4BTgURqjjUqSRrlmdxNdC3wUWJuZfwwcT+OiNJKkPUCzZfD7zPw9QETsl5nPA0e1\nLpYkqZ2aPbX05eJSlT8GHoqIzcDa1sWSJLVTsweQP1nc7IyIJcBBwP0tSyVJaqtmtwx6ZObPWhFE\nklSeZo8ZSJL2YJaBJKm8MoiIgyLiBxHxXEQ8GxEnl5VFkvZ2gz5mMIK+BtyXmf8xIsYAE0rMIkl7\ntVLKICImAmdk5mUAmbkdcKwjSSpJWbuJZgAbI2JBRCyNiNsjYnxJWSRpr1fWbqIxwCzgqsx8MiJu\nBTqAm/vO2NnZ2XO7VqtRq9XaFLG6ukeuvG3eFSUn2b3RknOw9tSfS6NXvV6nXq8PaxlllcHLwEuZ\n+WRx/27g+v5m7F0GkqSd9X2j3NXVNehllLKbKDPXAy9FxMxi0tnAqjKySJLKPZvoGuB7ETEWeBGY\nU2IWSdqrlVYGmfk0jWGxJUkl8xPIkiTLQJJkGUiSsAwkSVgGkiQsA0kSloEkCctAkoRlIEnCMpB2\nMrfjjp6RSUfzOkZinWXkVDksA0mSZSBJsgwkSVgGkiQsA0kSloEkCctAkoRlIEnCMpAkUXIZRMQ+\nEbE0IhaVmUOS9nZlbxlcC6wqOYMk7fVKK4OImArMBhz4RJJKVuaWwVeB64AsMYMkCRhTxkoj4k+B\n9Zm5PCJqQOxq3s7Ozp7btVqNWq3W6njay3SPynnbvCv2qAxV+LnUHvV6nXq9PqxllFIGwGnABREx\nGxgPHBgRf5+Zl/adsXcZSJJ21veNcldX16CXUcpuosz8YmYemZkfAC4EFvdXBJKk9ij7bCJJUgWU\ntZuoR2b+DPhZ2TkkaW/mloEkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnCMpAkYRlIkhjFZTC3446e\nURmHM4/UDkN5LbbjtVvFv5GRyFTFn6vqRm0ZSJJGjmUgSbIMJEmWgSQJy0CShGUgScIykCRhGUiS\nsAwkSZRUBhExNSIWR8SzEbEyIq4pI4ckqWFMSevdDvxNZi6PiAOApyLiwcx8vqQ8krRXK2XLIDNf\ny8zlxe0twHPA4WVkkSRV4JhBREwHPgL8stwkkrT3Kms3EQDFLqK7gWuLLYSddHZ2AnDfw0s5/Mij\n+NHC/96yPN2jHN4274ohz9PMMvr7nsHMP9rtSaNJdv/uRup3OJjXT995h/LaG66h/M0MNvdI/F2O\nhCo837tSr9ep1+vDWkZpZRARY2gUwXcz895dzdddBht/v+f8ByJJI6lWq1Gr1Xrud3V1DXoZZe4m\n+g6wKjO/VmIGSRLlnVp6GnAxcFZELIuIpRFxfhlZJEkl7SbKzF8A+5axbknSzko/m0iSVD7LQJJk\nGUiSLANJEpaBJAnLQJKEZSBJwjKQJGEZSJIoedTSqitrtMRWjoY42BFD+5u/HaOsDpRzuI83O4/e\nrdnntQojefY2kn9Tw3ndVGmk077cMpAkWQaSJMtAkoRlIEnCMpAkYRlIkrAMJElYBpIkSiyDiDg/\nIp6PiNURcX1ZOSRJJZVBROwD3AacBxwDfCYiPlxGlpHw23UvlB2hKaMlZ71eLzvCgEbLc2nOkTVa\ncg5FWVsGJwG/ysy1mfk28L+AT5SUZdhGywtktOS0DEaOOUfWaMk5FGWVweHAS73uv1xMkySVwAPI\nkiQiM9u/0ohTgM7MPL+43wFkZn65z3ztDydJe4DMjMHMX1YZ7Au8AJwNvAo8DnwmM59rexhJUjnX\nM8jMdyJiLvAgjV1Vd1oEklSeUrYMJEnVUskDyFX+QFpE3BkR6yNiRa9pkyLiwYh4ISIeiIiDSs44\nNSIWR8SzEbEyIq6paM79IuKXEbGsyHlzFXMWmfaJiKURsaiqGQEiYk1EPF08p48X0yqVNSIOiogf\nRMRzxWv05ApmnFk8h0uLf1+PiGuqlrPI+tcR8UxErIiI70XEuKHkrFwZjIIPpC2gka23DuDhzDwK\nWAzc0PZU77Yd+JvMPAb4I+Cq4jmsVM7M3Ab8cWYeD3wE+JOIOImK5SxcC6zqdb+KGQF2ALXMPD4z\nTyqmVS3r14D7MvNo4DjgeSqWMTNXF8/hLOAEYCvwIyqWMyLeD1wNzMrMY2ns+v8MQ8mZmZX6Ak4B\n/qHX/Q7g+rJz9ck4DVjR6/7zwJTi9vuA58vO2Cfvj4FzqpwTmAA8CXy0ajmBqcBDQA1YVOXfOfBP\nwCF9plUmKzAR+E0/0yuTsZ9s5wKPVDEn8H5gLTCpKIJFQ/1br9yWAaPzA2nvzcz1AJn5GvDekvP0\niIjpNN51P0bjxVGpnMXul2XAa8BDmfkE1cv5VeA6oPcBtqpl7JbAQxHxRER0X3W9SllnABsjYkGx\nC+b2iJhQsYx9fRpYWNyuVM7MfAW4BVgH/BZ4PTMfZgg5q1gGe4JKHJWPiAOAu4FrM3MLO+cqPWdm\n7sjGbqKpwEkRcQwVyhkRfwqsz8zlwO7O2y79uSyclo1dG7Np7B48gwo9nzTevc4Cvlnk3Epj679K\nGXtExFjgAuAHxaRK5YyIg2kM5TONxlbCeyLi4n5yDZizimXwW+DIXvenFtOqbH1ETAGIiPcBG0rO\nQ0SMoVEE383Me4vJlcvZLTPfAOrA+VQr52nABRHxIvB94KyI+C7wWoUy9sjMV4t//5nG7sGTqNbz\n+TLwUmY+Wdz/IY1yqFLG3v4EeCozNxb3q5bzHODFzNyUme/QOK5xKkPIWcUyeAL4UERMi4hxwIU0\n9oNVSfDud4mLgMuK258F7u37DSX4DrAqM7/Wa1qlckbEod1nOUTEeODjwHNUKGdmfjEzj8zMD9B4\nLS7OzEuA/0NFMnaLiAnF1iAR8R4a+7pXUq3ncz3wUkTMLCadDTxLhTL28RkabwK6VS3nOuCUiNg/\nIoLG87mKoeQs++DMLg6KnE/jE8q/AjrKztMn20LgFWBb8YuYQ+PgzcNF5geBg0vOeBrwDrAcWAYs\nLZ7TyRXL+YdFtuXACuDGYnqlcvbKeyb/dgC5chlp7I/v/p2v7P7bqVpWGmcQPVFkvQc4qGoZi5wT\ngH8GDuw1rYo5b6bxJmoFcBcwdig5/dCZJKmSu4kkSW1mGUiSLANJkmUgScIykCRhGUiSsAwkSVgG\nkiQsA2mXIuJHxeifK7tHAI2Iy4sLhjxWjLj59WL6oRFxd3Gxnl9GxKnlppcGx08gS7sQEQdn5u8i\nYn8awyecB/yCxpDgW4AlwPLMvCYivkdjJM5HI+II4IHM/HelhZcGaUzZAaQK+08R8RfF7anAJUA9\nM18HiIgfAH9QPH4OcHQxWBjAARExITP/pa2JpSGyDKR+RMSZwFnAyZm5LSKW0BgM7OhdfUsx79vt\nyiiNJI8ZSP07CNhcFMGHaVyO9QDgY8UF3ccA/6HX/A/SuE4yABFxXFvTSsNkGUj9ux8YGxHPAn8L\n/CONC7P8LfA48AiN6w2/Xsx/LXBiRDwdEc8An2t/ZGnoPIAsDUJEvCczt0bEvjSuKnVn/tuV5KRR\nyy0DaXA6I6L74jEvWgTaU7hlIElyy0CSZBlIkrAMJElYBpIkLANJEpaBJAn4/85+D7RwYsPwAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "male_not = males[males.Survived == 0]\n", + "hist = thinkstats2.Hist(male_not.Age)\n", + "thinkplot.Hist(hist, label='males')\n", + "thinkplot.Show(xlabel='age', ylabel='amount')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, there is a higher distribution of males who did not survive from the ages of the teens to early 30s, with a spike around the late 30's. " + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFPVJREFUeJzt3X2QXXV9x/H3NwloAiREGFCTELQtCLTVQI0IRa6ggdqK\ntf2jEccqFuhgIqHUNCv9g10cEREEK40zGspYC3RGrE2sogGTGx9AAUkIAoEQJECAQBJ5UgxGvv3j\nnl2XzSa5+3Dv2bP7fs3cyb1nz57f59xs8tnzcM+JzESSNLaNKzuAJKl8loEkyTKQJFkGkiQsA0kS\nloEkiRaXQURcHRGbI2JtP1/754h4OSJe08oMkqQ9a/WWwTXAKX0nRsR04N3AxhaPL0lqQkvLIDN/\nBPyyny9dASxs5diSpOa1/ZhBRJwGPJqZd7d7bElS/ya0c7CImAhcQGMXUc/kdmaQJO2srWUA/AFw\nKHBXRAQwHfhZRMzOzKf6zhwRXjhJkgYhMwf0i3Y7dhNF8SAzf56Zr83MN2bmG4DHgFn9FUG3zKzs\n48ILLyw9w0jIP2/RVyqbvervvfnHZv7BaPWppdcBtwCHRcQjEXFGn1kSdxNJUulaupsoM0/fw9ff\n2MrxJUnN8RPILVSr1cqOMCRVzl/l7GD+slU9/2DEYPcvtUNE5EjOp+bM71jCVZecWXYMacyICHKA\nB5DbfTaRpFHu0EMPZeNGLy7QDjNnzuThhx8elmVZBpKG1caNGwd9RosGpnGG/vDwmIEkyTKQJFkG\nkiQsA0ljyAMPPMCsWbOYMmUKV111VdvGHTduHA899FDbxhsMDyBLaqn5HUtauvyBnLZ86aWXctJJ\nJ7F69eoWJtrZcB7obRW3DCSNGRs3buSoo45q+7hVOLvKMpA0Jpx88smsXLmSefPmMXnyZNavX88n\nPvEJZs6cyete9zo+9rGPsX37dgBWrVrFjBkz+NznPsfBBx/MtGnTWLp0KTfeeCOHH344Bx54IJ/5\nzGd6ln377bdz3HHHMXXqVKZNm8bHP/5xduzY0W+Ol156aZfjbt26lfe+971MnTqVAw44gBNPPLH1\nb0zBMpA0Jnz/+9/nhBNOYPHixTz33HMsXryYBx98kLVr1/Lggw+yadMmLrroop75n3zySV566SUe\nf/xxurq6OOuss7j22mtZvXo1P/jBD/jUpz7V8+G68ePHc+WVV7Jt2zZuvfVWVqxYweLFi/vNsWjR\nol2Oe/nllzNjxgy2bt3KU089xcUXX9z6N6ZgGUgaU7p32XzlK1/hiiuuYMqUKeyzzz50dHRw/fXX\n98y39957c8EFFzB+/Hjmzp3Lli1bOO+885g0aRJHHnkkRx55JHfddRcARx99NLNnzyYiOOSQQzj7\n7LNZtWpVv+Pvbty99tqLJ554gl/84heMHz+e448/vsXvxu95AFnSmPP000/z61//mmOOOaZn2ssv\nv/yKffsHHHBAz4HfiRMnAnDQQQf1fH3ixIm88MILAKxfv57zzz+fO+64gxdffJEdO3a8YtnNjrtw\n4UI6OzuZM2cOEcFZZ53FokWLhnHNd80tA0ljzoEHHsikSZO455572LZtG9u2beOZZ57h2WefHdTy\nzjnnHI444gg2bNjAM888w6c//el+Dxrvadx9992Xyy67jA0bNrBs2TI+//nPs3LlyiGta7MsA0lj\nTvdv3eeddx5PP/00AJs2bWL58uWDWt7zzz/P5MmTmTRpEuvWreNLX/rSoMb99re/zYYNGwDYb7/9\nmDBhAuPGtee/aXcTSWqpkXT58t7n+19yySVcdNFFHHvssWzdupVp06ZxzjnnMGfOnD1+b9/Xl112\nGWeffTaXXnops2bNYu7cuaxYsaLfeT/72c/S1dXV77jr169n/vz5bNmyhalTpzJv3ry2nVHk/QzU\nct7PYGwprqVfdowxYVfv9WDuZ+BuIkmSZSBJsgwkSVgGkiQsA0kSLS6DiLg6IjZHxNpe0y6NiPsi\nYk1EfCMiJrcygyRpz1q9ZXANcEqfacuBozLzLcB64JMtziCpjWbOnElE+GjDY+bMmcP299bSD51l\n5o8iYmafaTf3evkT4G9bmUFSez388MNlR9AglH3M4KPAjSVnkKQxr7TLUUTEvwK/zczrdjdfZ2dn\nz/NarUatVmttMEmqmHq9Tr1eH9IyWn45imI30bcy8097TfsIcBZwUmZu3833ejmKUcDLUUjtNZjL\nUbRjyyCKR+NFxKnAQuAduysCSVL7tPrU0uuAW4DDIuKRiDgD+CKwL3BTRNwZEf3fG06S1DatPpvo\n9H4mX9PKMSVJA1f22USSpBHAMpAkWQaSJMtAkoRlIEnCMpAkYRlIkrAMJElYBpIkLANJEpaBJAnL\nQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGUgScIykCRhGUiSaHEZRMTVEbE5Itb2\nmjY1IpZHxP0R8b2ImNLKDJKkPWv1lsE1wCl9pnUAN2fm4cAK4JMtziBJ2oOWlkFm/gj4ZZ/J7wO+\nWjz/KvDXrcwgSdqzMo4ZHJSZmwEy80ngoBIySJJ6mVB2ACB398XOzs6e57VajVqt1uI4Goj5HUu4\n6pIzy44hjWn1ep16vT6kZZRRBpsj4uDM3BwRrwWe2t3MvctAkrSzvr8od3V1DXgZ7dhNFMWj2zLg\nI8XzDwNL25BBkrQbrT619DrgFuCwiHgkIs4ALgHeHRH3AycXryVJJWrpbqLMPH0XX3pXK8eVJA2M\nn0CWJFkGkiTLQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGWgUWp+x5KyI0iVYhlI\nkiwDSZJlIEnCMpAkYRlIkrAMJElYBpIkLANJEpaBJAnLQJKEZSBJosQyiIh/ioifR8TaiLg2IvYu\nK4skjXWllEFEvB74OHB0Zv4pMAGYW0YWSVLjP+GyjAf2iYiXgUnA4yVmkaQxraktg4h4QzPTmpWZ\njwOXA48Am4BnMvPmwS5PkjQ0zW4ZfAM4us+0G4BjBjNoROwPvA+YCTwL3BARp2fmdX3n7ezs7Hle\nq9Wo1WqDGVK9zO9YwlWXnFl2jErzPdRIUq/XqdfrQ1rGbssgIt4EHAVMiYi/6fWlycCrhzDuu4CH\nMnNbMc7/AMcBuy0DSdLO+v6i3NXVNeBl7GnL4HDgr4D9gff2mv48cNaAR/u9R4BjI+LVwHbgZOD2\nISxPkjQEuy2DzFwKLI2It2fmrcM1aGbeFhE3AKuB3xZ/fnm4li9JGphmjxk8GBEXAIf2/p7M/Ohg\nB87MLmDg2zKSpGHXbBksBX4I3Az8rnVxJEllaLYMJmXmopYmkSSVptlPIP9fRLynpUkkSaVptgwW\n0CiEFyPiuYh4PiKea2UwSVL7NLWbKDP3a3UQSVJ5miqDiHhHf9Mz8wfDG0eSVIZmDyAv7PX81cBs\n4GfAScOeSJLUds3uJur96WMiYgZwZUsSSZLabrD3M3gMOGI4g0iSytPsMYMvAlm8HAe8BbizVaEk\nSe3V7DGDO3o93wFcn5k/bkEeSVIJmtpNlJlfBa6ncdD4LuC2VoZSe83vWFJ2hFHB91FV1uxuohrw\nVeBhIIAZEfFhTy2VpNGh2d1ElwNzMvN+gIg4jMaWwqDudCZJGlmaPZtor+4iAMjMB4C9WhNJktRu\nTR9AjoglwH8Vrz/IKw8qS5IqrNkyOAeYB5xbvP4hsLgliSRJbdfsJ5C3A58vHpKkUaapYwYR8VcR\nsToitnkJa0kafZrdTXQl8DfA3ZmZe5pZklQtzZ5N9Cjwc4tAkkanZrcM/gX4TkSsArZ3T8xMjyFI\n0ijQbBl8GniBxr0M9m5dHElSGZotg9dn5h8P58ARMQVYAvwx8DLw0cz86XCOIUlqTrPHDL4TEXOG\neewvAN/JzCOANwP3DfPyJUlNarYMzgG+GxEvDseppRExGTghM68ByMwdmempqpJUkmY/dLZfRLwG\n+CMaxw2G6g3Aloi4hsZWwR3Agsx8cRiWLUkaoGYvYX0msACYDqwBjgVuAU4ewrhHA/My846IuBLo\nAC7sO2NnZ2fP81qtRq1WG+SQ0p7N71jCVZecWXYMaUDq9Tr1en1Iy2j2APIC4K3ATzLznRHxJuDi\nIYz7GPBoZnZf7O4GYFF/M/YuA0nSzvr+otzV1TXgZTR7zOA3mfkbgIh4VWauAw4f8GiFzNwMPFrc\nFwEaWxj3DnZ5kqShaXbL4LGI2B/4X+CmiPglsHGIY58LXBsRewEPAWcMcXmSpEFq9gDy+4unnRGx\nEpgCfHcoA2fmXTR2PUmSStbslkGPzFzViiCSpPI0e8xAkjSKWQaSJMtAkmQZSJKwDCRJWAaSJCwD\nSRKWgSQJy0CShGUgSWIMlcH8jiVlR2i5/tax6uvdN/9Q1rFK70WVsmp0GDNlIEnaNctAkmQZSJIs\nA0kSloEkCctAkoRlIEnCMpAkYRlIkrAMJElYBpIkSi6DiBgXEXdGxLIyc0jSWFf2lsEC4N6SM0jS\nmFdaGUTEdOA9gJdnlKSSlbllcAWwEMgSM0iSKKkMIuIvgc2ZuQaI4tGvzs7Onke9Xh+2DFW/XnwZ\n+ZsZs+rva3+Gc51G4z0n+jMa12kkq9frr/i/cjAmDG+kph0PnBYR7wEmAvtFxH9m5t/3nXGwKyZJ\nY0WtVqNWq/W87urqGvAyStkyyMwLMvOQzHwjMBdY0V8RSJLao+yziSRJI0BZu4l6ZOYqYFXZOSRp\nLHPLQJJkGUiSLANJEpaBJAnLQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRKWQSWMlWvDj5X1HC5D\neb8G+70j9T4aZSxrtLEMJEmWgSTJMpAkYRlIkrAMJElYBpIkLANJEpaBJAnLQJKEZSBJwjKQJFFS\nGUTE9IhYERH3RMTdEXFuGTkkSQ0TShp3B3B+Zq6JiH2Bn0XE8sxcV1IeSRrTStkyyMwnM3NN8fwF\n4D5gWhlZJEkj4JhBRBwKvAX4ablJJGnsKrUMil1ENwALii2EnXR2dtLZ2cnsPz+N95++cKevj8br\nk4/GdeprJKzj/I4lIyJHs0bqPQhGaq4ylLVO9Xq95//Kzs7OQS2jrGMGRMQEGkXwtcxcuqv5ulds\ny29G3w+OJA2HWq1GrVbred3V1TXgZZS5ZfAfwL2Z+YUSM0iSKO/U0uOBDwInRcTqiLgzIk4tI4sk\nqaTdRJn5Y2B8GWNLknZW+tlEkqTyWQaSJMtAkmQZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGUgScIy\nkCQxSstgOK+v3uw0Vdto+TsdzvUoY1nNzNfffShGatYqGZVlIEkaGMtAkmQZSJIsA0kSloEkCctA\nkoRlIEnCMpAkYRlIkrAMJEmUWAYRcWpErIuIByJiUVk5JEkllUFEjAOuAk4BjgI+EBFvKiNLK9Xr\n9bIjDEmV82965P6yIwyJ+ctV5Z/9wSpry2A2sD4zN2bmb4H/Bt5XUpaWqfoPVJXzV/0/I/OXq8o/\n+4NVVhlMAx7t9fqxYpokqQQeQJYkEZnZ/kEjjgU6M/PU4nUHkJn52T7ztT+cJI0CmRkDmb+sMhgP\n3A+cDDwB3AZ8IDPva3sYSRITyhg0M38XEfOB5TR2VV1tEUhSeUrZMpAkjSwj8gByFT+QFhFXR8Tm\niFjba9rUiFgeEfdHxPciYkqZGXclIqZHxIqIuCci7o6Ic4vpVcn/qoj4aUSsLvJfWEyvRH5ofPYm\nIu6MiGXF68pkB4iIhyPiruLv4LZiWiXWISKmRMTXI+K+4t/A2yqU/bDiPb+z+PPZiDh3MPlHXBlU\n+ANp19DI3FsHcHNmHg6sAD7Z9lTN2QGcn5lHAW8H5hXveSXyZ+Z24J2ZOQt4C/AXETGbiuQvLADu\n7fW6StkBXgZqmTkrM2cX06qyDl8AvpOZRwBvBtZRkeyZ+UDxnh8NHAP8Cvgmg8mfmSPqARwL3Njr\ndQewqOxcTWafCazt9XodcHDx/LXAurIzNrke/wu8q4r5gUnAHcBbq5IfmA7cBNSAZVX82QF+ARzQ\nZ9qIXwdgMrChn+kjPns/mecAPxxs/hG3ZcDo+kDaQZm5GSAznwQOKjnPHkXEoTR+u/4JjR+mSuQv\ndrOsBp4EbsrM26lO/iuAhUDvA3hVyd4tgZsi4vaIOLOYVoV1eAOwJSKuKXa1fDkiJlGN7H39HXBd\n8XzA+UdiGYxmI/pofUTsC9wALMjMF9g574jNn5kvZ2M30XRgdkQcRQXyR8RfApszcw2wu/PCR1z2\nPo7Pxq6K99DYzXgCFXj/aZxReTTw70X+X9HYG1GF7D0iYi/gNODrxaQB5x+JZbAJOKTX6+nFtCra\nHBEHA0TEa4GnSs6zSxExgUYRfC0zlxaTK5O/W2Y+B9SBU6lG/uOB0yLiIeB64KSI+BrwZAWy98jM\nJ4o/n6axm3E21Xj/HwMezcw7itffoFEOVcje218AP8vMLcXrAecfiWVwO/CHETEzIvYG5gLLSs7U\nrOCVv90tAz5SPP8wsLTvN4wg/wHcm5lf6DWtEvkj4sDusyUiYiLwbuA+KpA/My/IzEMy8400ftZX\nZOaHgG8xwrN3i4hJxVYlEbEPjX3Xd1ON938z8GhEHFZMOhm4hwpk7+MDNH6Z6Dbw/GUf9NjFgZBT\naXxCeT3QUXaeJjNfBzwObAceAc4ApgI3F+uyHNi/7Jy7yH488DtgDbAauLP4O3hNRfL/SZF5DbAW\n+NdieiXy91qPE/n9AeTKZKex3737Z+fu7n+zVVkHGmcQ3V6sw/8AU6qSvcg/CXga2K/XtAHn90Nn\nkqQRuZtIktRmloEkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnCMpB2KSK+WVyF8+7uK3FGxD8UNwz5\nSXGFy38rph8YETcUN9n5aUQcV256aWD8BLK0CxGxf2Y+ExGvpnG5glOAH9O4xPcLwEpgTWaeGxHX\n0rjy5S0RMQP4XmYeWVp4aYAmlB1AGsHOi4i/Lp5PBz4E1DPzWYCI+DrwR8XX3wUcERHdFyrcNyIm\nZeav25pYGiTLQOpHRJwInAS8LTO3R8RKGldCPWJX31LM+9t2ZZSGk8cMpP5NAX5ZFMGbaNyOdV/g\nHcUN1CcAf9tr/uU07mMMQES8ua1ppSGyDKT+fRfYKyLuAS4GbqVxI5SLgduAH9K47++zxfwLgD+L\niLsi4ufAP7Y/sjR4HkCWBiAi9snMX0XEeOCbwNX5+zvDSZXlloE0MJ0R0X0Tl4csAo0WbhlIktwy\nkCRZBpIkLANJEpaBJAnLQJKEZSBJAv4fGZv3LvlIvBgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hist = thinkstats2.Hist(female_sur.Age)\n", + "thinkplot.Hist(hist, label='females')\n", + "thinkplot.Show(xlabel='age', ylabel='amount')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For women, the highest survival is around the ages of 20's to 30's, with a spike around age 5. " + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEPCAYAAABBUX+lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEvFJREFUeJzt3X+wVOV9x/H3F1ADIoRANRYQk2k0YjsRbYiRMd5oQqyJ\naZvOdEg7aZpW7BCIODYW6j/ea0aDxl9pKZmpmoxNjU1jxmAbTTSBi4kxCUb8ERVFFKJGUEFRokGJ\n3/6xC73ABfZe9uzl7vN+zdzh7Llnz/N9dpcPD885e05kJpKk9jdkoAuQJLWGgS9JhTDwJakQBr4k\nFcLAl6RCGPiSVIhhVTcQEWuATcCbwBuZObXqNiVJu6o88KkFfUdmvtiCtiRJu9GKKZ1oUTuSpD1o\nRRAncEdELI+ImS1oT5LUi1ZM6UzLzGcj4veoBf8jmfnjFrQrSeqh8sDPzGfrfz4fETcDU4EdAj8i\nvKCPJPVRZkZftq90SiciRkTEyPrywcB04Je9bZuZbflz4YUXDngNffmZPe8aZs+7pm371+7vn/0r\np3/9UfUI/zDg5voIfhhwQ2beXnGbkqReVBr4mfkkcFyVbUiSGuPpkhXr6OgY6BIqZf8GN/tXlujv\nXFBTi4jI/aEOwZz51wKwcMFZA1yJpD2JCLKPB21bcVqmpDZz5JFHsnbt2oEuowiTJk1izZo1TdmX\ngS+pz9auXdvvM0XUNxF9GsTvkXP4klQIA1+SCmHgS1IhDHxJbeexxx5jypQpjB49moULF7as3SFD\nhvDEE0+0rL2+8qCtpKbYdkpvVfpyqvBll13GqaeeyooVKyqsaFfNPMBaBUf4ktrO2rVrOfbYY1ve\n7v5+5pKBL6mtnHbaaSxdupTZs2czatQoVq1axec//3kmTZrE4Ycfzmc/+1m2bNkCwLJly5g4cSJf\n+tKXOOywwxg/fjyLFy/mtttu4+ijj2bcuHF88Ytf3L7v5cuXc9JJJzFmzBjGjx/P5z73ObZu3dpr\nHa+//vpu292wYQNnnnkmY8aMYezYsZxyyinVvzAY+JLazA9/+ENOPvlkFi1axMsvv8yiRYt4/PHH\neeCBB3j88cd55plnuOiii7Zvv27dOl5//XV+/etf09XVxcyZM7nhhhtYsWIFd955J1/4whe2f8ls\n6NChXH311WzcuJG7776bJUuWsGjRol7rmDdv3m7bveKKK5g4cSIbNmzgueee45JLLqn+hcHAl9Sm\ntk2vXHPNNVx11VWMHj2agw8+mPnz53PjjTdu3+7AAw/kggsuYOjQocyYMYMXXniBc889lxEjRjB5\n8mQmT57M/fffD8Dxxx/P1KlTiQiOOOIIzj77bJYtW9Zr+3tq94ADDuDZZ5/lySefZOjQoUybNq3i\nV6PGg7aS2tbzzz/Pq6++ygknnLB93ZtvvrnDXPvYsWO3H2wdPnw4AIceeuj23w8fPpzNmzcDsGrV\nKs477zzuueceXnvtNbZu3brDvhtt9/zzz6ezs5Pp06cTEcycOZN58+Y1see9c4QvqW2NGzeOESNG\n8NBDD7Fx40Y2btzISy+9xKZNm/q1v1mzZnHMMcewevVqXnrpJS6++OJeD9Turd2RI0dy+eWXs3r1\nam655RauvPJKli5duk99bYSBL6ltbRs9n3vuuTz//PMAPPPMM9x+e//uw/TKK68watQoRowYwcqV\nK/nKV77Sr3a/+93vsnr1agAOOeQQhg0bxpAh1cexUzqSmmJ/uqR2z/PhFyxYwEUXXcSJJ57Ihg0b\nGD9+PLNmzWL69Ol7fe7Ojy+//HLOPvtsLrvsMqZMmcKMGTNYsmRJr9teeumldHV19druqlWrmDNn\nDi+88AJjxoxh9uzZLTlTx+vhawdeD1+NqF+LfaDLKMLuXuv+XA/fKR1JKoSBL0mFMPAlqRAGviQV\nwsCXpEIY+JJUCM/Dl9RnkyZN2u+v/d4uJk2a1LR9GfiS+mzNmjUDXYL6wSkdSSqEgS9JhTDwJakQ\nBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYVoSeBHxJCIuDcibmlFe5KkXbVqhD8XeLhF\nbUmSelF54EfEBOAM4Nqq25Ik7V4rRvhXAecD3uJekgZQpZdHjoiPAusz876I6AB2ewHtzs7O7csd\nHR10dHTs8Ps58///PwgLF5zV3EKbYFt9+2Ntkga/7u5uuru792kfVV8Pfxrw8Yg4AxgOHBIR/5GZ\nf7Pzhj0DX5K0o50Hwl1dXX3eR6VTOpl5QWYekZnvBGYAS3oLe0lS9TwPX5IK0bJbHGbmMmBZq9qT\nJO3IEb4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+S\nCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqEgS9JhTDwJakQ\nBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klSIYVXuPCIO\nAu4EDqy3dVNmdlXZpiSpd5UGfmZuiYgPZuarETEUuCsibsvMn1fZriRpV5VP6WTmq/XFg6j9A5NV\ntylJ2lXlgR8RQyJiBbAOuCMzl1fdpiRpV60Y4b+ZmVOACcD7ImJy1W1KknZV6Rx+T5n5ckQsBU4H\nHt75952dnduXOzo66OjoaFVpaqI586/dvrxwwVmV7LvZ+1X1qvxclKK7u5vu7u592kfVZ+mMA97I\nzE0RMRz4MLCgt217Br4kaUc7D4S7uvp+wmPVI/zDgesjYgi16aNvZuatFbcpSepF1adlPggcX2Ub\nkqTG+E1bSSpEQ4EfEe9oZJ0kaf/V6Aj/272su6mZhUiSqrXHOfyIeDdwLDA6Ij7R41ejgLdUWZgk\nqbn2dtD2aOBjwFuBM3usfwWYWVVRkqTm22PgZ+ZiYHFEvD8z725RTZKkCjR6WubjEXEBcGTP52Tm\n31VRlCSp+RoN/MXAj4AfAL+rrhxJUlUaDfwRmTmv0kokSZVq9LTM/42IMyqtRJJUqUYDfy610H8t\nIl6OiFci4uUqC5MkNVdDUzqZeUjVhUiSqtVQ4EfEB3pbn5l3NrccSVJVGj1oe36P5bcAU4FfAKc2\nvSJJUiUandLp+S1bImIicHUlFUmSKtHfyyM/DRzTzEIkSdVqdA7/X4GsPxwCHAfcW1VRkqTma3QO\n/54ey1uBGzPzrgrqkSRVpNE5/Osj4kDgqPqqR6srSZJUhUandDqA64E1QAATI+LTnpYpSYNHo1M6\nVwDTM/NRgIg4CrgROKGqwiRJzdXoWToHbAt7gMx8DDigmpIkSVVo+KBtRFwL/Gf98V+z44FcSdJ+\nrtHAnwXMBs6pP/4RsKiSiiRJlWj0LJ0twJX1H0nSINTQHH5EfCwiVkTERi+PLEmDU6NTOlcDnwAe\nzMzc28aSpP1Po2fpPAX80rCXpMGr0RH+PwG3RsQyYMu2lZnpnL4kDRKNBv7FwGZq18I/sLpyJElV\naTTwfz8z/7DSSiRJlWp0Dv/WiJheaSWSpEo1GvizgO9FxGuelilJg1OjX7w6JCLeBryL2jy+JGmQ\nafTyyGcBc4EJwH3AicBPgNOqK02S1EyNTunMBd4LrM3MDwJTgE2VVSVJarpGA/+3mflbgIg4KDNX\nAkfv7UkRMSEilkTEQxHxYEScs7fnSJKq0ehpmU9HxFuB7wB3RMSLwNoGnrcVOC8z74uIkcAvIuL2\n+j8YkqQWavSg7Z/XFzsjYikwGvheA89bB6yrL2+OiEeA8YCBL0kt1ugIf7vMXNafhiLiSOA44Gf9\neb4kad80Ooe/T+rTOTcBczNzcyvalCTtqM8j/L6KiGHUwv7rmbl4d9t1dnZuX+7o6KCjo6Pq0rSP\n5sy/FoCFC85qeNtGtq9q257b99x2d/voy7b7s6reJ7VWd3c33d3d+7SPygMf+CrwcGZ+eU8b9Qx8\nSdKOdh4Id3V19XkflU7pRMQ0ajc8P7V+x6x7I+L0KtuUJPWu0hF+Zt4FDK2yDUlSY1py0FaSNPAM\nfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCX\npEIY+JJUCANfkgph4EtSIQx8SSqEgS9JhTDwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkq\nhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRCVBn5EXBcR6yPi\ngSrbkSTtXdUj/K8BH6m4DUlSAyoN/Mz8MfBilW1IkhrjHL4kFWLYQBewTWdn5/bljo4OOjo6Gnre\nnPnXbl9euOCsfrW9bR+NPL8/2+68fV/2sbf99rS7/fXWXjNet2bY19eiVfvd3WteVXt704z3tJmf\nw2Z+vne3j770b3/5fPemv7V1d3fT3d29T23vl4EvSdrRzgPhrq6uPu+jFVM6Uf+RJA2gqk/L/Abw\nE+CoiPhVRHymyvYkSbtX6ZROZv5VlfuXJDXOs3QkqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8\nSSqEgS9JhTDwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJek\nQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqE\ngS9JhTDwJakQBr4kFcLAl6RCVB74EXF6RKyMiMciYl7V7UmSeldp4EfEEGAh8BHgWOCTEfHuKtvc\n3zzzq0cHuoRK2b/Bzf6VpeoR/lRgVWauzcw3gP8C/rTiNvcr7f6Bs3+Dm/0rS9WBPx54qsfjp+vr\nJEkt5kFbSSpEZGZ1O484EejMzNPrj+cDmZmX7rRddUVIUpvKzOjL9lUH/lDgUeA04Fng58AnM/OR\nyhqVJPVqWJU7z8zfRcQc4HZq00fXGfaSNDAqHeFLkvYfA3rQtt2+lBUR10XE+oh4oMe6MRFxe0Q8\nGhHfj4jRA1njvoiICRGxJCIeiogHI+Kc+vpB38eIOCgifhYRK+p9u7C+ftD3raeIGBIR90bELfXH\nbdO/iFgTEffX38Of19e1U/9GR8S3IuKR+t/B9/W1fwMW+G36payvUetPT/OBH2Tm0cAS4J9bXlXz\nbAXOy8xjgfcDs+vv2aDvY2ZuAT6YmVOA44A/iYiptEHfdjIXeLjH43bq35tAR2ZOycyp9XXt1L8v\nA7dm5jHAe4CV9LV/mTkgP8CJwG09Hs8H5g1UPU3s1yTggR6PVwKH1ZffDqwc6Bqb2NfvAB9qtz4C\nI4B7gPe2U9+ACcAdQAdwS31dO/XvSWDsTuvaon/AKGB1L+v71L+BnNIp5UtZh2bmeoDMXAccOsD1\nNEVEHEltJPxTah+4Qd/H+nTHCmAdcEdmLqdN+lZ3FXA+0PPAXTv1L4E7ImJ5RJxVX9cu/XsH8EJE\nfK0+JffvETGCPvbPL1613qA/Sh4RI4GbgLmZuZld+zQo+5iZb2ZtSmcCMDUijqVN+hYRHwXWZ+Z9\nwJ7O3R6U/aublpnHA2dQm248mTZ5/6idUXk88G/1Pv6G2qxIn/o3kIH/DHBEj8cT6uvazfqIOAwg\nIt4OPDfA9eyTiBhGLey/npmL66vbqo+Z+TLQDZxO+/RtGvDxiHgCuBE4NSK+Dqxrk/6Rmc/W/3ye\n2nTjVNrn/XsaeCoz76k//ja1fwD61L+BDPzlwB9ExKSIOBCYAdwygPU0S7DjCOoW4G/ry58GFu/8\nhEHmq8DDmfnlHusGfR8jYty2MxwiYjjwYeAR2qBvAJl5QWYekZnvpPZ3bUlmfgr4H9qgfxExov4/\nTyLiYGA68CDt8/6tB56KiKPqq04DHqKP/RvQ8/Aj4nRqR563fSlrwYAV0wQR8Q1qB8TGAuuBC6mN\nNL4FTATWAn+ZmS8NVI37IiKmAXdS+4uU9Z8LqH2D+r8ZxH2MiD8Crqf2WRwCfDMzL46ItzHI+7az\niDgF+MfM/Hi79C8i3gHcTO0zOQy4ITMXtEv/ACLiPcC1wAHAE8BngKH0oX9+8UqSCuFBW0kqhIEv\nSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHwVLSJurl9d8cFtV1iMiL+v31Dip/WrEv5L\nff24iLipfqOUn0XESQNbvdQ3ftNWRYuIt2bmSxHxFmrXd/oIcBe1Sz9vBpYC92XmORFxA7WrFf4k\nIiYC38/MyQNWvNRHld7EXBoEzo2IP6svTwA+BXRn5iaAiPgW8K767z8EHBMR2y6ONzIiRmTmqy2t\nWOonA1/Fql9E7FTgfZm5JSKWUrtC5jG7e0p92zdaVaPUTM7hq2SjgRfrYf9uarfdHAl8oH7D6GHA\nX/TY/nZq94QFtl+9UBo0DHyV7HvAARHxEHAJcDe1G01cQu2Szz+idp/UTfXt5wJ/HBH3R8QvgX9o\nfclS/3nQVtpJRBycmb+JiKHUrrF+XY+7e0mDliN8aVed9ZuZPwg8YdirXTjCl6RCOMKXpEIY+JJU\nCANfkgph4EtSIQx8SSqEgS9Jhfg/ZmaGjfWlz/oAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "female_not = females[females.Survived == 0]\n", + "hist = thinkstats2.Hist(female_not.Age)\n", + "thinkplot.Hist(hist, label='females')\n", + "thinkplot.Show(xlabel='age', ylabel='amount')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The first thing that I notice about this graph is that the y-axis range is noticeably smaller than the survival y-axis range, corroborating the fact that %70 of women in this data set survived. This highest numbers here were very small children, possibly because of weaker immune systems, and between the ages of 15 to 30. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The other area that potentially holds useful information is visualizing survival rate by passenger class and fare, to see if there was a higher priority for first class or higher paying passengers, or if it didn't make a huge difference overall. " + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHFtJREFUeJzt3X+cVXW97/HXe0Al5DcdBgMO1MUfhKVwr6SVuTFT6FZ6\nTD1pmmne9MAYUpcAuzV4qgdyudkv5ZinJLRS0R4FJ03Qi2OKPwaukOAQB1QQpxgz+aFlysjn/rEX\nuJ0ZZm2GWXtvnPfz8dgP1qz9XWt99sxi3rPWd631VURgZmbWnqpyF2BmZpXPYWFmZqkcFmZmlsph\nYWZmqRwWZmaWymFhZmapMg0LSYdJelzSKklrJNUm8/tLWippvaQlkvoWLDNT0gZJ6ySdnmV9ZmZW\nHGV9n4WknhHxN0ndgOXAl4BPA3+JiP8taTrQPyJmSHov8HPgBGAocD9wZPhmEDOzssr8NFRE/C2Z\nPAzoDgRwJrAgmb8AOCuZ/hRwe0Q0R8QmYAMwLusazcysfZmHhaQqSauArcB9EbECqI6IJoCI2AoM\nSpoPAbYULN6YzDMzszIqxZHF7ogYQ/600jhJo8kfXbylWdZ1mJlZx3Uv1YYiYqekOmAC0CSpOiKa\nJA0GXkiaNQLDChYbmsx7C0kOFzOzDogIdWS5rK+GeueeK50kvQP4GLAOWAx8Pml2MbAomV4MfEbS\noZLeDYwE6ttad0RU3Ku2trbsNbgm19QV63JNxb0ORNZHFkcACyRVkQ+mOyLiHkmPAQslXQpsBs4D\niIgGSQuBBmAXMCkO9BOamdkByzQsImINMLaN+S8Bp+1jmdnA7CzrMjOz/eM7uDtRLpcrdwmtuKbi\nuKbiVWJdril7md+UlwVJPjtlZrafJBEd7OAu2dVQZtZ1jRgxgs2bN5e7jC5j+PDhbNq0qVPX6SML\nM8tc8hdtucvoMvb1/T6QIwv3WZiZWSqHhZmZpXJYmJlZKoeFmVkHPPjggwwbNiy94duEr4Yys7Ko\nmfHjTNd//bWXFd12xIgRvPDCC3Tv3p3DDz+cCRMmcMMNN9CzZ892l5M61FfcIXfeeSff+973WL16\nNR/4wAdYtmxZybYNPrIwM0MSd999Nzt37uSJJ55g5cqVfOtb3yp3WW8xcOBApk6dysyZM8uyfYeF\nmRnsvdT0iCOOYOLEiaxduxaAbdu2cemllzJkyBAGDhzI2Wef3ebyc+bMYeTIkfTp04djjz2WX//6\n13vfe/rpp8nlcvTr149BgwZx/vnn731v6tSpVFdX07dvX4477jgaGhraXP+pp57KOeecwxFHHNFZ\nH3m/+DSUmVmBLVu2cM8993DOOecAcOGFF9KnTx/WrVvH4YcfziOPPNLmciNHjmT58uVUV1dz5513\ncuGFF/L0009TXV3N17/+dc444wzq6up4/fXXWblyJQBLly7l4YcfZuPGjfTu3Zv169fTr1+/kn3W\n/eEjCzMz4KyzzmLAgAF85CMfYfz48cycOZOtW7eyZMkSfvSjH9GnTx+6devGySef3Obyn/70p6mu\nrgbg3HPP5cgjj6S+Pj/CwiGHHMLmzZtpbGzk0EMP5YMf/ODe+S+//DINDQ1EBEcfffTedVQah4WZ\nGbBo0SJeeuklnn32WX74wx9y2GGHsWXLFgYMGECfPn1Sl7/lllsYM2YM/fv3p3///jz11FO8+OKL\nAMydO5fdu3czbtw43ve+9zF//nwAxo8fT01NDZMnT6a6uporrriCV155JdPP2VEOCzMzaPPxGMOG\nDeOll15i586d7S773HPP8cUvfpF58+axbds2tm3bxujRo/euc9CgQdx00000NjZy4403MmnSJJ55\n5hkAampqWLlyJQ0NDaxfv565c+d2/ofrBA4LM7N9GDx4MBMnTmTSpEls376d5uZmHnrooVbt/vrX\nv1JVVcU73/lOdu/ezfz58/d2kAPcddddNDbmR4ju168fVVVVVFVVsXLlSurr62lubuYd73gHPXr0\noKqq7V/Lu3fv5rXXXmPXrl288cYbvPbaazQ3N2fzwdvgDm4zK4v9uQ8ia+3dL3Hrrbdy1VVXccwx\nx7Br1y7Gjx/fqt9i1KhRfOUrX+HEE0+kW7dufO5zn+PDH/7w3vdXrFjBVVddxc6dO6muruYHP/gB\nI0aM4JlnnmHq1Kk8++yz9OjRgzPOOINp06bts45LLrlkb609e/bk4osv5uabb+6E70A6P3XWzDLn\np86WVhZPne3yRxbXrd1Y7hIy9eVjR5a7BDN7G3CfhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVy\nWJiZWSqHhZmZpXJYmJl1gIdVNTMrga/NX5Hp+r99yQlFtz0YhlWdNm0aixYtoqmpiSFDhjBz5kwu\nuuiikm0/0yMLSUMlLZP0lKQ1kq5M5tdKel7SE8lrQsEyMyVtkLRO0ulZ1mdmBgfHsKq9evXi7rvv\nZseOHfz0pz9lypQpPPbYYyXbftanoZqBL0fEaOAkoEbSMcl710XE2OR1L4CkUcB5wChgIjBPpYxu\nM+uyKn1Y1draWo488kgAxo0bx8knn8yjjz7aKZ+9GJmehoqIrcDWZPoVSeuAIcnbbYXAmcDtEdEM\nbJK0ARgHPJ5lnWZmexwMw6q++uqrrFixgsmTJ3feB09Rsg5uSSOA43nzF3+NpNWSfiypbzJvCLCl\nYLFG3gwXM7PMHEzDql5xxRWMGTOG008v3Zn6koSFpF7AXcCUiHgFmAe8JyKOJ3/k8Z1S1GFmti8H\ny7Cq06ZNo6GhgTvuuOPAP/R+yPxqKEndyQfFrRGxCCAi/lzQ5N+B/0imG4HCa9GGJvNamTVr1t7p\nXC5HLpfrtJrNrOtJG1a1vcDYM6zqAw88wEknnQTAmDFjWg2rCrB8+XJOO+00TjnlFN7znvdQU1ND\nTU0NL774Iueeey5z587lmmuuaXM7tbW1LFmyhN/97nf06tUr9TPV1dVRV1eX2q4Ypbh09magISK+\nv2eGpMFJfwbA2cCe8QcXAz+X9F3yp59GAvVtrbQwLMzMslA4rOr1119Pr169ePTRR1udimo5rOqC\nBQtaDat60kknMWTIkFbDqu7evZuxY8emDqs6e/ZsbrvtNh5++OGi+jWg9R/S+wqhYmQaFpI+BHwW\nWCNpFRDA1cAFko4HdgObgMsBIqJB0kKgAdgFTPKQeGZvT/tzH0TWDoZhVb/2ta9x2GGHMXLkSCIC\nSVx99dXMmDGjc74JKbr8sKoeKc8sex5WtbSyGFbVj/swM7NUDgszM0vlsDAzs1QOCzMzS+WwMDOz\nVA4LMzNL5bAwM7NUDgszM0vlsDAz6wAPq2pmVgJZPz1hf55ecDAMqzp9+nRuu+02duzYwYABA7j8\n8stL9qgP8JGFmdlBMazqF77wBRoaGtixYwePPPIIP/vZz94yGl/WHBZmZlT+sKpHHXXU3seS7969\nm6qqKjZuLN2z7RwWZmYF9gyrOnbsWCA/rOqrr77KunXreOGFF5g6dWqby+0ZVnXnzp3U1tZy4YUX\n0tTUBLB3WNXt27fz/PPPc+WVVwJvHVZ1x44dLFy4kIEDB+6ztjlz5tC7d2+GDRvG3/72Ny644IJO\n/vT75rAwM+PgGFZ1+vTpvPzyy6xatYqLLrqIvn377rNtZ3NYmJlx8AyrCnDcccfRo0cPvvGNbxzY\nh94PDgszM9KHVW3PnmFV582bx7Zt29i2bRujR49uNaxqY2MjN954I5MmTeKZZ54BoKamhpUrV9LQ\n0MD69euZO3duUfU2NzfvXUcpOCzMzPahcFjV7du309zczEMPPdSqXcthVefPn99qWNXGxkaAVsOq\n1tfX09zc3O6wqhHBTTfdxPbt2wGor6/nhhtu4LTTTsvok7fm+yzMrCwqaRTHg2FY1V/96ldcffXV\nvP7667zrXe9iypQpTJ48uXO+AUXwsKoeVtUscx5WtbQ8rKqZmZWFw8LMzFI5LMzMLJXDwszMUjks\nzMwslcPCzMxS+T4LM8vc8OHDSzr2Q1c3fPjwTl+nw8LMMrdp06Zyl2AHyKehzMwslcPCzMxSZRoW\nkoZKWibpKUlrJH0pmd9f0lJJ6yUtkdS3YJmZkjZIWifp9CzrMzOz4mR9ZNEMfDkiRgMnAZMlHQPM\nAO6PiKOBZcBMAEnvBc4DRgETgXlyr5iZWdllGhYRsTUiVifTrwDrgKHAmcCCpNkC4Kxk+lPA7RHR\nHBGbgA3AuCxrNDOzdCXrs5A0AjgeeAyojogmyAcKMChpNgTYUrBYYzLPzMzKqCSXzkrqBdwFTImI\nVyS1fHbufj+7eNasWXunc7kcuVzuQEo0M3vbqauro66urlPWlfl4FpK6A78BfhsR30/mrQNyEdEk\naTDwQESMkjQDiIiYk7S7F6iNiMdbrNPjWRTJ41mY2R6VPp7FzUDDnqBILAY+n0xfDCwqmP8ZSYdK\nejcwEqgvQY1mZtaOTE9DSfoQ8FlgjaRV5E83XQ3MARZKuhTYTP4KKCKiQdJCoAHYBUzqtEMIMzPr\nsEzDIiKWA9328XabI41HxGxgdmZFmZnZfvMd3GZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFm\nZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWqqiwSEat\nS51nZmZvT8UeWfyyjXl3dWYhZmZWudodKU/SMcBooK+kswve6gP0yLIwMzOrHGnDqh4NfALoB3yy\nYP7LwP/IqigzM6ss7YZFRCwCFkk6KSIeLVFNZmZWYdKOLPbYKOlqYEThMhFxaRZFmZlZZSk2LBYB\nDwH3A29kV46ZmVWiYsOiZ0RMz7QSMzOrWMVeOvsbSR/PtBIzM6tYxYbFFPKB8aqknZJelrQzy8LM\nzKxyFHUaKiJ6Z12ImZlVrqLCQtJH2pofEb/r3HLMzKwSFdvBPa1gugcwDvh/wKmdXpGZmVWcovos\nIuKTBa+PAccC29KWk/QTSU2SniyYVyvpeUlPJK8JBe/NlLRB0jpJp3fkA5mZWefr6CPKnwdGFdFu\nPnBGG/Ovi4ixyeteAEmjgPOS9U4E5klSB+szM7NOVGyfxQ+BSL6sAo4HnkhbLiIeljS8rVW2Me9M\n4PaIaAY2SdpA/nTX48XUaGZm2Sm2z2JlwXQzcFtELD+A7dZIuihZ71ciYgcwBCh8/lRjMs/MzMqs\n2EtnF0g6FDgqmbX+ALY5D/jXiAhJ3wK+A1y2vyuZNWvW3ulcLkculzuAkszM3n7q6uqoq6vrlHUp\nItIbSTlgAbCJ/CmkYcDFxVw6m5yG+o+IeH9770maAUREzEneuxeojYhWp6EkRTF1F+O6tRs7ZT2V\n6svHjix3CWZWISQRER3qCy62g/s7wOkRcUpEfIR8p/V3i62Pgj4KSYML3jsbWJtMLwY+I+nQZMjW\nkUB9kdswM7MMFdtncUhE7D31FBH/KemQtIUk/QLIAQMlPQfUAuMlHQ/sJn+kcnmyzgZJC4EGYBcw\nqdMOH8zM7IAUexrqZvK/3H+WzPos0K1c41n4NFTxfBrKzPY4kNNQxR5Z/AswGfhS8vVD5Duqzcys\nCyj2aqjXgOuSl5mZdTFFdXBL+oSkVZJe8iPKzcy6nmJPQ32P/JVLa9zpbGbW9RR76ewWYK2Dwsys\nayr2yOKrwD2SHgRe2zMzItyHYWbWBRQbFt8GXiE/lsWh2ZVjZmaVqNiweFdEHJtpJWZmVrGK7bO4\nx4MRmZl1XcWGxb8A90p61ZfOmpl1PcXelNdb0gDgSPL9FmZm1oUUO1LeZcAUYCiwGjgReAT4aHal\nmZlZpSj2NNQU4ARgc0SMB8YAOzKryszMKkqxYfH3iPg7gKTDIuIPwNHZlWVmZpWk2Etnn5fUD/g1\ncJ+kbcDm7MoyM7NKUmwH9z8lk7MkPQD0Be7NrCozM6soxR5Z7BURD2ZRiJlZR9XM+HG5S8jU9dde\nVu4Siu6zMDOzLsxhYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFh\nZmapHBZmZpYq07CQ9BNJTZKeLJjXX9JSSeslLZHUt+C9mZI2SFrnMb/NzCpH1kcW84EzWsybAdwf\nEUcDy4CZAJLeC5wHjAImAvMkKeP6zMysCJmGRUQ8DGxrMftMYEEyvQA4K5n+FHB7RDRHxCZgAzAu\ny/rMzKw45eizGBQRTQARsRUYlMwfAmwpaNeYzDMzszLb7/EsMhAdWWjWrFl7p3O5HLlcrpPKMTN7\ne6irq6Ourq5T1lWOsGiSVB0RTZIGAy8k8xuBYQXthibz2lQYFmZm1lrLP6SvueaaDq+rFKehlLz2\nWAx8Ppm+GFhUMP8zkg6V9G5gJFBfgvrMzCxFpkcWkn4B5ICBkp4DaoFrgTslXQpsJn8FFBHRIGkh\n0ADsAiZFRIdOUZmZWefKNCwi4oJ9vHXaPtrPBmZnV5GZmXWE7+A2M7NUDgszM0vlsDAzs1SVcJ9F\nl1K//s8l3d7XVrS8gT5b377khJJuz8xKw0cWZmaWymFhZmapHBZmZpbKfRZmXcB1azeWuwQ7yDks\nzKzTlfpCjq07Divp9o7t+1pJt1cJfBrKzMxSOSzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwslcPC\nzMxSOSzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwslcPCzMxS+amzb3PL6/9Q0u3VrP99Sbd3/bWX\nlXR7Zl2VjyzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwsVdmuhpK0CdgB7AZ2RcQ4Sf2BO4DhwCbg\nvIjYUa4azcwsr5xHFruBXESMiYhxybwZwP0RcTSwDJhZturMzGyvcoaF2tj+mcCCZHoBcFZJKzIz\nszaVMywCuE/SCkl77qyqjogmgIjYCgwqW3VmZrZXOe/g/lBE/EnSPwBLJa0nHyCFWn5tZmZlULaw\niIg/Jf/+WdKvgXFAk6TqiGiSNBh4YV/Lz5o1a+90Lpcjl8tlW7CZ2UGmrq6Ourq6TllXWcJCUk+g\nKiJekXQ4cDpwDbAY+DwwB7gYWLSvdRSGhZmZtdbyD+lrrrmmw+sq15FFNfArSZHU8POIWCppJbBQ\n0qXAZuC8MtVnZmYFyhIWEfEscHwb818CTit9RWZm1h7fwW1mZqkcFmZmlsphYWZmqRwWZmaWymFh\nZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZm\nqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkc\nFmZmlsphYWZmqRwWZmaWqiLDQtIESX+Q9J+Sppe7HjOzrq7iwkJSFXA9cAYwGjhf0jHlrao4G1c8\nXu4SWtneuK7cJbTS+Nz6cpfQSl1dXblLaKUSawLv58WqxP38QFRcWADjgA0RsTkidgG3A2eWuaai\nPF2J/4n+6P9ExajEX8yVWBN4Py9WJe7nB6ISw2IIsKXg6+eTeWZmViaVGBZmZlZhFBHlruEtJJ0I\nzIqICcnXM4CIiDkFbSqraDOzg0REqCPLVWJYdAPWAx8F/gTUA+dHROWdlDQz6yK6l7uAliLiDUk1\nwFLyp8l+4qAwMyuvijuyMDOzynNQdHBL6i9pqaT1kpZI6ttO2ypJT0haXO6aJA2VtEzSU5LWSPpS\nRrWk3sQo6QeSNkhaLen4LOrY37okXSDp98nrYUnvK3dNBe1OkLRL0tmVUJOknKRVktZKeqDcNUnq\nI2lxsj+tkfT5EtT0E0lNkp5sp01J9/O0msq0j6d+n5J2+7ePR0TFv4A5wFeT6enAte20nQr8DFhc\n7pqAwcDxyXQv8n0xx3RyHVXARmA4cAiwuuU2gInA3cn0B4DHSvAzK6auE4G+yfSErOsqpqaCdv8X\n+A1wdrlrAvoCTwFDkq/fWQE1zQRm76kH+AvQPeO6PgwcDzy5j/fLsZ+n1VTSfbyYmgp+xvu1jx8U\nRxbkb8pbkEwvAM5qq5GkocDHgR9XQk0RsTUiVifTrwDr6Px7Roq5ifFM4JakjseBvpKqO7mO/a4r\nIh6LiB3Jl4+R/f00xd7weSVwF/BCxvUUW9MFwC8johEgIl6sgJoC6J1M9wb+EhHNWRYVEQ8D29pp\nUvL9PK2mMuzjxXyfoAP7+MESFoMiognyv4CBQfto911gGvkduVJqAkDSCPJp39m3vxZzE2PLNo1t\ntOls+3tz5WXAbzOtqIiaJL0LOCsi/g3o0CWGnV0TcBQwQNIDklZIuqgCaroeeK+kPwK/B6ZkXFMx\nyrGf749S7OOpOrqPV8zVUJLuAwr/ChD5X/r/q43mrcJA0n8HmiJitaQcnfAf/UBrKlhPL/IpPiU5\nwrACksYDl5A/fC6375E/rbhHKQIjTXdgLHAqcDjwqKRHI2JjGWs6A1gVEadK+i/AfZLe7/27bW+H\nfbxiwiIiPrav95LOmuqIaJI0mLYPnT4EfErSx4F3AL0l3RIRnytjTUjqTj4obo2IRR2tpR2NwD8W\nfD00mdeyzbCUNuWoC0nvB24CJkRE2qFzKWr6b8DtkkT+XPxESbsiIqsLJoqp6XngxYj4O/B3Sb8D\njiPfr1Cumi4BZgNExNOSngWOAVZmVFMxyrGfpyrxPl6Mju3jWXe2dFKHzRxgejLdbgd30uYUStPB\nnVoT+XOo12VYRzfe7Iw8lHxn5KgWbT7Omx1/J1KaTrZi6vpHYANwYon2o9SaWrSfT/Yd3MV8n44B\n7kva9gTWAO8tc003ALXJdDX50z8DSvAzHAGs2cd7Jd/Pi6ippPt4MTW1aFf0Pl6y4g/wgw8A7id/\nNdFSoF8y/wjgN220L0VYpNZE/mjnjeQ/2yrgCfJ/XXR2LROSOjYAM5J5lwNfLGhzffIL4PfA2BL9\n3NqtC/h38lfRPJF8f+rLXVOLtjdnHRb78fP7n+SviHoSuLLcNSX7+ZKknifJP2Uh65p+AfwReA14\njvzRTVn387SayrSPp36fCtoWvY/7pjwzM0t1sFwNZWZmZeSwMDOzVA4LMzNL5bAwM7NUDgszM0vl\nsDAzs1QOC7NOJumTkr7aSet6uTPWY3agfJ+FWQdI6hYRb5RgOzsjok/W2zFL4yML69Ik9ZT0m2Rg\noSclnSfpWUkDkvf/657BhiTVSrpF0kPArZIelTSqYF0PSBor6WJJP0wGCNrUYlvPSeom6T2Sfps8\nRfZBSUclbUZIeiQZLOebpf1umO2bw8K6uglAY0SMiYj3A/fS+gnChV+PAj4aEReQH+fhnwGSh0kO\njogn9iwTETuBVZJOSeZ9Arg3OSK5CaiJiBPIP1b/35I23wduiIjjgD915gc1OxAOC+vq1gAfkzRb\n0oeTX/DtPbJ5cUS8nkzfCXw6mT6P/NOFW1pIEijAZ4A7JB0OfBC4U9Iq4Ee8+Sj8D5EPIYBbO/KB\nzLJQMY8oNyuHiNggaSz5J5Z+U9IyYBdv/iHVo8Uify1Y9o+S/pKMq/zP5B/W1tJi4NuS+pMfk2IZ\n+SF2t0XE2LZK4s0jmUoYS8MM8JGFdXGSjgBejYhfAP+H/C/0TeSf+Q9vHjnsyx3AV4E+EbG25ZsR\n8VfyYzx8n/zTiCMiXgaelXROQR3vTyaXA+cn05/t0Icyy4DDwrq69wH1yemgbwDfBP4V+L6keiBt\nXOlfkj+quKOdNneQ/8V/e8G8zwJfkLRa0lrgU8n8q4DJkn5P/jHgZhXBl86amVkqH1mYmVkqh4WZ\nmaVyWJiZWSqHhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaX6/4zO+YAcs2bUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hist = thinkstats2.Hist(titanic_df[titanic_df.Pclass == 1].Survived)\n", + "hist1 = thinkstats2.Hist(titanic_df[titanic_df.Pclass == 2].Survived)\n", + "hist2 = thinkstats2.Hist(titanic_df[titanic_df.Pclass == 3].Survived)\n", + "thinkplot.PrePlot(3)\n", + "thinkplot.Hist(hist, align='left', width=0.3, label='Pclass 1')\n", + "thinkplot.Hist(hist1, align='center', width=0.3, label='Pclass 2')\n", + "thinkplot.Hist(hist2, align='right', width=0.3, label='Pclass 3')\n", + "thinkplot.Show(xlabel='survived', ylabel='amount')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this, two things can be seen. The first, that Pclass 1 is the smallest quantity of passengers, and that the majority were in class 3. However, the second piece of information that is seen is that the majority who survived were from Pclass 1. This indicates that either there was a higher priority placed on these passengers due to the money they had paid, or that there is a higher distribution of females and passengers between 25-35 in Pclass 1. " + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 40)\n", + "(2, 22)\n", + "(3, 16)\n", + "(4, 86)\n", + "(5, 114)\n", + "(6, 106)\n", + "(7, 95)\n", + "(8, 235)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtwXOd5HvDnXSwuiwtxIUDwTvAGXgECoAxKoWzBjlVL\ndh25tieO67itOx6rHnms1J3YqWLXnCZ21CadWoqTyG6cjOzaEm2lkmU7bmNHQiQ7I5AUCF7AG3i/\nASRBAARxIa5v/9izu2eXC+4usLtnz/me3wxGu4uDxacz4IuD7zzf+4mqgoiIvMXn9ACIiCj9WNyJ\niDyIxZ2IyINY3ImIPIjFnYjIg1jciYg8KGFxF5FCEekQkYMickREvjrHcc+KSI+IdIlIU/qHSkRE\nyfInOkBVJ0Tk3ao6JiJ5AH4tIj9X1X2hY0TkUQDrVXWjiOwC8ByA+zM3bCIiupekpmVUdcx6WIjg\nL4TYlU+PAfiudWwHgHIRqU3XIImIKDVJFXcR8YnIQQB9AH6hqvtjDlkB4JLt+RXrNSIickCyV+6z\nqtoMYCWAXSKyNbPDIiKihUg4526nqsMi8jqARwAcs33qCoBVtucrrdeiiAgb2RARzYOqSirHJyzu\nIlINYEpVb4lIAMDDAJ6OOexVAE8A2Csi9wMYUtVrcwwwlfFhanoG7/pg3IBOVk0UlGK0JHIbQXQW\nFUPnkNLZtrnU8wZWbXxXegbncm49FyMj5ZiZDv4TKikZRkHhxILf8+KpN7G6/p0Lfh8vcNO5+PXP\nvp7R9xdJvdJIomIrIg0AnkdwCscHYK+qfk1EHgegqvpt67hvInhFPwrgU6raGee91K1dKP/0h4fx\nq+6+qNf2fLIFzRuq5/V+e/bswZ49e9IwMvdz67nY+3I39r7cDQB4aPcaPPn4rgW/p1vPRSbwXESI\nSPqv3FX1CICWOK9/K+b551L5xm4yOT2Dt3v673p938kb8y7u5H47dywLF/euI9cwO6vw+eb7txxR\nenGFahKOnh/E+OQ0ACA/L3LK9p28kfI0U0hbW1s6huYJbj0X6+oqUVZaCAC4NXwH5y4OLfg93Xou\nMoHnYmFY3JOw78SN8OOHd65AaSAfANB/6w7O9t6e13vyBzfCrefC5xM0NywNPz94uHfB7+nWc5EJ\nPBcLw+KewOysouPE9fDz39hai50bI1Mx+07eiPdlZIjmxkhx7zzUd48jibKLxT2BM73DGLgdTEGU\nBvKxdU0Fdm2uCX/eXvjJPE0NtYCVmTp5+iZGRiadHRCRhcU9AXvxfkd9DfJ8PrRsqA7PvZ/ru43r\nQ+NODY8cVr6oCOvXVgIIxnwPdcdNABNlHYt7Ah22+fZW64o9UOjHdusfNADs59SM0XbusM+7c2qG\ncgOL+z30DYzh4vURAEC+34fm9YvDn9u1eUn4MadmzNbcuCz8+ODhvnknqIjSicX9Huw3S3esq0Kg\nMLIs4B2bIvPuR88PYmR8Kqtjo9yxcV0VSksKAACDt8Zx/uIth0dExOJ+T28dj1yRt25aEvW56kVF\n2LB8EQBgZlZx8PTNrI6NcofPJ9ixPdKaIh2RSKKFYnGfw/DoJI5bi1JEIvPtdq2bmJqhoJYdkamZ\nTs67Uw5gcZ/DgZ5+zFpzp5tWVqDSWolo12qbd3+7px9T07NZGx/lFvtipuOn+jE6xkgkOYvFfQ72\nK/F4V+0AUFdbitqKAABgbGIaxy4MZmVslHsqyouwri4SiTzczb/kyFks7nFMTM1EzaHviplvDxGR\nqBurb3FqxmjRrQg4NUPOYnGP49CZm5iYmgEALF9cjJU1JXMea1+tupBGYuR+0fPuvfxZIEexuMfR\nYYtA2vPs8WxdU4mSokgjsfPXRjI6Nspd9eurUFIcjEQODI7j4mVGIsk5LO4xZmcVB2zF/f4Exd2f\n54tqJGaPT5JZ8vJ8UZFIpmbISSzuMU5dvoWh0WDSoaKkAPUryxN+TfTUDIu7yTjvTrmCxT2G/abo\nfZtqktpZp2VjNfx5wePO9t5G/607GRsf5bbmHdGRyPE7XLlMzmBxj2FvObBrU/wIZKziQj8a6qrC\nz7mgyVxVFQHUra4AAMzMzDISSY5hcbe5fGMUV/pHAQCF+XnYYWsUloh9QRM38DBbS2N0aobICSzu\nNh22+fLmDYtRmJ+X9NfaFzodPT+AUf45biz77kzsEklOYXG3se+VmigCGat6URHWLws2EpueUXT2\nsJGYqTZtWIxAKB57cwyXrgw7PCIyEYu7ZWhkAicvBxuF+URwny3emCz71XsHUzPG8vt9MV0imZqh\n7GNxtwRXlwYfb1ldgUVWf+5U2K/2O3v6MT3DRmKmauHuTOQwFndL9JRMcimZWHW1pVhiNRIbvTON\n7vNsJGYqe9792KkbjERS1rG4AxifmEbX2cgceWuK8+0hsY3EOpiaMdbiqmKsthbATU/P4ugx/ixQ\ndrG4Azh45ma4F/vqJaVYVlU87/eyZ+P3nbjOpITBWmypGUYiKdtY3JGeKZmQbXWVKCkK7rV6g43E\njMaNs8lJxhf3mdlZ7D81/whkLH+eDy22pA1Xq5prc/1iFFm/6K/3j+Jq322HR0QmMb64H784hJHx\n4M2uqrLCcFZ9Ieybe9j/KiCz5Pvz0LjV1iXyEFMzlD3GF/cOW/FtTbJRWCItGxeHG4md6R1G/zAb\niZmqOWrencWdssfo4q6q6Dhu3yt1YVMyISVF+dhuayTGq3dz2W+qHjtxAxMT0w6OhkxidHG/cH0E\n14bGAQCBAj8a1lam7b1bY1IzZKaa6hKsWhGc6puansFR/qKnLDG6uNuvqHdurEaBP/lGYYnYi/uR\n8wMY4xWbsZobbF0iDzESSdlhdHG3J1laFxiBjFVTEcC6ZWUAQo3E+tP6/uQe9g08OO9O2WJsce8f\nvoPTV4Pd+vJ8ErUParq02lIzHfxz3Fhb6qtRWBiMRF67PoJeRiIpC4wt7vYpme11lSgN5Kf9e9gX\nRL3NRmLGKsjPQ8NWW1M5Xr1TFhhc3CNTMgtduDSXtUvLUFNeBAAYvTOFYxfYSMxUbEVA2WZkcR+9\nM4Uj5wfCz1uT3Cs1VXc1EuPUjLHsrQiOHruByckZB0dDJjCyuHf23MT0TLDPx7plZaix2vRmgv2v\ngv0nb7C/iKFqa0qwfGnwBvvU9Ay6+YueMszI4m7fJcl+0zMTtq2pRHHoZtrQOBuJGaxlBzfOpuwx\nrrhPTc9GxRLv35LZ4p7v90UlcbigyVxR8+7sM0MZZlxx774wiNE7wQVFSyoCqKstzfj3tGfo93ED\nD2Nt3VyDgvzgQrnea7fRd51/xVHmGFfcoxYubaqByMIbhSXSsqEaeVZDstNX2UjMVAX5edhu+0uR\ne6tSJhlV3FU16sp5oRtzJKs0kI/tdZG+Nft59W4sbpxN2WJUcT/bexv9t4JXzSVF+di6Jn2NwhKx\nd5zk1Iy5WmyRyMPHrmNyipFIygyjirs9JXNffTX8edn7349qJHZ2AONsJGakpbWlWFYbjEROTk7j\n+Cn2HKLMSFjdRGSliLwmIt0ickREPh/nmIdEZEhEOq2PL2dmuAvTcTz7UzIhSyoCWBvKOc/MovM0\n/1GbqrnRvjsTI5GUGclcuk4D+IKqbgPwAIAnRGRznOPeUNUW6+OP0zrKNLg2OI7z14INm/LzfGjZ\nkP5GYYkwNUNA9NQM590pUxIWd1XtU9Uu6/EIgOMAVsQ5NPOxkwWwp2Qa1lUhYC0syib73qoHTrGR\nmKm2b1mCfGvvgMtXh3G9f9ThEZEXpTTpLCJ1AJoAdMT59AMi0iUiPxORrWkYW1rZr5Tvz1CjsETW\nLSvD4kXBRmIj41M4dnHIkXGQswoK8rB9a+SvOF69UyYkffkqIqUAXgLwpHUFb/c2gNWqOiYijwJ4\nBUB9vPfZs2dP+HFbWxva2tpSHHLqbo9Poft8pCPjffXZn5IBgo3Edm2uwd/vuwQguFq1cW1Vgq8i\nL2puWBou6p2HevG+96x3eESUS9rb29He3r6g95BkGlmJiB/ATwH8XFWfSeL4cwB2qupAzOvqROOs\n1w9dxTf+z1EAwMYV5fizz+zK+hhCDp7ux57vdQIAaisC+NbvPZiVhVSUW6723cbnvvhzAEBRkR/P\n/+Vj4akaolgiAlVNqVAkOy3zNwCOzVXYRaTW9rgVwV8aA/GOdYK91W62UzKxttdVIVAQaSR2gUvQ\njbSsthS1NSUAgDt3pnH8JNNTlF7JRCF3A/gEgPeIyEEr6viIiDwuIp+xDvuoiBwVkYMAvgHgYxkc\nc0omp2dw0BY7zNTGHMm6u5EYUzMmEpGoLpFdRzjvTumVTFrm16qap6pNqtpsRR3/r6p+S1W/bR3z\nF6q63fr8b6hqvBuujjh8dgB3rI0RllUVY5V1teQkeySyg10ijdXUEGlF8Da7RFKaeX6FamwvmVyY\n327ZGN1I7CYbiRmpYcsS+P3Bf4KXrtxC/80xh0dEXuLp4j47q1HTHq0OT8mElAXysW0NG4mZrqjI\nj622thTcOJvSydPFvefqLQyOTAAAFhUXYMuqCodHFGH/RdPB4m6snZx3pwzxdHG395Jp3VQDn8/5\nKZkQNhIjIHre/dDRa5ie5qplSg9PF/d99r1SHY5AxqqtDKCu1t5I7KbDIyInrFxehprFwZv843em\ncJI/B5Qmni3uV2+O4tKNYM+OAr8PTesWOzyiu+2KaiTG1IyJRATNjfbUDLtEUnp4trjbFy41rV+M\nwoLcW/1nn3c/cKofM7P8k9xEnHenTPBscd9ny487vXBpLutjG4ldYCMxE23fWoM8a+OY8xeHMDA4\n7vCIyAs8WdyHRiZw/FKwUIo41ygsERGJurHKHu9mChTlY+umyM8ou0RSOniyuB841Y9Qf7ItqypQ\nUVro7IDuIWoDjxPX4URjNXJes20Dj87DnHenhfNkcbcv6c+VhUtz2V5XGW4k1jc4jovXuXGDiVoa\noyORM9zIhRbIc8V9YnIGXWcicTKnu0AmUuDPQ8vGSJKHqRkzrVqxCFWVAQDA2DgjkbRwnivuXWdv\nYtJaCLKqpgTLFzvfKCyRVtv2ex3sEmkkEYlKzXDenRbKc8U9qpfMptyekgnZWV8Nn9XQrOfKLTYS\nM5Q9797JvDstkKeK++ys3tUF0g3KAvnYVhdpJHbgFDduMFHjttpwi4xzF4cwOMRf8jR/niruxy8N\nYXhsEgBQWVqIjSvKHR5R8uyRSPZ4N1NxIB+bbRu5cEETLYSnivu+E9G9ZHKpUVgi9oVWh8+xkZip\n7LszMRJJC+GZ4q6qUTcj7VfCblBbGcCa2lIAwNT0LA6eYVrCRIxEUrp4prhfujGK3oHgTjZFBXlo\nXFfl8IhSt8t2A5h7q5ppzapyVFYEI5Ejo5PoOZsz+8yTy3imuNunZJo3VKPAn3uNwhKxr1bdf+oG\nG4kZSETQbOvxzkgkzZdnivtbJ9yXkom1ftkiVJUFWyWMjE/h+EU2EjNRyw5bJJLFnebJE8X95vAd\n9Fy5BQDwieC+encWd58vppEYp2aM1LitNryR+5lzAxi6xUgkpc4Txd2eC99WV4myQL6Do1mY2L1V\n2UjMPKUlBdGRyKO8eqfUeaK4v2WPQLosJROrYa2tkdjAWHg3KTJLc2Nt+DHn3Wk+XF/cxyemccSW\nKMjVjTmSVeDPQ/MGWyMxLmgyUktjdJ+Z2Vn+BUepcX1x7zzdjykrC1xXW4Zaq7Oem9lTMx3cwMNI\na9dUoKLc2qVrdBKnGYmkFLm+uNsXLu3a4u4pmZD76mvCjcROXb6FgdsTDo+Isi1242ymZihVri7u\n0zOzUTdTd7mkC2QiZYF8bF1TEX6+n1fvRmLenRbC1cX92IVBjN6ZAgBUlxdh3bIyh0eUPvZ7B9zA\nw0xN25eGI5E9ZwcwzL/gKAWuLu6xvWRC/xC8wJ76OXSWjcRMVFpagPr1oTYaikNHrzk6HnIX1xZ3\n1dje7d6YkglZWlWM1UsijcS6zrKRmImiukRyAw9KgWuL+/lrI7g+NA4AKCnyY9uaygRf4T72Ngpc\nrWqmqHn3I4xEUvJcW9zfOh6Zh27ZWI18v2v/V+Zk3yaQjcTMtK6uEuWLgpHI4dsTOHt+0OERkVu4\ntiLabzJ6JSUTa8PyRai0GondHpvCiUu3HB4RZZvPJ2jablutyt2ZKEmuLO43hsZxtvc2AMCfJ9hZ\nX53gK9zp7kZiTM2YiBtn03y4srjbb6Q21FWhuNDv4GgyK3pvVTYSM1FTw1IA1qK2MwMYGZl0dkDk\nCq4s7h1Re6V6c0ompHFdFYoKghuP9A6M4XI/G4mZZlFZITZaO4upKrtEUlJcV9xHxqdw1HZTqdWl\nG3MkK9hILDLt1MHUjJHsUzOcd6dkuK64v93TjxkrDrZh+SJUW0kCL9vFeXfj2TfOZpdISobrivu+\nE95duDSX++qrI43ErtzC4AiXoZtmw7oqlJYUAACGbt3BeW7BSAm4qrhPTs/g7Z5IozCvT8mElBUX\nYMvqYCMxVTYSM5HPF9slkqkZujdXFfej5wcxPhnssVJbEcAaa3m+CbhalaLm3Q+zzwzdm6uKe4dt\nVequLUs81SgsEXsqqOvsTdyZZCMx0zRtjxT3Ez39GBllJJLm5priPjsb2yjMjCmZkGVVxVhdY2sk\ndoY785imorwI69dGIpGHu3n1TnNzTXE/0zsc3pGoNJAfnoM2SetmpmZM1xK1WpWRSJqba4q7feHS\nO+prkOdzzdDTxl7c95/qZxzOQLF5d65Yprm4pkJGbcxh2JRMyMbl5agsDTYSGx6bxIlLjMOZpn79\n4nAkcnBoHBfYTI7mkLC4i8hKEXlNRLpF5IiIfH6O454VkR4R6RKRpnQOsndgDBevjwAA8v0+NK9f\nnM63dw2fT/AOe68ZRiKN4/MJdti6RHLjbJpLMlfu0wC+oKrbADwA4AkR2Ww/QEQeBbBeVTcCeBzA\nc+kcpH1+uWndYgQ83CgskV2cdzdeSyN3Z6LEElZJVe0D0Gc9HhGR4wBWADhhO+wxAN+1jukQkXIR\nqVXVtNzO55RMROO6KhTm52FiagZXb47hl51XsKg43+lhURbNBvwYQXCu/fCpG3jrwGUj70HlisZt\nS1CYgxecKY1IROoANAHoiPnUCgCXbM+vWK8tuLgPj07iuLXUWiS6Ba6Jgo3EFod3ovrzH3c7PCJy\nws2CPExMzgCq+Mqzv0YZzFnzkWv+6n98ALU1Li7uIlIK4CUAT6rqyHy/4Z49e8KP29ra0NbWds/j\nD/T0Y9ZKBGxaWYEK64aiyR7ctjRqm0EyT0lJASYmg3sI9wHwQxFggfeM9vZ2tLe3L+g9JJkolYj4\nAfwUwM9V9Zk4n38OwOuqutd6fgLAQ7HTMiKiqUa3Lt0Ywetdvdh38jre3bQcH3lwbUpf70Wqir97\n8xy33TPYzMws/vlQL4asVaoFeT68a3UlSvLzHB6ZeT777+9DZUVmu9OKCFQ1pd/eyRb37wLoV9Uv\nzPH59wN4QlU/ICL3A/iGqt4f57iUi7vd7KzC5+PVCREA9A2M4ff/1z4MjwUL/MrqEjz96VaUBXgP\nxmsyUtxFZDeANwAcAaDWx1MA1gBQVf22ddw3ATwCYBTAp1S1M857Lai4E1G0ExeH8OXnD2BqehYA\n0LC2Cl/93Rbk+3mD1UsyduWeLizuROn35pE+/NlLh8PP39u8Ap97bKtRjfW8bj7Fnb/eiVzunQ1L\n8bu/uSH8/JcHr+Dv3jzn4IgoF7C4E3nAR9+5Fr/ZtDz8/Hv/eBpvcq9Vo7G4E3mAiOCzH9yKBqsl\nMAA888pRnOB2fMZicSfyiHy/D1/62A6sqC4BEOz7/7UXutA3MObwyMgJLO5EHlIWyMd/+UQzFhUH\nO0cOj03ij75/ELfHpxweGWUbizuRxyytKsYffrwpHIe83D+K/7b3UDguSWZgcSfyoM2rK/Dkh7aH\nnx85N4Dnfnqcm3sYhMWdyKPiRSRfYkTSGCzuRB4WG5H834xIGoPFncjDGJE0F4s7kceFIpIrGZE0\nCos7kQHKAvn4SkxE8r8yIulpLO5EhoiNSF5hRNLTWNyJDBIvIvlXPznGiKQHsbgTGSY2IvmPXVcZ\nkfQgFnciAzEi6X0s7kQGYkTS+1jciQw1V0SylxFJT2BxJzJYKCJZXsIukl7D4k5kuKVVxXjqdxiR\n9BoWdyJiRNKDWNyJCAAjkl7D4k5EYR9951q8t3lF+Dkjku7F4k5EYSKC//AvtzAi6QEs7kQUhRFJ\nb2BxJ6K7MCLpfizuRBRXvIjk0y92MSLpEizuRDSn2Ijk0fODjEi6BIs7Ed0TI5LuxOJORAkxIuk+\nLO5ElBAjku7D4k5ESWFE0l1Y3IkoaYxIugeLOxGlhBFJd2BxJ6KUbV5dgd/7V9ERyb9kRDKnsLgT\n0bw8uH0pPmmLSL7GiGROYXEnonn7CCOSOYvFnYjmLRSRbGREMuewuBPRguT7ffgiI5I5h8WdiBaM\nEcncw+JORGnBiGRuYXEnorRhRDJ3sLgTUVoxIpkbWNyJKO3iRSTfONLr4IjMw+JORGkXLyL57Cvd\nOH5x0MFRmYXFnYgyIl5E8usvHGJEMktY3IkoYxiRdE7C4i4i3xGRayJyeI7PPyQiQyLSaX18Of3D\nJCK3YkTSGclcuf8tgPclOOYNVW2xPv44DeMiIg9hRDL7EhZ3Vf0VgER3QSQ9wyEir4oXkfzRG4xI\nZkq65twfEJEuEfmZiGxN03sSkcfERiS//xojkpniT8N7vA1gtaqOicijAF4BUD/XwXv27Ak/bmtr\nQ1tbWxqGQERuICL47Ae34PrQOA6fGwAAPPtyN2rKi7BldaXDo8sd7e3taG9vX9B7SDJzXiKyBsBP\nVLUxiWPPAdipqgNxPqecYyOi2+NT+IO/3ofL/aMAgLLifPz3T+/C8sXFDo8sN4kIVDWl6e9kp2UE\nc8yri0it7XErgr8w7irsREQhsRHJ22NT+KPvdzIimUbJRCF/AOCfAdSLyEUR+ZSIPC4in7EO+aiI\nHBWRgwC+AeBjGRwvEXlEbETy6s0xRiTTKKlpmbR9M07LEFGMXx3tw5/+KLKM5j1Ny/H5D22DCEN4\nIZmcliEiyghGJDODxZ2IHMeIZPqxuBOR40IRyaguki+zi+RCsLgTUU7w5/nwpY/twKoaq4vkTHCj\n7as32UVyPljciShnlAby8ZVPtDAimQYs7kSUU2orA/jDj0dHJP/kBUYkU8XiTkQ5Z9OqCvzHD0e6\nSHZfGMRfvMoukqlgcSeinLR721J88r0bw89fP8SIZCpY3IkoZ33kwTq8t4URyflgcSeinCUi+Gzs\nRtsvd+PYBUYkE2FxJ6KcFi8i+fUXGZFMhMWdiHIeI5KpY3EnIldgRDI1LO5E5BqMSCaPxZ2IXCVe\nRPKH/3TWwRHlJhZ3InKd2IjkD14/g386zIikHYs7EblOKCK5Y10kIvnnrzAiacfiTkSu5M/z4Yu/\nzYjkXFjcici1GJGcG4s7EbkaI5LxsbgTkesxInk3Fnci8gRGJKOxuBORZzAiGcHiTkSewYhkBIs7\nEXkKI5JBLO5E5DmMSLK4E5FHzRWRnJyecXhk2cHiTkSeZXJEksWdiDwtNiLZfqjXiIgkizsReZ6J\nEUkWdyLyPBMjkizuRGQE0yKSLO5EZIw5I5Jjkw6PLP1Y3InIKHEjki8e8lxEksWdiIwTjEg2hJ97\nMSLJ4k5ERtq9rRb/5uHoiOReD0UkWdyJyFgf3h0dkXzBQxFJFnciMpaXI5Is7kRkNK9GJFncich4\nXoxIsrgTEcF7EUkWdyIii5cikizuREQ2XolIsrgTEcWIF5FsP+SuiCSLOxFRjHgRyW/+uBvdLopI\nsrgTEcURikiurikFEIxI/smLXbh6c9ThkSUnYXEXke+IyDUROXyPY54VkR4R6RKRpvQOkYjIGaWB\nfHz5E82oiIpIHnRFRDKZK/e/BfC+uT4pIo8CWK+qGwE8DuC5NI3N09rb250eQs7guYjguYjIlXNR\nWxnAU//afRHJhMVdVX8F4F4TTY8B+K51bAeAchGpTc/wvCtXfnBzAc9FBM9FRC6di00r3ReRTMec\n+woAl2zPr1ivERF5htsikryhSkSUpA/vrsPDLolISjJ/VojIGgA/UdXGOJ97DsDrqrrXen4CwEOq\nei3Osbn7NwwRUQ5TVUnleH+Sx4n1Ec+rAJ4AsFdE7gcwFK+wz2dwREQ0PwmLu4j8AEAbgMUichHA\nVwEUAFBV/baq/r2IvF9ETgMYBfCpTA6YiIgSS2pahoiI3CVrN1RF5BEROSEip0TkS9n6vrkg3kIw\nEakUkX8QkZMi8v9EpNzJMWaDiKwUkddEpFtEjojI563XTTwXhSLSISIHrXPxVet1485FiIj4RKRT\nRF61nht5LkTkvIgcsn429lmvpXwuslLcRcQH4JsILobaBuDjIrI5G987R8RbCPYHAH6pqpsAvAbg\nP2d9VNk3DeALqroNwAMAnrB+Dow7F6o6AeDdqtoMoAnAoyLSCgPPhc2TAI7Znpt6LmYBtKlqs6q2\nWq+lfC6ydeXeCqBHVS+o6hSAFxFc/GSEORaCPQbgeevx8wA+lNVBOUBV+1S1y3o8AuA4gJUw8FwA\ngKqG9nErRPD+l8LQcyEiKwG8H8Bf21428lwgGF6Jrc0pn4tsFffYhU6XwYVOS0KpIlXtA7DE4fFk\nlYjUIXjF+haAWhPPhTUNcRBAH4BfqOp+GHouAPxPAL+P4C+4EFPPhQL4hYjsF5FPW6+lfC6SjUJS\n5hlzZ1tESgG8BOBJVR2Js/7BiHOhqrMAmkVkEYCXRWQb7v5/9/y5EJEPALimql0i0naPQz1/Liy7\nVbVXRGoA/IOInMQ8fi6ydeV+BcBq2/OV1msmuxbqwSMiSwFcd3g8WSEifgQL+/dU9cfWy0aeixBV\nHQbQDuARmHkudgP4LRE5C+AFAO8Rke8B6DPwXEBVe63/3gDwCoLT2in/XGSruO8HsEFE1ohIAYDf\nQXDxk0liF4K9CuDfWY//LYAfx36BR/0NgGOq+oztNePOhYhUhxIPIhIA8DCC9yCMOxeq+pSqrlbV\ndQjWhtf57mugAAAAw0lEQVRU9ZMAfgLDzoWIFFt/2UJESgD8CwBHMI+fi6zl3EXkEQDPIPgL5Tuq\n+nRWvnEOsC8EA3ANwYVgrwD4EYBVAC4A+G1VHXJqjNkgIrsBvIHgD6taH08B2AfghzDrXDQgeGPM\nZ33sVdWviUgVDDsXdiLyEID/pKq/ZeK5EJG1AF5G8N+GH8D3VfXp+ZwLLmIiIvIgdoUkIvIgFnci\nIg9icSci8iAWdyIiD2JxJyLyIBZ3IiIPYnEnIvIgFnciIg/6/9ntD8Xxb3j7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bins = np.arange(0, 40, 5)\n", + "indices = np.digitize(titanic_df.Age, bins)\n", + "groups = titanic_df.groupby(indices)\n", + "\n", + "for i, group in groups:\n", + " print(i, len(group))\n", + " age = [group.Age.mean() for i, group in groups]\n", + " cdfs = [thinkstats2.Cdf(group.Pclass) for i, group in groups]\n", + " \n", + "for percent in [75, 50, 25]:\n", + " Pclasses = [cdf.Percentile(percent) for cdf in cdfs]\n", + " label = '%dth' % percent\n", + " thinkplot.Plot(age, Pclasses, label=label)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Very surprisingly, it appears that the majority of passengers in class 1 appear to be older. Thus, we will look at distribution of gender in each class. " + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 23)\n", + "(2, 9)\n", + "(3, 7)\n", + "(4, 50)\n", + "(5, 72)\n", + "(6, 76)\n", + "(7, 62)\n", + "(8, 154)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcW+f1P/DPkYTYGwzGGGNsPBg2xnthkrYZTZukSZNm\nOOvbkXzrtNmzduI4oxlOs/tN06b5Jc4erZNmtUkdG9vxBgw23sZ4gtl7SOj5/SFxucJgJJB0h877\n9fIrPOICJxdxdPXc5zyHhBBgjDGmLwalA2CMMeZ5nNwZY0yHOLkzxpgOcXJnjDEd4uTOGGM6xMmd\nMcZ0aNDkTkSBRLSFiIqIqJSIHh7guBeJ6AARFRNRjudDZYwx5irTYAcIITqJ6BwhRBsRGQFsJKKv\nhBBbe44hogsBjBNCpBPRbACvApjjvbAZY4ydjUvTMkKINseHgbC/IPStfLoEwFuOY7cAiCSiBE8F\nyRhjzD0uJXciMhBREYBKAN8IIbb1OWQUgGOy8QnHY4wxxhTg6pW7TQgxDUAygNlElOHdsBhjjA3H\noHPuckKIJiL6DsAFAMpknzoBYLRsnOx4zAkR8UY2jDE2BEIIcuf4QZM7EcUBsAghGokoGMCPADzZ\n57DPACwB8AERzQHQIISoGiBAl4Pr7rZhwU8ecvl4X2oPikZ7cAwAIMDShtDW0259/fEDa5Gcnu/S\nsZaAELSGjgAAGGwWRDYehVu/ZZU7dqAAo9PzXDq2KXwUrKYgaRzSVo2gziZvheZz7pwLAOjqCkR7\nW5g0Nge2IySkBaSDJ8jR/euRMmGh0mEM2cYvnvDY96Ih/EJpsGRLRNkA3oR9CscA4AMhxONEdDMA\nIYR4zXHcy7Bf0bcCuEkIUdjP9xJ62IVSCIHfvrQRJ2vt95nvvXIK5mcmuvU9li9fjuXLl7t0bKel\nGzc8vQ7tXVYAwMrfzEb6qEi3fp6auXouOru6cc2Ta2Dt7n0O5abH4eHFuV6MzrfceV70eOv9nVj9\n5T5pfOWlmbjqskwPR+Z7QzkXekVEnr9yF0KUAjjjr0cI8Zc+41vd+cFadvBkk5TYg80mzJgQ79Wf\nFxhgxJzJI/DdzpMAgILSSl0ld1ftPdbglNgBoPRwHdo7rQgOdGuGUVcWXzkF9Q0dWPd9BQDgw9W7\nER0VhPPPHadwZExJXKE6BAWlldLHcyaPQGCA0e3vkZ+f79bxi6b0vjNYX1oJm03774B6uHouSo/U\nnfGYpduG4sO1Ho5IOe4+LwDAYCAs+dVM5GT3Pkdee7MQW3eccdtLU4ZyLlgvTu5ustkE1u/qTe7y\npOsOd5+4U9JiEBVqBgDUt3SitPzMRKdVrp6LksO9/88p8b3zzNv31Xg6JMUMNaGZTAbc87u5GDfW\nfh9ICIFnX9mMPfu1e244uQ8PJ3c3lZbXob65EwAQFWrGlLQYn/xco8GA+Vm9LyTydw/+oL3TigMn\nem+c3nBeuvTx9v3VunonM1TBQQH4w50LkDDC/sJnsXbjj89twNHjjQpHxpTAyd1N8qS6ICsRRoPv\nTuEi2dvuTXuq0GXt9tnPVlrZ0QbYHDfjxyaGI3d8nPROpqG1CwdOcAIDgKjIIDx8Tx4iI+wrilpa\nu/DoyvWorWsb5CuZ3nByd0OXtRvfl/Wu8Mwb4pTMUE1IjkRCVDAAoLXDih0HtPuW213yaajssTEw\nGMjpRva2/dVKhKVKiQlh+MNdCxAUZL/JXFvXhhXPrEdLS5fCkTFf4uTuhu37a9DWaV+OmBgTggk+\nXrFCRE4vKAUl/jM145TcU6MBADMmxkmPbd3HyV1u/NgY3Pu7eTAY7Kvnjp1oxB+f34gui/+82/N3\nnNzdIJ+SWZSdOKTCguHKyx4pfbxtf7X0YqNnLe0WHD7VDAAwECFjjD2556TFIsBofwpXVLXgdEO7\nYjGqUU52Im799UxpvGd/NZ7/vy18f8JPcHJ3UUu7Bdtlb/0XZvt2SqZHyogwjE0MBwBYrDZs3uNe\nZawWlVXUS/PtaSPDERYcAAAIDjQhW3ZDextfvZ8hf34qrr9qqjTevP04/raqyK1KcaZNnNxdtHnP\naVisNgD2BDNathTP1/Ky5VMzpxSLw1dKj9RLH2ePdV6dNFM+787JvV+XXDgBPzl/gjT++r8H8cm/\n9igYEfMFTu4uKijtTaKLZFMjSlgoWxK583AdGlo6FYzG+/reTJWbOaF33n3XkXq0+8E0lbuICDde\nPRXzZ/fu7ffux7vw33XlCkbFvI2TuwvqmjtR4kgwRMAChaZkesRHBUvzzjYhsGF3v3u06UJzWxfK\nK2Xz7SlRTp+PjwrunabqtqHokH6qVT3JYCD87jezMCWjt4fOn/++HduLTyoYFfMmTu4u2LCrEj1T\nlFmpMYiLCDr7F/jAIj+ZmpFPyaSPiuh3Dxn51Mx2npoZkDnAiHtvm4dUxwukEAIrX9qE/Qf5BVGP\nOLm7YJ0seeYpfNXeY15GAoyOZW77jjeiUqdFKmebkukxc6IsuR+o4dUgZxESHIBld+dhRFwoAKDL\n0o3Hnl2PE6f0s20ys+PkPoiTta04eNL+xA8wGjA3Qx2tYSNCzZg2PlYay/e70ZNd5b1X7lMGSO7j\nkyIQHRYIAGhs7cJ+Lrc/q+ioIDx0bx7CHeespbULK55ej7p6XkqqJ5zcB7FOViiUmx6HcMcyPDWQ\nr3lfV3JKd8vbGlo6cbS6BQBgMhImjY7q9ziDgTBddmOVq1UHl5QYjqV3LYDZbJ/mqq5txWPPrkdr\nG1ex6gUn97MQQjivkvHxdgODmTUxXtpu+Fh1K45UtSgckWeVyq7aJyRHIdA88NbKs2RTM1yt6pr0\ncbG493dzpWK8I0cb8NQL33MVq05wcj8LXzflcFdwoAmzJvXGtE5nN1bl+7dnj40+67FT02IQYLI/\nnY+ebkEVTzG4JHfqSCz55QxpvGvPabz4l61830IHOLmfhXy7gbkZQ2vK4W3yNfcFOmvi4byfzNm3\nVg4ym5xuuPLUjOvOzRuLa3+eLY2/33oMb7xTrLtpPn/DyX0ANpvAellyV8sqmb6mjY9FeIj9PkBt\nUwfKjtYP8hXaUNPUIb1rCjAZMHH04Ju0yadmuFrVPZf9dBIu/OF4afzFNwec+rIy7eHkPoDS8jrU\nt/i+KYe7TEYD5stW8OiliYf8qn3y6CiYTYO/a5Kvd991pM4vNlXzFCLCLxdPw9yZydJjqz4owXcb\njigXFBsWTu4DULIph7vypvROzWzcXSXtgaNl8iWQA61v7ysuMkiqVrV2CxRxcY5bDAbCbbfMRobs\nHdArf9uGwp36upfjL9SbsRSkdFMOd00eHYW4SEfnnXYLinVQgu9cvHT2m6lyPDUzPOYAI+6/fT5S\nku3TYDabwDMvb8LBw/rp2esvOLn3Q+mmHO4yGMhpM7F1pdq+0qqqb0eVY2/2wAAjxie5fv7l1ao7\nuFp1SMJCzVh290LExYYAADo7rXjs2fU45djjh2kDJ/d+qKEph7sWyaZmtu6t1vTuiPKr9owxUdIS\nR1eMG9lbrdrUxtWqQxUbE4Jld+chzNGntqm5EyueKUBDY4fCkTFXcXLvo29TjjyFt/d1VWpCGFIc\ne8x3Wro1XcjjvL7dvRvZ9t6q3H7PE0aPisCDdy6A2bEEuKq6FY+tXI/2DovCkTFXcHLvQ96UY9zI\nCCTHhyockWvO6K+q0akZIYRTZepg69v7w/PunjMpPQ53LemtYj1cUY+nXvgeFitXsaodJ/c+5ElR\nrWvbByKfdy86WIumVu3tE3Kqrg21Tfa3/sFmE8Ylhbv9PaamxfZWq1ZztepwzcxNwi03TZfGJbur\n8Mpft/P9DJXj5C6jtqYc7kqMCcFExyqHbptwWvGjFfKr9szUqCEtQQ00GzFVVpfAUzPD96P8NFx1\nWZY0LthUgVUflCgYERsMJ3cZNTblcJd8zfs6DRY0yW+mDrTFrytmTRwhfbxtn/6biPvCFZdMxo/O\nSZPGn361D599xVWsasXJXUaNTTnctSAzAQbH/GhZRT2qG7QzJWGfbx/6zVQ5+RbAuyvquVrVA4gI\nN98wHbNyR0mP/b/3dmL9pqMKRsUGwsndQa1NOdwVFRboNCWhpSYex2ta0eC4TxAWHIDUBPfn23vE\nRQQhbaS8WrXGIzH6O4OBcOdv52BSeu+L54uvbcVOHffx1SpO7g5qbsrhLvnUjJb2mimRVUFmjomG\nwTC8+oKZvMe7V5jNRjx4xwKMHhUBAOjutuGpFzbi8BF9bFqnF5zcof6mHO6aM3mEtFqkvLIZR09r\no4mHvBn2cKZkesg3EuNqVc8KCzNj2d15iIkOBgB0dFjx6Mr1qNTIc80fcHKH+ptyuCsk0OSU2LSw\n5t1mE9h1xDM3U3uMGxmB6HB7tWpzmwV7jzUM+3uyXnGxIXjonjyEhtirWBubOrDimQI0NnEVqxpw\ncoc2mnK4y6mgqaRS9Y0XKk63oLnNXvkYGWpGyojhF48ZDOT0IsdTM56XkhyJB+6YjwDHlsyVVS14\n7NkNXMWqAn6f3Ps25ZDv0aJl09PjEBpkb35c1dCOfcfUvceKfJVMVmq0x/bzmSlbNbOduzN5RcbE\neNzx29nS7+xQeR1WvrwJVh1sPa1lfp/c+zblcGd7WTUzm4xOK37UvlOkp5ZA9iWvVj1W3YpTdW0e\n+96s15wZyfjNDbnSuKikEn/++3bVv2PUM79P7lpqyuGuRbK1+ht3V6Hbps4rKZtNYHfF8PaTGUig\n2YictFhpzHvNeM/5547DFZdkSOO1G47gnY92KRiRf9NPJhuCvk059DIl0yMrNUa6odjY2oWdKm24\ncLiyGa0d9iKj6PBAjIoL8ej3ly+J5KkZ77rqskz8IG+sNP7H53vwxX8OKBiR//Lr5N63KUe6Y92u\nXvRt4lFQos41705TMqkxHt8/X74F8K4j9Wjlm31eQ0S45abpmJGTJD32+tvF2LjlmIJR+Se/Tu5a\nbMrhLvk2Cpv3nEanRX1btQ61pZ6rYiOCMD7JUXBj496q3mY0GnDXkjmYMK5nOkzghb9swa49vMeP\nL/ltcm9pt2D7Pu015XDX+KQIJDnapbV3WVU3LWHttqGsonf9uSdvpsrJaxe2qewc6FFgoAkP3rkA\nST0Ny602/PG5jThylGsNfMVvk/vmPadh6dZeUw53EZHTC9c6lU3NHDrZhPYu+9RYXGQQEh0Vj542\ny2nevUa1N5f1JCI8EMvuyUN0pP132t5hwaPPrMfpmlaFI/MPfpvc9bTdwGDkUzOFB2rQ3K6eOee+\nW/x6a2osbWQ4Yhw3l1vaLdir8nX/epEQH4qldy9EcJB9r6b6xnaseLoAzY7lx8x7/DK51zZ1ODXl\nmJ+l7+Q+Ki5UmnO2dNuwWUVzn57eT2YgROS0aoaXRPrO2DFRuP/2+TA56g1OVjbj8Wc3oJO3YfYq\nv0zuG3dXab4ph7vkV+8FJeooaLJYbShzWt/u3QIy+VYEnNx9KztjBG67eTYA+zuz/Ydq8ewrm9Hd\nzdNj3uKXyV3elENva9sHMj8rET0zHqVH6qQ+pUraf6IRXY4S9cToYMRHeWe+vceUtBiYHVePx2ta\npc3imG/Mnz0av1ycI423F5/Eq2/s4CpWLxk0uRNRMhGtIaLdRFRKRL/v55hFRNRARIWOf0u9E+7w\nnahxbsoxZ/KIQb5CH+IigpDlqPwUwv7uRWlO+8l4cUqmR2CAETnjeqtV1bZyyB9cdF46fvaTSdL4\nvwXl+OCfuxWMSL9cuXK3ArhTCJEJYC6AJUQ0qZ/jCoQQuY5/j3k0Sg+Sr23XelMOd8mnZtapYGrG\nU/1S3TGDd4lU3OIrsrFo/hhp/OHqMvx7zSEFI9KnQZO7EKJSCFHs+LgFwB4Ao/o5VPUVQEIIv5yS\n6TE3IwEmo/3XZN/DXrklaV3Wbuw73rtixZs3U+XkN1XLKurRoqKVQ/6CiLDklzMxTbZK7bU3C7F5\n+3EFo9Ift+bciSgVQA6ALf18ei4RFRPRF0SU0c/nFXfwZJO0K6C9KUfcIF+hL+HBAZgu632p5Jr3\nvccaYXHMt4+KC5WWKXpbTHggV6uqgMlkwN23zsW4sT1ThQLP/XkLyvjdlMeYXD2QiMIAfAzgNscV\nvNwOAClCiDYiuhDAagAT+vs+y5cvlz7Oz89Hfn6+myEPnXxKZp5OmnK4Ky97JLbstf8BFZSewlX5\naYpsu1B6WL6fjG+3WZ45MV6677JtfzUWZut7KaxaBQcFYOldC/DAo2tQWdUCi7Ubf3xuIx5feg5S\nkiOVDk9Ra9euxdq1a4f1PciVO9VEZALwOYCvhBAvuHB8OYDpQoi6Po8Lpe6M22wC//NsgbR3+yPX\nT3e6ueYvOru6ccMz66Sq0GdvniNdyfrS/a9vxR5HKfo9V0zBAh/WGhw+1YQ7Xt0MAAgLDsBb9y7S\n1VbPWlN5ugUPrFgjteeLiQ7Gkw/9AHGxnt0dVMuICEIIt67CXH1G/x1A2UCJnYgSZB/Pgv1FQ1X7\ny+q1KYe7As1GzJ7cO++sxI3Vji4rDpzonW/P8vGV+9jEcMQ6ahta2i3SiwxTRuKIMCy9eyGCHJ3D\n6urb8ejKArS0dCkcmba5shRyPoBrAZxLREWOpY4XENHNRPQbx2E/J6JdRFQE4HkAv/BizEMin5JZ\nmK2vphzukt9IXr+rEjabb99N7TnaAGu3/WemjAhDVJhv5tt7EJFT+71t+2t8+vPZmcalRuO+38+D\n0ejomnWiCU88vwFdXerbxVQrXFkts1EIYRRC5AghpjmWOn4thPiLEOI1xzGvCCGyHJ+fJ4To74ar\nYvo25dDrDpCumpoWg8hQe8f6+uZO7Dri2zdZpeW+2XLgbHgrAvWZmpWI3/16pjTeu78Gf/rzZp9f\nfOiFX1y+6r0ph7uMBgPmZ8r7q/p21UyJl/dvd8WUtBjphvqJmlZFl4WyXnnzxuDGq6dK462FJ/CX\nN7mKdSj8Irk7r23XZ1MOdy2SvXvZVFaFLqtv3v62dVpxyLFShQhS1ayvmU1GTE3r/dl89a4eF184\nERdfMFEaf/PdYXz06R4FI9Im3Sf3lnYLdsjmVBf5+ZRMj4mjI5Hg2MultcOKwgO+We9dVlEPm+Mq\nbGxiuKIVwvKpGa5WVZfrr5qChXNTpPH7/9iFb9YeVjAi7dF9cpc35RifFIFRcfpsyuEuIkKerEJQ\nvr+9N/Xtl6ok+VYEZRUNqtrn3t8ZDIRbfz0TUzJ6pw9ffWMHthWeVDAqbdF9cpdPyeRxsYoT+Y3l\nrfuqpfsS3qSGm6k95NWqNiFQdJBXzahJgMmI+26fh7Qx9vsyQgg8+8om7D3AvydX6Dq51zZ1oPSI\n/zTlcFfKiDCkJth7XFqsNmzxchOP5nYLDlfa59sNRMgYE+XVn+eKWTw1o2rBQQFYevdCJDjaYHZZ\nuvHEnzbguOO+DRuYrpO7vClHtp805XCXfGpmnZenZnYfqZd+H2kjwxEapPyOnLMm9W75XHigFlZu\nHqE6UZFBWHZPHiJ62iS2dmHFMwWoq29XODJ103Vyd5qS8bMdIF21UPZuZuehOjR4sbel0xa/acpO\nyfRITQhDXKT9Rb+1g6tV1SopMRxL71qIwEB7FWtNbRtWPFOAllauYh2IbpN736Ycc/2kKYe7RkQF\nIyPFPj1iE8KrTTxKj8jXt6sjudurVbmgSQvGp8XgnlvnwmCwL2U+erwRTz6/EV0WrmLtj26Tu3yK\nYfqEOIT5UVMOd8nf1RR4qaCpsbULFVX2zUSNBsLk0crPt/dwqlbl7kyqljt1JJb8qreKtWxfNV54\ndQtXsfZDl8ldCIEC2V7l/r7dwGDmZyTA6Lga2nusAZV1nu8tKt/iIH1UJIIDXd5t2uuyx0YjyGyv\nVj1Z28bVqip3zoJULL5yijTetO04Xn+7iKtY+9Blcpc35QgJ9L+mHO6KCDU7bX+8fpfnr96dl0Cq\na0dOe7Vq7///1r189a52P7toIi76Ubo0/urbg/jn53sVjEh9dJnc5TdS5072z6Yc7pK/uykoqfT4\nVZAS/VLdwUsitYWIcNO1OZg3a7T02NsflWJNQbmCUamL7pK7zSawXjZvzKtkXDN7UjzMJvvT4Wh1\nC45U9W22NXR1zZ04XmOf6ggwGjBRRfPtPWZMiEPPlkN7jnK1qhYYDITf3zwLmZN6X5hfeX07Cncq\n3/xdDXSX3EvL69DgWB4VFWpW5VWiGgUHmjBbtubbk9sRyOfbJyRHqvKdVFRYINJH2Vu72YRAIVdB\naoI5wIj7b5+PMY4LBiEEnn5pEw4c4t64ukvu8imZhdmJ0rIpNjinJh6lnmviUXJYfUsg+8NLIrUp\nNMSMZXcvRHyso4q1y4rHnt2Ak5XNCkemLF0l905LN74v6y2h51Uy7skZFystGa1u7MCeY54p6Ck9\not6bqXLyJZGFB2u4WlVDYqKD8dC9CxHmaELT3NKJFU8XoL6hQ+HIlKOr5L59f43U+HkkN+VwW4DJ\nuYlHgQf6q9Y0dkhLK80mAyaouKu9c7WqFWVcraopo0ZG4A93LYTZMe13uqYVj60sQJuf3j/RVXKX\nzxPncVOOIZHvnLlhdxUs1uFdvcpXyUxOiYLZpL759h5E5LRqhqdmtGfi+Fjcdetc6W+//GgDnn7h\ne1h81IxGTXST3Lkph2dkpEQj1rHBWku7BTsPD+/GlNP+7Sqeb+8xo8+8OxfGaM/MaUn47f/MkMYl\nZVV46bVtflfFqpvkvombcniEwUBOV+/rSoZe0CSEcO6XqnBzDlfIq1VP1bXhRI3nq3WZ9/1g0Vhc\nfXmWNN6w+SjefH+nghH5nm6SewE35fAY+aqZLXtPo6NraE08qurbUd1ov6EVZDZivAbugZhNRqdq\n3a37vLvHPfOen188GeefO04a/+vr/fj0y30KRuRbukjufZtyLOCmHMOSmhCG0Y7mCJ2W7iFXbMpX\nyWSMiYbJqI2nm9OSyP283l2riAi/vj4Xc2YkS4+9+f5OrNtYoWBUvqONv7ZBbNhV6dSUI5abcgwL\nEZ2xHcFQOPdLVe8SyL7k1ap7uVpV0wwGwu3/OxuTZS/YL/11K4q9tPupmugiuRfwdgMet1A2tVV4\nsAbNbe41RRBCaO5mao+osEBMkFWr7uCrd00zBxjxwO3zMdoxLWizCTz90vc4KHt+6pHmkzs35fCO\nkTEh0pr0bptwKg5zxcnaNtQ127s6hQaZMG6k+ufb5eQFTdt5j3fNCwsz46F78hATHQwA6Oiw4vFn\nN6DSg3soqY3mkzs35fAe+dTMOjcLmuRX7ZljojW3DQRXq+pPbEwIHronT6pibWzqwCPPFKChUZ9V\nrJpO7n2bciziKRmPWpCVAINj8nl3RT1q3PgjcN6/XTtTMj3GjAjDiCj7VV5rhxVlFfWDfAXTgpTk\nSDxwxwIEOIrpqk634PE/bUB7h/7uq2g6uR844dyUY3o6N+XwpOiwQKdG1q7uFCmEcNoJUovJnYic\nmrzwqhn9mDwhDncumSNVsR4qr8MzL22CdZjV2Gqj6eQuTzbclMM75DUDrvZXPVbdKm27HB4SgDEj\nwrwSm7fN7NPAg6tV9WP29FH4zQ250ri4tBKv/G2brn7Hmk3ufZty8JSMd8yZPAIBjiYe5ZXNOHp6\n8BtQ8qrUrNQYzc2398hKjUaw2d7rtbKuTWo4wvTh/HPH4cpLM6Xxuu8rsOrDUgUj8izNJveSPk05\ntPjWXwtCgwKc9ltZ78LVu1bXt/dlNhmRM763WpU3EtOfX/wsAz/KT5PGq7/Yi8//vV/BiDxHs8m9\ngJty+Izz1Myps751tdkEdh3R9s1UuZnyeXdO7rpDRPjNDbmYMS1Jeuzv7+zEhs1HFYzKMzSZ3Ps2\n5eApGe+aMSEOoUGO6Yn6duw/0TjgsRWnW9DiqOiMCjVL2xho1fR0WbXqsUa3i7mY+hmNBtz12zmY\nKL1LE3jxta0o2V2laFzDpcnk3rcpx/gkbRXIaI3ZZMTcyfImHgNPzfStStX6nvpRYYGYmGzvz2kT\nAtu5t6ouBQaa8OCdCzDKUWxntdrw5AsbUV6h3YYtmkzu8lUyi6aM1HwC0QKnJh67KtFt63/ZmFb6\npbqDp2b8Q3hYIJbdsxDRUb1VrI+uLEBVtTZvpGsuuTf3acrB2/v6RvbYGESHBQIAGlq7nJJ4j26b\nDbsrtNEv1R0zJ/ZuaVF4oHbY3amYeo2IC8VD9yxEiKPSvaGxAyueLkCTYysNLdFcct/MTTkUYTCQ\n02Zi/a15P3yqGW2d9umy2IggjIwJ8Vl83pQyIhQJjqu59i6uVtW7MaOj8MAdC2ByLAE+VdWMx5/d\ngI6OofU1UIrmkrt8lQzfSPUt+bukTWWn0Wlx7kvpPN8erZvpMiLCDHlvVd5ITPcyJ8Xj9ltmA7A/\nhw8crsXKl7VVxaqp5F7TpynH/MyEQb6CedL4pAjpary9y4rtfUry5c05tNBSzx19G2frqZKR9W/e\nrNH41XU50riw5BRefWOHZn73mkruG7kph6KICHlTnNe897B225ymK/RyM7VH5hhZtWp9O45p9CYb\nc8+Pf5SOy386WRqvWV+Odz/epWBErtNUcl/HO0AqLi+r97zv2F8jrWk/eKIJHV32aZqEqGAkOPbN\n1osAkwHT5NWqPDXjN675eRbOWZgqjT/51x589e1B5QJykWaS+/HqVhw61duUYw435VBEcnyo1HjD\n0m3D5j32YrJSje8C6YqZfaZmmH8gIvzvTTOQK7ug/OtbRdi07biCUQ1OM8m9YFfvFMCMifHclENB\nfbcjAJxvpmbpZAlkX/Jq1X3HGtHUytWq/sJkMuDuW+divLQFtsDz/7cFu/eq90VeE8ldCOE0JcNr\n25W1IDtRSnIl5XWoqm9H2dHeSj69XrlHhpqdqlV3cLWqXwkKMuEPdy7AyIRwAIDF2o0/PrcBFcfU\nWcWqieR+4EQTKmVNOeRNFJjvxUUEIXOM/epcCOD1r/dJhT0jY0IQp+Mb3X33eGf+JTIiCA/dm4eo\nSPtzvK3dgkdXrke1CreD1kRyl6/KmJeRALOJm3IoTd5fdcve3k3c5J2b9Ei+JLLoIFer+qOE+FAs\nvWshghzQFqSzAAAUIElEQVSb6dXVt+PRlevR0qKuabpBkzsRJRPRGiLaTUSlRPT7AY57kYgOEFEx\nEeX0d8xQdNtsTnuI85SMOszLTIDJeGaRkt7Wt/c1Ot65WnU3V6v6pbTUaNx323wYjfYUevxkEx7/\n03p0dXUP8pW+48qVuxXAnUKITABzASwhoknyA4joQgDjhBDpAG4G8KqnAiwtr5eackSHBep2Pldr\nwoMDkDv+zOkxvd5M7UFEPDXDAABTMxNw282zpPG+g7VY+comdHer492cabADhBCVACodH7cQ0R4A\nowDslR12CYC3HMdsIaJIIkoQQgx7Q+R13JRDtfKyRzolt9HxodLmYno2a2I8Pt9ib+awde9p5Cg8\nFZUyIgyJOtnHR2sWzElBfUMH3ni3GACwvegkXnurELfcOF3x7TcGTe5yRJQKIAfAlj6fGgXgmGx8\nwvHYsJJ7p6Ubm2RNOXhKRl1mTYxHsNkk7a3vL++qMsZEIyTQhLZOK6obO/D4e8WKxhNgNOCBq3Mw\nPZ0XGijhpxdMQH1DO1Z/uQ8A8M13hxEdGYyrLssc5Cu9y+XkTkRhAD4GcJsQYvAuyQNYvny59HF+\nfj7y8/MHPFbelCMplptyqE2g2Yj5mQn4tugEAPhNcgkwGTBrUjzW7jw1+ME+YOm24akPduKxG2dg\nQnKk0uH4pcVXTkF9QwfWfV8BAFi74QguvnCCtHWwu9auXYu1a9cOKyZyZRMcIjIB+BzAV0KIF/r5\n/KsAvhNCfOAY7wWwqO+0DBEJdzbdqWnswHc7T2JdySnMz0zE1eeMc/lrmW80t3Xh3e8OIT4yCD+b\nn6r4W1FfaWjpxHvfHUJtk7L7fB881YR6x17jESFmPPWrmUiK5W2wlWCxduOJP21EY1MHlt2dh+go\nzy0JJiIIIdz643I1ub8FoEYIcecAn/8xgCVCiIuIaA6A54UQc/o5zq3k3kMIAWu3QIBJEys3GfOZ\nEzWtuO/1rWhus+/xkxAVjKd+Pcsv7n2oUXuHBUJgyFfsA/FKciei+QAKAJQCEI5/DwIYA0AIIV5z\nHPcygAsAtAK4SQhR2M/3GlJyZ4wNbN/xBix9Yzu6HGvu00aG44mbZiI40K1bakzFvHbl7imc3Bnz\njm37qvHEe8WwOf6+pqbFYNm1ufxuVyeGktz5N8+YDsycGI8lF2dI452H6/Di6t2w2fhiyl9xcmdM\nJ36YOwqLfzBeGheUnsKb3+xXMCKmJE7ujOnIzxeOxY9njZbGq7+vwOqNR5QLiCmGkztjOkJE+PWF\nkzA3o7e/8Bv/2e9U6c38Ayd3xnTGYCDceXmWtC0zALy4eheKD9UqGBXzNU7ujOmQ2WTEg1fnIGVE\nGADA2i3w5Ps7cehkk8KRMV/h5M6YToUFB+Dh63IR52gs0d5lxYq3C3HK0fiG6Rsnd8Z0LC4iCA8v\nzpV6Dje0duGRVYVoaFF22wTmfZzcGdO5lBFhWHpNjlTQdKquDY++U4T2TqvCkTFv4uTOmB+YnBKN\ne66YAoNjY7eDJ5vw1Ic7YVVJYwnmeZzcGfMTsyeNwC0/mSyNiw7W4uVPy8BbgugTJ3fG/Mj5M5Jx\nVX7v1tnf7TyJVd8eVDAi5i2c3BnzM1flp+G86cnS+JMN5fjX5qMKRsS8gZM7Y36GiHDLTyZhlqzR\n9+tf78WGXZUKRsU8jZM7Y37IaDDg7p9PwaTRUQAAIYDn/7ELJeV1CkfGPIWTO2N+KtBsxNJrp2F0\nvL0tn6Xbhj++V4zyymaFI2OewMmdMT8WHhyAhxfnIibc3pavrdOKR94uRFV9u8KRseHi5M6Yn4uP\nCsbD1+UiNMjelq++uROPvF2IptYuhSNjw8HJnTGG1IRwPHh1bxXriZpWPPpuETq6uIpVqzi5M8YA\nAFmpMbjz8mw4ilix/3gjnvmoBN02rmLVIk7ujDHJvIwE/PrCSdJ4+/4a/PmzPVzFqkGc3BljTi6a\nnYIr8sZK42+LTuDdNYcUjIgNBSd3xtgZrj13PH6QkySNPyw4jC+3HlMwIuYuTu6MsTMQEX57cQam\np8dJj7325R58X1alYFTMHZzcGWP9MhkNuPfKKUgfFQnAXsX6p09KsbuiXuHImCs4uTPGBhRkNuGh\na6chKTYEAGCx2vD4u8WoqGpRODI2GE7ujLGzigg1Y/l10xEdZq9ibe2w4JG3C1HT2KFwZOxsOLkz\nxgaVEG2vYg0226tYa5s6sHzVDjS3WxSOjA2EkztjzCVjE8Px4NVTYTLaq5yOVbfi8XeL0GnpVjgy\n1h9O7owxl01Ji8XtP8uWxnuONuDZj7mKVY04uTPG3LIwOxG/vGCiNN6ytxp/+WIvV7GqDCd3xpjb\nLp47Bj+bnyqN/739OD5Yd1i5gNgZOLkzxobk+h+mI3/qSGn83neH8O/txxWMiMlxcmeMDYnBQLj1\n4kxMGxcrPfbq53uwde9pBaNiPTi5M8aGLMBkwH2/mIrxSREAAJsQePqjEuw92qBwZIyTO2NsWIID\nTVh27TQkxvRWsT76bhGOVXMVq5I4uTPGhi0qLBDLr8tFVKgZANDSbsHyVYWoaeIqVqVwcmeMecTI\nmBAsW5yLILMRAFDT2IEVbxeihatYFcHJnTHmMeOTInD/L6bCaLBXsVZUteCJ94rRZeUqVl/j5M4Y\n86hp4+Pwu0szpfHuino898ku2Gxc5ORLnNwZYx53ztQk3HjeBGn8fVkV/voVV7H6Eid3xphXXDpv\nDC6eO0Yaf7n1GD5ZX65gRP6FkztjzCuICDedNwELsxKlx1b99yD+W3RCwaj8Byd3xpjXGAyE3/8s\nE1PGxkiPvfxpGbbvr1YwKv/AyZ0x5lVmkxEPXJ2DsYnhABxVrB+WYN9xrmL1Jk7ujDGvCwk04aHF\nuUiICgYAdFq68eg7RThZ26pwZPrFyZ0x5hMx4YFYfn0uIkLsVazNbRYsf6sQdc2dCkemT4MmdyJ6\nnYiqiKhkgM8vIqIGIip0/Fvq+TAZY3qQFBuKpdfmIDDAXsVa1dCOFW8XorWDq1g9zZUr9zcAnD/I\nMQVCiFzHv8c8EBdjTKcmJkfh3iunwED2KtbyymY8+f5OrmL1sEGTuxBiA4D6QQ4jz4TDGPMHMybE\n49ZLMqRxSXkdXvznbq5i9SBPzbnPJaJiIvqCiDIGP5wx5u9+MG0UrvvBeGm8flcl3vjPfq5i9RCT\nB77HDgApQog2IroQwGoAEwY6ePny5dLH+fn5yM/P90AIjDEtunzhWNQ2d+LLrccAAJ9tqkBMeKBT\nf1Z/tHbtWqxdu3ZY34NceZUkojEA/iWEmOLCseUApgsh6vr5nOBXZcaYnM0m8MxHJfi+rEp67PbL\nsnDO1CQFo1IXIoIQwq3pb1enZQgDzKsTUYLs41mwv2CckdgZY6w/BgPhjsuzkDkmWnrspdW7UXSw\nRsGotG/QK3ciehdAPoBYAFUAHgZgBiCEEK8R0RIA/wvAAqAdwB1CiC0DfC++cmeM9aul3YIH/r4N\nR0/b2/MFmY147MYZSB8VqXBkyhvKlbtL0zKewsmdMXY2NU0duO9vW1HTaG/PFxlqxpO/nIWk2BCF\nI1OWN6dlGGPM6+IigrD8ulyEBQcAABpbu/DI24VoaOEqVndxcmeMqcro+DAsu2YaAkz29FRZ14ZH\n3ylCe6dV4ci0hZM7Y0x1JqVE4d4reqtYD55swlMf7ITFalM4Mu3g5M4YU6VZk0bglp9MlsZFh2rx\n0qdcxeoqTu6MMdU6f0Yyrj5nnDReV3IKb317QMGItIOTO2NM1X6xKA3nz0iWxv/ceASfbapQMCJt\n4OTOGFM1IsItF03G7EkjpMde/3of1pdWKhiV+nFyZ4ypnsFAuOvn2ZicEiU99vw/S7HzUK2CUakb\nJ3fGmCYEBhjxh2umYXR8KADA2i3wx/d3oryyWeHI1ImTO2NMM8KDA/Dw4lzERgQBANq7rHhkVSGq\n6tsVjkx9OLkzxjQlPioYDy/ORWiQfcfy+pZOLF+1A42tXQpHpi6c3BljmjMmIQwPXp0jVbGerLVX\nsXZ0cRVrD07ujDFNykqNwZ2XZ8NRxIoDJxrx9IclsHZzFSvAyZ0xpmHzMhJw80W9Vaw7DtTgz5+V\ncas+cHJnjGnchTNH48q8NGn83+KTeGfNQQUjUgdO7owxzbvm3HH44bRR0vijgnJ8seWoghEpj5M7\nY0zziAi/vXgyZk6Ilx7761d7sXF31Vm+St84uTPGdMFoMOCeK6ZgYrK9LZ8QwHOflKK03D9bOnNy\nZ4zpRqDZiKXXTJPa8lm6bXjivWK/rGLl5M4Y05WIUDOWXzcd0WGBAIC2TitWvF2I0w3+VcXKyZ0x\npjsJ0cF4+LpchATaq1jrmjvxyKpCNLf5TxUrJ3fGmC6NTQzHA1fnIMBoT3PHa1rx2LvF6OzqVjgy\n3+DkzhjTrSljY3D7ZVlSFeveYw1Y+XEJum36r2Ll5M4Y07UFWYn45QWTpPHWfdV49fO9uq9i5eTO\nGNO9n85JwWULUqXxf3Ycx/trDysXkA9wcmeM+YXrf5iOc6YmSeP31x7Cv7cfVzAi7+LkzhjzC0SE\nWy/JwLTxsdJjr36+B5v3nFYwKu/h5M4Y8xsmowH3XTkV45MiAAA2IbDy4xKUVdQrHJnncXJnjPmV\n4EATll07DSNjHFWsVhsee7cYR0+3KByZZ3FyZ4z5naiwQCy/LhdRoWYAQGuHBctXFaKmqUPhyDyH\nkztjzC8lxoRg2eJcBJvtVay1TR145K1CNLdbFI7MMzi5M8b81vikCNx/1VQYDfYqp6PVLXjivWJ0\nWrRfxcrJnTHm13LGxeL3l2ZJ47KKevzpk1LYbNoucuLkzhjze/lTR+Km8yZI4817TuMvX+zRdBUr\nJ3fGGANw6fxUXDJ3jDT+evtxfFRQrmBEw8PJnTHGHG48bwIWZidK43fWHMS3hScUjGjoOLkzxpiD\nwUC47dIsTE2LkR575bMybNtXrWBUQ8PJnTHGZAJMBtx/VQ7SRoYDsFexPv3hTuw71qBwZO7h5M4Y\nY32EBJrw0OJcJEQFAwC6rDaseKcIx6tbFY7MdZzcGWOsH9FhgVh+fS4iQuxVrC3tFjzydiFqNVLF\nysmdMcYGkBQbimXXTkNggBEAcLqhHSveLkJrh/qrWDm5M8bYWUxIjsR9v5gKg6NX35GqZjzxXjG6\nrOquYuXkzhhjg5ieHoffXZopjXcdqcfz/9il6ipWTu6MMeaCc3OScN0P06Xxxt1V+NvX+1RbxcrJ\nnTHGXHT5glRcNDtFGn+x5Sj+sfGIcgGdBSd3xhhzERHhVxdMxPzMBOmxt745gDXFJxWMqn+DJnci\nep2Iqoio5CzHvEhEB4iomIhyPBsiY4yph8FAuP2yLGSlRkuPvbR6N3YcqFEwqjO5cuX+BoDzB/ok\nEV0IYJwQIh3AzQBe9VBsurZ27VqlQ1ANPhe9+Fz0UvO5MJuMePDqHKQm9FaxPvXBThw40ahwZL0G\nTe5CiA0AztY99hIAbzmO3QIgkogSznI8g7qfuL7G56IXn4teaj8XoUEBeGjxNMRHBgEAOi3dePSd\nIpysVUcVqyfm3EcBOCYbn3A8xhhjuhYbEYTl101HWHAAAKCxtQvL3ypEfUunwpHxDVXGGBuW5PhQ\nLLtmGswmezqtamjHircL0d5pVTQucmWNJhGNAfAvIcSUfj73KoDvhBAfOMZ7ASwSQlT1c6w6F4Qy\nxpjKCSHIneNNLh5Hjn/9+QzAEgAfENEcAA39JfahBMcYY2xoBk3uRPQugHwAsUR0FMDDAMwAhBDi\nNSHEl0T0YyI6CKAVwE3eDJgxxtjgXJqWYYwxpi0+u6FKRBcQ0V4i2k9E9/nq56pBf4VgRBRNRP8h\non1E9G8iilQyRl8gomQiWkNEu4molIh+73jcH89FIBFtIaIix7l42PG4352LHkRkIKJCIvrMMfbL\nc0FER4hop+O5sdXxmNvnwifJnYgMAF6GvRgqE8DVRDTJFz9bJforBLsfwLdCiIkA1gB4wOdR+Z4V\nwJ1CiEwAcwEscTwP/O5cCCE6AZwjhJgGIAfAhUQ0C354LmRuA1AmG/vrubAByBdCTBNCzHI85va5\n8NWV+ywAB4QQFUIIC4D3YS9+8gsDFIJdAuBNx8dvArjUp0EpQAhRKYQodnzcAmAPgGT44bkAACFE\nm+PDQNjvfwn46bkgomQAPwbwN9nDfnkuYF+80jc3u30ufJXc+xY6HQcXOo3oWVUkhKgEMELheHyK\niFJhv2LdDCDBH8+FYxqiCEAlgG+EENvgp+cCwHMA7oH9Ba6Hv54LAeAbItpGRL9yPOb2uXB1KSTz\nPr+5s01EYQA+BnCbEKKln/oHvzgXQggbgGlEFAHgn0SUiTP/33V/LojoIgBVQohiIso/y6G6PxcO\n84UQp4goHsB/iGgfhvC88NWV+wkAKbJxsuMxf1bVswcPESUCOK1wPD5BRCbYE/sqIcSnjof98lz0\nEEI0AVgL4AL457mYD+BiIjoM4D0A5xLRKgCVfnguIIQ45fhvNYDVsE9ru/288FVy3wZgPBGNISIz\ngKtgL37yJ30LwT4DcKPj4xsAfNr3C3Tq7wDKhBAvyB7zu3NBRHE9Kx6IKBjAj2C/B+F350II8aAQ\nIkUIkQZ7blgjhLgOwL/gZ+eCiEIc72xBRKEAzgNQiiE8L3y2zp2ILgDwAuwvKK8LIZ70yQ9WAXkh\nGIAq2AvBVgP4CMBoABUArhRCNCgVoy8Q0XwABbA/WYXj34MAtgL4EP51LrJhvzFmcPz7QAjxOBHF\nwM/OhRwRLQJwlxDiYn88F0Q0FsA/Yf/bMAF4Rwjx5FDOBRcxMcaYDvGukIwxpkOc3BljTIc4uTPG\nmA5xcmeMMR3i5M4YYzrEyZ0xxnSIkztjjOkQJ3fGGNOh/w+U1us/zrPSmQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bins = np.arange(0, 40, 5)\n", + "indices = np.digitize(males.Age, bins)\n", + "groups = males.groupby(indices)\n", + "\n", + "for i, group in groups:\n", + " print(i, len(group))\n", + " age = [group.Age.mean() for i, group in groups]\n", + " cdfs = [thinkstats2.Cdf(group.Pclass) for i, group in groups]\n", + " \n", + "for percent in [75, 50, 25]:\n", + " Pclasses = [cdf.Percentile(percent) for cdf in cdfs]\n", + " label = '%dth' % percent\n", + " thinkplot.Plot(age, Pclasses, label=label)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 17)\n", + "(2, 13)\n", + "(3, 9)\n", + "(4, 36)\n", + "(5, 42)\n", + "(6, 30)\n", + "(7, 33)\n", + "(8, 81)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XOV5L/DfM/umzdr3zbvNvm+2SkoC2UiTNMnN0hTa\nQgIOuU1Smob0WjRJC71Nm8UQICFcSEpDmoWQUFogYMwSHINtgm15ka3FWm3J2mbf3vvHOZo5M9Y2\n0pk5M+c838+HT3TkGenNkebRmfc87+8lIQQYY4zpi0nrATDGGFMfF3fGGNMhLu6MMaZDXNwZY0yH\nuLgzxpgOcXFnjDEdWrS4E5GdiHYT0T4iepuIts/zuO8Q0TEi2k9E56s/VMYYY0tlWewBQogQEf2R\nEMJPRGYArxLRM0KI388+hohuANAuhFhDRJcBeADA5dkbNmOMsYUsaVpGCOGXP7RD+oOQvvLpRgCP\nyY/dDaCEiKrVGiRjjLHMLKm4E5GJiPYBGAHwnBBiT9pD6gGcVBwPyp9jjDGmgaVeuceFEBcAaABw\nGRFtzO6wGGOMrcSic+5KQohpInoRwPUADin+aRBAo+K4Qf5cCiLiIBvGGFsGIQRl8vhFizsRVQCI\nCCGmiMgJ4DoA96Q97CkAtwN4goguBzAphBidZ4CZjC9FOBbHwExg2c+fy7fv+QY+/+W7VP2aasjG\nuH7RP4zDUzMAgPc21OCa6vKMnn/vN76Gv73r71Ud00rxmJZmqWMSAL6/bwCvnJwAABAId13dhisa\nSrMyrs7OTnR2dmblay9XPo6JKKO6DmBpV+61AB4lIhOkaZwnhBD/RUS3AhBCiIfk43cTUTcAH4Cb\nMh7JEtjMJrSVulX9mmUOm+pfUw3ZGNelwTJ0z3gBAH1+Pz7gqs3o+S6rGeUum6pjWike09JkMqYv\nXNaC8UAEXWNeCAj88+96cM+1a7GuPP9eJ2x+S2mFfBvAhXN8/sG0420qjotlweayosTHx6Z9CMVi\nsJvNGo6I5SO7xYSvXt2GLz1/BMPeEMKxOP5h13F887p1qPHYtR4eWyLDr1Dt6OjQeghzysa4Vtlt\nqHM5AADReBxHpryaj2mleExLk+mYSh1W3L11NYps0vXfZCiCzl3dmAlFNR1XLuTjmJaDcrlZBxEJ\n3hxEW7/oHcKzg6cAAFtqKvDx9gaNR8Ty2cHTXtz14lFE4tLr9pyqInxt62pYzYa/LswpIsr4hir/\nhAxmc1lx4uODk9MrusHN9G9TpQdfuKwlcfz2qRl8Z08f/94UAC7uBtNe5E7Ms48HwxgJhDQeEct3\nW5pX4dPnJtckvtB7Bo8fHNZwRGwpuLgbjNlE2FiavLF6cGJaw9GwQvGnG6rxrraKxPHjB4bxfM+4\nhiNii+HibkCbFF0zByZnNBwJKxREhNsubsKFNclpve/8vg9vjfLFQb7i4m5AmxRX7semvAjGYhqO\nhhUKi4nw5Svb0FLiBADEhMA3XjmBvil1FxYydXBxN6Ayuw317uQL9MhkZi2RzLjcNjM6t67GKocV\nAOCLxND5UjcmAhGNR8bScXE3KGXXzIFJfmvNlq7SZUPn1tVwWKTyccofxt0vH0cwyu8A8wkXd4NS\nTs0cmJjh1jaWkfYyF758ZRtMcubJsTM+/N/f9SLOv0d5g4u7QbUXueG0SC2RE6EwhrklkmXokroS\n3HphMgz29cFJPLxvQMMRMSUu7gZlNhE2lCiv3nlqhmXuvWsq8cH1yU3Xnjx6Ck8dPaXhiNgsLu4G\npmyJ5H53tlw3nVePKxWRwA/tHcDrA5MajogBXNwNTXlT9di0DwG+IcaWwUSEL13eivVyJPBsTPDR\ncZ/GIzM2Lu4GVmKzolFuiYwLkdjIg7FM2S0m/P017ahxS5HAoVgcd+86jlEf38vRChd3g0tpiZzg\n4s6Wb86Y4JeOwxtWNyaYLQ0Xd4NLTYnklki2Mg3FDtx1dRusJqlFsn86gH989QQisbjGIzMeLu4G\n11LkgktuiZwMhTHoD2o8Ilbozqkqwv++tCVx/NboDHa80c8XDjnGxd3gzETYWKq4euepGaaCjpZV\n+LNz6hLHz/eM4ycHRzQckfFwcWdpKZHcEsnU8ZGNNbiutTxx/OMDQ3ihl2OCc4WLO0uJIujmlkim\nEiLCtkuacX518p3ht3f34Q+n+N1hLnBxZyi2WdHkcQEAhBDo4ox3phKLifCVq9rQVCy13EaFwDde\nPo5+jgnOOi7uDACwuYyjCFh2uG1m3L11NcrkmGBvJIbOXccxGeSY4Gzi4s4AAJtKuSWSZU+V24bt\nW9phN0slZ9QXwt27jiMY5RbJbOHizgAArUUuuCzS4pOpcAQD3BLJVLZmlRt/e2VrIib46Bkfvvl6\nD8cEZwkXdwZAygfZxFMzLMsuqy/FLRc0JI5fG5jED/cPajgi/eLizhKUXTOcEsmy5X1rq/An65Ix\nwb88Mopfc0yw6ri4s4RNZcUg+S3z8Rk/fBHOBGHZcfP5aTHB+wawe5BjgtXExZ0lFFktaPZILWtC\nCHRN8cbZLDtMRPji5a1Yu0qKCY4LgXtf68GxMxwTrBYu7izF5pQoAp6aYdnjsJiwfUs7qtNigk/5\nwhqPTB+4uLMUm9IigLmTgWVTqcOKzi3t8Fjl/XyDEWx/qRu+MK+SXiku7ixFs8cJj1VqiZyJRDDg\n45WELLuaSpy465p2WCg1Jjga5wuLleDizlKYiFK6ZngDD5YL51YV4fOXNSeO949OY8eePl5MtwJc\n3NlZUqdmeN6d5ca1LeX45OZkTPBzPeP46SGOCV4uLu7sLBtLixItkT1ebolkufOxTTX4Y0VM8GNv\nD2Fn7xkNR1S4uLizs3isFrQoUiIPcUokyxEiwraLm3BedXJq8Fu/78XbHBOcMS7ubE4cRcC0YjWb\nUmKCI3GBb7xyAgPTnHeUCS7ubE7KfvdDk9wSyXLLY7Ogc2s7Su1STPBMOIrtL3VzTHAGuLizOTV5\nnCiyyi+sSBT9Xm6JZLlV7banxASP+EL42svHEeKY4CXh4s7mdFZKJO+tyjSwtlyKCSZIN/gPj/vw\nLxwTvCRc3Nm8UlMi+YYW08Zl9aW45cLUmOBH3uKY4MVwcWfzUrZE9nr98HJLJNPI+9dW4ca1VYnj\nXxwexdPHTms4ovzHxZ3Ny221oFXREnmQWyKZhv7yggZcXp+MCX5g70nsGZrScET5jYs7W9A5ZZwS\nyfKDiQh/c0UL1ihigu957QSOT/g1Hll+4uLOFqS8qXqQWyKZxhwWMzq3tKPKZQMABKNxdL7UjdN+\njglOx8WdLajB7USxTWqJ9EWi6PPyVRLTVqnDis6tq+GWY4LPBCPofKkb/gjHBCtxcWcL4pRIlo+a\nS5y46+q2RExw71QA/8QxwSkWLe5E1EBELxDRQSJ6m4jumOMxW4lokoj2yv99NTvDZVrYzCmRLA+d\nV12MOy5NxgTvHZnG/W/0c0ywzLKEx0QBfEEIsZ+IPADeJKJnhRCH0x63SwjxfvWHyLS2odQDIoIQ\nAn1eP6bDkcRUDWNaekdrOUZ8ITx+YBgA8D8nxlDjseMjG2s0Hpn2Fr1yF0KMCCH2yx97AXQBqJ/j\noaTy2FiecFksaC9yJ445JZLlk49vqsW1LasSx4/+YRC7+jgmOKM5dyJqAXA+gN1z/PMVRLSfiJ4m\noo0qjI3lkdSUSC7uLH8QEe64pBnnViV/R/91dy8OnvZqOCrtLWVaBgAgT8n8DMDn5St4pTcBNAkh\n/ER0A4AnAayd6+t0dnYmPu7o6EBHR0eGQ2Za2FxWjF/1SW99Z1MiTcRv1lh+mI0J/tLzRzAwE0Qk\nLvC1l4/jm9etQ32RQ+vhZWznzp3YuXPnir4GLeXmAxFZAPwGwDNCiG8v4fE9AC4SQpxJ+7zgmx2F\nSQiBv3vjECbDUuTq35yzBu3F7kWexVhujXhD+OJzRzAZkn5Paz12/Msfr0Opo7DvEcn3vDK6mlrq\ntMwPARyar7ATUbXi40sh/dHgSS8dISLeW5XlvRqPHf9nSztsckzwsDeEr79ywpAxwUtphbwKwCcA\nXEtE++RWx+uJ6FYiukV+2IeJ6AAR7QPwLQAfzeKYmUbSV6sylo/Wlbtx5xXJmOCuMS/+dXev4VZX\nL2laRrVvxtMyBS0QjeGLvz+QeJHce8kmlHBLJMtTTx4Zxff3DSSOP7S+Gjef37DAM/JXNqdlGIPT\nYk6ZZ+eWSJbPblxbhfetScYE//zwKJ7pNk5MMBd3lpFzeN6dFQgiwi0XNuCyupLE5+5/8yTeGDZG\nTDAXd5YRZc5M1+QMYjzNxvKYiQh3XtmK1WXSvgRxIXDPqz04YYCYYC7uLCN1LgdK7VLcqj8aQ8+M\nT+MRMbYwh8WM7VtWo1KOCQ5EY7h713GM6TwmmIs7ywgRYTPvrcoKzCqnFXdvXQ2XRYoJHguE0blL\n3zHBXNxZxpQpkW/zvDsrELMxwWZ5ZXXPZAD36DgmmIs7y9j6Uk/iBTLgCyRWAzKW786vKcbnLmlK\nHL85Mo0H3tRnTDAXd5Yxh9mM1cWexPHBSb56Z4XjurYKfGxTbeL4meNj+PnhUQ1HlB1c3NmypKxW\n5Xl3VmA+uTk1JviRtwaxq19fiSlc3NmyKOfdD03OIKbTeUumT0SEz13SjM2VyYuUf3u9D4d0FBPM\nxZ0tS63TjlVyS2QwFsNxbolkBcZmNuGrV7ehQY4EDsfj+IeXj2NoJqjxyNTBxZ0tCxHx3qqs4BXZ\nLbh762qU2KWtLWbCUWx/qRtToajGI1s5Lu5s2TglkulBjceO7VtWw2aSyuGQN4Svv3wc4VhhxwRz\ncWfLtq7EA4v8ghj0BTAR0veKP6Zf68rd+NIVLYmY4ENjXvxbgccEc3Fnyya1RCZTIvnqnRWyqxrL\n8Bfn1yeOd/VP4Ed/GNJwRCvDxZ2tiDKKgOfdWaH7wLoqvHdNZeL4p10j+O/jYxqOaPm4uLMVUd5U\n7Zr0Ihov7HlKZmxEhFsuaMSlipjg+97ox5sFGBPMxZ2tSLXTjnKH1BIZ4pZIpgNmE+HOK1rRrogJ\n/qdXe9AzWVgxwVzc2YpIKZHJq3dercr0wGk1Y/s17SkxwZ0vFVZMMBd3tmLKlkhOiWR6Ue6yoXNL\nakzw3buOI1AgMcFc3NmKKVsih/1BnOGWSKYTLaVOfEURE3xi0o97XuspiLgNLu5sxexmM9YoWiIP\n8NQM05ELaoqx7eJkTPAbw1P43psn8z4mmIs7U4Wya+YgT80wnXlnewU+urEmcfzM8dP4xeFTGo5o\ncVzcmSqUxf3wlBcRbolkOvOpc+rQ0ZyMCf7hWwN45eSEhiNaGBd3pooqhw2VDjsAqSWye5pbIpm+\nEBE+f2kzNlUmN6r55u960TWWnzHBXNyZKogopWuGV6syPZJigttRnxYTPDwT0nhkZ+PizlSTMu/O\nOTNMp4rtFty9ZTWK5Zjg6VAU23d1YzrPYoK5uDPVrC1OtkSO+IMYC+bf1QxjaqgtsuP/XNOeiAke\nnAni66/kV0wwF3emGpvZhHUlio2zuSWS6diGCg++eEVL4vjgaS++tbsvb2KCubgzVW3mDTyYgVzd\nWIabz2tIHL/UfwY/fjs/YoK5uDNVbSpVtkTOcEsk070Prq/Cu1cnY4KfODSCZ09oHxPMxZ2pqspp\nR5VTaokMx+LcEsl0j4jwmQsbcXFtMiZ4x55+7BvRtmOMiztTHW+czYzGbCJ8+cpWtJVKMcExIfCP\nr5xA72RAszFxcWeq25SyOxPPuzNjcFrN2L6lHRVOKSbYH42hc1c3xjWKCebizlS3tsQDq9wiNhoI\n4jS3RDKDqHDZ0Lm1HU45Jvi0P4x/eFmbmGAu7kx1VhO3RDLjai114e+uaoVJjgnunvDj3t/lPiaY\nizvLCp53Z0Z2UW0JblfEBO8ZmsKDe3MbE8zFnWWFst/9yJQ3r1buMZYL17dX4CMbkjHBT3efxpNH\nchcTzMWdZUWFw44apxSuFInHcXQ6P5PzGMumT51bhy1NZYnjh/cP4tUcxQRzcWdZo0yJ5Hl3ZkQm\nIvz1ZS3YWCHdgxIQ+Jff9eLIePbXf3BxZ1mTMu8+yfPuzJhsZhO+ek1qTPDdu7ox4s1uFxkXd5Y1\nq4vdsJvllrBACKMBbolkxlRit6BzSzuKbFJM8FQoiu0vdWMmizHBXNxZ1pzdEslX78y46oocKTHB\nAzNBfP2VE1lrNuDizrKKUyIZS9pY6cFfX96cOD5wegbf+X1fVlokubizrFKmRHJLJGPAlqZVuOm8\n+sTxi31n8OMDw6p/Hy7uLKvKHTbUuqQbSVFuiWQMAPCh9dW4ob0icfyTg8N4TuWYYC7uLOuUV++8\nWpUxKSb4sxc14SJFTPB39/Rjv4oxwYsWdyJqIKIXiOggEb1NRHfM87jvENExItpPROerNkJW8JTz\n7gcmZnK6BJuxfGU2Ef4uLSb4G6+cQN+UOjHBS7lyjwL4ghBiE4ArANxOROuVDyCiGwC0CyHWALgV\nwAOqjI7pgrIlciwYwiinRDIGIBkTXO60ApBigre/1I2JQGTFX5syvYoioicBfFcI8VvF5x4A8KIQ\n4gn5uAtAhxBiNO25YiVXbZF4DIM+flu/Eg6zBVVOTyKxLle+d7gHb41PAQA6aiuwQZH5zpLiQmAm\nEoDH4oDZpM2sqQmE1iIXPFaLJt/fiE5M+HHnb48iEJWigVeXuXDvO9bCIUcHExGEEBm9aDMq7kTU\nAmAngM1CCK/i878G8E9CiNfk4+cB3CmE2Jv2/BUV96lwED858dayn88km8uqcVV1S06/566RcTx+\n/GROv2ch8lh8sJsjiMbNmIp4AOT2j/CsIqsVd56zGpXyloks+94YnsLdu44jLtfIy+pK8NVr2mEi\nWlZxX/KfZiLyAPgZgM8rC3umOjs7Ex93dHSgo6NjuV+KLdORyTFcVtkESw6vDM8pK4KZCDGeb58X\nIQ67WXo7bjHFYKEYokKbq+eZSAQ7unpw5zmr4eYr+Jy4uLYEt13UiB1v9GP80Bt4/Od7Mf50Bcrk\nKZtMLenKnYgsAH4D4BkhxLfn+Pf0aZnDALaqPS3ji4bx8kjPsp9vdCN+L0JxabnzexrXo8Fdssgz\n1LVvfBK7T09wgZ9HKOaDP5JMDHRYiuG0FC/wDPUJARye8iIal9YjrCnx4I6NbYmdtVj2/XD/AH7b\ncwbbt7RjbbkbQBanZYjoMQBjQogvzPPv7wZwuxDiPUR0OYBvCSEun+NxKyrubGVeHe3FgQnp7+25\nZTW4orp5kWewXHrm5BH0+yYTx5UONz7Ysjnn49g7NomHjvQmji+pLMPNa5pAOb5PY1RxITAZjGKV\n4op9OcV9Ka2QVwH4BIBriWgfEe0louuJ6FYiugUAhBD/BaCHiLoBPAjgtkwGwXKj0V2a+LjfN6Xh\nSFi6cDyGQX9qs8BY0A9/dOVdE5m6sKIUH2ypSxzvOT2Bp/pHcj4OozIRpRT25Vp0Mk0I8SoA8xIe\nt23Fo2FZVecqhplMiIk4JsMBTIdDKLbxDbN8MOibQkykRjMICAz4prC2pGKeZ2XPdXWVGAuGsWtE\nWjX5zMAoKhw2XFVdnvOxsOXhiTQDsZhMqHcl53BPKqYAmLb6vMmfhcOcvObq92rzMyIifLStHpsU\nmfz/fnwAXRz+VjC4uBtMoyc5NcPFPT/EhUgp7pdWNiY+HvBNJVrjcs1MhL9a14wGtxOANM4HD/di\n0KfOCkqWXVzcDaZR0SEz6JtOdEUw7YwGvAjGpLl1l8WGdSWVcFtsAIBQPIpTAe3C1hxmM27f0IpS\nuzSeYCyGHV09mArn/l4AywwXd4MpsTlQYpVTGkUcwwF+m621Pm+y/bHZUwoTUcof4ZMa3/wus9uw\nbUNrIkJiIhTGfV09CMZimo6LLYyLuwE1KadmNJrTZUmpxb0MQOr0mVbz7koNbiduWdecaIfs9/rx\n8NE+zaaM2OK4uBtQvhUOI5sMBTAZDgIALJS84d3gKoFJjh4YC/ngj4Y1G+OsTWXF+HhbQ+L47TPT\n+GnPIKd85iku7gZU6yyChaQf/VQkiCm5uLDcU95IbXCXJCIhbGYzalzJcLWT3vxYl3BNTTne1VCd\nON45PIYXhtXdZIKpg4u7AVlMJtS7lS2R+VE4jEg5JdMiT8nMUs679+dRZ9ONTTW4uCI51p/1DmHf\neP6Mj0m4uBtUympVnprRRCAawYjcCUOglHshQOq9ES1bItOZiPDpNY1oL5ZyT4QQ+OHRfvTM+DQe\nGVPi4m5QyuI+5OeWSC30+yYhIBXsaqcHTkvqkvMymxMeuSUyHI9hNI86m6wmEz67vjURCRyJx3F/\nVw/GeCOWvMHF3aCKbXaU2qTFKTERx5CfN0HJtb6Z5Dum5rSrdkBaJZp68zu/ps88Vgu2bWhLRALP\nRKLYcagHvkhU45ExgIu7oTWl9FLz1EwuReNxDCjudTSnzbfPanLn94riaqcdt61vTdwIHgkE8eCR\nXkT4naDmuLgbWEoUQZ5dFerdkH8aESEtAiqxOlBqc8z5uDp3caIlcjzkhzeifUtkuvZiN/58TVPi\n+OiUFz/uPsktkhrj4m5gNc4iWEladTgVCSb6rVn29Sq7ZIrK5s1Kt5nMqC2AsLeLK0rxJ83JmODd\npyfwm5OjCzyDZRsXdwOzmEyoU7ZEctdMTsSFSOlQmmu+XanJo5g+y+N3WO+sr8Q1NclI4KdPjuB3\np85oOCJj4+JucPk+p6tHY0EffPKKU4fZgmpn0YKPV3Y2DfjPzn3PF0SEj7U1pMQE/6j7JMcEa4SL\nu8E1Kq4Kh/wziMQ5DCrblKtSm9xSUNhCSm0OFFlnWw5jGPFrlxK5GDMR/nJtM+oVMcEPHenFkJ+n\n/HKNi7vBFVntKEtpieSrrGxLCQormrtLRomICuodltNixrYNrSi1SX37gWgMOw6d4JjgHOPizjgl\nModmIiGMh/wAADOZ0KBoR11IoYW9ldltuH1jWyIm+EwojPu7ehDimOCc4eLO0jbOnuQWtizqm0le\ntde5imEzLbo9sfzYIpjlsLeJcAAzkfxfCdroduKvFDHBfV4/Hj7anzcxCnrHxZ2hxuWBVS4yM5EQ\np0RmUa/iqrtlkS4ZJavJjLo8TIlczOayYvwvRUzwH85M4T97hjQckXFwcWfS9IBLmUBYGIWj0IRi\nUQwrYh6a5lmVOp/0d1iFYktNOd5ZX5U4fnH4NH47dFrDERkDF3cGILVrhufds+OkbwpxOSis0uGG\nx2rL6PnKefehAtv/9gPNtbiwIjn+n/UO4a1xvojIJi7uDEDqVeFwYAZhbolU3Vzb6WWiVLH/bUTE\nMJJHKZGLMRHhz1c3oa0oGRP8g6N96J3xazwy/eLizgAAHqsNq+wuAHJLpI9TItUUE/GUefLFVqXO\np9C6ZpRsZhM+u6EVlY5kTPB9HBOcNVzcWQKnRGbPiH8GobgUheux2FEu/yHNVGOB/4yKrBZs29gG\nl2U2JjiCHV098Ec5JlhtXNxZQnpKJLdEqqcvLUtmvqCwxdS5ihP7306Gg5guwM6maqcdt21oScYE\n+4N48HBvQd1DKARc3FlCtdOT6LueiYYwEQ5oPCJ9EEKclQK5XBaTCXWKlMhC7WxaXezBp1c3Jo6P\nTHnx4+MDfEGhIi7uLMFMJtS7CiOBsJAoFx1ZTWbUuhYOCltMo05WFF9SWYYbm2sTx6+fOoOnBzgm\nWC1c3FmKlHjZApzTzUe9ilWpTe7SxErT5VLeGyn0/W+vr6/CVdXJmODf9I/gdY4JVgUXd5YipSXS\nzy2Rakifb1+pYlty56Zoge9/S0T4eFsDNpQm3838qPskjk7lb/JloeDizlK4rbZEJ0ccAoMFOqeb\nL3zRME4FpUJFSN3weiUaCyglcjFmE+GWdS2JmOCYEHjgcA+GOSZ4Rbi4s7OkpERycV8RZS96rasI\nDrNFla/bpLP9b50WM27f0IoSOSbYH41hR9cJTHNM8LJxcWdnUfZS93s5JXIlVroqdT563P92ld2G\n2ze0JmKCx4Nh3NfVg3CscO8paImLOztLtbMo0RLpi4a5JXKZIvEYBhQrfTNJgVyMXve/bfK4zo4J\nPtbHMcHLwMWdncVElLKJRKEtc88XA77kfqerbC4UyzdB1VJIuzNlYnNZMT7aWp84fmt8Cj/v5Zjg\nTHFxZ3NKLRyFP6erhZQumSL1rtpn6Xn/247aClyniAn+7dBpvDjMMcGZ4OLO5qQsHCP+GYR5e7SM\nxIVIecej5nz7LL3vf/snzbW4oDz5R/GnPUN46wxfaCwVF3c2J5fFhgq7FM8ah8CAn19UmTgV8CIQ\nkzo9nGYrKh3urHwfPe9/ayLCTWua0KqICX74aB/6vBwTvBRc3Nm8eAOP5UvtkimFaZlBYYvR+/63\nNrMJn13fggo5Jjgck2KCx4NhjUeW/7i4s3mlz7vrrXBkU1+Wp2Rmpe9/q4eWyHTFNiu2bWxNxARP\nhyPY0XWCY4IXwcWdzavK6YHdJL2gfNEwzoS4JXIpJsPBRPuohUwpnUdqS9//Vk9dM0o1Tgc+sz4Z\nEzzsD+KhI30FnauTbVzc2bzOaonUaeFQW58iKKzBXZIoSNminD7r18Fq1fmsLfHgzxQxwYcnZ/A4\nxwTPi4s7W5DelrnnQq6mZGalhr1N6zrs7dLKMtzYlIwJfu3UGTwzcErDEeUvLu5sQcor95HADEIx\nnudcSDAWTWxcTaCUP47Z4kkLe9P7/rfXN1ThyqpVieOn+oc5JngOXNzZglyWZBufgMCgzgvHSvV7\nJyEgTRNUOd1wWaw5+b7pXTN6RkT4RHsj1nNM8IK4uLNFNRmocKyUcmOOlhxMycxqSmtb1fs8tNlE\nuHVdC2pdUqSDFBPcixGOCU5YtLgT0cNENEpEf5jn37cS0SQR7ZX/+6r6w2RaSt/WTe+FY7mi8TgG\nFFENuZhvn6UMe/MaJOzNaTHjcxvbUJyICY7iuxwTnLCUK/dHALxrkcfsEkJcKP/3dRXGxfJIpcOd\nyCH3xyIYD/EKwbkM+acREdLNzBJrcrekXDBq2NtsTLDNLJWy8WAY3zvcyzHBWEJxF0K8AmBikYdl\nZ/kdywvlI00aAAARJ0lEQVRGLRyZSt9Oj7K0KnU+Rg17a/a48BdrkzHBPTM+PHKs3/AxwWrNuV9B\nRPuJ6Gki2qjS12R5xKiFY6mEEKmRA0W5m5KZZeSwt/NWlaTEBO8bn8Qveoc1HJH21Njz600ATUII\nPxHdAOBJAGvne3BnZ2fi446ODnR0dKgwBJZtDe4SEAgCAqMBL4KxqGpbxunBWMgPX1TKO7GbLKhx\nFi3yDPXNhr2NhXyJsLe2olWLP1EnOmorcDoYwm+HpGjg54dOocJhQ0dthcYjy9zOnTuxc+fOFX0N\nWsrNMSJqBvBrIcS5S3hsD4CLhBBnNZ4SkeCbcYXrl70HE5s9v6NuNVYXl2s8ovzxxukBvDk+CABY\nU1yBa+vaNRnHntMD2CuPY31JJbbWtmkyDq3EhcBDR3qxf1x6d0lE+Oz6Fpy7KnsRELlARBBCZDTP\nt9RpGcI88+pEVK34+FJIfzB4RYEOcUrk/Hq92rRAplPuf2vEsDcTEW5e04yWImlRlxQT3I9+A8YE\nL6UV8nEArwFYS0T9RHQTEd1KRLfID/kwER0gon0AvgXgo1kcL9NQ+ry70W9YzZqJhBIdRGYyocGj\n3VVietibETubbGYTblvfinKHDQAQisVwX1cPzoSMFRO8lG6Zjwsh6oQQdiFEkxDiESHEg0KIh+R/\nv08IsVkIcYEQ4kohxO7sD5tpocLhhtMs9RQHYhGMB41XOOai7JKpcyX7zbVgIjrr6t2Iim1WbNvQ\nBpdF+llMhSPYcegEAlHj3GTmFapsyTglcm6pG3NoNyUzS7nozMhtq7UuBz6zvhVmuUVyyB/EQ0d6\nEYsb4x0nF3eWkZSUSC7uCMWiKUFd+VDcZzubACQ6m4xqbYkHn1LEBHdNzuDxE8aICebizjKiLByn\nAj5DFw4AGPBNIS4HhVXY3fBYbRqPaK6wN2NOzcy6vGoV3ttUkzh+dXQc/22AmGAu7iwjDrMFVc5k\n4RgweOFIWZValP1436VK3cCD32G9p6Ealytign/VP4w9pxdbeF/YuLizjKXEyxq4cMREPOX/v5Yt\nkOm4sykVEeGT7Q1YV5JcXPZo90kc03FMMBd3ljEuHJLRgBehuDQt5bYkN8zIBxUONxzc2ZTCYjLh\n1vXNiZjgaDyO7x3uxUhAnzHBXNxZxsodrkRLZDAWwVjQp/GItJGe3Z7roLCFpLdEcmeTxGWx4PYN\nrSiyJmOCdxzqwUxEf/eOuLizjHHhyI+gsMVwZ9PcKhz2lJjgsWAI3+vq0V1MMBd3tiyNBt84eyIc\nwHQkBACwmsyo1SAobDHpnU2BKG9iMaulKDUm+MSMD/9PZzHBXNzZsigLx+mg8QqHskum0V0Ciyn/\nXkrc2bSw81aV4E9b6hLHe8cn8WSffmKC8+83khUEh9mCaqcHgFQ4jLbMvW8mv1alzodz+Bd2bV0l\nrq2rTBw/O3gKu0bGNByReri4s2VLzTAxzpyuPxrGKfkmMoFS5rbzTSN3Ni3qwy11OE8RCfwfJwZx\nYGJ6gWcUBi7ubNma0ubdjVI4+r2TEPKq1BpnUV5vWsKdTYszEeHmtU1o9iRjgr9/pK/gY4K5uLNl\nK7e74LLIsarxKE4bpHD0Khcu5WGXjJKJUt9ZGLGzaSnsZjNu29CKVfZkTPD9XT2YKOCYYC7ubNko\nPV7WAKtVI/FYyo3J5jyekpnVyJubL0mJzYptG9vglGOCJ8MR7OjqKdiYYC7ubEWUN+yMcFU46JtG\nTEj90GU2J0psDo1HtLh6RWfTWNAPv8E6mzJR53Lg1nUtiZjgQV8A3z/aV5AxwVzc2YrUu4tTWiL1\nXjjyLbt9KRxmC2oUnU3cErmw9aVF+KQiJvjQxHRBxgRzcWcrYjdbUKNYwKPnwhEXIjUFsgCmZGbx\nBh6ZuaJqFd7bmBoT/D+DhRUTzMWdrZhR4mVPBbwIxKR3Jk6zFVXy1XAhUM67D3BL5JK8p7Eal1Um\n35092VdYMcFc3NmKKefd9Vw40q/aTXkUFLaYcrsLbkVn06mAfqNu1UJE+NTqRqwtSf4Rf7T7JLqn\nC+PccXFnK7bK7jRE4SjE+fZZ6Z1NRrj5rQaLyYRb17WgxpmMCb6/qxejgZDGI1scF3e2YkYoHFPh\nICbCAQCAmUyodxdrPKLMGT3sbbncVgu2bUyLCe46AW+exwRzcWeq0HvhUE7JNLhLYDWZNRzN8jS4\nSmCabYkM+eCLFu4CnVyrcNhx24ZWWOWAuNOBEO7v6kEknr8xwVzcmSrSC4dfZ4UjdUqmcLpklGxm\nM2pcyc4mPf4RzqbWAosJ5uLOVKHnwhGMRTHsnwEgBYUV2ny7klHD3tRyfnkJPqyICX5zLH9jgrm4\nM9Xodd5dGRRW5XDDZbFqPKLlU+bM6LmzKZuura1AR21F4liKCR7XcERz4+LOVKPXwpHv2+lloszm\nhEfubArHYxgNzGg8osJDRPhIaz3OTYkJHsi7mGAu7kw1ZbZkS6ReCkc0Hk/Z5KJQ59tnEVHaalX9\nTJ/lkokIf7G2CU1pMcEnfQGNR5bExZ2phtLiZfWw889wYAaRuJQKWGy1o8zm1HhEK5e6O5N+ps9y\nzW424/a0mOD78igmmIs7U5Xe4mXTt9OjAlqVOp86d3Gis2k85Ic3kh/FqBDNxgQ7zHJMcCiM+7p6\nEIxpHxPMxZ2pqt5dopvCIYRAr2K+Pd835lgqm8mMWldyERZfva9MncuBW9e3JOIoBnwBfP9IH2Ia\n33Pi4s5UJRUOZUpk4RaO8ZA/sdDHbkpuCK4HTR7lJiuFP32mtQ2lRfhEe0Pi+ODENH6icUwwF3em\nOuWmzIV8w0551d7kKYWZ9PNyUf6MBvxTiQ1I2PJdVV2OdzdWJ45fHhnHc0OnNRuPfn5bWd5QRgAP\nFnDh6JspzOz2pSi1OVBktQOQtg4c8esz7C3X3tdYg0sVMcG/6B3Cm2PavHvl4s5UV2ZzosgiFQ6p\nJbLwCoc3EsZYSNrw2wRKudLVAyLirpksmI0JXqOICX7kWD+OT+d+83gu7kx1Ui91YXfNKBcu1bmL\nYTMXXlDYYnh3puywmkz4zLoWVCtigr93uAenchwTzMWdZUWju7D73Qs5u32p6lxFifsIE+EAZiL5\nn1FeKJIxwRYAgDeS+5hgLu4sK+rdxYnCcSbkh7eACkc4FsOgL7mUXG/z7bOsJjPqUsLe+OpdTZVy\nTLBFjgk+FQjhgcO5iwnm4s6ywmoyo1axcXYhXb0P+KYQl4PCyu2uxI1HPUrpbCqgn1GhaC1y4+a1\nTYnFb93TPjx67GROcpe4uLOsKdQ53ZSFSzqdkpml/BkN+qYQzePNJwrVheWl+FBzbeL4jbEJ/Lp/\nJOvfl4s7y5omt7IlcrogWiLjQqT8ISr0FMjFlNocKLHKN/5EHCM6CHvLR++oq8TWmmRM8DMDo3hl\nNLsxwVzcWdaUnNVLnf+FYyQwg1BcuunltthQYXdpPKLsK9R3WIWEiPCRtnpsLkvGPvz78QEcmsje\na4KLO8uas3up839OV49BYYvh3Zlyw0yEv1zXjEa3lCwqhMCDR3oxmKWYYC7uLKsK6apQCgrT76rU\n+dS5imGRO5smw0FMh4Maj0i/HGYzbt/QhjJFTPB3u3owGYqo/r24uLOsKqRe6slwENMRqbBJbYLF\nizxDHywmU8r/V+6aya5SuxXbNrTCrogJ3tF1QvWYYC7uLKvO7qXO38KhXLjU4CpJ9CcbgfIdFve7\nZ1+924nPpMUE/0DlmOBFf3uJ6GEiGiWiPyzwmO8Q0TEi2k9E56s2OqYLqb3U+Vs49JjdvlTKzqYh\n/zS3ROZAekzwgYlpPHFiULWY4KVcmjwC4F3z/SMR3QCgXQixBsCtAB5QZWQ5snPnTq2HMKd8HNdy\nx6S8KhzyqVs41DpP/mgEpwJSuBMhdbtArcakpsXGVGxzoFTeQjAq4hjy52az50I8V2q6qrocNzQk\nY4J3jYzheZVighct7kKIVwBMLPCQGwE8Jj92N4ASIqpe4PF5JR9/uYD8HNdyx6TspY6ImKq91Gqd\np37vJIS8KrXGWQSH2aL5mNS0lDFp0TVTqOdKTe9rqsElipjgn/cOYe/4ys//8n+Dk+oBnFQcD8qf\nG1XhazOdaPSUYGpCuln52mgfim3qLOnvnh7Dfw8cWfHXORNMtqMZpUsmXZOnFG9PSCsnj02N5+Tm\nt1o/PzVpMaZaJ9DoDmMyLO389cTxgxjwVuL9zWuX/TXVKO6MLarRXYoDE9Lf+4lwABNhdXp7J8NB\n9Kl8A1Dvq1LnU+MsgpXMiIgYQvGo6ud1Ltn4+a2UVmNaZRcIx2OIxqV3kLtPn8IV1c2odCzvQoiW\nMnlPRM0Afi2EOHeOf3sAwItCiCfk48MAtgohzrpyJyJtd4xljLECJYTIaEXdUq/cSf5vLk8BuB3A\nE0R0OYDJuQr7cgbHGGNseRYt7kT0OIAOAOVE1A9gOwAbACGEeEgI8V9E9G4i6gbgA3BTNgfMGGNs\ncUualmGMMVZYcrYEj4iuJ6LDRHSUiP42V993IUTUS0RvEdE+Ivq9RmM4a5EYEZUR0bNEdISI/oeI\nShb6Gjkc13YiGiCivfJ/1+dwPA1E9AIRHSSit4noDvnzmp6rOcb1OfnzWp4rOxHtln+v3yai7fLn\nNTtXC4xJs/OkGJtJ/t5Pycf58PozyedqdkwZn6ecXLkTkQnAUQDvADAEYA+AjwkhDmf9my88rhMA\nLhJCLNTHn+0xXA3AC+Cx2RvWRHQvgHEhxD/LfwjLhBBfzoNxbQcwI4T411yORf7eNQBqhBD7icgD\n4E1IayxugobnaoFxfRQanSt5XC4hhJ+IzABeBXAHgA9B23M115hugIbnSR7XXwO4CECxEOL9efL6\nSx9Txq+9XF25XwrgmBCiTwgRAfATSC8ArRE0zteZZ5HYjQAelT9+FMAHcjooLLh4TZOb4kKIESHE\nfvljL4AuAA3Q+FzNM656+Z81ayAQQvjlD+2Q7q0JaH+u5hoToOF5IqIGAO8G8APFpzU9T/OMCcjw\nPOWqsKUvdBpA8gWgJQHgOSLaQ0R/pfVgFKpmO46EECMAqjQej9I2OUPoB1q8XQUAImoBcD6A1wFU\n58u5Uoxrt/wpzc7V7Nt6ACMAnhNC7IHG52qeMQHa/k79G4C/QfIPDaD979RcYwIyPE/Gib2b21VC\niAsh/ZW8XZ6KyEf5ctf7fgBtQojzIb1AtZie8QD4GYDPy1fK6edGk3M1x7g0PVdCiLgQ4gJI724u\nJaJN0PhczTGmjdDwPBHRewCMyu+8Froqztl5WmBMGZ+nXBX3QQBNiuMG+XOaEkIMy/97GsAvIU0f\n5YNRkvN55DndUxqPB4B0nkTyJs33AVySy+9PRBZIBfRHQohfyZ/W/FzNNS6tz9UsIcQ0gJ0Arkce\nnKv0MWl8nq4C8H753tt/ALiWiH4EYETD8zTXmB5bznnKVXHfA2A1ETUTkQ3AxyAtftIMEbnkqy0Q\nkRvAOwEc0Go4SP0r/RSAP5c//jSAX6U/IUdSxiX/os/6IHJ/vn4I4JAQ4tuKz+XDuTprXFqeKyKq\nmH3bTkROANdBuheg2bmaZ0yHtTxPQoivCCGahBBtkGrSC0KITwH4NTQ6T/OM6c+Wc55yki0jhIgR\n0TYAz0L6g/KwEKIrF997AdUAfklSJIIFwL8LIZ7N9SBo7kVi9wD4TyK6GUAfgI/kybj+iKS8/jiA\nXkgRz7kaz1UAPgHgbXneVgD4CoB7AfxUq3O1wLg+rtW5AlAL4FG5S80E4Al5seHr0O5czTemxzQ8\nT/O5Bxr+Ts3jnzM9T7yIiTHGdMjoN1QZY0yXuLgzxpgOcXFnjDEd4uLOGGM6xMWdMcZ0iIs7Y4zp\nEBd3xhjTIS7ujDGmQ/8fFq3GYjKIqOcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bins = np.arange(0, 40, 5)\n", + "indices = np.digitize(females.Age, bins)\n", + "groups = females.groupby(indices)\n", + "\n", + "for i, group in groups:\n", + " print(i, len(group))\n", + " age = [group.Age.mean() for i, group in groups]\n", + " cdfs = [thinkstats2.Cdf(group.Pclass) for i, group in groups]\n", + " \n", + "for percent in [75, 50, 25]:\n", + " Pclasses = [cdf.Percentile(percent) for cdf in cdfs]\n", + " label = '%dth' % percent\n", + " thinkplot.Plot(age, Pclasses, label=label)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From these plots, it seems that my hypothesis was correct - more females are among classes 1 and 2, particularly among 1. There are very few women among the third class, potentially because of the ages - many of the women could be unmarried, and would probably be less likely to travel alone in class 3. " + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEACAYAAABRQBpkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnWlsZNd15/+nqrgVtyabS5PNJnvfZLllJW4vcmJ6iSw5\nE0uDTBRlEI1txRhgbMMCPAnc8mAg+UPGcYDA8SDjwQR2DDlw7CjxItmxZbUgMY5tWZKjXd3qZrd6\nZTfZzX0naznz4dTVe6+quBSryCqS/x9AsN6rV6/Ou/XeOfeec+65oqoghBCyuQkVWwBCCCHFh8aA\nEEIIjQEhhBAaA0IIIaAxIIQQAhoDQgghKJAxEJF6EfknETkpIq+JyDtEpEFEHheRUyLyUxGp9x1/\nv4j0po6/tRAyEEIIWTmFGhl8BcCPVfUQgCMAXgdwDMATqnoAwJMA7gcAETkM4C4AhwDcDuCrIiIF\nkoMQQsgKyNsYiEgdgN9S1W8AgKrGVXUMwB0AHkod9hCAO1OvPwLgO6njzgPoBXA0XzkIIYSsnEKM\nDHYBGBSRb4jI8yLytyISBdCqqgMAoKr9AFpSx28HcMn3+b7UPkIIIUWiEMYgAuBmAP9HVW8GMAVz\nEaXXuWDdC0IIKVEiBTjHZQCXVPXXqe3vwozBgIi0quqAiGwDcC31fh+AHb7Pd6T2ZSAiNCCEELIC\nVDWnWGzeI4OUK+iSiOxP7foAgNcAPArgY6l9HwXwSOr1owDuFpFyEdkFYC+AZxc5f8n/PfDAA0WX\nYSPISDkpZ6n/rRc5V0IhRgYA8BkA3xKRMgBvAPg4gDCAh0XkXgAXYBlEUNUTIvIwgBMAYgA+qSuV\nnhBCSEEoiDFQ1ZcAvD3LWx9c4PgvAvhiIb6bEEJI/nAGcgHo7u4utghLsh5kBChnoaGchWW9yLkS\npJQ9NCJCDxIhhOSIiEBzDCAXKmZACCGrxs6dO3HhwoVii1FydHV14fz58wU5F0cGhJCSJ9XTLbYY\nJcdC7bKSkQFjBoQQQmgMCCGE0BgQQggBjQEhhBDQGBBCSF7s3LkT0WgUdXV1qK2tRV1dHfr7+4st\nVs4wtZQQsqEZHQWmpoDqamDLlsKfX0TwL//yL3jf+9634nMkk0mEQsXtm3NkQAhZtyQSwOAgcO0a\nEItlvn/+PHD2LNDfb/9Xa6pCenqnquIP/uAP0NbWhsbGRrz//e/H66+//ub799xzDz796U/j9ttv\nR21tLX7+859jbm4On/3sZ9HZ2Ym2tjZ8+tOfxvz8/OoInAUaA0LIuiQWA06cMAV/6RLw6qvA9LT3\n/twcMDQU/MzgIODXr6rA5cvASy/Z569fL5x8v/d7v4ezZ8+iv78fb3nLW3DPPfcE3v/2t7+NL3zh\nC5iYmMA73/lO/Omf/ikuXLiAV199Fb29vTh//jz+/M//vHACLQEnnRFCSp5sk6uuXAGuXg0et2UL\nsGePvZ6aAnyd8Tc5dAiIRu311at2Hj/79gF1dcuXbdeuXRgaGkIkYl737u5ufO973wscMzg4iJaW\nFkxNTaGqqgr33HMPKioq8LWvfQ2AjSSi0ShOnz6NHTtsuZef//znuPfee3H69OkFv7uQk84YMyCE\nrEuyeVD8+6JRoKLCRgiOykrPEADAyEjmOUZGcjMGAPDII48EYgbJZBLHjh3Dd7/7XQwNDUFEICIY\nHBx8U9m7/wDQ39+Pubk5HDlyJHCOtYwj0BgQQtYlW7ZkuoH8AWIRYO9ecyFNT1sAeceO4PFlZcDM\nTHBfeXnusqT3zr/5zW/iscceQ09PD3bs2IGhoSE0NzcHjhPxOu6tra2oqKjAqVOn0NzcnLsABYAx\nA0LIumTLFqCjwxR6OAy0tgLbtgWPqaw0t8+RI2YYKiqC77e1Af7Od3k50NSUv2wTExOoqKhAQ0MD\npqam8PnPfz6g/NMJhUL4xCc+gfvuuw+Dg4MAgMuXL+P48eP5C7NMaAwIIeuW1lbgrW8FbrrJDMMi\n+jYrNTXA4cPA9u1AZ6e9LivL7RzZlPzHP/5xtLW1ob29HTfeeCPe8573LPmZv/qrv0JXVxeOHj2K\nLVu24LbbbsOZM2dyEyYPGEAmhJQ8rFqaHVYtJYQQUlBoDAghhNAYEFIKzM9nT5UkZK1gaikhRSSZ\nBM6ds/o5gOW379kTzHAhZC3gLUdIEbl2zTMEADA+bnV0CFlrCmIMROS8iLwkIi+IyLOpfQ0i8riI\nnBKRn4pIve/4+0WkV0ROisithZCBkPXI5OTy9hGy2hTKTZQE0K2q/sndxwA8oap/KSKfA3A/gGMi\nchjAXQAOAegA8ISI7GMOKdmMRKPA2FjmPhKkq6tr0Ulbm5Wurq6CnatQxkCQOcq4A8B7U68fAtAD\nMxAfAfAdVY0DOC8ivQCOAnimQLIQsm5obTXX0NSUbVdVZc6iJcD58+eLLcKGp1DGQAEcF5EEgP+n\nql8D0KqqAwCgqv0i0pI6djuAp32f7UvtI2TTEQ4DBw+aMVC1GbGEFINCGYNbVPWqiDQDeFxETsEM\nhJ8VuYEefPDBN193d3eju7t7pTISUrJUVxdbArKe6enpQU9PT17nKHg5ChF5AMAkgE/A4ggDIrIN\nwFOqekhEjgFQVf1S6vjHADygqhluIpajIISQ3ClKOQoRiYpITep1NYBbAbwC4FEAH0sd9lEAj6Re\nPwrgbhEpF5FdAPYCeDZfOQghhKycQriJWgF8X0Q0db5vqerjIvJrAA+LyL0ALsAyiKCqJ0TkYQAn\nAMQAfJLdf0IIKS6sWkoIIRsMVi0lhBCyImgMCCGE0BgQQgihMSCEEAIaA0IIIaAxIIQQAhoDQggh\noDEghBACGgNCCCGgMSCEEAIaA0IIIaAxIIQQAhoDQgghoDEghBACGgNCCCGgMSCEEAIaA0IIIaAx\nIIQQAhoDQgghoDEghBACGgNCCCGgMSCEEAIaA0IIISigMRCRkIg8LyKPprYbRORxETklIj8VkXrf\nsfeLSK+InBSRWwslAyGEkJVRyJHBfQBO+LaPAXhCVQ8AeBLA/QAgIocB3AXgEIDbAXxVRKSAchBC\nCMmRghgDEekA8GEAX/PtvgPAQ6nXDwG4M/X6IwC+o6pxVT0PoBfA0ULIQQghZGUUamTwZQB/BkB9\n+1pVdQAAVLUfQEtq/3YAl3zH9aX2EUIIKRKRfE8gIr8LYEBVXxSR7kUO1UXeW5AHH3zwzdfd3d3o\n7l7sKwghZPPR09ODnp6evM4hqivS0d4JRP4XgD8GEAdQBaAWwPcB/CaAblUdEJFtAJ5S1UMicgyA\nquqXUp9/DMADqvpMlnNrvvIRQshmQ0SgqjnFYvN2E6nq51W1U1V3A7gbwJOqeg+AHwL4WOqwjwJ4\nJPX6UQB3i0i5iOwCsBfAs/nKQQghZOXk7SZahL8A8LCI3AvgAiyDCKp6QkQehmUexQB8kt1/Qggp\nLnm7iVYTuokIISR3iuImIoQQsv6hMSCEEEJjQAghhMaAEEIIaAwIIYSAxoAQQghoDAghhIDGgBBC\nCGgMCCGEgMaAEEIIaAwIIYSAxoAQQghoDAghhIDGgBBCCGgMCCGEgMaAEEIIaAwIIYSAxoAQQgho\nDAghhIDGgBBCCGgMCCGEgMaAEEIIaAwIIYSgAMZARCpE5BkReUFEXhGRB1L7G0TkcRE5JSI/FZF6\n32fuF5FeETkpIrfmKwMhhJD8EFXN/yQiUVWdFpEwgF8A+AyA3wcwpKp/KSKfA9CgqsdE5DCAbwF4\nO4AOAE8A2KdZBBGRbLsJIYQsgohAVSWXzxTETaSq06mXFQAiABTAHQAeSu1/CMCdqdcfAfAdVY2r\n6nkAvQCOFkIOQgghK6MgxkBEQiLyAoB+AMdV9TkArao6AACq2g+gJXX4dgCXfB/vS+0jhBBSJCKF\nOImqJgG8TUTqAHxfRG6AjQ4Ch63k3A8++OCbr7u7u9Hd3b1CKQkhZGPS09ODnp6evM5RkJhB4IQi\n/xPANIBPAOhW1QER2QbgKVU9JCLHAKiqfil1/GMAHlDVZ7KcizEDQgjJkaLEDESkyWUKiUgVgN8B\ncBLAowA+ljrsowAeSb1+FMDdIlIuIrsA7AXwbL5yEEIIWTmFcBO1AXhIREIw4/KPqvpjEfkVgIdF\n5F4AFwDcBQCqekJEHgZwAkAMwCfZ/SeEkOJScDdRIaGbiBBCcqdoqaWEEELWNzQGhBBCaAwIIYTQ\nGBBCCEGBJp0RshTz88DoKBAKAQ0NQDi89GfGx4HpaaCmxv7SGR0FRkaASARoaQHicWBw0N5ragKq\nqwt7DYRsZJhNRFadyUmgtxdIJm27ogI4eNCU+EKcPw8MDXnbbW1Ae7u3ff06cPGitz0/bwbGGRkR\nYP/+7EaEkI0Os4lISXL1qmcIAGBuzuvBZ2N2NmgIAKC/H0gkvO2BgeD7167ZSMGhagaDELI8aAzI\nqjM/v7x9i72nam4g/3a2YxbbJoQsDI0BWXW2bFnePkdNTaYLqarK3EuOpqbg+w0NQF1dcF/6MYSQ\nhWHMgKw6qsClS8DwsAWQt22zgO9iTE3ZZ1wAuasraAwAcwMNDwNlZUBrKxCLea6h5ubFDQ4pDYaG\nvCSA1lYz+iR/VhIzoDEghBSFgQHg8mVvOxwGDh8GysuLJ9NGgQFkQsi6IT3An0jYSI8UBxoDQggh\nNAaEkOLQ3BzcDoeBxsbiyEI4A5kQUiRaWy347w8gM15QPBhAJmtCMgmMjVnvLz0FlOTO/LzN7K6q\nWnkGztSUTQCsrTWlTDYOKwkgc2RAVp2ZGeD0aW/SWDQKHDhgaaYkdwYHgQsXvO3WVqCjI7dznDvn\nBWtFgN27mYq72eHjSFadK1eCs4enpxcvR0EWJpkMpmMClqI5N7f8c0xOBrN23DwQsrmhMSCrzuzs\n8vaRpYnFgjWaHLm0Z7Zj5+eD9aPI5oPGgKw62WIEtbVrL8dGoKIicyZ2KJRbue5sbV9dTbfdZoc/\nP1kR8bi5e5YT329v9/zRrhxFQ8PqyldIZmcXL6y31uzeDVRW2uuyMmDXrsXLgadTUWHlPdxnolE7\nRzJpvylHCJsTZhORnOnvtziAqqUC7t69vJ5pImHByvXSA43HgTNnLOsGMAO2a5ddQykQj1t21krl\nUbXfJBKx9M4LF2w7HDZjsZ4MNgnCchRk1ZmZAfr6vBHB/Hwws2UxwuH1YwgAM3jOEACmMEsp8B2J\n5GeYROwcyaRnCAD7f/589tgE2bjk/WiKSIeIPCkir4nIKyLymdT+BhF5XEROichPRaTe95n7RaRX\nRE6KyK35ykDWDr9ydMzMbEzXQrZrzbZvvTMzk6n4k0kG+TcbheinxQF8VlVvAPAuAJ8SkYMAjgF4\nQlUPAHgSwP0AICKHAdwF4BCA2wF8VaRUBt5kKaLRzH2Vleurx79csl1rtn3rnWy/XyjkxSXI5iDv\nR1hV+1X1xdTrSQAnAXQAuAPAQ6nDHgJwZ+r1RwB8R1XjqnoeQC+Ao/nKQdaGaNQCwI5IxPzLG5H2\n9uDs3rq6jblgTjgMdHZ6BiEUAnbs8NaTJpuDgs5AFpGdAG4C8CsArao6AJjBEBG3nMl2AE/7PtaX\n2kfWCdu3W5Gx+XkzDhtxVABYps7hw+YaCoU29sIrW7cC9fXmMqqqyi07iWwMCvaTi0gNgH8GcJ+q\nTopIehrQitKCHnzwwTdfd3d3o7u7e6UikgJSXr55iorlksO/nolEOP9jvdLT04Oenp68zlGQ1FIR\niQD4EYCfqOpXUvtOAuhW1QER2QbgKVU9JCLHAKiqfil13GMAHlDVZ7Kcl6mlhBCSI8VMLf07ACec\nIUjxKICPpV5/FMAjvv13i0i5iOwCsBfAswWSgxBCyArIe2QgIrcA+BmAV2CuIAXweZiCfxjADgAX\nANylqqOpz9wP4E8AxGBupccXODdHBoQQkiMrGRlwBjIhhGwwOAOZEELIiqAxIIQQQmNACCGExoCQ\nvJmcBIaGbOGZjUwiYSukjY0tr3Q5WV9wniEheXD2LDA6aq9FgD17bCbvRiPbOtb797NkxUaCIwNC\nVsjYmGcIgI29lnBfH9ex3ujQGBCyQrItQp/LwvTric10rZsVuolWmVjMW0SE5M/8vLXlcovjJRJW\nm7+srPCyZFvbOdu+YjA6aj13EaClJf+aQ3V1mesblMq15svcnK3eNz9vLr6WlqU/sxGhilolEgng\n3DlzJYhYVcjOztJZMnG9MT0NvPGGPbjhsJVY3rp18c/09QEDA+a+qamx5TkLaRQqK618t3Oh1NSU\nRjnv0VGLZTjGxsy/X1Oz8nO2t1vHZmTEDHFrq7eu9XomkQBef91zgY2Pm1Ho6CiuXMWAxmCVuHrV\nHkLAlNHgoFW/3Ij18NeCc+c8t0QiYcs01tYuXDl1bMx6e47JSeDyZVvDuJA0NZlRSiZLJ5h6/Xpw\n291/+RiDcNiMaTJpHZqN0qkZGTHlPz5uxq6mxtqPxoAUjImJ7PtoDHInFst0UajaOgMLGYOF2n81\nECkdQ7AQhVLeG23tClXrWLj7a3DQ1uvYjGywn7Z0yLYQykZeHGU1iUSyu3cWW5ZxM7d/us9bhJ2Q\nhRAJZkkBmdubBRqDVaK9Pdhrra621cFI7ohYjMDfu21tXVy5NzYGA5yRSGkP/VXNBbPQdi7U1wP7\n9gENDdYOBw5sngV6ciWZBHbutLaqrQXa2paORW1UWLV0FVE110QolJ+/lhjxuPn+KyuXv1j71JR9\nrra2NF0cqhbLGBy011u32rVdvWqxkfp6U1a5ZqNNTHjZRM3Ndu3Xrtk5Gxs3RvC3EMzPA6++GpxR\n3dhY+NjSWsMS1oSsM65fBy5e9Lanp+3P79bJVTmNjQFnznjbsZj1gCsqvH07d27eHnA64+PAlSte\namlHR+nHgJZiJcaAAWRCisj4eHB7airTGKQfsxTp2UQjIzYiaGvz9l27RmPgqKvbOHMm8qEEB86E\nbB78vXXAAuXpGVLpxyxF+mBalYXlyNJwZECWhQtorvfhc6nR2mqTxNwciqYm8+/PzXkzp3NNdWxu\nDo4mGhpsZOCH2UUkHcYMyJJcuWIzeZNJCzzu3EmjUEiSSW+CYn29uXl6e80gtLdbZlCuAeT0chSh\nkP2GiYS5hxobC38dpHRgAJkUnPTSBoD1PDs7iyPPRmdyEjh1KrivocFm/xKyXBhAJgUnW/Ay14Dm\napBMWk2gkRHrNbe1mdJca8bHTQ6XibJjR36jpmxtu9yZ07Oz1hYsikhWAm8bsijZ8vmXk+M/OWmu\nj4oKc0kUOse/r88yYgBLnXzjDeDQIVt0Za2Yn7cUTjd4HRoyI5VPLz5b2y4VQJ6bs9HbzIy5hVpb\nN29JBbJyaAzIojQ1mZKbnrbtcNj82Itx7VpwkZfBQZsFW8jiZiMjmftGR1ffGExO2vUlk9mzdPyL\n3ayEhgZrLzcaCIWWnjl98aIZAsDk6e+3VMl8y1aTzUVBjIGIfB3AfwAwoKpvTe1rAPCPALoAnAdw\nl6qOpd67H8C9AOIA7lPVxwshByk8oRBw8KC5L9yM2KXcIFevBrenpmyUUMhZr2VlmWsOr8aaBX6m\np23pR2cAxse9oLojXxeNiJWbHh+3mdN1dUufc3Iy+z4aA5ILhRq8fwPAh9L2HQPwhKoeAPAkgPsB\nQEQOA7gLwCEAtwP4qshGKYi7MRExI9DYuLQhUM1MYwQKX/yrrS040qisXP0MmaGh4EigtjZzta+l\nRk3Lpa7Ormc5xiXbaGgt3WVkY1AQY6CqPweQPnC/A8BDqdcPAbgz9fojAL6jqnFVPQ+gF8DRQshB\nio9I5gggFCr8IvFbtliMoL3dMpsOHlz7dFcRKxPR1WXG6eDB4uTv79gRNBqNjYVvb7LxWc2YQYuq\nDgCAqvaLiCusux3A077j+lL7yAahq8sUswsgt7evjgunqmpty1I3NdmcCzdCqK+3YHExspj8RKPA\njTeaa6i8fPlF/NYD8/M27yIeNyNH19fqsZYB5BVNGHjwwQfffN3d3Y3u7u4CiUNWi3B46eUfR0a8\nJSm3bl0f686GQhYjcOsqJxLLy5KanLQYQGWlGY50p2gsBgwP2+uGhoUX7FlKto1WXycWA06e9FyM\ng4M2EuOEuUx6enrQ09OT1zkKNulMRLoA/NAXQD4JoFtVB0RkG4CnVPWQiBwDoKr6pdRxjwF4QFWf\nyXJOTjpbJ8zMWKC4unrp3vr4uM2w9dPVVfolEi5ftkydyUkzBjU15q7av3/hz1y7ZmmvblW21tbg\n8XNzwTV4w2HLvNosC/EsRn+/pRD7qaoCDh8ujjzriWJPOpPUn+NRAB8D8CUAHwXwiG//t0TkyzD3\n0F4AzxZQDrLGXL1q7hNHW9vigVTXC/YzNJS/MXDrRwDmTih0WkIsFlyLORy2uMVi8pw8aUbE9WlG\nRoBt27xe/MCAnc8v98CAlfzIhUTCzlFWtnEWssmWiLCSBX9UrQMSCtHNtBiFSi39BwDdALaKyEUA\nDwD4CwD/JCL3ArgAyyCCqp4QkYcBnAAQA/BJdv/XL/F4Zippf7+VrEiPE8zMmALNFujNN/gbi1na\np1vLtrLSetiFnI2bTAazhxKJzPRWP4mEtY3/7h4ft7kIzhhMTZmBcee5dm15yjwWs89WVdnrM2ds\nOxIxo7p79/pftL6x0XMlOnItuz03Z/fF/LxtV1dbradCJxuo2ohRdXU6ImtBQR4VVf3PC7z1wQWO\n/yKALxbiu0lxmZvLXjJ5ft4zBk5ZuYlr1dWe/x3wZs36SSRMMc7MmDumuXnxB6y/3zMEgL3u7w9O\n2JqctF767Kw9sJ2duQW2IxHL3PEHkLMpbnf94bAF0P1ptSLBGcXxeNCgJBKZ6arpDA3ZIu6u3YeH\n7S8Ws/MPDprSLMXVzBIJM1qVldljI1NTJj9gRq29HXjtNWtPl7WVfj7nuotG7X1/B8AtWpN+/vT7\nLR/icTM4buJfZaXJOjJi7zU0lOZvkQ5nIJO8iEYzJ4BFIsE8974+zxAA9kBu22avXQA53Ufe22vH\nAfZQTU0tvtqX3xBk2xeP2zmdARodNUWymL8/nbo6M0z+JUzTUzhHR01Rx+PWLm1t1rudmjIj0Noa\nzD6KRi147mZUb9my+BKpyaTN7vYb4JdesjYsK7P9IyNmSEtNAY2NWfzE/Qbp7sSJCfuN3LVdvRqc\n1DczY23pV+Rnz3outslJe+2PKWS7L5zSXi7JpMnikgDa2oIZWwMDwXNOTgK/+IXn9hweto5Hqa+B\nzsVtSF6ImEvCPRyVlcCePcFevFPqfuJxq5/T0ZFpCKamMj/jer4Lkc0X7N/nZgv7mZjI7pdeiIYG\nUwShkF1fY2Owp5pImMvHjQRiMRsd7N9vLqt9+4Abbgj2iOvrTZHv3Wt/TU1mdJxC9/dq3TkTCa8s\nxtiYyZLeNqW23rOqGUn/b3D1alBZX78eNHKuDLcf/7Y/1uJwiQyObIY117jBhQs2+pietvvw9Ong\ndaQbl7GxzPt3YCC37ywGHBmQvKmpMSWXSGT3xUajmT20xfziC0WQ3AI72RRdSwvwwgvmUhAB3vIW\n4OabvfezuYPC4dyVZnu7GQDVzM9OT2canFDIXAaVldm/q6nJlJorutfYaArHKZjLl81IuBhDebm9\n71cuZWVmVJybqKmp9FJ1091hjpkZryOR3nYimfeCv5OxkNvQv7+93drXGc2mptziDslkZh2sWMzO\n50Z4tbXeehSAyZx+f6+HqCiNASkYCwXltm83RekMwpYtiz+Q1dWmIPwGpKIimKLZ2Rl00Zw9awrS\nKf2rV+34PXtsu7bWFKq/RHR6SYvlIpL9c5WVmQosFDLZFzM627d7VUYHB4O9X1VzszljkEzaSMq5\n5tzIo7HRM1AtLaUx58C5rFzcp6IiGA8RCSrNpqagUs0Wk/EbufJyu5f8xQFraoIuynDYjGk8bt+3\nksBxNqPk/z1bWrxRA2DGP31kUOpp0wAXtyFryNSUPYzLmSEbi5lCn562B3xkJOgyCYVs1q0LFv74\nxzYycL3LUAj4jd8AbrvN+4yqKY7ZWVOWq5GCOTBgvXnAlEhnZ26K4MqVzOysSAQ4csRez88Dr7xi\nr2Mxe0/EFF4kkn0N5WJx9mymop6bM7ldNdZ0P/roqLmLAFOyFRU2anIzkNPjIMmkHe8CyC0thc8U\nunw5OBKrqrKU4vQOgXMPRiJ23/b327U2NKz9SK3Y8wzIJiYWswfABZSzkYvyLSvzVlOLxTJ9rsmk\n+YvdUH1qKuhmSCYze2ciq186wgWIp6ftenMtw7FlS6Yx8I+AysvtvFNT3rnLymzkU+g4gYtNVFTk\nXuJiejqznPfUlBnweNyuI5vS3rIlU+Evtqqeqp0vkbC/1eg7uriWCyAvlNnmz2KKRtff6nQ0BiRv\nrl/3MlxcmujsrFebqKMjv8JpbvWu2VlTMq7+jj9Fc9euYGAvHM594tZyuHbNWw9661Zz76QrhvLy\nlffOo1GT+8oVr1e5Y0fwmD17rL0nJ01JdXSYYRwZse/NNscjVyYmrGfvAuy5LnWarUqti/kUcnb1\nG294rr+JCftbbCLgStm6Nfc5DusNGgOSF4lEcIatKvDrX1vqqFPgZ89aQHelClLElOSrr3rfs3t3\n0De8axfw27/tLaqzY8fiqagrYWwsuGjPwIAZnfTcdz+qdpzrVW7bltkOo6Om1Nx1LKV4ysqCvc5s\niwndcEN+7pKLF4OZVtevm5tmsbTXRMK+OxYzN1x6ynE0uvSqbcshHjd3UzicuUzo9LRXFoXkBo0B\nyYvZ2aB7xpWE8NfiVzVFutI8a1V7yN2qazU1pmhmZrxe5tat1nOdmzPj0dVV+IJm2VYxGx1d3Bhc\nvOgFhCcmrB1uuMFz6QwPA8ePe0rz9GngAx/Ira3SXWiu8F0+7b1Qfv5CxiCZtBpL7nMDA+Ynn531\nPrfUim3Lob/fRk1ulTnnjvOzHmf/lgI0BiQvnDJ2E2+qqrIHifMJasbjllHjsjXGx03h7d3rff/U\nlL3vYgKu1lEhF3nJ5npZzB2TTJocfubng2mJr78e7D3H48CJE8B737t8ubLV68m1hk88borW9arL\nyzPnOCwLtUb7AAAZMUlEQVQ2KhgezjQgo6MWIygUs7PBwnUi5irzG4Pqai7ss1JoDNYY16MptUlB\nKyUU8nr+iYQpkKam4PXV1uYXMwiHvWCwm2cwOxsMFrp1iR3JpO0rZNygudmUu1OSodDio4KF8Pdc\n0xUusPjkumxs3RocHYRCuQfKXW0jwBSsM+izs3a+9vbFff3ZJu/lMqFvOWSbvNjcbDGquTmTr5Bl\nJjYbNAZrSF+fKShVy5jYudN6ZPPz1qNZj8PbmRkvhXJiwhR/ZaX5vmMx8xHnu+qWC9a++KI3z+DQ\noaDBWQtlVFZmpQ6Gh02mpdYeCIXMMLpUSSCzPbq67L7wG7al1oJIZ/t2c8mNjHglMMrLzYUiYkrS\nTZ5KJOze88udPmsXsOMOHLBriESWjj9s2ZJ5HY2Ndk84N1G+PfZscQAXQCf5Q2OwRoyM2DDcvz00\n5Cm0SMTcHust8OUKozmFNzhovbXDhwvns49ErOfX0uItKDM9Heypbt0anLDk9hWacDg3X/yOHWYc\nXQC5tTVo9HfutGs7c8YU6e7ddh/kgogFpl29p3jcSme7elBVVcEZwH19VhrDuX0Wm8m73IBvRYWd\n02VBbdniVZJ1bN/uybgSKivtHC5mEInkbjjJwtAYrBHZsh76+72skHjcgo3paXHxuPWuKiuXl5K3\n1pNdIpHM2izT0/mXjnaTzmZmTNE0NHhzByoqrMc9Pe0pq4YGUwz+CUulUKhNxGRJ/x1mZ82wlJXZ\n2skHDhTOfegm6zlcppGb/OYKr+3bZ9uVlZmzs+vqcp9bUFtr1wHY9b30knUOZmdtVKBqhjSfLKdt\n27wSHtHo+hxNlyo0BqvI8LA9DM6v7md2NtPFMD5uRbGmpqzXVllprpGJCTv24EHvAc7G/Lwd79aM\nrauzlM70Ymr9/XbOqirPpbAY/phAfX1Q0c/NWW/NBRArK21EMDe3eHDVndOVgk5Xgv61CSYmzL22\nfXuw/lF6r7WpKXO27/i4tUV9fWFmpk5PW/smEjbyyNUF5i/n7WrldHYuXOIiG4mE9Y79v+HYmN1r\nFRWZxdvi8cy8//RYxZ491sYugJxvJ2Juzu5l9z0zM7bvxhvz/x3cvBNSWNikq8TQkOXFDw97AT1/\nT6a2NtOHOjBgD/XMjL137px3zMwM8O//bj2jsjKvVwnYA+fy2U+d8hS3i0P4jcG5c547ZWrKFMcN\nNyysiBIJU8yup+lq4Ti5olEzJn4lnF7COp143OQcHvbiJwcOeMp9cjKYmSJi13r6tMlTVmYjqPTv\nSCSs3d1M47NnvWqlzo0RjXrlpReTLxz22mR+3n7DWMzkdoHqkREb2dXW2nsLjdyGhuyvutra0bWl\nqhmW2trMgG8yaX/ZlJ5/otXMjLXLxIQX7A2FLGbjPuvKQPjZssWbvVtWZp9Jd+G4zkx1tbm3Jidt\nRBGJZK82m60dAc+Az89bm7r2VbVRy/Xrdg91dBRvfeO5OS92t1GSO3KFxmCV6O21yVeuB1hbC9x6\nq2VluB72wIDnYw2FTDm7h3xkxPy+N97o9dzn5oBf/tJTvI2NpjBc/vulS15dHMBz17hiYZWVmX51\nVwZ4ocJmQ0NBl0Mi4fmcAbu2PXuA8+ftXBUV5q7J9kA5pXr1KvCjH9lnADNWf/iHnoshm2GanDT/\nu/sO19t1Cm92FnjqKS/9NBIxZTUx4VWRdDnp8bi9t2tXUKHNz1ubDwx4pbhPnbLfyP2Gra2egamr\nM4NfXW3fUVFhn/Gf88wZq5nkJknFYhZPicetLcJhuza/Mejv92r519aanP6FgtJdjidPmpGLRu0z\nsViwVMf27d5ymm5EU1YGvPyyyRGN2nf43ULnzlnnwxmY6mprH2dUTp8G3v/+hQ1COGzff+KEtbtz\nIbkF7svK7P/5894zcvUq8Fu/lXug2S0mVF6+MrfRxYueezESsd9wsTTajQqNwSpx9mywBzg+bj06\np8BjMXuwLl70lJRbAQqwBzCRCKZLDg0Fe/mnTwdXDBsfN8Xiv5EHB73ZrfG4GY50V0o2xe3cWtlW\n3UrfV1Nj7ii/cvYTj5sMExP2sD7zjGcIAFMCTz3lGYPqaq893OfLy03xOOXjJrc5hffqq8Gc/vPn\nTUG4WchjY2Yo3/1u256ZMYXX0eEVOTtzxvL+HU8/bQo/kTC5+/rMyFdW2ve79YZ37rTfMxo118jB\ng/b5ZNL85q69EglTyO56RKyHvn27yeJGSf5c+okJM/IutuTcSX6348xMsEZ/OGy9/L17g0FgV+a6\nrMxKfTump629nNyqJrcbnSWTwK9+ZXK6OMzIiDezPBtVVSaXP9Xz0iXP/RSL2QIwzn3nRkmXL+e2\n4ND4uMnuivZ1deUWK5qYCGZ7udidf4GczQKNQQGYnQWefdaUWnU1cNNNmf7sZNJ6mK7n3ttrf2Vl\n9t7wsCmSujpTHpWV3qQqF1jcujU4jB4ft16kU4hjY6YUams9xezvuUUitt+/JkA0GjQebujuFGu2\nIOJCfvKF/Lh9fdY2V67Yg3/unBdfcKSPWPbt85a9rK629kxPFfW38ciInf/KFU8WvysofV4CYEpk\nYsKT++mngz30y5dNXpeVNDhoBsplsLjYjotLVFfbb+aUaiKRORHLGbGtW711c48f93q0s7OeMnSu\nPv9IIBKxz/rLXHd2Bq8tEjEl7NpX1QzwG294WTgdHcH2d4X+XHwrPdV0bs6Mhl/RZsv7d0xO2neM\njHjxMX8PHrDXs7PBDLpsM58XQjW4mFA8bttvfevy4xLZVj3LdSW0jQKNQQH4xS9MCY2O2gPT22sl\nh7dts4fC9fL9Qblr16wHEol4Pu3hYa+mT0WFuUXe/W578Gtq7FyTk945ZmaCCri21vPXz89n90W3\ntpqranbWDEV6oHBgINhTmp42peFW2HJKdnDQHsa6uuzph3NzpsTcOgT/9m92rlDIc+W4Hq5z2fhJ\nr/kTDpuxdLjZxc4VNjVlvVe3EEk0CrzjHd7IqaHB2sS5syorrf22brX/Li/fGZ1w2KuEOTLizXZ1\npa+dP9+/TOPYmH3fnj3eaK+mxnOFuFm973iHV1v/7Fk7vzM4sZi5Al3ufCjkGRdHZ6ed2xWq27fP\nEgdGR00mN9Hu9dfte6anbdTjmJiw9266ydtXXu51EEIhy/pxC+4AJl91tX1HOGz3VvqEO5cUEItZ\n+4bD3ijUjY7992trazCwXVERXAZzKWZnMwPjsZhdWyJh1+RcZAuRLZV7M7qIABqDvHFpesPDXq38\nSMQUalubKQL3UPgfHud2cD0mwFPkiYT9b2y0/859MjdnriGXobF9u9fzAjw3iguS1tRk9pBqahZ/\n4NJ76IC37uupU3beZ57xen41NabI/SOWkRFzMwwNmTzPPms9Nv8kKLfcI2C9zQ98IHvbzs97qaQ1\nNWaE6uut3V57zbv2l1+2tnbyu9HL/v12HmdMnOtubMxe//KXJmd9vR13/Lgpy7IyMyCu5y/iue1O\nnLDXrq0doZB9h2ufyUn77NSUHRsKWTuNjXkTxK5dy1RIfX1mlGMxu+50t0ksZveaCxrX1AC33GLf\nVVZm98lzz9l3uBiNiym433NoyH6T+Xnv836OHrXfzbXF+94H/OxnJpeIBfD995Gq3Zuus+J+Z9fL\nFjHjMzXl3e9vf7vJfPmyHbt7d25zQ5wB87tSXU2kSMTaqbc3e5HEWMyLJbW3Wxu5uE8u1Vk3EjQG\neRIK2Y2WvkLVlSumYFymhlNszm1TVmYPpXN9JJOmnMrKPMU6MBDsSVVU2I3tFomZnbVet3OBTE/b\nfv9QPpGwh935lZe60Ssq7IF2K0MB5jY6dcoeWrf+bzJp+44csf3RqF1/Y6P10J9/3uSMRKzXOj7u\nuWSam23Rma4uU1y33GLv/exndi3bt5vMTz/txUmOHDEDc/q0jZ527rTvHB629n/5ZbtW5/oQMUXb\n2GhyuIli166Zkty5E/jWt7y1lcvK7LvcSCkU8lI1Z2ftfOXlXvzFlRXZscOOcbNsL12y1/399rnB\nQXNbANbD7++363AyumQCx9iYtW1NjRerePFFM0zuNxwf9zoEU1PW67/xRm8U+Morpuhdiun0tP2m\nbsTgAuhtbXaeaDQ4OgHsHnr/++0cFRWWDNHe7q3RUFVloxrXURkZCY5aXfscPuwtUFRRYd/nUmKT\nSeDJJ63jFImY4cslABwOW/tfvOgZmMrK4DPjFjRyv6tbi9m5QWtrzQi1tHgjmkIwPm4GJh731s4u\n9TkRNAYF4MYbrYfpqKnxyk74A2bxuN1syaQpp9/8TVNGbgKN83c7nMvC7/sW8YaxVVX2MLjhfF1d\nZl2bykrvgV0OLS3W43auEZeqeP26NwoZHfUevtFRU7gvveQFN3/1q+Dw/cKFoN97ctKOcYbwu98N\nGp++PlOArvf22mumuN0C9iKmQP1ujuvXg26zmRlTzO53SSZNBudGeuUVb9Tmair19VmbuvYdHPRS\nHkXsfLGYKZDJSZPt1VftnC4bq7HRjvGnUSaTnmupv9/a2LmJysq8DoObczE357lskklT9m97m9d2\nV68GjbqbmOiMSl9fsGPifkc/+/fbveGUnzNC/uMiEc/AXLtm53W/6+SkfYe7t7LVWHKdH3/cqrzc\nMzpPPmm/iRsZnTplSjOX8hJNTXbdbkZ6euE/IPj8uDRfx8SEteeOHYVbIW121ptRDniZYaVeNqNo\nxkBEbgPw1wBCAL6uql8qliz5cugQ8J732M3sVkI6eTIzlz0SsZx+wB6CwUFPecXj1hvbscMLrtbU\nLJ3z7J/dOj9vitM/bM517dXRUZPfred79aopu6oq+x+LmRLt7LRjpqbsWp2bJ5GwHqOrlwN4gUY3\nqpibCxq+ixftGOcOuX7dzunWL56dtZ5pZ6fnVjtxwpt1DJhCqa31DJLL1HFMTdnowS0UMz9v19rZ\n6bVxIhFUJK4uv8uIuXzZrqmmxguylpXZ++GwXXN/v3ed7vdxMRVX4yd95uyBAzbiU7W2PX48qJz9\nPXZXiiM9c8vvBnGZSk4ZhcPAO99p956bD+HP5nKyLXavJZNBAz8zE7y/6+uDWVBu32L4DZajvz93\npVlW5n1Xe3swtlRVFbwP/KMXR/okvXwZGclMVhgepjHIioiEAPwNgA8AuALgORF5RFVfX/yTpcuR\nI6ZEnY81FMpc/NvvY62rs4fTDSX9hepczzS9oNhSlJebYsmnHMXERNDVdP26t2ZwU5Pd1C6IWlvr\nBVKdchIJKq9w2JvI4953uev+tvFncKSXX3bB6/SF5v3te/CgV7IC8Go9OVxwuLnZq53j1hJ2MnR2\nej18t33woPd7Hj4czF5JJOw3bW72Jm25/4mEfefOnV5gf98+U04nT3rXUlZmSsL9zm5ugxt9xePB\n9EwXf/Ibk4aGYO979277nVz8pKHBrsV/nqGhoBJcKnC7e7fdVy5+0toavLeqquxa3eihvn5pl2R9\nfTBZAci/nlRTk8kyOuqNQvxtlW1eRKFLXmcbYRR6XebVoFgjg6MAelX1AgCIyHcA3AFg3RqDri7P\n1xsOW0/v4kUbXotYjzS9qNbu3V753bo6zx3jUhZXsjhJvmuvVlYGe0+uOBxgMt58s11Ta6u3jKG/\nFpGIGaTaWi9LZ2bGK/3sJl75S0unj15aWrxRAeAFvf2GsaHB3Gxu9NTSYrEHJ2s4HHQH1Neb/M7Q\nqgLvepcpLpeS291tvfsLF2x7xw47h1P+O3fapKgXXrA2aGryFKpztxw5YnJNT3s9+2jU67nW1dl3\nu1Fh+qLwkQjw4Q/b6GpuzhTqwEDwN7nhBjufyyZKz6vv6rJ7aGwsOJfBz7591oOdm7NzLaUQm5ut\nvVy8KhrNnKjoVmhzy58uxdvfbq4ilwTQ0VGYwnNunko2mputXdzvlmsG03JwJcX9rrOVlDpfa0RX\nYwXppb5U5PcBfEhV/2tq+48BHFXVz6Qdp8WQLx/8pQxcHrmbwbkemJ+3IK3rdTufryvbXF9vvcPe\nXi/rqavLlJfLIT9yxNphcNBzd/3gB2YcnaE8dMirPukCxG6iXkeHnftf/9UeXJeJ9cMfmhxVVcAH\nP2jKyCm8fftsJOAvVHfmjMnpSmC3t3s+5Zoa88MPD9ufc9G5Gdeuhn9zs/WIIxE7p6s+e+WKyehi\nEw0NNiJ417uWVqzuvnBKdSncIjkuc2g5axVMT3ulOZqa8g+MxuP2+zij1NRUGMXtFtVx2XNrhZtX\nUVOzOoFdd/+7Efpap6uKCFQ1pysreWPwwAMPvLnd3d2N7u7utRR1U+Jywl0JBn9apfMTu7VmGxpM\nUSYS9hnnEgHsQQiHTbHOz1smTmWlF6xzWVALlTRwZRXcLNW5OfN1t7V5PeyxMevdLXSO+Xk7jzPG\nToH7H043e9UpBb/cixGPewF+N6t4o+OC24vVdiJrT09PD3p6et7c/sIXvrBujME7ATyoqrelto8B\n0PQg8nocGRBCSLFZycigWPX5ngOwV0S6RKQcwN0AHi2SLIQQsukpSgBZVRMi8mkAj8NLLT1ZDFkI\nIYQUyU20XOgmIoSQ3FlPbiJCCCElBI0BIYQQGgNCCCE0BoQQQkBjQAghBDQGhBBCQGNACCEENAaE\nEEJAY0AIIQQ0BoQQQkBjQAghBDQGhBBCQGNACCEENAaEEEJAY0AIIQQ0BoQQQkBjQAghBDQGhBBC\nQGNACCEENAaEEEJAY0AIIQQ0BoQQQpCnMRCR/yQir4pIQkRuTnvvfhHpFZGTInKrb//NIvKyiJwW\nkb/O5/sJIYQUhnxHBq8A+I8A/tW/U0QOAbgLwCEAtwP4qohI6u3/C+BPVHU/gP0i8qE8ZSg6PT09\nxRZhSdaDjADlLDSUs7CsFzlXQl7GQFVPqWovAEl76w4A31HVuKqeB9AL4KiIbANQq6rPpY77JoA7\n85GhFFgPN8h6kBGgnIWGchaW9SLnSlitmMF2AJd8232pfdsBXPbtv5zaRwghpIhEljpARI4DaPXv\nAqAA/oeq/nC1BCOEELJ2iKrmfxKRpwD8d1V9PrV9DICq6pdS248BeADABQBPqeqh1P67AbxXVf/b\nAufNXzhCCNmEqGq6+35RlhwZ5ID/ix8F8C0R+TLMDbQXwLOqqiIyJiJHATwH4L8A+N8LnTDXiyGE\nELIy8k0tvVNELgF4J4AfichPAEBVTwB4GMAJAD8G8En1hiCfAvB1AKcB9KrqY/nIQAghJH8K4iYi\nhBCyvim5GcgrmchWLETkNhF5PTWB7nPFlschIl8XkQERedm3r0FEHheRUyLyUxGpL6aMKZk6RORJ\nEXlNRF4Rkc+UmqwiUiEiz4jICykZHyg1Gf2ISEhEnheRR1PbJSeniJwXkZdSbfpsCctZLyL/lNI3\nr4nIO0pNThHZn2rH51P/x0TkMyuRs+SMAVY2kW3NEZEQgL8B8CEANwD4IxE5WCx50vgGTC4/xwA8\noaoHADwJ4P41lyqTOIDPquoNAN4F4FOpNiwZWVV1DsD7VPVtAG4CcHsq5lUyMqZxH8w96yhFOZMA\nulX1bap6NLWvFOX8CoAfpxJejgB4HSUmp6qeTrXjzQB+A8AUgO9jJXKqakn+AXgKwM2+7WMAPufb\n/gmAdxRRvncC+MlC8hX7D0AXgJd9268DaE293gbg9WLLmEXmHwD4YKnKCiAK4NcA3l6KMgLoAHAc\nQDeAR0v1dwdwDsDWtH0lJSeAOgBns+wvKTnTZLsVwL+tVM5SHBksxEIT2YpFujylPoGuRVUHAEBV\n+wG0FFmeACKyE9bz/hXsJi4ZWVOulxcA9AM4rjaDvqRkTPFlAH8GmwfkKEU5FcBxEXlORD6R2ldq\ncu4CMCgi30i5YP5WRKIoPTn9/CGAf0i9zlnOQqaWLhtOZCsJSiZzQERqAPwzgPtUdTLL/JKiyqqq\nSQBvE5E6AN8XkRuyyFRUGUXkdwEMqOqLItK9yKGl8LvfoqpXRaQZwOMicgol1p4w3XgzgE+p6q9T\nafLHUHpyAgBEpAzARwC42GXOchbFGKjq76zgY30Advi2O1L7ikUfgE7fdrHlWYoBEWlV1YFUjahr\nxRYIAEQkAjMEf6+qj6R2l6SsqjouIj0AbkPpyXgLgI+IyIcBVAGoFZG/B9BfYnJCVa+m/l8XkR8A\nOIrSa8/LAC6p6q9T29+FGYNSk9NxO4B/V9XB1HbOcpa6myh9ItvdIlIuIruQmshWHLEA2KS5vSLS\nJSLlAO5OyVgqCDLb72Op1x8F8Ej6B4rE3wE4oapf8e0rGVlFpMllYohIFYDfAXASJSQjAKjq51W1\nU1V3w+7FJ1X1HgA/RAnJKSLR1EgQIlIN83O/gtJrzwEAl0Rkf2rXBwC8hhKT08cfAfi2bzt3OYsd\n9MgSBLkT5oufAXAVwSDt/QDOwB7GW0tA1tsAnIJVZT1WbHl8cv0DgCsA5gBcBPBxAA0AnkjJ+ziA\nLSUg5y0AEgBeBPACgOdTbdpYKrICuDEl14sAXoa5MlFKMmaR+b3wAsglJSfMF+9+71fcc1NqcqZk\nOgLr9L0I4HsA6ktUziiA67CK0G5fznJy0hkhhJCSdxMRQghZA2gMCCGE0BgQQgihMSCEEAIaA0II\nIaAxIIQQAhoDQgghoDEghBAC4P8DOqqUeTVxGSkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s1 = thinkplot.Scatter(females.Age, females.Fare)\n", + "thinkplot.Show()" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEACAYAAACwB81wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlwZNd13r/TaKCx7zswAGY4nI2kKDESJZtyCbYcifIi\nKZWIoSthJDGqVEVWpIrilIdKpUj94dhKlctWKlEqLtkqyqWYpiy7SFsORdEk7CiiSGrnaMiZ4cwA\ng2UADPYdvd38cfrwvgYae2N9368Khe7Xr9+77/Z73z333HPPFeccCCGEHH0i+10AQgghewMFnxBC\nQgIFnxBCQgIFnxBCQgIFnxBCQgIFnxBCQkJeBF9EqkTk6yLymoj8TETeKSI1IvKsiFwSkW+JSFVg\n/0dE5Epm//flowyEEELWJ18W/hcB/K1z7iyAuwG8DuA8gOecc6cBPA/gEQAQkXMAHgBwFsAHAHxJ\nRCRP5SCEELIGOxZ8EakE8AvOua8AgHMu6ZybBvAhAI9ndnscwIczrz8I4InMfr0ArgC4d6flIIQQ\nsj75sPCPAxgTka+IyA9F5I9EpBRAk3NuBACcc8MAGjP7twHoD3x/MLONEELILpIPwY8CuAfA/3DO\n3QNgHurOWZmzgTkcCCFkH4nm4RgDAPqdc9/PvP8GVPBHRKTJOTciIs0ARjOfDwI4Fvh+e2bbKkSE\njQQhhGwD59yqsdEdW/gZt02/iJzKbHovgJ8BeBrAxzLbPgrgqczrpwE8KCJFInIcwEkAL69z/H39\ne/TRR/e9DAflj3XBumBdHI66WIt8WPgA8GkAXxORQgDXAHwcQAGAJ0XkYQB90MgcOOcuisiTAC4C\nSAD4pFuvhIQQQvJCXgTfOfcTAO/I8dEvr7H/7wL43XycmxBCyObgTNsN6O7u3u8iHBhYFx7WhYd1\n4TnodSEH2ZsiIvT2EELIFhERuByDtvny4RNCyK7R1dWFvr6+/S7GgaOzsxO9vb2b3p8WPiHkwJOx\nWPe7GAeOteplLQufPnxCCAkJFHxCCAkJFHxCCAkJFHxCCAkJFHxCCNkBXV1dKC0tRWVlJSoqKlBZ\nWYnh4eH9LlZOGJZJCDnSTE0B8/NAWRlQXZ3/44sIvvnNb+IXf/EXt32MdDqNSGT37W9a+ISQQ0sq\nBYyNAaOjQCKx+vPeXuDqVWB4WP/vVij/ytBI5xw+8pGPoKWlBbW1tfilX/olvP76629+/tBDD+FT\nn/oUPvCBD6CiogLf+c53sLy8jM9+9rPo6OhAS0sLPvWpTyEej+e1nBR8QsihJJEALl5UEe/vBy5c\nABYW/OfLy8D4ePZ3xsaAoIY6BwwMAD/5iX7/1q38le/Xf/3XcfXqVQwPD+POO+/EQw89lPX5n/3Z\nn+Hzn/88Zmdn8a53vQu/9Vu/hb6+Ply4cAFXrlxBb28vfud3fid/BQInXhFCDgG5JhgNDQE3b2bv\nV10N3Habvp6fBwJG9ZucPQuUlurrmzf1OEFuvx2orNx82Y4fP47x8XFEo+oh7+7uxl/+5V9m7TM2\nNobGxkbMz8+jpKQEDz30EGKxGL785S8D0B5BaWkpLl++jGPHdLmQ73znO3j44Ydx+fLlNc+91YlX\n9OETQg4lubwdwW2lpUAsppa+UVzsxR4AJidXH2NycmuCDwBPPfVUlg8/nU7j/Pnz+MY3voHx8XGI\nCEQEY2Njbwq6/QeA4eFhLC8v4+677846Rr79+hR8QsihpLp6tcsmOCgrApw8qe6ehQUdtD12LHv/\nwkJgcTF7W1HR1suy0sr+6le/imeeeQY9PT04duwYxsfH0dDQkLWfiDfAm5qaEIvFcOnSJTQ0NGy9\nAJuEPnxCyKGkuhpob1fRLigAmpqA5ubsfYqL1UVz990q/rFY9uctLUDQiC4qAurrd1622dlZxGIx\n1NTUYH5+Hp/73OeyBH4lkUgEn/jEJ/CZz3wGY2NjAICBgQF8+9vf3nlhgufJ69EIIWQPaWoC3vIW\n4K1vVfFfR1NzUl4OnDsHtLUBHR36urBwa8fIJeQf//jH0dLSgtbWVtx1111497vfveF3fv/3fx+d\nnZ249957UV1djfvvvx9vvPHG1gqzUVkP8qAoB20JIQCzZa4Fs2USQgjJCQWfEEJCAgWfhIpUClha\n0gk3gL5Opfa3TITsFQzLJKFhdBQYHATSaf1zTqM7IhGN1lgZ4UHIUYMWPgkFy8saj51O6/sbNzTP\nCqDbBgezp+UTchTJi+CLSK+I/EREfiQiL2e21YjIsyJySUS+JSJVgf0fEZErIvKaiLwvH2UgZD3m\n5/1r53SyTTwOJJN++9zc3peLkL0kXy6dNIBu51xwovJ5AM855/6riPw2gEcAnBeRcwAeAHAWQDuA\n50TkdsZfkt2kpMS/FtEJOOk0EA08AcEp9+Rg0dnZue7EpbDS2dm5pf3zJfiC1b2FDwF4T+b14wB6\noI3ABwE84ZxLAugVkSsA7gXwUp7KQsgqSkrUR2/rUrS1ZQ/WNjToJBxyMOk1/xvZEfkSfAfg2yKS\nAvC/nHNfBtDknBsBAOfcsIg0ZvZtA/Bi4LuDmW2E7CptbSrsS0uaV0VE3Tix2Oop94QcRfIl+Pc5\n526KSAOAZ0XkErQRCLItl81jjz325uvu7m50d3dvt4yEoKgoOznWVrMiEnIQ6enpQU9Pz4b75T21\ngog8CmAOwCegfv0REWkG8IJz7qyInAfgnHNfyOz/DIBHnXOrXDpMrUAIIVtn11IriEipiJRnXpcB\neB+AVwE8DeBjmd0+CuCpzOunATwoIkUichzASQAv77QchBBC1icfLp0mAH8lIi5zvK85554Vke8D\neFJEHgbQB43MgXPuoog8CeAigASAT9KMJ4SQ3YfZMgkh5IjBbJmEEBJyKPiEEBISKPiEEBISKPiE\nEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBIS\nKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiE\nEBIS8ib4IhIRkR+KyNOZ9zUi8qyIXBKRb4lIVWDfR0Tkioi8JiLvy1cZCCGErE0+LfzPALgYeH8e\nwHPOudMAngfwCACIyDkADwA4C+ADAL4kIpLHchBCCMlBXgRfRNoB/AqALwc2fwjA45nXjwP4cOb1\nBwE84ZxLOud6AVwBcG8+ykEIIWRt8mXh/wGA/wjABbY1OedGAMA5NwygMbO9DUB/YL/BzDZCCCG7\nSHSnBxCRXwUw4pz7sYh0r7OrW+ezNXnsscfefN3d3Y3u7vVOQQgh4aOnpwc9PT0b7ifObUuH/QFE\n/guAfwkgCaAEQAWAvwLwdgDdzrkREWkG8IJz7qyInAfgnHNfyHz/GQCPOudeynFst9PyEUJI2BAR\nOOdWjY3u2KXjnPucc67DOXcCwIMAnnfOPQTgrwF8LLPbRwE8lXn9NIAHRaRIRI4DOAng5Z2WgxBC\nyPrs2KWzDr8H4EkReRhAHzQyB865iyLyJDSiJwHgkzTjCSFk99mxS2c3oUuHEEK2zq65dAghhBwO\nKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiE\nEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBIS\nKPiEEBISKPiEEBISKPiEEBISdiz4IhITkZdE5Eci8qqIPJrZXiMiz4rIJRH5lohUBb7ziIhcEZHX\nROR9Oy0DIYSQjRHn3M4PIlLqnFsQkQIA/w/ApwH8UwDjzrn/KiK/DaDGOXdeRM4B+BqAdwBoB/Ac\ngNtdjoKISK7NhBBC1kFE4JyTldvz4tJxzi1kXsYARAE4AB8C8Hhm++MAPpx5/UEATzjnks65XgBX\nANybj3IQQghZm7wIvohERORHAIYBfNs59wqAJufcCAA454YBNGZ2bwPQH/j6YGYbIYSQXSSaj4M4\n59IA3iYilQD+SkTugFr5Wbtt59iPPfbYm6+7u7vR3d29zVISQsjRpKenBz09PRvulxcfftYBRf4z\ngAUAnwDQ7ZwbEZFmAC84586KyHkAzjn3hcz+zwB41Dn3Uo5j0YdPCCFbZNd8+CJSbxE4IlIC4B8D\neA3A0wA+ltntowCeyrx+GsCDIlIkIscBnATw8k7LQQghZH3y4dJpAfC4iESgDcifO+f+VkS+B+BJ\nEXkYQB+ABwDAOXdRRJ4EcBFAAsAnacYTQsjuk3eXTj6hS4cQQrbOroZlEkIIOfhQ8AkhJCRQ8Akh\nJCRQ8AkhJCTkZeIVOXpMTQGTk0A0CjQ2ArHYfpeIHAVSKeDWLWBhASgvBxoaAFk1tEh2C0bpkFWM\njgL9geQX0Shw7hxQWLh/ZSJHg0uXgLk5/76mBjhxYv/Kc1RhlA7ZNKOj2e+TSWBiYn/KQo4OCwvZ\nYg9oLzIe35/yhBEKPllFrk4VO1pkp6TTubfz3to7KPhkFfX12e8jEaC2dn/KQo4O5eVASUn2tooK\njg/tJfThk5yMjmp3u7AQaG4GSku39v1UChgZAebn9btNTToWQMJNIgHcvOkHbVtagIKC/S7V0WMt\nHz4Fn+wKV64AMzP+fVkZcObM/pWHkDDBQVuyZywvZ4s9oJb+wkLu/QkhewMFnxBCQgIFn+SdWAyo\nrMzeVla29XEAQkh+oQ+f7Arp9OpBWw7OEbI3cNCWEEJCAgdtCSEk5FDwCSEkJFDwCSEkJFDwCSEk\nJFDwyb6TSmkWxWRyv0tCyNGG2U3IvjI1BVy/rmGcIkB7uy64QgjJP7Twyb7hHNDX59PmOgcMDDA/\nOiG7xY4FX0TaReR5EfmZiLwqIp/ObK8RkWdF5JKIfEtEqgLfeURErojIayLyvp2WgRxO4vHVbhzn\ngMXF/SkPIUedfFj4SQCfdc7dAeDnAPymiJwBcB7Ac8650wCeB/AIAIjIOQAPADgL4AMAviTCVS3D\nSFHR6mUTRZiCgZDdYseC75wbds79OPN6DsBrANoBfAjA45ndHgfw4czrDwJ4wjmXdM71ArgC4N6d\nloMcPkSAri6fJz8SATo6uHYuIbtFXgdtRaQLwFsBfA9Ak3NuBNBGQURsKK4NwIuBrw1mtpEQUlkJ\n3HUXsLSkSdeYb4eQ3SNvgi8i5QD+AsBnnHNzIrIyCc62kuI89thjb77u7u5Gd3f3dotIDiiRCN04\nhOyEnp4e9PT0bLhfXpKniUgUwN8A+D/OuS9mtr0GoNs5NyIizQBecM6dFZHzAJxz7guZ/Z4B8Khz\n7qUcx2XyNEII2SK7nTztTwBcNLHP8DSAj2VefxTAU4HtD4pIkYgcB3ASwMt5KgchhJA12LGFLyL3\nAfgHAK9C3TYOwOegIv4kgGMA+gA84JybynznEQD/GkAC6gJ6do1j08InhJAtwnz4hBASEpgPnxBC\nQg4FnxBCQgIFnxBCQgIFnxBCQgIFnxBCQgIFnxBCQgIFnxBCQgJXvNok6bTmbi8q2u+SkN0mkQCG\nhzUvf0UF0NSk+X4IOexQ8DfB8DBw86aKfmkpcOKEZnYkRw/ngMuXNXsnAMzOqvCfOLG/5SIkH9Bu\n2YD5eWBw0C/Dt7AA3Lixv2Uiu8fsrBd7Y3KSC6yTowEFfwPm5lZvm53d+3KQvYFrr5GjDAV/A4qL\nV28rKdn7cpC9obx89e9bW+tX5SLkMMPkaZvg+nVgYkJfFxQAJ0+qMBAlnVbL+KhYx8kkMDLiB20b\nG4/OtZFwwGyZO2RhQaM3ysu5DJ+RSgG9vcDUlNZJc7P+kd1ncVFdi6WlND7IatYSfHZUNwmX4FvN\nwICKPaDiPzio9VRZub/lOuqMjGjdG/X1QGfn/pWHHB7owyfbZmZmc9tI/kingaGh7G1jY6sjiwjJ\nBQWfbJtccxE4P2F3SSR8iHCQ5eW9Lws5fFDwDxnpdO4Hfj9oa8sezygrA+rq9q882yGV0slWh4VY\nbHXkWEEB/fhkc3DQ9pDgHNDfr913QIW1o2P/o0eSSWB6WsMWKyv3vzybJR7X6Ku5OS17W5v6wg8D\nS0s6WD4/r+Lf0aHRRIQYjNI55IyOquAHaW/XPC9k61y+vHoC3R135J53cVBx7vA0sGRvYZTOIWet\nAdKdCr75hMPke3cu92zpmZmDLfjJpP5ZGfdC7OfnNSJoaUl7cO3tQGHh7p+X7A4U/ENCLkHeiTg5\nB/T1AePj+r6sTGeU2lyDqqrtH/ugI6L1uXKg8yCL/eCghmM6pzOBb7tt9xvpVAq4ckX/Azr5MJEA\nTp3a3fOS3YOCf0hoblZfuYlUUdHOrPvxcS/2AHDpkvqybeJUYyNw7Nj2j3/QOXYMuHrVD9hWVx/c\n+QOzs5qx1ZifB77/faChQcW/uXl3rO6ZGS/2wbKkUpx8eFjJi+CLyB8D+DUAI865t2S21QD4cwCd\nAHoBPOCcm8589giAhwEkAXzGOfdsPspxlCksBM6d866dysqd5WgPJoVbWtIHOWgx3roFtLQc3Rwy\nVVXAXXdpfcZiBzvKZWUCv6Eh3VZcrL/bzIzeG/l28eT67QsKuDbAYSZfP91XALx/xbbzAJ5zzp0G\n8DyARwBARM4BeADAWQAfAPAlEQ49bYZIRC3R6uqdP3TBmcNmxQVdGs6ttu6OGoWFGu10kMUeyP6t\nkkkV+eBvtbSUO6vrTqmoWB3909zMgeLDTF4E3zn3HQCTKzZ/CMDjmdePA/hw5vUHATzhnEs653oB\nXAFwbz7KQTZPfb1/mEtL1TXQ0OA/Ly0N10DuQaaqSsdXDMtbFGS3RPj224Hjx7W3d+oUcyUddnaz\nw97onBsBAOfcsIg0Zra3AXgxsN9gZhvZQyIRfYAXFtSSP3dOBwYXFtTiPcr++8OIiW48rr2S6Wn/\n2W4mUBPJbmzI4WYvPbTbCqh/7LHH3nzd3d2N7u7uPBWHANnugttv373zjIzoIHFBgQ42V1fv3rl2\ninOaFM7SI+djUtP0tA62lpVtPwIqElG/+okTOsYyO6s9M87FID09Pejp6dlwv7xNvBKRTgB/HRi0\nfQ1At3NuRESaAbzgnDsrIucBOOfcFzL7PQPgUefcSzmOyYlXR4CV2R0B4MwZFb+DyNWrPgsoALS2\nqnW9Xfr6/AxpQF1nHR1bO8aNGyrygEZonTzJhXjI2qw18Sqf4+2S+TOeBvCxzOuPAngqsP1BESkS\nkeMATgJ4OY/lIAeMYPinYQvKHDQWFrLFHtCQyO3mL4rHs8UeAG7eVPfZ5OTm8vjMzHixt2OunHVN\nyGbIV1jm/wbQDaBORG4AeBTA7wH4uog8DKAPGpkD59xFEXkSwEUACQCfPCpmfDyuluzcnFpf7e20\nwtaK2c61zfIFjY+r77ipaWeW9XZIJFZvS6c1OqaoaOfHW1hQa91mzJaU6FhKJLJ25NX8/Oa2Bc+Z\nSOixdzuixhpChmoeDphLJ4+89po+0EZhIXDnnUfvYZid1essK1t7sHB+XhN8LS1pQ5hIeBdONAqc\nPesFNJXS/aemsi1ZQP3VNTX5v4ZkUhuX6WktR1ub+tbTaeDVV/Vzo6xMXVDbwTngwgWtA0DdO4mE\numQAbdyiUT13VRXQ1eXj353Tepmb0x5BkIqK3DNegzNyV7p+kkntVYhone508tTAgP5ezunAbkfH\n0bvXDyvMpbPLLC9niz2gD/bc3MGdwbmSZFIFuqRkbTHo71cL1a6ro0PFMohz6gdfWtJ6KSrSxq++\n3v83sZ+c1IYhndb/5eXZWSunpjYn+PG4/pWWbk50+vq862ZxUct7551eJAcG/KDtTiKWRHQwvL9f\nxbuoyIc2zs9rUrzaWhX76Wk9b1eX1tuVK35m9dycv7aiotxlmpvLnpEbj+t1njmjv8WlS74hGxrS\n7dvptQDaUI2MZL8vKtLxDnJwoeDniYICfbhXdkgOy0zVW7dUlJxTUenqWi208Tjwyivak0mndb9z\n54Bf+7Xsqf1LS+q3vnnTZ3RsblZhC0a8pNPaeJhbIBrVclRV+eNtZi7A4KAXumhU88ysF6boXHZY\nY3BbQ4Na9KdPb3zezVJc7COgamt9L8bcMsGy2kzqoaHsXD/l5VqH1dUq/LlcNeu5foaHs3stiYQK\n9nYbs5X1Z2XfD8G3XlBpKdNEbwQ7YHkiGtX8M0Hs4TzoJBJe7AEV4L6+1QOV8/Ne7G2/ixdXC01B\ngXcrAPp/eHh1ryGRyBah+nptREzoYjEV4PUGTBcWsq3aZFLLvh4iuRvivcgC2d6uoi/iQyqD0UrW\nwK3sLQJ6bWVla/vlc0U92f1nLqUgubZtllyJ5vYj+dzQEPD669ozunxZDQiyNofE/jwctLerhWGD\ntrvhe94NFhdX90xSKRWElVP4V4pNUKCNZDLbkgX0/cpUDebqsYHN4mJ1p3R06PZ0WhuYRELdR11d\nq0U5l1W7tOR7IGvR1qYuJGMn8fFbIRLRSVRdXVrnV674tAgFBd49Vl6+ep3ajSZXlZer0TE6qu8L\nC/3i5tXVq1NC72QuRGOjuuOsjIWFez/AnkxmN/aA3nNNTZwlvhYU/Dxjg2+HCXMRBEU/Gl390NTV\naZd9dFRFPhZTN4Mta3jrlrpx4nF9GM0XXVys51jZ2xFR8bt+XUW9oEC/U1enjdDFi37fmRm13G2w\n08glgiUlG/vx6+p0v+lpvY6amr3NESOif6dPa50tL2vdmk+9rS07R05d3dozXtNpvQ4RvyhOPJ7d\nG2hoyA4RbWzc2XKU0ai686an9b6pqtregO38vDYc0aj28LbiAk0kcoe1xuMU/LVglA4BoELQ36/i\nUVCgQpyr4bp6VVPzJhJq1d17r+47N6eDgoZF8jQ1qRB0dKwtMM6puMViXjRyTdYSAe65Z/X3b970\n4wWFherDP6iTuoLY4Lb5w6NR9fUHG8blZa2TtdxNS0vqygj2kk6fPhxjRxMT2tgbRUXaiGwleujC\nheweZjSqWVDDHi3EKB2yLvX1auWaRb7WA3PbbeommJpSl4AJy8pBvIoK/fzUKRXyVEpFPBLR96Oj\nKlLV1dpLsNDBsTH9m5vTv+AgXNBqGxzUHoWIiuH4uJapq+vwWHeTk9n1lkzqdQVTXNi1TE6qvzqR\n0Ia4tFR7QaOjWgf2ey0t+dTWB52V7ph4XH/HlWNh63HbbT5qrLSUoaEbQcEnb1JQ4K3LsTEVmcJC\ntdKDE8is+x0kV3hfSYkeb25OfdXptArWjRvaaESj+tnQkAr74qIKljUik5O+TOauAFTkLCd8IqE9\njpoaPcalS9povfvdW7v28XG1lFMpdRttJyvk9LReW0lJdjz9Wiwurt42NaV1b9lKbdGbwUHvnvnZ\nz7R30NrqZ9x2dfljrPT9G86pa0xE62q/0xwHB+yNrabkLinJb0TVUYeCT1YxPJw90WdqSrva68Vs\n19WpUFl0SSTiQ/Ru3vSRNtPTaslNTWmjMTSk3zl1ysfjnzihYtTR4ccJKiv9+UdHgR/8QBuEsTE9\n1unTvjfQ1wf8/M9v3tIbHweefdaLTV8f8J73+AZmM9y4Afzf/+t9yhcvAr/yK+uL/srxh7ExFetI\nRP8vLKjffmxMhbqz04ePmliXlenni4u+Uc417yMe1wbN3B8HwfVTW5sdy28TwnbCwoJP0hec70EU\nCv4mSKVUtObn1fLazZWglpf9IF5VlVrX9nBPT/vIl4aGtQeHZ2ZUFJ3zrpqtsHK2ayql/tb1rN5I\nRCfyTE2p5VZd7f3OwfQC5p+1BblnZ/1+kYgKwPKyilddnXbvV/Yment9GW3AcmLCNzBb/W0uXcq2\nLJ3TbVsR/J/8JHsAcWYGeOON9WfoVlVpnY6MaB3Nz/sonbExrZuKCr2e5WWt26oqP1YBaB3F4z4q\nqaEh91jJ8HC2r3tpSc+7ctLcXtLWpve29SRbWnYW2jk9nb1s5a1b2TO6CQV/U1y96kPazLd89mz+\nz5NKaUyxdXXn5vRh7ujwAmJMT6vrYaXom/vEmJnJT3qCzXT/17LQqqvVAk2nVcDGx7OtWxOoggIV\nbntABweBO+7Ifa5IRI9XXa0PdjBW//bbt+bHzRXnv1XXQi43Si6XzUra2lT05+ayGyoT53hcLfbJ\nSX0djWrdWUhlJKK/79mz+nqt3ylX+dZy/ewVInr9+Wp0gnM/AH2Obt3a30btoEHB3wBb73VuTi2s\nykq1xnp7VbxqarY3SLSw4JeqM9E26zjI2JjOhlyZcdE+Wyn4Y2MqVrOzevNXVOg2E+KlJZ8/pro6\nt0A0NmZHyBQU7GwRjMZG4No19TcXFKggNzdrPRYX+2tOJPwMXxEtX64JSI2Nan3Pz+t+ra36u7S3\n6+vjxzdXrulp/Ssv9zOCjZXhnxvR1qbXaIhsfhZrQYF3WVlIa3m53g8WYtrZqQ1jaan2GiYm/HyP\n1taNI1sqKlbH4edjVqrN4TgIEwxzNdJHfZnOrULB3wARtZh/8hM/M7G2FujuVrG6eVMfwK24EVaG\nHNqkHxP84LFMhHIJc65tiYQKj4no6KgPUZyc1DA4s4IshcDK4zQ1+cHVkhIV6J3MQr1502eFBLxA\nVFerKI6Oqng1NmZ3v6PR3I3pHXeo9T815ccK3v/+rbkDVo5TtLSopZ9Oq9ifOLG1a3zHO/S7g4Na\njjvvXO2KCpJIaNlNqEX0+r/3PW8IdHX5lB0tLdlpC7YadtrUpI39xIQer64ue0lLwPcgNmPApNPa\n47RGpLRU620vZiuvRW3tagNhJ3MNjiIU/A0Q0VhfS7Q1NaUuife8R98vL6sFvdmojnRaBdBYWlI3\nTmenDlDeuKGWqglfY6OWoaEhO3+6bctF0KoxEQNUjMw3bAt4T06utt4nJ7VRisV8UrMzZ7afXdHy\nw6zcZouxW93V1QF///faAJiQnzu3+rvOeX+vLcG31ekawcFCQHsVx49vvydTWKiRQem0n1SVi2RS\nXYRzc17k29t9+onSUj1GWZle31ve4kV/J9gMX1t4JfhbLi6qkbC05Gf7rnVvGaOj2T2G+Xm9jysr\n929h+Kb8E8GxAAAYb0lEQVQmdeFcu6a/x7lzh2M+xl5Cwd+A8XG9ecrLfY7xwkIVzrY2FfzLl1Uk\nKyv1YZ2a0u5yW9tqiyeV8oKcTOpxbOJRUZEKwNCQni+40lJ5uVrjNlhZX5/7obLZqpOT3sdtsdwW\nuw7oQz43pw3NSpELNkiAtww3EoG1KC5e7S9OJPSYlZU++dXwsF9aENDXQ0N6DZWVvi5HR/W1xWun\n0yo29fXejbXRzM9cXf3ZWf0NgvXqnJ5vakrPWVWlZU2lVNhWutQ2so5tvQQ79siIni8W04bVRNTq\n5Pbbt+Z6Saf1no3Htd5WCp4JfTqt9W9BAnNzes7CQj9uYPdNPK6/X1mZ//5KS/rSJT1Oc7Me4+1v\n1xj5vcQG/IMD33vV+Fj01E5mHe8FFPwNqKzMnuIejerNPjSkIjA7q933mRngRz9SP3U0qiJ3993A\nffdlW2eFhfrQXL6sD5LdpOm0HnNyUkW4vl63//CH+uAWF6sFE4y3zkV1tR4jOPHGBvgsWiaV8lZo\nrgHLXIuA5IqZ3iytrVp/lotnfFzLYPnvLeb8+9/XfaqqdL/+fhXbEyd8KmYRFZbCQi/aQ0P6oF28\nqP+bmlR4Tp9WAbceRmWlD9urrNTwS3M3JRJa3yMjKmynTuk5hoZ8psl4HPi7v/MZRVtbgZ/7OT8+\nkkjovsXF+vslk1pGczUlEnq/pNO63/S0n4twxx3+HjMWFrTswfkRa2E9hhs3vBgPD/t7yYjHtfzX\nr6vAp1LAy5n15iy30fS09gYaGrIzkdoAcVWV1pHl0pmZ0eNZw5RIaFbVoiI/AS+Ic1o3hYX6em5O\nX+80+VquVdQmJnZf8BMJP/8D0Ou2e++gQcHfgNlZvfkvXtQfNB7XG2hiQq21VErFqqhI47ALC9XC\nWFgAvvtdbQxyJakKJg2zgS97wM09MTLiY8xFfDz8etZDba1vSCws0yzhhgYVOQuDW2td1Npan4AL\n8AOoW2VmRh/mWEwf5vFxb70XFGjdDQ6qwDQ2+tWumptVEG7c0DKaoLz6qtaFrRpVU6OvR0a0/hMJ\n/Z9K6TUMDmr33gRreNiL4fS01oPVeVWVTsm3MNCyMm1cb97UxnliQs9z44aWr7xcP4vFgPe+V63J\nnh7fqEUiWnaLJioo0N/jjTf0eKOjfrzm3Dk97uKilsn8++Xlet3Dw9pA3Xbb6t8+kdDj2WD85GT2\nbNOhId/4fPe7WscLC1oeS0EwPq4Nr7kPLTBhcTF7Nqyls77zTq3fn/5U68Qm6ZmRMTurz8vcnB+L\nsIlw09N+EZig8APerbZd99VmV1bLN2a0GfG41ttW1y3eCyj4GzA9rZa6ZX8cGFBrq6pKhWVoSB+Y\nmhrdNyigy8v6naBYJhL6PbsZbODXltAzwbZJRUGX0PKy932vR3Nz7jEFC4ssKlKhSSSy0xAkk/qQ\n23eD8dFbXarRrHPArwnb2qrnNLdSNKrXbg94QYG3pm3ikbkobtzQbTU1Kr6W2gHQMptwxOP6m7S3\nq9jbnIS5ORWh5mYtx49/rMdvbfVWf329lsXGUrq6dMD+6lU9z9Wr+psEXWDXrqng/+AH3m01O+t7\nLq2teozycjUERka0fDbr2HqJFRV+Nar6ei13MFvpzIyWcaVbbWjInzeV8o2GDVZaz+zCBZ862LJM\nlperwDqn5bFIJXufK6w0HtfzjI9rPZjrcX5eryMW0zqxFBqAuqpsoZxr13yvsr9f7+mTJ308fk3N\n9kOIm5r0dzaDKRrdvhtyKxzEkNe1oOBvQHGx3pjXr3t3xMSE3rSzs/q+uFhvMueyI2xisdX+8WhU\n/+xBLC5W4Tp+XIX4pZe8xdDfr/HVJogzMyoeVVV6I2/1wbBJSrduadnOnFGxq6xUURwYyF4AZbuL\nYwRFHVAxWFjw1m5vr/rcS0v1tYVROqdlqanR+rl2TY9TUKBiZXW5vOwHPAHdx+rT0jOYdX/tmlrr\nlo6huFhFf3bWr5IFeBdTQ4O+NlEKDkzGYlrGYB55c2MEc+IEV6myVM0mnsvLeo7FRZ/VcWFBX9fV\n+c9t4HZx0btzcoWoBrdVVOh1BsXG7pHgILWlqpiY0N+5osIbMeZaKSzMPeBZXOzdmoDes5b0rL/f\nuwlvvz3bUrcGOuhCXFrSurb8TXY92xX8qiofshqJ7N1M28rK1bmkDuoqdxT8DSgoUOtocVFvnsVF\n744oKNAbeGFBf3AbsCor033PnFkdFmbx2b29Kh51dbpvcbEKY1mZCub0tN7AJi5zc/owl5erCM3O\nahd/K66WGzf84GM6rY3H29+u5zOxB3zInaU2EFHBSKXU0o/H/Zq2x45l+6hv3dKyTkxoGRcXvWsq\nmdSH+/p1vQ6zYBcXfUx9U5OKz9iY7j8z41MZ2+ImtlSg+Zxrarx7ZmJCy1RXp9cwP6/XZb+Vncf8\n9ktL/vOKChWKigrfA6ur82vLnjzpZwjPzOg1dHZ6y9RE1USmtta7mmZmvLjZddrgqjVyNmhqczPS\n6WwDIpcvurzci29hofZszI1RX+9nC1dW6m9jLqfmZj2nhZAuL/vAAZvFHYtpPQwMaFmKirSBSCT0\nN5qc9OXo6FAXUV2dH0cK0ti42kdveZaCvdid+ttzpeHebRoa/CpvgNZBU9PelmGzUPA34MIF75NN\npbx/uaZGH4iKCv0rL/cTsU6d0v2Cs3EXF32u+Opqfchs4kxxsQq8+YgLC/WmNWuyrEwf6s7ObB/u\njRtaloqKzWWINLExH3FhoZZhcVH/Llzwg1yW3iAW8yFuIuq3LSrS8pWU6H533qnl+PrXdRxjcVHP\ncfy4is/UlLpDXn9dG4FkUr8Ti/nB7okJP5loedlbtq2tev2trToXor9fy9fUpNcvonXT1uYbJEs3\n4JzuPzurwmnRVsmkCuGNG74n0toKvPWtKlytrV4oT5zQ846P+xDQ1lbfy/vxj7XnUFen1zg6qtd1\n8qSKnPX8Skp0/5YWPWdzs/5u6bSOS1RWqsvJFhq3Hkdvrx8PsB5OPK5lt6gi62nab2oLx1tkVWmp\n3ouvvOIt0dpa4P77tW5PntSyx+O+wRsc1HI3NGhoqI03Xb/ue2tm9AD6Hfu977tPw2snJvyC9eYm\nbGnxUWBNTVpvFnba2KjlsbUWNotzfu3k/YiOsbxPds8c1AgdgIK/LouLfqBRxFvhbW1qzfT1efE3\n//HcXPbAaVub7hPM1zI/rw9Q0GVSXb06SsOyGp4+rQ9AMArBHkh7EG3hkFzYfqWlaq1dvaoP1l13\n6USfCxfUlTQwoNdrYwWAPrAtLX6AzWbIjo2paJ84AfzRH+l3rl71lvzsrB7XYv0jET1nOq3HnpjQ\n+lxe9r2W8XEVFJsAVFys+8ZiPhTSkosNDenxbCaqhcbW1fkIqKEh/X5pqYqK9QrMgm5u9gPux46p\nMB07pr/Z8LAvT3m5HttyBFVU6DFu3dLrKC1VEVtc1HJbDH1xsZ73jju0Iejv95ZwebneN3av2DjE\nzZt6XrsnKiu9xTo7q++tnhcWtD4mJ7UeFhbUhWVzFEZGgBdf1DGG2VmNKLJxlcZGP+YUj+t120xf\nG7MAslN4XLqk57DFamzWdCyWLdA2Wc8av+CEsdZWP0GqvNyHOBcX63X89Kd6r5WVaQ92o4lcMzPa\nKNpymS0tei0bDfxadJDdl/ngIAu9QcFfh95evTELC/UBW1rSB+W++7wfNJn01tvYWHYu7+FhPwC3\nMu57fHy1j7y8XG/Y0VEfztfe7q0fm3i1uKgPcDAKYGDAr5UaZGJChSaZBL79bY3UcE6P/93v+hQC\ntniJ5bOx8yeTaoGbpW8ukuJijUpJJvWzeNynObC6SKVUtOz6i4p842OCaA/+3JyKq00Ks+s0F9n0\ntJatuNg3cubv/sEP9L31GGx94YkJ3dd8wrOzahlfu+bDCFta9DxvvKENVEkJ8M1vetH9wQ+0DPY7\nXr/uJ0fNz+uxx8b0Xhkc1M8iEa3bkRHtlb34ol5nUZEeLxZTq3l6Whuot79d6+36dT1OMqn3QDoN\nvO1tes0TE7pvcXF2qOTVq1ruigotTzyu96dZ1Lbf4mL2JDdAz29uJau/XAI7NqYNjUWm2aIs5sqo\nrPQN7OKi7m+9X0AbscpK766x335xUXt95vKamfEJ1ebn9TrXC0O28NJEwjfub7yhvdHTp9d27cTj\n6s60sY7ycn0O9iKiZ7/ZN8EXkfsB/CF0IfU/ds59Yb/KkotUSkWorMznMUmndYWnd77T71Nd7a27\n+vrVU/JzrQML5N5WVaUPvkUARaO+m1hWpmMClg64qyvbJ2ox30Gfr+X8Md/8pUs+QmdkxHf7i4u9\n0Nq57fpsMNQyMgYXJg/mwAG80FdU+M9SqezP7c/CWS1PEaCiaNdgYXs2c9UailhMj22T1fr7s336\ny8v6Z+MsFlUSifjxFxvYXVjQ38yu06KqXn3Vp36wRqO2Vj+3hqC0VAXGXCgWcWIuiclJbVjM1VNU\n5N05yaQfu7l5U3uK8biKaTBxnkUpAb6RF8nOq3TtmnfDmbXc1+eF3azXsrLVuXRWDgIvL2sjkCse\n3gIWbEA6nfZjFs5lp16+ccOP7xhzc6v98/39/t6w3FLWi7HvrMfSktbX3JzvkTqnxxgY8Kk8VnLz\nZvbA9tycd7MddfZF8EUkAuC/A3gvgCEAr4jIU8651/ejPLkwkWhv95NprKtqWCyzhRsODmYLrsVS\nA95/b+Qa1LE1TsfGfHrk4Gi/rejT0qKiFEwnUFa2Op+PWePBa7Jsi8PDPqLCfPsreyEr0xUE3wcb\nrJUZCk2kLXtjcL3cYJKyggJvzVt9mavAhC94HIsgikSyQweDKz4Fr7WoSB9sc0FYqKBz+pm5RAC/\nFvH0tA87TCT8GIGFdtoksURC6zES0YahqMiL8/Ky1nNBgYqPWZomypGId/0Bes7KSv2LRv3kM3Ox\nlJZqmSwraDCEMpXSY4ro8c1FY3X31rfq6+ZmP+cA0DKbWAYpL9djBn9TG4uoqPCzSQF/b87OZseh\nFxfrcYN5oXKF9QbDPq2RsR7DWt8JEotpHQfF28Jqc0U05TrvetuOIvtl4d8L4Ipzrg8AROQJAB8C\ncGAEv6jIW0e33eZzkK+M641GvXjX1KhFbdEOHR2+m3jmjIqGDdquFXoWiWy8xFthoQ6QDQz4Qd1c\nGSJXWmpnz2pDYeKwuOjdQDbgVVjoJ4VFo15gbNAzKMTB8gD+2lpavB++sFD/B106S0v6MFuESXm5\n1tX8vDaMxcW679SUDwOMRvWc5o93TkXMQk3NTWDJv2Ix7145dcrPbrb8OzYgbXlsSkv1d7Reh/Uy\n7D5oafE5hurrveuro0OPPz+vv31hoR57cVEt3NpaPVZJiRf1hYXslAxVVVoHdXX+nist1f2OH9dr\nMKs+mdRzx2L6nTNn1KIvL9ftb3ubzhu58069NjM4zN9ujUFRkV7LSsFvadFzB1N4mGumvt6PFVg0\nUUlJ7uR7weSAtbW5126wjKBWBzbeYuXbKK1xJKJ1bI2Y5Zcyo2Ytysv191q5LQzsyyLmIvJPAbzf\nOfdvMu//JYB7nXOfXrHfvi5ibt3s2Vm9sdvbNxfyZQ/lXiwhZwtfrMXAgO96z86qH7+/3wuqpXWw\nyBAbzLJBShunsLBGc5MERd6suLo64OGHVSxGRtRPurzs1xCwtBIW/WF5a06f9sfr7/fuJou+sAHz\noKunqUndZ9XV6qq6dMlblPX1WlZroC2V8sCA7/XYYucWJVJXp4Or0aimGrD1Y21Q1o5hIZhLS1q2\njg7gH/0jFeAXXtA6jUZVwG6/3edYsfGXoiLvNpua0sbdooOc0/ESE1TLhTMxofVhLgdbvKSzU7e/\n9JIX7q4u4J//881lrXRO3S/mpqqvX3/Ac2ZG3VPWk6mt9YbG669ni2htrdapNYC5iMfV5269tMZG\n/V4qpffFZp+fZFIbc2uoS0r0t10r0ieV8pPyrKxdXfu/5GM+WWsR8wMv+I8++uib77u7u9Hd3b2X\nRT0SLC3pQ2UuBUu/W1AAvPaaPjBnzvioFHP9XLyo4mbjGQUFKjIdHbrfO96hD8lXv6oP60c+4mPb\nTdD6+rzr6MUX1Vp85zv1f0mJHm9hQV1MloxsZES/Y3ldZma0d7K4qD2Uzk61RGdnffz8zIzPHdPb\nqw1HdbUKdTyun9tAYTzuw/hsu8WcFxaqqC0sqIDduuUtyWD+fAuFLS3Vc5aX6/HGx/W6ior0u4mE\nCqlZ7OaeMZG1QelgorKFBd8DSSR032AqZ8BPdrKxipERfW3pEbaCCfhmokxsrQULzQ1uv3VL67ei\nQn/LzZbDxlx2uoqczZHYbE4eCzTYz5TO+aKnpwc9PT1vvv/85z9/oAT/XQAec87dn3l/HoBbOXC7\n3xZ+WLl1y0/DB/yEHpHtZQK0OHyjoEAFfCux1ltlo57PzZtqxRuxmM9TFLRWLYqlpcUvJt7Z6V11\nuVYdyzeplC5cHkxqd+zYxq4/El4OmoVfAOASdND2JoCXAfyGc+61FftR8PcJc0OYW2SnU9Tn5vzi\n0g0Nuyv2m2Vy0q/+1djoLUyzVpeWvG/c9rOBS0uPvFe+30RCx4AszHS3GxlyuDlQgg+8GZb5Rfiw\nzN/LsQ8FnxBCtsiBE/zNQMEnhJCts5bgH4LJwIQQQvIBBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkIC\nBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8Q\nQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkLCjgRfRP6ZiFwQkZSI\n3LPis0dE5IqIvCYi7wtsv0dEfioil0XkD3dyfkIIIZtnpxb+qwD+CYC/D24UkbMAHgBwFsAHAHxJ\nRCTz8f8E8K+dc6cAnBKR9++wDLtKT0/PfhfhwMC68LAuPKwLz0Gvix0JvnPuknPuCgBZ8dGHADzh\nnEs653oBXAFwr4g0A6hwzr2S2e+rAD68kzLsNgf9B9xLWBce1oWHdeE56HWxWz78NgD9gfeDmW1t\nAAYC2wcy2wghhOwy0Y12EJFvA2gKbgLgAPwn59xf71bBCCGE5Bdxzu38ICIvAPgPzrkfZt6fB+Cc\nc1/IvH8GwKMA+gC84Jw7m9n+IID3OOf+7RrH3XnhCCEkhDjnVrraN7bwt0Dw4E8D+JqI/AHUZXMS\nwMvOOSci0yJyL4BXAPwrAP9tKwUmhBCyPXYalvlhEekH8C4AfyMi/wcAnHMXATwJ4CKAvwXwSee7\nEr8J4I8BXAZwxTn3zE7KQAghZHPkxaVDCCHk4MOZtusgIveLyOuZSWK/vd/l2UtEpF1EnheRn4nI\nqyLy6cz2GhF5VkQuici3RKRqv8u6F4hIRER+KCJPZ96HtR6qROTrmQmVPxORd4a4Lv59ZuLpT0Xk\nayJSdNDrgoK/BiISAfDfAbwfwB0AfkNEzuxvqfaUJIDPOufuAPBzAH4zc/3nATznnDsN4HkAj+xj\nGfeSz0BdlEZY6+GLAP42E3hxN4DXEcK6EJFWAP8OwD3OubdAx0N/Awe8Lij4a3MvdIyhzzmXAPAE\ndEJZKHDODTvnfpx5PQfgNQDt0Dp4PLPb4zjgE+fygYi0A/gVAF8ObA5jPVQC+AXn3FcAIDOxchoh\nrIsMBQDKRCQKoAQ63+hA1wUFf21WTh4L7SQxEekC8FYA3wPQ5JwbAbRRANC4fyXbM/4AwH+Ezj8x\nwlgPxwGMichXMu6tPxKRUoSwLpxzQwB+H8ANqNBPO+eewwGvCwo+WRcRKQfwFwA+k7H0V47yH+lR\nfxH5VQAjmd7OemHCR7oeMkQB3APgfzjn7gEwD3VhhOqeAAARqYZa850AWqGW/r/AAa8LCv7aDALo\nCLxvz2wLDZmu6l8A+FPn3FOZzSMi0pT5vBnA6H6Vb4+4D8AHReQagD8D8Esi8qcAhkNWD4D2cvud\nc9/PvP8GtAEI2z0BAL8M4JpzbsI5lwLwVwB+Hge8Lij4a/MKgJMi0ikiRQAehE4oCxN/AuCic+6L\ngW1PA/hY5vVHATy18ktHCefc55xzHc65E9B74Hnn3EMA/hohqgcAyLgq+kXkVGbTewH8DCG7JzLc\nAPAuESnOZAJ+L3RQ/0DXBePw10FE7odGJUQA/LFz7vf2uUh7hojcB+AfoCmwXebvcwBehk6qOwZN\nlfGAc25qv8q5l4jIe6ApRD4oIrUIYT2IyN3QwetCANcAfBw6eBnGungUagQkAPwIwCcAVOAA1wUF\nnxBCQgJdOoQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhL+P19W\nzfGfDXAJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s1 = thinkplot.Scatter(males.Age, males.Fare)\n", + "thinkplot.Show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is definitely clear that the majority of males were younger and spent less on their tickets, while there is much more variation for females. It does seem that more females spent more in tickets, regardless of age, so it seems likely that there are more females in pclass 1. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/DataExploration.ipynb b/DataExploration.ipynb new file mode 100644 index 0000000..59cdf73 --- /dev/null +++ b/DataExploration.ipynb @@ -0,0 +1,3020 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Shivali Chandra\n", + "Data Exploration\n", + "1/25/16" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale2210A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female3810PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale2600STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female351011380353.1000C123S
4503Allen, Mr. William Henrymale35003734508.0500NaNS
5603Moran, Mr. JamesmaleNaN003308778.4583NaNQ
6701McCarthy, Mr. Timothy Jmale54001746351.8625E46S
7803Palsson, Master. Gosta Leonardmale23134990921.0750NaNS
8913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female270234774211.1333NaNS
91012Nasser, Mrs. Nicholas (Adele Achem)female141023773630.0708NaNC
101113Sandstrom, Miss. Marguerite Rutfemale411PP 954916.7000G6S
111211Bonnell, Miss. Elizabethfemale580011378326.5500C103S
121303Saundercock, Mr. William Henrymale2000A/5. 21518.0500NaNS
131403Andersson, Mr. Anders Johanmale391534708231.2750NaNS
141503Vestrom, Miss. Hulda Amanda Adolfinafemale14003504067.8542NaNS
151612Hewlett, Mrs. (Mary D Kingcome)female550024870616.0000NaNS
161703Rice, Master. Eugenemale24138265229.1250NaNQ
171812Williams, Mr. Charles EugenemaleNaN0024437313.0000NaNS
181903Vander Planke, Mrs. Julius (Emelia Maria Vande...female311034576318.0000NaNS
192013Masselmani, Mrs. FatimafemaleNaN0026497.2250NaNC
202102Fynney, Mr. Joseph Jmale350023986526.0000NaNS
212212Beesley, Mr. Lawrencemale340024869813.0000D56S
222313McGowan, Miss. Anna \"Annie\"female15003309238.0292NaNQ
232411Sloper, Mr. William Thompsonmale280011378835.5000A6S
242503Palsson, Miss. Torborg Danirafemale83134990921.0750NaNS
252613Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...female381534707731.3875NaNS
262703Emir, Mr. Farred ChehabmaleNaN0026317.2250NaNC
272801Fortune, Mr. Charles Alexandermale193219950263.0000C23 C25 C27S
282913O'Dwyer, Miss. Ellen \"Nellie\"femaleNaN003309597.8792NaNQ
293003Todoroff, Mr. LaliomaleNaN003492167.8958NaNS
.......................................
86186202Giles, Mr. Frederick Edwardmale21102813411.5000NaNS
86286311Swift, Mrs. Frederick Joel (Margaret Welles Ba...female48001746625.9292D17S
86386403Sage, Miss. Dorothy Edith \"Dolly\"femaleNaN82CA. 234369.5500NaNS
86486502Gill, Mr. John Williammale240023386613.0000NaNS
86586612Bystrom, Mrs. (Karolina)female420023685213.0000NaNS
86686712Duran y More, Miss. Asuncionfemale2710SC/PARIS 214913.8583NaNC
86786801Roebling, Mr. Washington Augustus IImale3100PC 1759050.4958A24S
86886903van Melkebeke, Mr. PhilemonmaleNaN003457779.5000NaNS
86987013Johnson, Master. Harold Theodormale41134774211.1333NaNS
87087103Balkic, Mr. Cerinmale26003492487.8958NaNS
87187211Beckwith, Mrs. Richard Leonard (Sallie Monypeny)female47111175152.5542D35S
87287301Carlsson, Mr. Frans Olofmale33006955.0000B51 B53 B55S
87387403Vander Cruyssen, Mr. Victormale47003457659.0000NaNS
87487512Abelson, Mrs. Samuel (Hannah Wizosky)female2810P/PP 338124.0000NaNC
87587613Najib, Miss. Adele Kiamie \"Jane\"female150026677.2250NaNC
87687703Gustafsson, Mr. Alfred Ossianmale200075349.8458NaNS
87787803Petroff, Mr. Nedeliomale19003492127.8958NaNS
87887903Laleff, Mr. KristomaleNaN003492177.8958NaNS
87988011Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)female56011176783.1583C50C
88088112Shelley, Mrs. William (Imanita Parrish Hall)female250123043326.0000NaNS
88188203Markun, Mr. Johannmale33003492577.8958NaNS
88288303Dahlberg, Miss. Gerda Ulrikafemale2200755210.5167NaNS
88388402Banfield, Mr. Frederick Jamesmale2800C.A./SOTON 3406810.5000NaNS
88488503Sutehall, Mr. Henry Jrmale2500SOTON/OQ 3920767.0500NaNS
88588603Rice, Mrs. William (Margaret Norton)female390538265229.1250NaNQ
88688702Montvila, Rev. Juozasmale270021153613.0000NaNS
88788811Graham, Miss. Margaret Edithfemale190011205330.0000B42S
88888903Johnston, Miss. Catherine Helen \"Carrie\"femaleNaN12W./C. 660723.4500NaNS
88989011Behr, Mr. Karl Howellmale260011136930.0000C148C
89089103Dooley, Mr. Patrickmale32003703767.7500NaNQ
\n", + "

891 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "5 6 0 3 \n", + "6 7 0 1 \n", + "7 8 0 3 \n", + "8 9 1 3 \n", + "9 10 1 2 \n", + "10 11 1 3 \n", + "11 12 1 1 \n", + "12 13 0 3 \n", + "13 14 0 3 \n", + "14 15 0 3 \n", + "15 16 1 2 \n", + "16 17 0 3 \n", + "17 18 1 2 \n", + "18 19 0 3 \n", + "19 20 1 3 \n", + "20 21 0 2 \n", + "21 22 1 2 \n", + "22 23 1 3 \n", + "23 24 1 1 \n", + "24 25 0 3 \n", + "25 26 1 3 \n", + "26 27 0 3 \n", + "27 28 0 1 \n", + "28 29 1 3 \n", + "29 30 0 3 \n", + ".. ... ... ... \n", + "861 862 0 2 \n", + "862 863 1 1 \n", + "863 864 0 3 \n", + "864 865 0 2 \n", + "865 866 1 2 \n", + "866 867 1 2 \n", + "867 868 0 1 \n", + "868 869 0 3 \n", + "869 870 1 3 \n", + "870 871 0 3 \n", + "871 872 1 1 \n", + "872 873 0 1 \n", + "873 874 0 3 \n", + "874 875 1 2 \n", + "875 876 1 3 \n", + "876 877 0 3 \n", + "877 878 0 3 \n", + "878 879 0 3 \n", + "879 880 1 1 \n", + "880 881 1 2 \n", + "881 882 0 3 \n", + "882 883 0 3 \n", + "883 884 0 2 \n", + "884 885 0 3 \n", + "885 886 0 3 \n", + "886 887 0 2 \n", + "887 888 1 1 \n", + "888 889 0 3 \n", + "889 890 1 1 \n", + "890 891 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38 1 \n", + "2 Heikkinen, Miss. Laina female 26 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 \n", + "4 Allen, Mr. William Henry male 35 0 \n", + "5 Moran, Mr. James male NaN 0 \n", + "6 McCarthy, Mr. Timothy J male 54 0 \n", + "7 Palsson, Master. Gosta Leonard male 2 3 \n", + "8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27 0 \n", + "9 Nasser, Mrs. Nicholas (Adele Achem) female 14 1 \n", + "10 Sandstrom, Miss. Marguerite Rut female 4 1 \n", + "11 Bonnell, Miss. Elizabeth female 58 0 \n", + "12 Saundercock, Mr. William Henry male 20 0 \n", + "13 Andersson, Mr. Anders Johan male 39 1 \n", + "14 Vestrom, Miss. Hulda Amanda Adolfina female 14 0 \n", + "15 Hewlett, Mrs. (Mary D Kingcome) female 55 0 \n", + "16 Rice, Master. Eugene male 2 4 \n", + "17 Williams, Mr. Charles Eugene male NaN 0 \n", + "18 Vander Planke, Mrs. Julius (Emelia Maria Vande... female 31 1 \n", + "19 Masselmani, Mrs. Fatima female NaN 0 \n", + "20 Fynney, Mr. Joseph J male 35 0 \n", + "21 Beesley, Mr. Lawrence male 34 0 \n", + "22 McGowan, Miss. Anna \"Annie\" female 15 0 \n", + "23 Sloper, Mr. William Thompson male 28 0 \n", + "24 Palsson, Miss. Torborg Danira female 8 3 \n", + "25 Asplund, Mrs. Carl Oscar (Selma Augusta Emilia... female 38 1 \n", + "26 Emir, Mr. Farred Chehab male NaN 0 \n", + "27 Fortune, Mr. Charles Alexander male 19 3 \n", + "28 O'Dwyer, Miss. Ellen \"Nellie\" female NaN 0 \n", + "29 Todoroff, Mr. Lalio male NaN 0 \n", + ".. ... ... ... ... \n", + "861 Giles, Mr. Frederick Edward male 21 1 \n", + "862 Swift, Mrs. Frederick Joel (Margaret Welles Ba... female 48 0 \n", + "863 Sage, Miss. Dorothy Edith \"Dolly\" female NaN 8 \n", + "864 Gill, Mr. John William male 24 0 \n", + "865 Bystrom, Mrs. (Karolina) female 42 0 \n", + "866 Duran y More, Miss. Asuncion female 27 1 \n", + "867 Roebling, Mr. Washington Augustus II male 31 0 \n", + "868 van Melkebeke, Mr. Philemon male NaN 0 \n", + "869 Johnson, Master. Harold Theodor male 4 1 \n", + "870 Balkic, Mr. Cerin male 26 0 \n", + "871 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) female 47 1 \n", + "872 Carlsson, Mr. Frans Olof male 33 0 \n", + "873 Vander Cruyssen, Mr. Victor male 47 0 \n", + "874 Abelson, Mrs. Samuel (Hannah Wizosky) female 28 1 \n", + "875 Najib, Miss. Adele Kiamie \"Jane\" female 15 0 \n", + "876 Gustafsson, Mr. Alfred Ossian male 20 0 \n", + "877 Petroff, Mr. Nedelio male 19 0 \n", + "878 Laleff, Mr. Kristo male NaN 0 \n", + "879 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56 0 \n", + "880 Shelley, Mrs. William (Imanita Parrish Hall) female 25 0 \n", + "881 Markun, Mr. Johann male 33 0 \n", + "882 Dahlberg, Miss. Gerda Ulrika female 22 0 \n", + "883 Banfield, Mr. Frederick James male 28 0 \n", + "884 Sutehall, Mr. Henry Jr male 25 0 \n", + "885 Rice, Mrs. William (Margaret Norton) female 39 0 \n", + "886 Montvila, Rev. Juozas male 27 0 \n", + "887 Graham, Miss. Margaret Edith female 19 0 \n", + "888 Johnston, Miss. Catherine Helen \"Carrie\" female NaN 1 \n", + "889 Behr, Mr. Karl Howell male 26 0 \n", + "890 Dooley, Mr. Patrick male 32 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S \n", + "5 0 330877 8.4583 NaN Q \n", + "6 0 17463 51.8625 E46 S \n", + "7 1 349909 21.0750 NaN S \n", + "8 2 347742 11.1333 NaN S \n", + "9 0 237736 30.0708 NaN C \n", + "10 1 PP 9549 16.7000 G6 S \n", + "11 0 113783 26.5500 C103 S \n", + "12 0 A/5. 2151 8.0500 NaN S \n", + "13 5 347082 31.2750 NaN S \n", + "14 0 350406 7.8542 NaN S \n", + "15 0 248706 16.0000 NaN S \n", + "16 1 382652 29.1250 NaN Q \n", + "17 0 244373 13.0000 NaN S \n", + "18 0 345763 18.0000 NaN S \n", + "19 0 2649 7.2250 NaN C \n", + "20 0 239865 26.0000 NaN S \n", + "21 0 248698 13.0000 D56 S \n", + "22 0 330923 8.0292 NaN Q \n", + "23 0 113788 35.5000 A6 S \n", + "24 1 349909 21.0750 NaN S \n", + "25 5 347077 31.3875 NaN S \n", + "26 0 2631 7.2250 NaN C \n", + "27 2 19950 263.0000 C23 C25 C27 S \n", + "28 0 330959 7.8792 NaN Q \n", + "29 0 349216 7.8958 NaN S \n", + ".. ... ... ... ... ... \n", + "861 0 28134 11.5000 NaN S \n", + "862 0 17466 25.9292 D17 S \n", + "863 2 CA. 2343 69.5500 NaN S \n", + "864 0 233866 13.0000 NaN S \n", + "865 0 236852 13.0000 NaN S \n", + "866 0 SC/PARIS 2149 13.8583 NaN C \n", + "867 0 PC 17590 50.4958 A24 S \n", + "868 0 345777 9.5000 NaN S \n", + "869 1 347742 11.1333 NaN S \n", + "870 0 349248 7.8958 NaN S \n", + "871 1 11751 52.5542 D35 S \n", + "872 0 695 5.0000 B51 B53 B55 S \n", + "873 0 345765 9.0000 NaN S \n", + "874 0 P/PP 3381 24.0000 NaN C \n", + "875 0 2667 7.2250 NaN C \n", + "876 0 7534 9.8458 NaN S \n", + "877 0 349212 7.8958 NaN S \n", + "878 0 349217 7.8958 NaN S \n", + "879 1 11767 83.1583 C50 C \n", + "880 1 230433 26.0000 NaN S \n", + "881 0 349257 7.8958 NaN S \n", + "882 0 7552 10.5167 NaN S \n", + "883 0 C.A./SOTON 34068 10.5000 NaN S \n", + "884 0 SOTON/OQ 392076 7.0500 NaN S \n", + "885 5 382652 29.1250 NaN Q \n", + "886 0 211536 13.0000 NaN S \n", + "887 0 112053 30.0000 B42 S \n", + "888 2 W./C. 6607 23.4500 NaN S \n", + "889 0 111369 30.0000 C148 C \n", + "890 0 370376 7.7500 NaN Q \n", + "\n", + "[891 rows x 12 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Import needed libraries and get data\n", + "%matplotlib inline\n", + "\n", + "import thinkstats2\n", + "import thinkplot\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "titanic_df = pd.read_csv('train.csv')\n", + "titanic_df" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassAgeSibSpParchFare
count714.000000714.000000714.000000714.000000714.000000714.000000714.000000
mean448.5826330.4061622.23669529.6991180.5126050.43137334.694514
std259.1195240.4914600.83825014.5264970.9297830.85328952.918930
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%222.2500000.0000001.00000020.1250000.0000000.0000008.050000
50%445.0000000.0000002.00000028.0000000.0000000.00000015.741700
75%677.7500001.0000003.00000038.0000001.0000001.00000033.375000
max891.0000001.0000003.00000080.0000005.0000006.000000512.329200
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Age SibSp \\\n", + "count 714.000000 714.000000 714.000000 714.000000 714.000000 \n", + "mean 448.582633 0.406162 2.236695 29.699118 0.512605 \n", + "std 259.119524 0.491460 0.838250 14.526497 0.929783 \n", + "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", + "25% 222.250000 0.000000 1.000000 20.125000 0.000000 \n", + "50% 445.000000 0.000000 2.000000 28.000000 0.000000 \n", + "75% 677.750000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 5.000000 \n", + "\n", + " Parch Fare \n", + "count 714.000000 714.000000 \n", + "mean 0.431373 34.694514 \n", + "std 0.853289 52.918930 \n", + "min 0.000000 0.000000 \n", + "25% 0.000000 8.050000 \n", + "50% 0.000000 15.741700 \n", + "75% 1.000000 33.375000 \n", + "max 6.000000 512.329200 " + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic_df.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Looking at the above data, a few factors immediately stand out to me to visualize. These include pclass, sex, age, and fare. I also thought it could be potentially useful or illuminating to create a visualization of passenger survival rate by cabin number, but there does not seem to be enough data to be able to gain any information. However, for each of the factors I will be analyzing I would like to keep the data size the same, so I will filter out those passengers who have NaN in any of the columns I chose to analyze. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale2210A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female3810PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale2600STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female351011380353.1000C123S
4503Allen, Mr. William Henrymale35003734508.0500NaNS
6701McCarthy, Mr. Timothy Jmale54001746351.8625E46S
7803Palsson, Master. Gosta Leonardmale23134990921.0750NaNS
8913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female270234774211.1333NaNS
91012Nasser, Mrs. Nicholas (Adele Achem)female141023773630.0708NaNC
101113Sandstrom, Miss. Marguerite Rutfemale411PP 954916.7000G6S
111211Bonnell, Miss. Elizabethfemale580011378326.5500C103S
121303Saundercock, Mr. William Henrymale2000A/5. 21518.0500NaNS
131403Andersson, Mr. Anders Johanmale391534708231.2750NaNS
141503Vestrom, Miss. Hulda Amanda Adolfinafemale14003504067.8542NaNS
151612Hewlett, Mrs. (Mary D Kingcome)female550024870616.0000NaNS
161703Rice, Master. Eugenemale24138265229.1250NaNQ
181903Vander Planke, Mrs. Julius (Emelia Maria Vande...female311034576318.0000NaNS
202102Fynney, Mr. Joseph Jmale350023986526.0000NaNS
212212Beesley, Mr. Lawrencemale340024869813.0000D56S
222313McGowan, Miss. Anna \"Annie\"female15003309238.0292NaNQ
232411Sloper, Mr. William Thompsonmale280011378835.5000A6S
242503Palsson, Miss. Torborg Danirafemale83134990921.0750NaNS
252613Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...female381534707731.3875NaNS
272801Fortune, Mr. Charles Alexandermale193219950263.0000C23 C25 C27S
303101Uruchurtu, Don. Manuel Emale4000PC 1760127.7208NaNC
333402Wheadon, Mr. Edward Hmale6600C.A. 2457910.5000NaNS
343501Meyer, Mr. Edgar Josephmale2810PC 1760482.1708NaNC
353601Holverson, Mr. Alexander Oskarmale421011378952.0000NaNS
373803Cann, Mr. Ernest Charlesmale2100A./5. 21528.0500NaNS
383903Vander Planke, Miss. Augusta Mariafemale182034576418.0000NaNS
.......................................
85685711Wick, Mrs. George Dennick (Mary Hitchcock)female451136928164.8667NaNS
85785811Daly, Mr. Peter Denismale510011305526.5500E17S
85885913Baclini, Mrs. Solomon (Latifa Qurban)female2403266619.2583NaNC
86086103Hansen, Mr. Claus Petermale412035002614.1083NaNS
86186202Giles, Mr. Frederick Edwardmale21102813411.5000NaNS
86286311Swift, Mrs. Frederick Joel (Margaret Welles Ba...female48001746625.9292D17S
86486502Gill, Mr. John Williammale240023386613.0000NaNS
86586612Bystrom, Mrs. (Karolina)female420023685213.0000NaNS
86686712Duran y More, Miss. Asuncionfemale2710SC/PARIS 214913.8583NaNC
86786801Roebling, Mr. Washington Augustus IImale3100PC 1759050.4958A24S
86987013Johnson, Master. Harold Theodormale41134774211.1333NaNS
87087103Balkic, Mr. Cerinmale26003492487.8958NaNS
87187211Beckwith, Mrs. Richard Leonard (Sallie Monypeny)female47111175152.5542D35S
87287301Carlsson, Mr. Frans Olofmale33006955.0000B51 B53 B55S
87387403Vander Cruyssen, Mr. Victormale47003457659.0000NaNS
87487512Abelson, Mrs. Samuel (Hannah Wizosky)female2810P/PP 338124.0000NaNC
87587613Najib, Miss. Adele Kiamie \"Jane\"female150026677.2250NaNC
87687703Gustafsson, Mr. Alfred Ossianmale200075349.8458NaNS
87787803Petroff, Mr. Nedeliomale19003492127.8958NaNS
87988011Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)female56011176783.1583C50C
88088112Shelley, Mrs. William (Imanita Parrish Hall)female250123043326.0000NaNS
88188203Markun, Mr. Johannmale33003492577.8958NaNS
88288303Dahlberg, Miss. Gerda Ulrikafemale2200755210.5167NaNS
88388402Banfield, Mr. Frederick Jamesmale2800C.A./SOTON 3406810.5000NaNS
88488503Sutehall, Mr. Henry Jrmale2500SOTON/OQ 3920767.0500NaNS
88588603Rice, Mrs. William (Margaret Norton)female390538265229.1250NaNQ
88688702Montvila, Rev. Juozasmale270021153613.0000NaNS
88788811Graham, Miss. Margaret Edithfemale190011205330.0000B42S
88989011Behr, Mr. Karl Howellmale260011136930.0000C148C
89089103Dooley, Mr. Patrickmale32003703767.7500NaNQ
\n", + "

714 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "6 7 0 1 \n", + "7 8 0 3 \n", + "8 9 1 3 \n", + "9 10 1 2 \n", + "10 11 1 3 \n", + "11 12 1 1 \n", + "12 13 0 3 \n", + "13 14 0 3 \n", + "14 15 0 3 \n", + "15 16 1 2 \n", + "16 17 0 3 \n", + "18 19 0 3 \n", + "20 21 0 2 \n", + "21 22 1 2 \n", + "22 23 1 3 \n", + "23 24 1 1 \n", + "24 25 0 3 \n", + "25 26 1 3 \n", + "27 28 0 1 \n", + "30 31 0 1 \n", + "33 34 0 2 \n", + "34 35 0 1 \n", + "35 36 0 1 \n", + "37 38 0 3 \n", + "38 39 0 3 \n", + ".. ... ... ... \n", + "856 857 1 1 \n", + "857 858 1 1 \n", + "858 859 1 3 \n", + "860 861 0 3 \n", + "861 862 0 2 \n", + "862 863 1 1 \n", + "864 865 0 2 \n", + "865 866 1 2 \n", + "866 867 1 2 \n", + "867 868 0 1 \n", + "869 870 1 3 \n", + "870 871 0 3 \n", + "871 872 1 1 \n", + "872 873 0 1 \n", + "873 874 0 3 \n", + "874 875 1 2 \n", + "875 876 1 3 \n", + "876 877 0 3 \n", + "877 878 0 3 \n", + "879 880 1 1 \n", + "880 881 1 2 \n", + "881 882 0 3 \n", + "882 883 0 3 \n", + "883 884 0 2 \n", + "884 885 0 3 \n", + "885 886 0 3 \n", + "886 887 0 2 \n", + "887 888 1 1 \n", + "889 890 1 1 \n", + "890 891 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38 1 \n", + "2 Heikkinen, Miss. Laina female 26 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 \n", + "4 Allen, Mr. William Henry male 35 0 \n", + "6 McCarthy, Mr. Timothy J male 54 0 \n", + "7 Palsson, Master. Gosta Leonard male 2 3 \n", + "8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27 0 \n", + "9 Nasser, Mrs. Nicholas (Adele Achem) female 14 1 \n", + "10 Sandstrom, Miss. Marguerite Rut female 4 1 \n", + "11 Bonnell, Miss. Elizabeth female 58 0 \n", + "12 Saundercock, Mr. William Henry male 20 0 \n", + "13 Andersson, Mr. Anders Johan male 39 1 \n", + "14 Vestrom, Miss. Hulda Amanda Adolfina female 14 0 \n", + "15 Hewlett, Mrs. (Mary D Kingcome) female 55 0 \n", + "16 Rice, Master. Eugene male 2 4 \n", + "18 Vander Planke, Mrs. Julius (Emelia Maria Vande... female 31 1 \n", + "20 Fynney, Mr. Joseph J male 35 0 \n", + "21 Beesley, Mr. Lawrence male 34 0 \n", + "22 McGowan, Miss. Anna \"Annie\" female 15 0 \n", + "23 Sloper, Mr. William Thompson male 28 0 \n", + "24 Palsson, Miss. Torborg Danira female 8 3 \n", + "25 Asplund, Mrs. Carl Oscar (Selma Augusta Emilia... female 38 1 \n", + "27 Fortune, Mr. Charles Alexander male 19 3 \n", + "30 Uruchurtu, Don. Manuel E male 40 0 \n", + "33 Wheadon, Mr. Edward H male 66 0 \n", + "34 Meyer, Mr. Edgar Joseph male 28 1 \n", + "35 Holverson, Mr. Alexander Oskar male 42 1 \n", + "37 Cann, Mr. Ernest Charles male 21 0 \n", + "38 Vander Planke, Miss. Augusta Maria female 18 2 \n", + ".. ... ... ... ... \n", + "856 Wick, Mrs. George Dennick (Mary Hitchcock) female 45 1 \n", + "857 Daly, Mr. Peter Denis male 51 0 \n", + "858 Baclini, Mrs. Solomon (Latifa Qurban) female 24 0 \n", + "860 Hansen, Mr. Claus Peter male 41 2 \n", + "861 Giles, Mr. Frederick Edward male 21 1 \n", + "862 Swift, Mrs. Frederick Joel (Margaret Welles Ba... female 48 0 \n", + "864 Gill, Mr. John William male 24 0 \n", + "865 Bystrom, Mrs. (Karolina) female 42 0 \n", + "866 Duran y More, Miss. Asuncion female 27 1 \n", + "867 Roebling, Mr. Washington Augustus II male 31 0 \n", + "869 Johnson, Master. Harold Theodor male 4 1 \n", + "870 Balkic, Mr. Cerin male 26 0 \n", + "871 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) female 47 1 \n", + "872 Carlsson, Mr. Frans Olof male 33 0 \n", + "873 Vander Cruyssen, Mr. Victor male 47 0 \n", + "874 Abelson, Mrs. Samuel (Hannah Wizosky) female 28 1 \n", + "875 Najib, Miss. Adele Kiamie \"Jane\" female 15 0 \n", + "876 Gustafsson, Mr. Alfred Ossian male 20 0 \n", + "877 Petroff, Mr. Nedelio male 19 0 \n", + "879 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56 0 \n", + "880 Shelley, Mrs. William (Imanita Parrish Hall) female 25 0 \n", + "881 Markun, Mr. Johann male 33 0 \n", + "882 Dahlberg, Miss. Gerda Ulrika female 22 0 \n", + "883 Banfield, Mr. Frederick James male 28 0 \n", + "884 Sutehall, Mr. Henry Jr male 25 0 \n", + "885 Rice, Mrs. William (Margaret Norton) female 39 0 \n", + "886 Montvila, Rev. Juozas male 27 0 \n", + "887 Graham, Miss. Margaret Edith female 19 0 \n", + "889 Behr, Mr. Karl Howell male 26 0 \n", + "890 Dooley, Mr. Patrick male 32 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S \n", + "6 0 17463 51.8625 E46 S \n", + "7 1 349909 21.0750 NaN S \n", + "8 2 347742 11.1333 NaN S \n", + "9 0 237736 30.0708 NaN C \n", + "10 1 PP 9549 16.7000 G6 S \n", + "11 0 113783 26.5500 C103 S \n", + "12 0 A/5. 2151 8.0500 NaN S \n", + "13 5 347082 31.2750 NaN S \n", + "14 0 350406 7.8542 NaN S \n", + "15 0 248706 16.0000 NaN S \n", + "16 1 382652 29.1250 NaN Q \n", + "18 0 345763 18.0000 NaN S \n", + "20 0 239865 26.0000 NaN S \n", + "21 0 248698 13.0000 D56 S \n", + "22 0 330923 8.0292 NaN Q \n", + "23 0 113788 35.5000 A6 S \n", + "24 1 349909 21.0750 NaN S \n", + "25 5 347077 31.3875 NaN S \n", + "27 2 19950 263.0000 C23 C25 C27 S \n", + "30 0 PC 17601 27.7208 NaN C \n", + "33 0 C.A. 24579 10.5000 NaN S \n", + "34 0 PC 17604 82.1708 NaN C \n", + "35 0 113789 52.0000 NaN S \n", + "37 0 A./5. 2152 8.0500 NaN S \n", + "38 0 345764 18.0000 NaN S \n", + ".. ... ... ... ... ... \n", + "856 1 36928 164.8667 NaN S \n", + "857 0 113055 26.5500 E17 S \n", + "858 3 2666 19.2583 NaN C \n", + "860 0 350026 14.1083 NaN S \n", + "861 0 28134 11.5000 NaN S \n", + "862 0 17466 25.9292 D17 S \n", + "864 0 233866 13.0000 NaN S \n", + "865 0 236852 13.0000 NaN S \n", + "866 0 SC/PARIS 2149 13.8583 NaN C \n", + "867 0 PC 17590 50.4958 A24 S \n", + "869 1 347742 11.1333 NaN S \n", + "870 0 349248 7.8958 NaN S \n", + "871 1 11751 52.5542 D35 S \n", + "872 0 695 5.0000 B51 B53 B55 S \n", + "873 0 345765 9.0000 NaN S \n", + "874 0 P/PP 3381 24.0000 NaN C \n", + "875 0 2667 7.2250 NaN C \n", + "876 0 7534 9.8458 NaN S \n", + "877 0 349212 7.8958 NaN S \n", + "879 1 11767 83.1583 C50 C \n", + "880 1 230433 26.0000 NaN S \n", + "881 0 349257 7.8958 NaN S \n", + "882 0 7552 10.5167 NaN S \n", + "883 0 C.A./SOTON 34068 10.5000 NaN S \n", + "884 0 SOTON/OQ 392076 7.0500 NaN S \n", + "885 5 382652 29.1250 NaN Q \n", + "886 0 211536 13.0000 NaN S \n", + "887 0 112053 30.0000 B42 S \n", + "889 0 111369 30.0000 C148 C \n", + "890 0 370376 7.7500 NaN Q \n", + "\n", + "[714 rows x 12 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic_df = titanic_df.dropna(subset=['Survived','Pclass','Sex','Age','Fare'])\n", + "titanic_df" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total males: 453 num survived: 93 survival rate: % 20.5298013245\n", + "total females: 261 num survived: 197 survival rate: % 75.4789272031\n" + ] + } + ], + "source": [ + "males = titanic_df[titanic_df.Sex == 'male']\n", + "females = titanic_df[titanic_df.Sex == 'female']\n", + "\n", + "male_sur = (males[males.Survived == 1])\n", + "female_sur = (females[females.Survived == 1])\n", + "\n", + "males_survived_perc = float(len(male_sur)) / float(len(males)) * 100\n", + "females_survived_perc = float(len(female_sur)) / float(len(females)) * 100 \n", + "\n", + "print 'total males: ', len(males), ' num survived: ', len(male_sur), ' survival rate: %', males_survived_perc\n", + "print 'total females: ', len(females), ' num survived: ', len(female_sur), ' survival rate: %', females_survived_perc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is clear from these survival rates that a higher percentage of females survived; however, there are nearly twice as many men as women, so the distribution is not proportionally represented by survival rate. Therefore, it will be helpful to create a graphic representation. " + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHEJJREFUeJzt3X+UVXW9//HnCwSFFBrhinwBgTK54L0GWFT++HrUIuWb\nUt27iHSVZqGpePW2Mgf7XhmkBE3NftEP6raor6bUrZjMH6jDkHVL/AGKgTKQg4r8EBER9ArI+/vH\n2UxHmJl9Zpx9zhnm9VjrLPb57M/e533OOszr7M/+pYjAzMysNd3KXYCZmVU+h4WZmaVyWJiZWSqH\nhZmZpXJYmJlZKoeFmZmlKklYSOom6TFJtcnzKkkLJT0t6V5JfQv6TpPUIGmlpPGlqM/MzFpXqi2L\ny4EVBc+rgfsjYgRQB0wDkDQKmASMBM4E5khSiWo0M7MWZB4WkgYDE4AfFzRPBOYl0/OAjyfTZwO3\nR8TuiGgEGoBxWddoZmatK8WWxTeBK4HCU8UHRMRGgIjYAByRtA8Cnivoty5pMzOzMso0LCT9H2Bj\nRCwDWhtO8jVHzMwq2EEZr/9E4GxJE4BewGGSfg5skDQgIjZKOhLYlPRfBwwpWH5w0vYWkhwuZmbt\nEBHt2g+c6ZZFRFwdEUdFxLuAyUBdRHwG+B1wftLtPGBBMl0LTJbUU9Jw4GhgSQvr9qODHtOnTy97\nDQfSw5+nP8tKfbwdWW9ZtGQ2MF/SBcBa8kdAERErJM0nf+TULuCSeLvv0MzM3raShUVELAYWJ9Nb\ngA+30G8WMKtUdZmZWTqfwW3kcrlyl3BA8efZcfxZVg51xlEeSR6dMjNrI0lEO3dwl2ufhZl1McOG\nDWPt2rXlLqNLGDp0KI2NjR26Tm9ZmFlJJL9qy11Gl9DSZ/12tiy8z8LMzFI5LMzMLJXDwszMUjks\nzMw6yOc+9zmuueaacpeRCR8NZWZl8x/XLcp0/TOvPjXT9Xcl3rIwM7NUDgsz6/KGDx/OjTfeyHvf\n+14OO+wwpkyZwqZNm5gwYQJ9+vRh/PjxvPLKKwBMmjSJgQMHUlVVRS6XY8WKFS2u984772TMmDFU\nVVVx0kknsXz58qZ5119/PYMHD6ZPnz6MHDmSRYuy3cp6uxwWZmbAr3/9ax544AFWrVpFbW0tEyZM\nYPbs2WzevJk333yTb3/72wBMmDCBNWvWsGnTJsaOHcu5557b7PqWLl3K5z//eebOncuWLVu46KKL\nOPvss9m1axerVq3ie9/7Ho8++ijbtm3j3nvvZdiwYSV8t23nsDAzAy677DL69+/PwIEDOfnkk/nA\nBz7AcccdR8+ePfnEJz7B0qVLATj//PPp3bs3PXr04JprruHxxx/n1Vdf3W99c+fO5Ytf/CLve9/7\nkMRnPvMZDj74YP7yl7/QvXt3du7cyZNPPsnu3bs56qijGD58eKnfcps4LMzMgAEDBjRN9+rVa7/n\n27dvZ8+ePVRXV3P00Ufzzne+k+HDhyOJzZs377e+tWvXctNNN3H44Ydz+OGHU1VVxfPPP88LL7zA\nu9/9bm655RZqamoYMGAA55xzDuvXry/J+2wvh4WZWZFuu+02amtrqaurY+vWrTQ2NrZ4Y6EhQ4bw\n1a9+lS1btrBlyxZefvlltm/fzqc+9SkAJk+ezIMPPth0vazq6uqSvpe2cliYmRVp+/btHHLIIVRV\nVbFjxw6mTZuG1PyllqZMmcIPfvADlizJ3+xzx44d3HXXXezYsYNVq1axaNEidu7cSc+ePenVqxfd\nulX2n2OfZ2FmZVMp50Hs+we/pQD47Gc/yz333MOgQYPo168fM2fO5Ic//GGzfY8//njmzp3L1KlT\nWb16Nb169eKkk07ilFNO4Y033qC6upqnnnqKHj16cMIJJ/CjH/2ow99XR/JVZ82sJHzV2dLJ4qqz\n3rKwzM+i7Woq5deyWUfKdJBM0sGSHpK0VNJySdOT9umSnpf0WPI4o2CZaZIaJK2UND7L+szMrDiZ\nbllExBuSTo2I1yR1B/4k6e5k9s0RcXNhf0kjgUnASGAwcL+k93jMycysvDLf/R4RryWTB5MPp71/\n+JsbN5sI3B4RuyOiEWgAxmVdo5mZtS7zsJDUTdJSYANwX0Q8nMyaKmmZpB9L6pu0DQKeK1h8XdJm\nZmZlVIotiz0RMYb8sNI4SaOAOcC7ImI0+RC5Kes6zMys/Up2NFREbJNUD5yxz76KucDvkul1wJCC\neYOTtv3U1NQ0TedyOXK5XAdWa2bW+dXX11NfX98h68r0PAtJ/YFdEfGKpF7AvcBs4LGI2JD0+Xfg\n/RFxTrLVcSvwAfLDT/cB++3g9nkWHcuHznYsHzrbPJ9nUTpZnGeR9TDUQGCRpGXAQ8C9EXEXcIOk\nJ5L2U4B/B4iIFcB8YAVwF3CJU8HMSmHVqlWMGTOGvn378t3vfrdkr9utWzf+9re/lez12ivrQ2eX\nA2Obaf9sK8vMAmZlWZeZVYbqulWZrn/2accU3feGG27gtNNOa7oUeam0dGmRSlPZV64yMyuRtWvX\ncuyxx5b8dTvL4InDwsy6vNNPP51FixZx6aWX0qdPHxoaGvjyl7/M0KFDGThwIJdccglvvPEGAIsX\nL2bIkCF84xvfYMCAAQwaNIgFCxZw9913M2LECPr378+sWX8fHHn44Yc54YQTqKqqYtCgQVx22WXs\n3r272Tp27tzZ4uu+9NJLnHXWWVRVVdGvXz9OOeWU7D+YAg4LM+vyHnjgAU4++WTmzJnDtm3bmDNn\nDqtXr+aJJ55g9erVrFu3jmuvvbap/4YNG9i5cycvvPACM2bMYMqUKdx6660sXbqUP/zhD8ycObPp\nPhXdu3fnlltuYcuWLfz5z3+mrq6OOXPmNFvHVVdd1eLr3nTTTQwZMoSXXnqJTZs2cd1112X/wRRw\nWJiZJfYOCc2dO5dvfvOb9O3bl3e84x1UV1fzi1/8oqlfz549ufrqq+nevTuTJ09m8+bNXHHFFfTu\n3ZtRo0YxatQoHn/8cQDGjh3LuHHjkMRRRx3FhRdeyOLFi5t9/dZet0ePHqxfv55nnnmG7t27c+KJ\nJ2b8abyVrzprZlbgxRdf5LXXXuP4449vatuzZ89b9i3069evacd0r169ADjiiCOa5u+9DStAQ0MD\nX/rSl3jkkUd4/fXX2b1791vWXezrXnnlldTU1DB+/HgkMWXKFK666qoOfOet85aFmVmB/v3707t3\nb/7617823RJ169atvPLKK+1a38UXX8zIkSNZs2YNW7du5etf/3qzO7XTXvfQQw/lxhtvZM2aNdTW\n1nLzzTezaFHpzpFyWJiZFdj7q/2KK67gxRdfBGDdunUsXLiwXet79dVX6dOnD7179+app57i+9//\nfrte9/e//z1r1qwB4LDDDuOggw4q6a1YPQxlZmXTlvMgslZ4vsPs2bO59tpr+eAHP8hLL73EoEGD\nuPjiixk/vvlb7LR2W9Ybb7yRCy+8kBtuuIExY8YwefJk6urqmu17/fXXM2PGjGZft6GhgalTp7J5\n82aqqqq49NJLS3pElG+rar7cRwfz5T6a58t9lE5nvNyHmZkdABwWZmaWymFhZmapHBZmZpbKYWFm\nZqkcFmZmlsrnWZhZSQwdOrTT3Luhsxs6dGiHr9NhYWYl0djYWO4S7G3wMJSZmaVyWJiZWapMw0LS\nwZIekrRU0nJJ05P2KkkLJT0t6V5JfQuWmSapQdJKSc1fiMXMzEoq07CIiDeAUyNiDDAaOFPSOKAa\nuD8iRgB1wDQASaOAScBI4ExgjrxHzMys7DIfhoqI15LJg8nvUA9gIjAvaZ8HfDyZPhu4PSJ2R0Qj\n0ACMy7pGMzNrXeZhIambpKXABuC+iHgYGBARGwEiYgOw9xZTg4DnChZfl7SZmVkZZX7obETsAcZI\n6gP8RtKx5Lcu3tKtreutqalpms7lcuRyubdRpZnZgae+vp76+voOWVfJzrOIiG2S6oEzgI2SBkTE\nRklHApuSbuuAIQWLDU7a9lMYFmZmtr99f0jPmDGj3evK+mio/nuPdJLUC/gIsBKoBc5Pup0HLEim\na4HJknpKGg4cDSzJskYzM0uX9ZbFQGCepG7kg+mOiLhL0l+A+ZIuANaSPwKKiFghaT6wAtgFXOJb\n4pmZlV+mYRERy4GxzbRvAT7cwjKzgFlZ1mVmZm3jM7jNzCyVw8LMzFI5LMzMLJXDwszMUjkszMws\nlcPCzMxSOSzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwslcPCzMxSOSzMzCyVw8LMzFI5LMzMLJXD\nwszMUjkszMwslcPCzMxSOSzMzCxVpmEhabCkOkl/lbRc0mVJ+3RJz0t6LHmcUbDMNEkNklZKGp9l\nfWZmVpyDMl7/buBLEbFM0qHAo5LuS+bdHBE3F3aWNBKYBIwEBgP3S3pPRETGdZqZWSsy3bKIiA0R\nsSyZ3g6sBAYls9XMIhOB2yNid0Q0Ag3AuCxrNDOzdCXbZyFpGDAaeChpmippmaQfS+qbtA0CnitY\nbB1/DxczMyuTrIehAEiGoH4FXB4R2yXNAa6NiJD0NeAm4AttWWdNTU3TdC6XI5fLdVzBZmYHgPr6\neurr6ztkXcp6d4Ckg4A7gbsj4lvNzB8K/C4ijpNUDUREXJ/MuweYHhEP7bOMd2N0oP+4blG5Szig\nzLz61HKXYNYsSUREc7sAUpViGOo/gRWFQSHpyIL5nwSeTKZrgcmSekoaDhwNLClBjWZm1opMh6Ek\nnQicCyyXtBQI4GrgHEmjgT1AI3ARQESskDQfWAHsAi7xJoSZWfllGhYR8SegezOz7mllmVnArMyK\nMjOzNvMZ3GZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqmKCovkBLnUNjMzOzAVu2XxX820\n/aojCzEzs8rV6kl5kv4ROBboK+mTBbP6AIdkWZiZmVWOtDO4RwAfA94JnFXQ/iowJauizMyssrQa\nFhGxAFgg6UMR8ecS1WRmZhWm2GtDrZZ0NTCscJmIuCCLoszMrLIUGxYLgAeB+4E3syvHzMwqUbFh\n0Tsirsq0EjMzq1jFHjp7p6QJmVZiZmYVq9iwuJx8YLwuaZukVyVty7IwMzOrHEUNQ0XEYVkXYmZm\nlauosJD0v5trj4g/dGw5ZmZWiYrdwX1lwfQhwDjgUeC0Dq/IzMwqTlH7LCLirILHR4B/Al5OW07S\nYEl1kv4qabmkf0vaqyQtlPS0pHsl9S1YZpqkBkkrJY1v7xszM7OO095LlD8PjCyi327gSxFxLPAh\n4NLkelPVwP0RMQKoA6YBSBoFTErWfSYwR5LaWaOZmXWQYvdZfAeI5Gk3YDTwWNpyEbEB2JBMb5e0\nEhgMTAROSbrNA+rJB8jZwO0RsRtolNRAfsjroSLfj5mZZaDYfRaPFEzvBn4REX9qywtJGkY+ZP4C\nDIiIjZAPFElHJN0GAYXXoFqXtJmZWRkVe+jsPEk9gWOSpqfb8iKSDiV//4vLky2M2KfLvs9T1dTU\nNE3ncjlyuVxbV2FmdkCrr6+nvr6+Q9ZV7DBUjvxwUSMgYIik84o5dFbSQeSD4ufJVWwBNkoaEBEb\nJR0JbEra1wFDChYfnLTtpzAszMxsf/v+kJ4xY0a711XsMNRNwPiIeBpA0jHAL4Dji1j2P4EVEfGt\ngrZa4HzgeuA88hcq3Nt+q6Rvkh9+OhpYUmSNZhWhum5VuUs4YMw+7Zj0TlYSxYZFj71BARARqyT1\nSFtI0onAucBySUvJDzddTT4k5ku6AFhL/ggoImKFpPnACmAXcElEtHmIyszMOlbRO7gl/Rj4f8nz\nc3nrTu9mJTvBu7cw+8MtLDMLmFVkXWZmVgLFhsXFwKXAvyXPHwTmZFKRmZlVnGKPhnoDuDl5mJlZ\nF1PUGdySPiZpqaQtvkS5mVnXU+ww1C3AJ4Hl3uFsZtb1FHttqOeAJx0UZmZdU7FbFl8B7pK0GHhj\nb2NEeB+GmVkXUGxYfB3YTv5eFj2zK8fMzCpRsWHxvyLinzKtxMzMKlax+yzu8o2IzMy6rmLD4mLg\nHkmv+9BZM7Oup9iT8g6TdDjwHvL7LczMrAsp9hLlXwAuJ3/J8GXAB4H/Bk7PrjQzM6sUxQ5DXQ68\nH1gbEacCY4BXMqvKzMwqSrFh8T8R8T8Akg6OiKeAEdmVZWZmlaTYQ2efl/RO4LfAfZJeJn8fCjMz\n6wKK3cH9iWSyRtIioC9wT2ZVmZlZRSl2y6JJRCzOohAzM6tcxe6zMDOzLsxhYWZmqTINC0k/kbRR\n0hMFbdMlPS/pseRxRsG8aZIaJK305UXMzCpH1lsWPwU+2kz7zRExNnncAyBpJDAJGAmcCcyRpIzr\nMzOzImQaFhHxR+DlZmY1FwITgdsjYndENAINwLgMyzMzsyKVa5/FVEnLJP1YUt+kbRD5O/LttS5p\nMzOzMmvzobMdYA5wbUSEpK8BNwFfaOtKampqmqZzuRy5XK6j6jMzOyDU19dTX1/fIesqeVhExIsF\nT+cCv0um1wFDCuYNTtqaVRgWZma2v31/SM+YMaPd6yrFMJQo2Ech6ciCeZ8Enkyma4HJknpKGg4c\nDSwpQX1mZpYi0y0LSbcBOaCfpGeB6cCpkkYDe4BG4CKAiFghaT6wAtgFXBIRkWV9ZmZWnEzDIiLO\naab5p630nwXMyq4iMzNrD5/BbWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwW\nZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZm\nlsphYWZmqTINC0k/kbRR0hMFbVWSFkp6WtK9kvoWzJsmqUHSSknjs6zNzMyKl/WWxU+Bj+7TVg3c\nHxEjgDpgGoCkUcAkYCRwJjBHkjKuz8zMipBpWETEH4GX92meCMxLpucBH0+mzwZuj4jdEdEINADj\nsqzPzMyKU459FkdExEaAiNgAHJG0DwKeK+i3LmkzM7MyO6jcBQDRnoVqamqapnO5HLlcroPKMTM7\nMNTX11NfX98h6ypHWGyUNCAiNko6EtiUtK8DhhT0G5y0NaswLMzMbH/7/pCeMWNGu9dVimEoJY+9\naoHzk+nzgAUF7ZMl9ZQ0HDgaWFKC+szMLEWmWxaSbgNyQD9JzwLTgdnALyVdAKwlfwQUEbFC0nxg\nBbALuCQi2jVEZWZmHSvTsIiIc1qY9eEW+s8CZmVXkZl1Jv9x3aJyl2AJn8FtZmapHBZmZpbKYWFm\nZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmap\nHBZmZpbKYWFmZqkq4R7c7VJdt6rcJRwwepS7ADOreN6yMDOzVA4LMzNL5bAwM7NUZdtnIakReAXY\nA+yKiHGSqoA7gKFAIzApIl4pV41mZpZXzi2LPUAuIsZExLikrRq4PyJGAHXAtLJVZ2ZmTcoZFmrm\n9ScC85LpecDHS1qRmZk1q5xhEcB9kh6W9IWkbUBEbASIiA3AEWWrzszMmpTzPIsTI2K9pH8AFkp6\nmnyAFNr3eZM/zvtO0/RR7x3HUaM/kE2VZmadVOPflrH2mWUdsq6yhUVErE/+fVHSb4FxwEZJAyJi\no6QjgU0tLX/SeZeVqFIzs85p2LtGM+xdo5ueP1j3s3avqyzDUJJ6Szo0mX4HMB5YDtQC5yfdzgMW\nlKM+MzN7q3JtWQwAfiMpkhpujYiFkh4B5ku6AFgLTCpTfWZmVqAsYRERzwCjm2nfAny49BWZmVlr\nfAa3mZmlcliYmVkqh4WZmaVyWJiZWSqHhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVyWJiZWSqH\nhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVyWJiZWSqHhZmZpXJYmJlZqooMC0lnSHpK0ipJV5W7\nHjOzrq7iwkJSN+C7wEeBY4FPS/rH8lZ1YGv827Jyl3BAeXbZQ+Uu4YDh72blqLiwAMYBDRGxNiJ2\nAbcDE8tc0wFt7TP+D9mRnn18SblLOGD4u1k5KjEsBgHPFTx/PmkzM7MyqcSwMDOzCqOIKHcNbyHp\ng0BNRJyRPK8GIiKuL+hTWUWbmXUSEaH2LFeJYdEdeBo4HVgPLAE+HREry1qYmVkXdlC5C9hXRLwp\naSqwkPww2U8cFGZm5VVxWxZmZlZ5OsUObklVkhZKelrSvZL6ttCvUdLjkpZK8vGL+yjmZEdJ35bU\nIGmZpNGlrrGzSPssJZ0iaaukx5LH/y1HnZ2FpJ9I2ijpiVb6+LtZhLTPsr3fzU4RFkA1cH9EjADq\ngGkt9NsD5CJiTESMK1l1nUAxJztKOhN4d0S8B7gI+EHJC+0E2nDi6B8iYmzy+FpJi+x8fkr+82yW\nv5tt0upnmWjzd7OzhMVEYF4yPQ/4eAv9ROd5T6VWzMmOE4GfAUTEQ0BfSQNKW2anUOyJo+066qQr\niog/Ai+30sXfzSIV8VlCO76bneUP6xERsREgIjYAR7TQL4D7JD0saUrJquscijnZcd8+65rpY8Wf\nOPqhZMjk95JGlaa0A5a/mx2rzd/NijkaStJ9QOEvBZH/49/ceFpLe+VPjIj1kv6BfGisTFLWrNQe\nBY6KiNeSIZTfAseUuSYzaOd3s2LCIiI+0tK8ZGfNgIjYKOlIYFML61if/PuipN+QHy5wWOStA44q\neD44adu3z5CUPlbEZxkR2wum75Y0R9LhEbGlRDUeaPzd7CDt/W52lmGoWuD8ZPo8YMG+HST1lnRo\nMv0OYDzwZKkK7AQeBo6WNFRST2Ay+c+1UC3wWWg6k37r3uE/e4vUz7JwPF3SOPKHqTsoWidaHkv3\nd7NtWvws2/vdrJgtixTXA/MlXQCsBSYBSBoIzI2Ij5EfwvpNcimQg4BbI2JhuQquNC2d7Cjpovzs\n+FFE3CVpgqTVwA7gc+WsuVIV81kC/yrpYmAX8DrwqfJVXPkk3QbkgH6SngWmAz3xd7PN0j5L2vnd\n9El5ZmaWqrMMQ5mZWRk5LMzMLJXDwszMUjkszMwslcPCzMxSOSzMzCyVw8Ksg0k6S9JXOmhdr3bE\neszeLp9nYdYOkrpHxJsleJ1tEdEn69cxS+MtC+vSksvE3JncMOsJSZMkPSPp8GT+8ZIWJdPTJf1M\n0oPAzyX9WdLIgnUtkjRW0nmSviOpj6TGfV7rWUndJb1L0t3JFZIXSzom6TNM0n8rfxOvmaX9NMxa\n5rCwru4MYF1yw6zjgHvY/6rGhc9HAqdHxDnk72PxKYDkApdHRsRje5eJiG3AUkmnJG0fA+5Jtkh+\nBEyNiPcDVwLfT/p8C/heRLwXWN+Rb9Ts7XBYWFe3HPiIpFmSTkr+wLd2Y5jaiNiZTP8S+JdkehLw\nq2b6z+fv196ZDNyRXOjyBOCXkpYCP+Tvl+c/kXwIAfy8PW/ILAud5UKCZpmIiAZJY4EJwExJdeQv\nsLb3h9Qh+yyyo2DZFyS9JOmfyQfCRc28RC3wdUlVwFjytwU+FHg5IsY2VxJ/35LxnfasYnjLwrq0\n5MrFr0fEbcCN5P+gNwLvS7r8SwuL7nUH8BWgT0Tsd0n8iNgBPEJ+eOnOyHsVeEbSvxbUcVwy+Sfg\n08n0ue16U2YZcFhYV/fPwJJkOOgaYCZwLfAtSUuA3SnL/xf5rYo7WulzB/k//LcXtJ0LfD65teWT\nwNlJ+xXApZIeBwa29c2YZcWHzpqZWSpvWZiZWSqHhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVy\nWJiZWSqHhZmZpfr/pEDnUlg85McAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hist = thinkstats2.Hist(males.Survived)\n", + "hist1 = thinkstats2.Hist(females.Survived)\n", + "thinkplot.PrePlot(2)\n", + "thinkplot.Hist(hist, align='left', width=0.5, label='males')\n", + "thinkplot.Hist(hist1, align='right', width=0.5, label='females')\n", + "thinkplot.Show(xlabel='survived', ylabel='amount')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this, it is easier to see the relationship between survival rate and sex. Overall, females had a higher chance of surviving, which makes sense because when the Titanic was being evacuated there was an emphasis placed on getting the women and children on lifeboats first. " + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEPCAYAAABBUX+lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFHFJREFUeJzt3X2QXXWd5/H3NySBRAgE0QwSSDI4KLorEhAcHobrE2LG\nYYd5EJFCYYDSKSOZnS2XVregU9ZaUCUjOrClJA7luuJuyaBkrAwPSq4yKoKQQCCEjDiJIAimAoHE\nGR6/+8c9xKbTndxO+txzm9/7VdXV597ce36fvt359OnfOfecyEwkSa98k5oOIEnqDQtfkgph4UtS\nISx8SSqEhS9JhbDwJakQtRZ+RBwWESsj4q7q8+aIuKDOMSVJI4teHYcfEZOAh4FjM/OhngwqSdqm\nl1M67wYetOwlqRm9LPzTgW/2cDxJ0hA9mdKJiCnAI8CbMvM3tQ8oSdrO5B6N8z7gztHKPiI8oY8k\njVFmxlge36spnTPYyXROZvbVx8UXX9x4home6eMXLum7TP36WpnJTGP92BW1F35ETKezw/a6useS\nJI2u9imdzPwt8Jq6x5Ek7ZjvtB1Fq9VqOsJ2zNSdfswE/ZnLTN3px0y7omdvvNphiIjshxwaXwsH\nlnLFJec1HUN6RYoIcow7bXt1lI6kgs2dO5cNGzY0HWNCmjNnDuvXrx+XdVn4kmq3YcOGXT6ypHQR\nY9qI3yHn8CWpEBa+JBXCwpekQlj4kjQOzjnnHC666KKmY+yQO20lNWLhwNJa1+8hwdtzC1+SCmHh\nSyravHnz+PznP88RRxzBPvvsw/nnn8/jjz/OggULmDFjBieffDKbN28G4AMf+AAHHnggM2fOpNVq\nsWbNmlHX+93vfpcjjzySmTNncsIJJ7B69ept/3bppZcye/ZsZsyYweGHH86KFStq/zrBwpckrrvu\nOr7//e+zbt06li1bxoIFC7jkkkvYuHEjL7zwAl/60pcAWLBgAQ8++CCPP/448+fP58wzzxxxfStX\nruTcc89lyZIlbNq0iY9+9KOceuqpPPfcc6xbt44rr7ySO++8k6eeeoobb7yRuXPn9uTrtPAlFe8T\nn/gEBxxwAAceeCAnnngixx57LG95y1uYOnUqp512GitXrgTg7LPPZvr06UyZMoWLLrqIu+++m6ef\nfnq79S1ZsoSPfexjHH300UQEZ511FnvuuSe33XYbe+yxB88++yz33nsvzz//PIcccgjz5s3ryddp\n4Usq3qxZs7YtT5s2bbvbW7Zs4cUXX2RgYIDXv/717LfffsybN4+IYOPGjdutb8OGDVx22WXsv//+\n7L///sycOZOHH36YRx55hEMPPZTLL7+cwcFBZs2axYc+9CEeffTRnnydFr4kdeGaa65h2bJl3HLL\nLTz55JOsX79+1IuRHHzwwXzmM59h06ZNbNq0iSeeeIItW7Zw+umnA/DBD36QW2+9ddv5hQYGBnry\nNVj4ktSFLVu2sNdeezFz5ky2bt3Kpz71qVHPc3P++efz5S9/mdtvvx2ArVu3snz5crZu3cq6detY\nsWIFzz77LFOnTmXatGlMmtSbKvY4fEmN6Jfj5IeX9mgl/uEPf5gbbriBgw46iFe/+tV89rOf5Stf\n+cqIjz3qqKNYsmQJCxcu5Oc//znTpk3jhBNO4KSTTuKZZ55hYGCAtWvXMmXKFI477jiuuuqqcf+6\nRuL58FUbz4evl1Tnbm86xoQ02mu3K+fDd0pHkgph4UtSISx8SSqEhS9JhbDwJakQtRd+ROwbEd+K\niPsj4r6IOLbuMSVJ2+vFcfhfBJZn5l9GxGRgeg/GlNRH5syZM64X4y7JnDlzxm1dtRZ+RMwATszM\nswEy83ngqTrHlNR/1q9f33QEUf+UzjxgY0RcHRF3RcRVETGt5jElSSOoe0pnMjAf+Hhm/iwiLgcG\ngIuHP3BwcHDbcqvVotVq1RxNkiaOdrtNu93erXXUemqFiJgF/CQzf7+6fQJwYWb+ybDHeWqFVyBP\nrSDVp+9OrZCZjwEPRcRh1V3vAka/JpgkqTa9OErnAuAbETEF+AVwTg/GlCQNU3vhZ+bdwNvqHkeS\ntGO+01aSCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9J\nhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQkyue4CI\nWA9sBl4EnsvMY+oeU5K0vdoLn07RtzLziR6MJUkaRS+mdKJH40iSdqAXRZzAzRFxR0Sc34PxJEkj\n6MWUzvGZ+WhEvIZO8d+fmf8y/EGDg4PbllutFq1WqwfRJGliaLfbtNvt3VpHZOb4pOlmsIiLgacz\n8++G3Z+9zKHeWDiwlCsuOa/pGNIrUkSQmTGW59Q6pRMR0yNi72r5VcDJwL11jilJGlndUzqzgG9H\nRFZjfSMzb6p5TEnSCGot/Mz8N+CtdY4hSeqOh0tKUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4\nklQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9J\nhbDwJakQFr4kFcLCl6RCWPiSVIieFH5ETIqIuyJiWS/GkyRtr1db+IuANT0aS5I0gtoLPyJmAwuA\npXWPJUkaXVeFHxHzurlvFF8APgnkGHJJksbZ5C4f94/A/GH3XQsctaMnRcQfA49l5qqIaAEx2mMH\nBwe3LbdaLVqtVpfRNFYLB5ZyxSXnNR1jhyZCRqmX2u027XZ7t9axw8KPiDcCbwb2jYg/G/JPM4C9\nulj/8cCpEbEAmAbsExH/OzM/PPyBQwtfkvRywzeEFy9ePOZ17GwL/w3A+4H9gD8Zcv/TwPk7W3lm\nfhr4NEBEnAT8t5HKXpJUvx0WfmZeD1wfEX+YmT/pUSZJUg26ncP/eUR8Gpg79DmZ+VfdDpSZPwB+\nMKZ0kqRx023hXw/cCnwPeKG+OJKkunRb+NMz88Jak0iSatXtG6++Wx1pI0maoLot/EV0Sv/fI+Kp\niHg6Ip6qM5gkaXx1NaWTmfvUHUSSVK+uCj8i/mik+zPzh+MbR5JUl2532n5yyPJewDHAncA7xz2R\nJKkW3U7pDH2XLRFxMHB5LYkkSbXY1dMjPwwcPp5BJEn16nYO/+/53emNJwFvBe6qK5Qkafx1O4f/\nsyHLzwPfzMwf1ZBHklSTbufwvxYRU4HDqrseqC+SJKkO3U7ptICvAevpXMTk4Ij4iIdlStLE0e2U\nzmXAyZn5AEBEHAZ8k51c8UqS1D+6PUpnyktlD5CZ64Ap9USSJNWh6522EbEU+D/V7TN5+Y5cSVKf\n67bw/xr4OHBBdftW4H/VkkiSVItuj9J5Bvi76kOSNAF1NYcfEe+PiJURscnTI0vSxNTtlM7lwJ8B\nqzMzd/ZgSVL/6fYonYeAey17SZq4ut3C/+/A8oj4AfDMS3dmpnP6kjRBdFv4/xPYQudc+FPriyNJ\nqku3hf+6zPxPY115ROwJ/JDOL4nJwLWZuXis65Ek7b5u5/CXR8TJY115dTjnOzLzSDqnVH5fRBwz\n1vVIknZft4X/18ANEfHvYz0sMzN/Wy3uSWcr3x2/ktSAbt94tU9E7A/8AZ15/K5FxCQ61789FLgy\nM+8Yc0pJ0m7r9vTI5wGLgNnAKuDtwI+Bd+3suZn5InBkRMwAvhMRb8rMNcMfNzg4uG251WrRarW6\niaYeWziwlCsuOa/pGFJx2u027XZ7t9bR7U7bRcDbgNsy8x0R8Ubgc2MZKDOfiogVwCnADgtfkvRy\nwzeEFy8e+/Ev3c7h/0dm/gd0jrzJzLXAG3b2pIg4ICL2rZanAe8B1o45pSRpt3W7hf9wROwHfAe4\nOSKeADZ08bwDga9V8/iTgP+Xmct3LaokaXd0u9P2tGpxsJqW2Re4oYvnrQbm73o8SdJ46XYLf5vM\n/EEdQSRJ9ep2Dl+SNMFZ+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgL\nX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFqLXw\nI2J2RNwSEfdFxOqIuKDO8SRJo5tc8/qfB/42M1dFxN7AnRFxU2aurXlcSdIwtW7hZ+avM3NVtbwF\nuB84qM4xJUkj69kcfkTMBd4K/LRXY0qSfqfuKR0Aqumca4FF1Zb+dgYHB7ctt1otWq3WTte7cGAp\nV1xy3viElKQ+1m63abfbu7WO2gs/IibTKfuvZ+b1oz1uaOFLkl5u+Ibw4sWLx7yOXkzp/AOwJjO/\n2IOxJEmjqPuwzOOBM4F3RsTKiLgrIk6pc0xJ0shqndLJzB8Be9Q5hiSpO77TVpIKYeFLUiEsfEkq\nhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY\n+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RC1Fr4EfHViHgsIu6pcxxJ0s7VvYV/\nNfDemseQJHWh1sLPzH8BnqhzDElSd5zDl6RC9E3hDw4Obvtot9tNx3mZhQNL+36cXmWcCPrxtejH\nTJpY2u32y3pyV0we30i7ble/AEkqQavVotVqbbu9ePHiMa+jF1v4UX1IkhpU92GZ1wA/Bg6LiF9G\nxDl1jidJGl2tUzqZ+aE61y9J6l7f7LSVJNXLwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAl\nqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IK\nYeFLUiEsfEkqRO2FHxGnRMTaiFgXERfWPZ4kaWS1Fn5ETAKuAN4LvBk4IyLeWOeY46XdbjcdYTtm\n6s6vfvlA0xFG1I+vlZm604+ZdkXdW/jHAP+amRsy8zng/wL/peYxx0U/foPN1B0Lv3tm6k4/ZtoV\ndRf+QcBDQ24/XN0nSeoxd9pKUiEiM+tbecTbgcHMPKW6PQBkZl467HH1hZCkV6jMjLE8vu7C3wN4\nAHgX8ChwO3BGZt5f26CSpBFNrnPlmflCRCwEbqIzffRVy16SmlHrFr4kqX80utO2X96UFRFfjYjH\nIuKeIffNjIibIuKBiLgxIvbtYZ7ZEXFLRNwXEasj4oKmM1Xj7xkRP42IlVWui/sk16SIuCsilvVD\nnirD+oi4u3qtbu+HXBGxb0R8KyLur362jm345/yw6vW5q/q8OSIu6IPX6b9GxL0RcU9EfCMipjad\nqcq1qPp/t8ud0Fjh99mbsq6ucgw1AHwvM98A3AJ8qod5ngf+NjPfDPwh8PHqtWkyE5n5DPCOzDwS\neCvwvog4pulcwCJgzZDbTecBeBFoZeaRmXlMn+T6IrA8Mw8HjgDWNpkpM9dVr8984ChgK/DtJjNF\nxOuATwDzM/MtdKa9z2gyU5XrzcC5wNF0/u+9PyIOHXOuzGzkA3g78M9Dbg8AFzaYZw5wz5Dba4FZ\n1fLvAWsbzPYd4N19lmk68DPgbU3mAmYDNwMtYFm/fO+AfwNePey+Jl+nGcCDI9zf+GtVjX0ycGvT\nmYDXARuAmXTKflk//N8D/gJYMuT2/wA+Cdw/llxNTun0+5uyXpuZjwFk5q+B1zYRIiLm0vmNfhud\nb2yjmarpk5XAr4GbM/OOhnN9gc4P/tCdUY2/TlWemyPijog4rw9yzQM2RsTV1RTKVRExveFMQ50O\nXFMtN5YpMx8BLgN+CfwK2JyZ32syU+Ve4MRqCmc6sAA4eKy5fONV93q+dzsi9gauBRZl5pYRMvQ8\nU2a+mJ0pndnAMdWfmo3kiog/Bh7LzFXAjo5HbuLIhOOzM1WxgM6U3Ikj5OhlrsnAfODKKtdWOn9V\nN/4zFRFTgFOBb42SoWeZImI/Oqd/mUNna/9VEXFmk5kAMnMtcCmdv2aXAyuBF0Z66I7W02Th/wo4\nZMjt2dV9/eKxiJgFEBG/Bzzey8EjYjKdsv96Zl7fD5mGysyngDZwSoO5jgdOjYhfAN8E3hkRXwd+\n3fTrlJmPVp9/Q2dK7hia/f49DDyUmT+rbv8jnV8A/fAz9T7gzszcWN1uMtO7gV9k5qbMfIHOPoXj\nGs4EQGZenZlHZ2YLeJLOe5zGlKvJwr8DeH1EzImIqcAH6cyXNSV4+VbiMuDsavkjwPXDn1CzfwDW\nZOYX+yVTRBzw0lEAETENeA+dOcRGcmXmpzPzkMz8fTo/P7dk5lnAPzWR5yURMb3664yIeBWd+enV\nNPj9q/7sfygiDqvuehdwX5OZhjiDzi/slzSZ6ZfA2yNir4gIOq/TmoYzARARr6k+HwKcRmcKbGy5\nernjYYQdEafQ+S31r8BAgzmuAR4BnqHzDT+Hzk6b71X5bgL262Ge4+n8ubaKzp9ud1Wv1f5NZapy\n/ecqyyrgHuAz1f2N5qoynMTvdto2/TrNG/K9W/3Sz3Yf5DqCzobWKuA6YN8+yDQd+A2wz5D7ms50\nMZ0NmXuArwFTms5U5fohnbn8lXSOABvza+UbrySpEO60laRCWPiSVAgLX5IKYeFLUiEsfEkqhIUv\nSYWw8CWpEBa+JBXCwlfRIuLb1RktV790VsuIOLe6oMRt1Vklv1Tdf0BEXBudi8D8NCKOaza9NDa+\n01ZFi4j9MvPJiNiLzmkH3gv8iM4pqbcAK4BVmXlBRHyDztkmfxwRBwM3ZuabGgsvjVGtFzGXJoC/\niYg/rZZnA2cB7czcDBAR3wL+oPr3dwOHVyfVAtg7IqZn5m97mljaRRa+ihURJwHvBI7NzGciYgWd\nk2YdPtpTqsc+16uM0nhyDl8l2xd4oir7N9K57ObewB9VF/yeDPz5kMffROf6uQBExBE9TSvtJgtf\nJbsBmBIR9wGfA35C50IhnwNuB26lc23azdXjFwFHR8TdEXEv8NHeR5Z2nTttpWEi4lWZuTUi9qBz\nxaOv5u+uOiZNWG7hS9sbrC7UvprO5e4se70iuIUvSYVwC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAW\nviQV4v8D4frhjknO3JMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hist = thinkstats2.Hist(male_sur.Age)\n", + "thinkplot.Hist(hist, label='males')\n", + "thinkplot.Show(xlabel='age', ylabel='amount')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this visualization of surviving males, it can be seen that the majority of males who survived were between the ages of mid-20's to mid-30's. Interestingly, there are also 2 children under the age of 10, supporting the theory that children were a higher priority. However, this conclusion cannot be made without visualizing the ages of males who unfortunately did not survive. " + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFihJREFUeJzt3X2QXXWd5/H3F5JAIgQSKCMSSKJOkGUHJCAwPMgdQGAy\nMzjO1ipCgWSAUosAO7PF0kgVdJe1U3FXVlScUgKmGNe4tSJK1mJ4MrkuyiAPSUggQFQmCQgkk00E\nkhkDId/9457uaTqd9O2He8/p5P2q6sq9554+59O3b+dzz8P9nchMJEl7t33KDiBJKp9lIEmyDCRJ\nloEkCctAkoRlIEmixWUQEXdGxPqIWNFn+tUR8VxErIyIea3MIEka2JgWL38B8A3g77snREQN+HPg\nDzNze0Qc2uIMkqQBtHTLIDN/DmzuM/kLwLzM3F7Ms7GVGSRJAyvjmMFM4GMR8VhELImIE0vIIEnq\npdW7iXa1zkmZeUpEfBT438AHSsghSSqUUQYvAfcAZOYTEbEjIg7JzP/Xd8aIcOAkSRqCzIzBzN+O\n3URRfHX7MXAWQETMBMb2VwTdMrPyXzfffHPpGfp+XXX9/N3mvOr6+f3O0+pMzayzis/naMxozr03\n51C0dMsgIhYCNeCQiFgH3Ax8B1gQESuBbcClrcwgSRpYS8sgMy/axUOXtHK9kqTB8RPII6BWq5Ud\noSnmHDmjISOYc6SNlpxDYRmMgNHyAjHnyBkNGcGcI2205ByKMs4mkiQApk+fztq1a8uOMWpNmzaN\nNWvWjMiyLANJpVm7du2Qz34RRAzq7NHdcjeRJMkykCRZBpIkLANJark5c+Zw0003lR1jtzyALKlS\n5nbc0dLl3zbvipYuf7Ryy0CSZBlI0q7MmDGDr3zlKxx33HEceOCBXHnllWzYsIHZs2czceJEzj33\nXF5//XUAPvWpT3HYYYcxadIkarUaq1at2uVyf/KTn3D88cczadIkTj/9dFauXNnz2Je//GWmTp3K\nxIkTOfroo1myZEnLf06wDCRpt+655x5++tOfsnr1ahYtWsTs2bOZN28eGzdu5J133uHrX/86ALNn\nz+Y3v/kNGzZsYNasWVx88cX9Lm/ZsmVcfvnlzJ8/n02bNvG5z32OCy64gLfffpvVq1fzzW9+k6ee\neoo33niDBx54gOnTp7fl57QMJGk3rr76ag499FAOO+wwzjjjDE4++WSOPfZYxo0bxyc/+UmWLVsG\nwGWXXcaECRMYO3YsN910E08//TRvvvnmTsubP38+n//85znxxBOJCC655BL2228/HnvsMfbdd1/e\neustnnnmGbZv386RRx7JjBkz2vJzWgaStBtTpkzpuT1+/Pid7m/ZsoUdO3bQ0dHBhz70IQ4++GBm\nzJhBRLBx486XeF+7di233HILkydPZvLkyUyaNImXX36ZV155hQ9+8IPceuutdHZ2MmXKFC666CJe\nffXVtvycloEkDdPChQtZtGgRixcv5ne/+x1r1qzZ5YVmjjjiCG688UY2bdrEpk2b2Lx5M1u2bOHT\nn/40ABdeeCGPPPJIz5hNHR0dbfkZLANJGqYtW7aw//77M2nSJLZu3coNN9ywy3GDrrzySr71rW/x\n+OOPA7B161buu+8+tm7dyurVq1myZAlvvfUW48aNY/z48eyzT3v+m/ZzBpIqpUqfA+j7H/qu/oO/\n9NJLuf/++zn88MM55JBD+NKXvsS3v/3tfuc94YQTmD9/PnPnzuXXv/4148eP5/TTT+fMM89k27Zt\ndHR08PzzzzN27FhOPfVUbr/99hH/ufoTVR4xMCKyyvmqbG7HHbv9o+r+YE87//DKWKeqLSIctXQY\ndvX8FdMHNaSpu4kkSa0tg4i4MyLWR8SKfh77zxGxIyImtzKDJGlgrd4yWACc13diREwFPg54iSNJ\nqoCWlkFm/hzY3M9DXwWua+W6JUnNa/sxg4i4AHgpM1cOOLMkqS3aemppRIwHvkhjF1HP5HZmkCTt\nrN2fM/ggMB14Ohon7E4FnoqIkzJzQ3/f0NnZ2XO7VqtRq9Van3IvNJTTPj1VVMM1bdq0Eb2o+95m\n2rRpANTrder1+rCW1Y4yiOKLzHwGeF/PAxH/BMzKzP6OKwDvLgNJe5Y1a9aUHWGP0PeNcldX16CX\n0epTSxcCjwIzI2JdRMzpM0vibiJJKl1Ltwwy86IBHv9AK9cvSWqOn0CWJFkGkiTLQJKEZSBJwjKQ\nJGEZSJKwDCRJWAaSJCwDSRKWgZo0t+OOnoHpWr0eSe1nGUiSLANJkmUgScIykCRhGUiSsAwkSVgG\nkiQsA0kSloEkiRaXQUTcGRHrI2JFr2n/LSKei4jlEfHDiJjYygySpIG1estgAXBen2kPAsdk5keA\nXwE3tDiDJGkALS2DzPw5sLnPtIczc0dx9zFgaiszSJIGVvYxg78C/qHkDJK01xtT1ooj4kbg7cxc\nuLv5Ojs7e27XajVqtVprg41C3SN93jbvipKTSCpDvV6nXq8PaxmllEFEXAbMBs4aaN7eZSBJ2lnf\nN8pdXV2DXkY7yiCKr8adiPOB64CPZea2NqxfkjSAVp9auhB4FJgZEesiYg7wDeAA4KGIWBoRf9fK\nDJKkgbV0yyAzL+pn8oJWrlOSNHhln00kSaoAy0CSZBlIkiwDSRKWgSQJy0CShGUgScIykCRhGUiS\nsAy0F5rbcUfPSK+SGiwDSZJlIEmyDCRJWAaSJCwDSRKWgSQJy0CShGUgScIykCTR4jKIiDsjYn1E\nrOg1bVJEPBgRL0TEAxFxUCszSJIG1uotgwXAeX2mdQAPZ+ZRwGLghhZnkCQNoKVlkJk/Bzb3mfwJ\n4K7i9l3AX7QygyRpYGUcM3hvZq4HyMzXgPeWkEGS1MuYsgMAubsHOzs7e27XajVqtVqL41RP9wib\nt827otRljPQ62pFJ2hvU63Xq9fqwllFGGayPiCmZuT4i3gds2N3MvctAkrSzvm+Uu7q6Br2Mduwm\niuKr2yLgsuL2Z4F725BBkrQbrT61dCHwKDAzItZFxBxgHvDxiHgBOLu4L0kqUUt3E2XmRbt46JxW\nrleSNDh+AlmSZBlIkiwDSRKWgSQJy0CShGUgSaLJMoiIGc1MkySNTs1uGfywn2l3j2QQSVJ5dvuh\ns4j4MHAMcFBE/GWvhyYC+7cymCSpfQb6BPJRwJ8BBwN/3mv6m8CVrQql8o2WEUX75hwtuaWq2W0Z\nZOa9wL0R8UeZ+Y9tyiRJarNmxyb6dUR8EZje+3sy869aEUqS1F7NlsG9wCPAw8A7rYsjSSpDs2Uw\nITOvb2kSSVJpmj219CcRMbulSSRJpWm2DK6lUQj/GhFvRMSbEfFGK4NJktqnqd1EmXlgq4NIksrT\nVBlExMf6m56Z/3dk40iSytDsAeTret3eHzgJeAo4a8QTSZLartndRL0/fUxEHAHcOpwVR8RfA5cD\nO4CVwJzMfGs4y5QkDc1Qh7B+GTh6qCuNiPcDVwOzMvNYGqV04VCXJ0kanmaPGXwDyOLuPsBHgKXD\nXPe+wHsiYgcwAXhlmMuTJA1Rs8cMnux1ezvw/cz8xVBXmpmvRMQtwDrgX4AHM/PhoS5PkjQ8zR4z\nuCsixgEzi0kvDGelEXEw8AlgGvA6cHdEXJSZC/vO29nZ2XO7VqtRq9WGs2qNco5KKu2sXq9Tr9eH\ntYxmdxPVgLuANUAAR0TEZ4dxauk5wIuZualY/j3AqcBuy0CStLO+b5S7uroGvYxmdxPdApybmS8A\nRMRM4PvACYNeY8M64JSI2B/YBpwNPDHEZUmShqnZs4nGdhcBQGauBsYOdaWZ+TiNy2YuA56msbVx\n+1CXJ0kanqYPIEfEHcD/LO5fzLsPKg9aZnYBg9+WkSSNuGbL4AvAVcA1xf1HgL9rSSJJUts1ezbR\nNuB/FF+SpD1MU8cMIuLPImJZRGxyCGtJ2vM0u5voVuAvgZWZmQPNLEkaXZo9m+gl4BmLQJL2TM1u\nGfwX4L6I+BmNzwUAkJkeQ5CkPUCzZfBfgS00rmUwrnVxJEllaLYM3p+Z/76lSSRJpWn2mMF9EXFu\nS5NIkkrTbBl8Abg/Iv7VU0vVTnM77ugZqbSM7x/qMkZive1YptSt2Q+dHRgRk4E/oHHcQJK0B2l2\nCOsrgGuBqcBy4BTgURqjjUqSRrlmdxNdC3wUWJuZfwwcT+OiNJKkPUCzZfD7zPw9QETsl5nPA0e1\nLpYkqZ2aPbX05eJSlT8GHoqIzcDa1sWSJLVTsweQP1nc7IyIJcBBwP0tSyVJaqtmtwx6ZObPWhFE\nklSeZo8ZSJL2YJaBJKm8MoiIgyLiBxHxXEQ8GxEnl5VFkvZ2gz5mMIK+BtyXmf8xIsYAE0rMIkl7\ntVLKICImAmdk5mUAmbkdcKwjSSpJWbuJZgAbI2JBRCyNiNsjYnxJWSRpr1fWbqIxwCzgqsx8MiJu\nBTqAm/vO2NnZ2XO7VqtRq9XaFLG6ukeuvG3eFSUn2b3RknOw9tSfS6NXvV6nXq8PaxlllcHLwEuZ\n+WRx/27g+v5m7F0GkqSd9X2j3NXVNehllLKbKDPXAy9FxMxi0tnAqjKySJLKPZvoGuB7ETEWeBGY\nU2IWSdqrlVYGmfk0jWGxJUkl8xPIkiTLQJJkGUiSsAwkSVgGkiQsA0kSloEkCctAkoRlIEnCMpB2\nMrfjjp6RSUfzOkZinWXkVDksA0mSZSBJsgwkSVgGkiQsA0kSloEkCctAkoRlIEnCMpAkUXIZRMQ+\nEbE0IhaVmUOS9nZlbxlcC6wqOYMk7fVKK4OImArMBhz4RJJKVuaWwVeB64AsMYMkCRhTxkoj4k+B\n9Zm5PCJqQOxq3s7Ozp7btVqNWq3W6njay3SPynnbvCv2qAxV+LnUHvV6nXq9PqxllFIGwGnABREx\nGxgPHBgRf5+Zl/adsXcZSJJ21veNcldX16CXUcpuosz8YmYemZkfAC4EFvdXBJKk9ij7bCJJUgWU\ntZuoR2b+DPhZ2TkkaW/mloEkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnCMpAkYRlIkhjFZTC3446e\nURmHM4/UDkN5LbbjtVvFv5GRyFTFn6vqRm0ZSJJGjmUgSbIMJEmWgSQJy0CShGUgScIykCRhGUiS\nsAwkSZRUBhExNSIWR8SzEbEyIq4pI4ckqWFMSevdDvxNZi6PiAOApyLiwcx8vqQ8krRXK2XLIDNf\ny8zlxe0twHPA4WVkkSRV4JhBREwHPgL8stwkkrT3Kms3EQDFLqK7gWuLLYSddHZ2AnDfw0s5/Mij\n+NHC/96yPN2jHN4274ohz9PMMvr7nsHMP9rtSaNJdv/uRup3OJjXT995h/LaG66h/M0MNvdI/F2O\nhCo837tSr9ep1+vDWkZpZRARY2gUwXcz895dzdddBht/v+f8ByJJI6lWq1Gr1Xrud3V1DXoZZe4m\n+g6wKjO/VmIGSRLlnVp6GnAxcFZELIuIpRFxfhlZJEkl7SbKzF8A+5axbknSzko/m0iSVD7LQJJk\nGUiSLANJEpaBJAnLQJKEZSBJwjKQJGEZSJIoedTSqitrtMRWjoY42BFD+5u/HaOsDpRzuI83O4/e\nrdnntQojefY2kn9Tw3ndVGmk077cMpAkWQaSJMtAkoRlIEnCMpAkYRlIkrAMJElYBpIkSiyDiDg/\nIp6PiNURcX1ZOSRJJZVBROwD3AacBxwDfCYiPlxGlpHw23UvlB2hKaMlZ71eLzvCgEbLc2nOkTVa\ncg5FWVsGJwG/ysy1mfk28L+AT5SUZdhGywtktOS0DEaOOUfWaMk5FGWVweHAS73uv1xMkySVwAPI\nkiQiM9u/0ohTgM7MPL+43wFkZn65z3ztDydJe4DMjMHMX1YZ7Au8AJwNvAo8DnwmM59rexhJUjnX\nM8jMdyJiLvAgjV1Vd1oEklSeUrYMJEnVUskDyFX+QFpE3BkR6yNiRa9pkyLiwYh4ISIeiIiDSs44\nNSIWR8SzEbEyIq6paM79IuKXEbGsyHlzFXMWmfaJiKURsaiqGQEiYk1EPF08p48X0yqVNSIOiogf\nRMRzxWv05ApmnFk8h0uLf1+PiGuqlrPI+tcR8UxErIiI70XEuKHkrFwZjIIPpC2gka23DuDhzDwK\nWAzc0PZU77Yd+JvMPAb4I+Cq4jmsVM7M3Ab8cWYeD3wE+JOIOImK5SxcC6zqdb+KGQF2ALXMPD4z\nTyqmVS3r14D7MvNo4DjgeSqWMTNXF8/hLOAEYCvwIyqWMyLeD1wNzMrMY2ns+v8MQ8mZmZX6Ak4B\n/qHX/Q7g+rJz9ck4DVjR6/7zwJTi9vuA58vO2Cfvj4FzqpwTmAA8CXy0ajmBqcBDQA1YVOXfOfBP\nwCF9plUmKzAR+E0/0yuTsZ9s5wKPVDEn8H5gLTCpKIJFQ/1br9yWAaPzA2nvzcz1AJn5GvDekvP0\niIjpNN51P0bjxVGpnMXul2XAa8BDmfkE1cv5VeA6oPcBtqpl7JbAQxHxRER0X3W9SllnABsjYkGx\nC+b2iJhQsYx9fRpYWNyuVM7MfAW4BVgH/BZ4PTMfZgg5q1gGe4JKHJWPiAOAu4FrM3MLO+cqPWdm\n7sjGbqKpwEkRcQwVyhkRfwqsz8zlwO7O2y79uSyclo1dG7Np7B48gwo9nzTevc4Cvlnk3Epj679K\nGXtExFjgAuAHxaRK5YyIg2kM5TONxlbCeyLi4n5yDZizimXwW+DIXvenFtOqbH1ETAGIiPcBG0rO\nQ0SMoVEE383Me4vJlcvZLTPfAOrA+VQr52nABRHxIvB94KyI+C7wWoUy9sjMV4t//5nG7sGTqNbz\n+TLwUmY+Wdz/IY1yqFLG3v4EeCozNxb3q5bzHODFzNyUme/QOK5xKkPIWcUyeAL4UERMi4hxwIU0\n9oNVSfDud4mLgMuK258F7u37DSX4DrAqM7/Wa1qlckbEod1nOUTEeODjwHNUKGdmfjEzj8zMD9B4\nLS7OzEuA/0NFMnaLiAnF1iAR8R4a+7pXUq3ncz3wUkTMLCadDTxLhTL28RkabwK6VS3nOuCUiNg/\nIoLG87mKoeQs++DMLg6KnE/jE8q/AjrKztMn20LgFWBb8YuYQ+PgzcNF5geBg0vOeBrwDrAcWAYs\nLZ7TyRXL+YdFtuXACuDGYnqlcvbKeyb/dgC5chlp7I/v/p2v7P7bqVpWGmcQPVFkvQc4qGoZi5wT\ngH8GDuw1rYo5b6bxJmoFcBcwdig5/dCZJKmSu4kkSW1mGUiSLANJkmUgScIykCRhGUiSsAwkSVgG\nkiQsA2mXIuJHxeifK7tHAI2Iy4sLhjxWjLj59WL6oRFxd3Gxnl9GxKnlppcGx08gS7sQEQdn5u8i\nYn8awyecB/yCxpDgW4AlwPLMvCYivkdjJM5HI+II4IHM/HelhZcGaUzZAaQK+08R8RfF7anAJUA9\nM18HiIgfAH9QPH4OcHQxWBjAARExITP/pa2JpSGyDKR+RMSZwFnAyZm5LSKW0BgM7OhdfUsx79vt\nyiiNJI8ZSP07CNhcFMGHaVyO9QDgY8UF3ccA/6HX/A/SuE4yABFxXFvTSsNkGUj9ux8YGxHPAn8L\n/CONC7P8LfA48AiN6w2/Xsx/LXBiRDwdEc8An2t/ZGnoPIAsDUJEvCczt0bEvjSuKnVn/tuV5KRR\nyy0DaXA6I6L74jEvWgTaU7hlIElyy0CSZBlIkrAMJElYBpIkLANJEpaBJAn4/85+D7RwYsPwAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "male_not = males[males.Survived == 0]\n", + "hist = thinkstats2.Hist(male_not.Age)\n", + "thinkplot.Hist(hist, label='males')\n", + "thinkplot.Show(xlabel='age', ylabel='amount')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, there is a higher distribution of males who did not survive from the ages of the teens to early 30s, with a spike around the late 30's. " + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFPVJREFUeJzt3X2QXXV9x/H3NwloAiREGFCTELQtCLTVQI0IRa6ggdqK\ntf2jEccqFuhgIqHUNCv9g10cEREEK40zGspYC3RGrE2sogGTGx9AAUkIAoEQJECAQBJ5UgxGvv3j\nnl2XzSa5+3Dv2bP7fs3cyb1nz57f59xs8tnzcM+JzESSNLaNKzuAJKl8loEkyTKQJFkGkiQsA0kS\nloEkiRaXQURcHRGbI2JtP1/754h4OSJe08oMkqQ9a/WWwTXAKX0nRsR04N3AxhaPL0lqQkvLIDN/\nBPyyny9dASxs5diSpOa1/ZhBRJwGPJqZd7d7bElS/ya0c7CImAhcQGMXUc/kdmaQJO2srWUA/AFw\nKHBXRAQwHfhZRMzOzKf6zhwRXjhJkgYhMwf0i3Y7dhNF8SAzf56Zr83MN2bmG4DHgFn9FUG3zKzs\n48ILLyw9w0jIP2/RVyqbvervvfnHZv7BaPWppdcBtwCHRcQjEXFGn1kSdxNJUulaupsoM0/fw9ff\n2MrxJUnN8RPILVSr1cqOMCRVzl/l7GD+slU9/2DEYPcvtUNE5EjOp+bM71jCVZecWXYMacyICHKA\nB5DbfTaRpFHu0EMPZeNGLy7QDjNnzuThhx8elmVZBpKG1caNGwd9RosGpnGG/vDwmIEkyTKQJFkG\nkiQsA0ljyAMPPMCsWbOYMmUKV111VdvGHTduHA899FDbxhsMDyBLaqn5HUtauvyBnLZ86aWXctJJ\nJ7F69eoWJtrZcB7obRW3DCSNGRs3buSoo45q+7hVOLvKMpA0Jpx88smsXLmSefPmMXnyZNavX88n\nPvEJZs6cyete9zo+9rGPsX37dgBWrVrFjBkz+NznPsfBBx/MtGnTWLp0KTfeeCOHH344Bx54IJ/5\nzGd6ln377bdz3HHHMXXqVKZNm8bHP/5xduzY0W+Ol156aZfjbt26lfe+971MnTqVAw44gBNPPLH1\nb0zBMpA0Jnz/+9/nhBNOYPHixTz33HMsXryYBx98kLVr1/Lggw+yadMmLrroop75n3zySV566SUe\nf/xxurq6OOuss7j22mtZvXo1P/jBD/jUpz7V8+G68ePHc+WVV7Jt2zZuvfVWVqxYweLFi/vNsWjR\nol2Oe/nllzNjxgy2bt3KU089xcUXX9z6N6ZgGUgaU7p32XzlK1/hiiuuYMqUKeyzzz50dHRw/fXX\n98y39957c8EFFzB+/Hjmzp3Lli1bOO+885g0aRJHHnkkRx55JHfddRcARx99NLNnzyYiOOSQQzj7\n7LNZtWpVv+Pvbty99tqLJ554gl/84heMHz+e448/vsXvxu95AFnSmPP000/z61//mmOOOaZn2ssv\nv/yKffsHHHBAz4HfiRMnAnDQQQf1fH3ixIm88MILAKxfv57zzz+fO+64gxdffJEdO3a8YtnNjrtw\n4UI6OzuZM2cOEcFZZ53FokWLhnHNd80tA0ljzoEHHsikSZO455572LZtG9u2beOZZ57h2WefHdTy\nzjnnHI444gg2bNjAM888w6c//el+Dxrvadx9992Xyy67jA0bNrBs2TI+//nPs3LlyiGta7MsA0lj\nTvdv3eeddx5PP/00AJs2bWL58uWDWt7zzz/P5MmTmTRpEuvWreNLX/rSoMb99re/zYYNGwDYb7/9\nmDBhAuPGtee/aXcTSWqpkXT58t7n+19yySVcdNFFHHvssWzdupVp06ZxzjnnMGfOnD1+b9/Xl112\nGWeffTaXXnops2bNYu7cuaxYsaLfeT/72c/S1dXV77jr169n/vz5bNmyhalTpzJv3ry2nVHk/QzU\nct7PYGwprqVfdowxYVfv9WDuZ+BuIkmSZSBJsgwkSVgGkiQsA0kSLS6DiLg6IjZHxNpe0y6NiPsi\nYk1EfCMiJrcygyRpz1q9ZXANcEqfacuBozLzLcB64JMtziCpjWbOnElE+GjDY+bMmcP299bSD51l\n5o8iYmafaTf3evkT4G9bmUFSez388MNlR9AglH3M4KPAjSVnkKQxr7TLUUTEvwK/zczrdjdfZ2dn\nz/NarUatVmttMEmqmHq9Tr1eH9IyWn45imI30bcy8097TfsIcBZwUmZu3833ejmKUcDLUUjtNZjL\nUbRjyyCKR+NFxKnAQuAduysCSVL7tPrU0uuAW4DDIuKRiDgD+CKwL3BTRNwZEf3fG06S1DatPpvo\n9H4mX9PKMSVJA1f22USSpBHAMpAkWQaSJMtAkoRlIEnCMpAkYRlIkrAMJElYBpIkLANJEpaBJAnL\nQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGUgScIykCRhGUiSaHEZRMTVEbE5Itb2\nmjY1IpZHxP0R8b2ImNLKDJKkPWv1lsE1wCl9pnUAN2fm4cAK4JMtziBJ2oOWlkFm/gj4ZZ/J7wO+\nWjz/KvDXrcwgSdqzMo4ZHJSZmwEy80ngoBIySJJ6mVB2ACB398XOzs6e57VajVqt1uI4Goj5HUu4\n6pIzy44hjWn1ep16vT6kZZRRBpsj4uDM3BwRrwWe2t3MvctAkrSzvr8od3V1DXgZ7dhNFMWj2zLg\nI8XzDwNL25BBkrQbrT619DrgFuCwiHgkIs4ALgHeHRH3AycXryVJJWrpbqLMPH0XX3pXK8eVJA2M\nn0CWJFkGkiTLQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGWgUWp+x5KyI0iVYhlI\nkiwDSZJlIEnCMpAkYRlIkrAMJElYBpIkLANJEpaBJAnLQJKEZSBJosQyiIh/ioifR8TaiLg2IvYu\nK4skjXWllEFEvB74OHB0Zv4pMAGYW0YWSVLjP+GyjAf2iYiXgUnA4yVmkaQxraktg4h4QzPTmpWZ\njwOXA48Am4BnMvPmwS5PkjQ0zW4ZfAM4us+0G4BjBjNoROwPvA+YCTwL3BARp2fmdX3n7ezs7Hle\nq9Wo1WqDGVK9zO9YwlWXnFl2jErzPdRIUq/XqdfrQ1rGbssgIt4EHAVMiYi/6fWlycCrhzDuu4CH\nMnNbMc7/AMcBuy0DSdLO+v6i3NXVNeBl7GnL4HDgr4D9gff2mv48cNaAR/u9R4BjI+LVwHbgZOD2\nISxPkjQEuy2DzFwKLI2It2fmrcM1aGbeFhE3AKuB3xZ/fnm4li9JGphmjxk8GBEXAIf2/p7M/Ohg\nB87MLmDg2zKSpGHXbBksBX4I3Az8rnVxJEllaLYMJmXmopYmkSSVptlPIP9fRLynpUkkSaVptgwW\n0CiEFyPiuYh4PiKea2UwSVL7NLWbKDP3a3UQSVJ5miqDiHhHf9Mz8wfDG0eSVIZmDyAv7PX81cBs\n4GfAScOeSJLUds3uJur96WMiYgZwZUsSSZLabrD3M3gMOGI4g0iSytPsMYMvAlm8HAe8BbizVaEk\nSe3V7DGDO3o93wFcn5k/bkEeSVIJmtpNlJlfBa6ncdD4LuC2VoZSe83vWFJ2hFHB91FV1uxuohrw\nVeBhIIAZEfFhTy2VpNGh2d1ElwNzMvN+gIg4jMaWwqDudCZJGlmaPZtor+4iAMjMB4C9WhNJktRu\nTR9AjoglwH8Vrz/IKw8qS5IqrNkyOAeYB5xbvP4hsLgliSRJbdfsJ5C3A58vHpKkUaapYwYR8VcR\nsToitnkJa0kafZrdTXQl8DfA3ZmZe5pZklQtzZ5N9Cjwc4tAkkanZrcM/gX4TkSsArZ3T8xMjyFI\n0ijQbBl8GniBxr0M9m5dHElSGZotg9dn5h8P58ARMQVYAvwx8DLw0cz86XCOIUlqTrPHDL4TEXOG\neewvAN/JzCOANwP3DfPyJUlNarYMzgG+GxEvDseppRExGTghM68ByMwdmempqpJUkmY/dLZfRLwG\n+CMaxw2G6g3Aloi4hsZWwR3Agsx8cRiWLUkaoGYvYX0msACYDqwBjgVuAU4ewrhHA/My846IuBLo\nAC7sO2NnZ2fP81qtRq1WG+SQ0p7N71jCVZecWXYMaUDq9Tr1en1Iy2j2APIC4K3ATzLznRHxJuDi\nIYz7GPBoZnZf7O4GYFF/M/YuA0nSzvr+otzV1TXgZTR7zOA3mfkbgIh4VWauAw4f8GiFzNwMPFrc\nFwEaWxj3DnZ5kqShaXbL4LGI2B/4X+CmiPglsHGIY58LXBsRewEPAWcMcXmSpEFq9gDy+4unnRGx\nEpgCfHcoA2fmXTR2PUmSStbslkGPzFzViiCSpPI0e8xAkjSKWQaSJMtAkmQZSJKwDCRJWAaSJCwD\nSRKWgSQJy0CShGUgSWIMlcH8jiVlR2i5/tax6uvdN/9Q1rFK70WVsmp0GDNlIEnaNctAkmQZSJIs\nA0kSloEkCctAkoRlIEnCMpAkYRlIkrAMJElYBpIkSi6DiBgXEXdGxLIyc0jSWFf2lsEC4N6SM0jS\nmFdaGUTEdOA9gJdnlKSSlbllcAWwEMgSM0iSKKkMIuIvgc2ZuQaI4tGvzs7Onke9Xh+2DFW/XnwZ\n+ZsZs+rva3+Gc51G4z0n+jMa12kkq9frr/i/cjAmDG+kph0PnBYR7wEmAvtFxH9m5t/3nXGwKyZJ\nY0WtVqNWq/W87urqGvAyStkyyMwLMvOQzHwjMBdY0V8RSJLao+yziSRJI0BZu4l6ZOYqYFXZOSRp\nLHPLQJJkGUiSLANJEpaBJAnLQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRKWQSWMlWvDj5X1HC5D\neb8G+70j9T4aZSxrtLEMJEmWgSTJMpAkYRlIkrAMJElYBpIkLANJEpaBJAnLQJKEZSBJwjKQJFFS\nGUTE9IhYERH3RMTdEXFuGTkkSQ0TShp3B3B+Zq6JiH2Bn0XE8sxcV1IeSRrTStkyyMwnM3NN8fwF\n4D5gWhlZJEkj4JhBRBwKvAX4ablJJGnsKrUMil1ENwALii2EnXR2dtLZ2cnsPz+N95++cKevj8br\nk4/GdeprJKzj/I4lIyJHs0bqPQhGaq4ylLVO9Xq95//Kzs7OQS2jrGMGRMQEGkXwtcxcuqv5ulds\ny29G3w+OJA2HWq1GrVbred3V1TXgZZS5ZfAfwL2Z+YUSM0iSKO/U0uOBDwInRcTqiLgzIk4tI4sk\nqaTdRJn5Y2B8GWNLknZW+tlEkqTyWQaSJMtAkmQZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGUgScIy\nkCQxSstgOK+v3uw0Vdto+TsdzvUoY1nNzNfffShGatYqGZVlIEkaGMtAkmQZSJIsA0kSloEkCctA\nkoRlIEnCMpAkYRlIkrAMJEmUWAYRcWpErIuIByJiUVk5JEkllUFEjAOuAk4BjgI+EBFvKiNLK9Xr\n9bIjDEmV82965P6yIwyJ+ctV5Z/9wSpry2A2sD4zN2bmb4H/Bt5XUpaWqfoPVJXzV/0/I/OXq8o/\n+4NVVhlMAx7t9fqxYpokqQQeQJYkEZnZ/kEjjgU6M/PU4nUHkJn52T7ztT+cJI0CmRkDmb+sMhgP\n3A+cDDwB3AZ8IDPva3sYSRITyhg0M38XEfOB5TR2VV1tEUhSeUrZMpAkjSwj8gByFT+QFhFXR8Tm\niFjba9rUiFgeEfdHxPciYkqZGXclIqZHxIqIuCci7o6Ic4vpVcn/qoj4aUSsLvJfWEyvRH5ofPYm\nIu6MiGXF68pkB4iIhyPiruLv4LZiWiXWISKmRMTXI+K+4t/A2yqU/bDiPb+z+PPZiDh3MPlHXBlU\n+ANp19DI3FsHcHNmHg6sAD7Z9lTN2QGcn5lHAW8H5hXveSXyZ+Z24J2ZOQt4C/AXETGbiuQvLADu\n7fW6StkBXgZqmTkrM2cX06qyDl8AvpOZRwBvBtZRkeyZ+UDxnh8NHAP8Cvgmg8mfmSPqARwL3Njr\ndQewqOxcTWafCazt9XodcHDx/LXAurIzNrke/wu8q4r5gUnAHcBbq5IfmA7cBNSAZVX82QF+ARzQ\nZ9qIXwdgMrChn+kjPns/mecAPxxs/hG3ZcDo+kDaQZm5GSAznwQOKjnPHkXEoTR+u/4JjR+mSuQv\ndrOsBp4EbsrM26lO/iuAhUDvA3hVyd4tgZsi4vaIOLOYVoV1eAOwJSKuKXa1fDkiJlGN7H39HXBd\n8XzA+UdiGYxmI/pofUTsC9wALMjMF9g574jNn5kvZ2M30XRgdkQcRQXyR8RfApszcw2wu/PCR1z2\nPo7Pxq6K99DYzXgCFXj/aZxReTTw70X+X9HYG1GF7D0iYi/gNODrxaQB5x+JZbAJOKTX6+nFtCra\nHBEHA0TEa4GnSs6zSxExgUYRfC0zlxaTK5O/W2Y+B9SBU6lG/uOB0yLiIeB64KSI+BrwZAWy98jM\nJ4o/n6axm3E21Xj/HwMezcw7itffoFEOVcje218AP8vMLcXrAecfiWVwO/CHETEzIvYG5gLLSs7U\nrOCVv90tAz5SPP8wsLTvN4wg/wHcm5lf6DWtEvkj4sDusyUiYiLwbuA+KpA/My/IzEMy8400ftZX\nZOaHgG8xwrN3i4hJxVYlEbEPjX3Xd1ON938z8GhEHFZMOhm4hwpk7+MDNH6Z6Dbw/GUf9NjFgZBT\naXxCeT3QUXaeJjNfBzwObAceAc4ApgI3F+uyHNi/7Jy7yH488DtgDbAauLP4O3hNRfL/SZF5DbAW\n+NdieiXy91qPE/n9AeTKZKex3737Z+fu7n+zVVkHGmcQ3V6sw/8AU6qSvcg/CXga2K/XtAHn90Nn\nkqQRuZtIktRmloEkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnCMpB2KSK+WVyF8+7uK3FGxD8UNwz5\nSXGFy38rph8YETcUN9n5aUQcV256aWD8BLK0CxGxf2Y+ExGvpnG5glOAH9O4xPcLwEpgTWaeGxHX\n0rjy5S0RMQP4XmYeWVp4aYAmlB1AGsHOi4i/Lp5PBz4E1DPzWYCI+DrwR8XX3wUcERHdFyrcNyIm\nZeav25pYGiTLQOpHRJwInAS8LTO3R8RKGldCPWJX31LM+9t2ZZSGk8cMpP5NAX5ZFMGbaNyOdV/g\nHcUN1CcAf9tr/uU07mMMQES8ua1ppSGyDKT+fRfYKyLuAS4GbqVxI5SLgduAH9K47++zxfwLgD+L\niLsi4ufAP7Y/sjR4HkCWBiAi9snMX0XEeOCbwNX5+zvDSZXlloE0MJ0R0X0Tl4csAo0WbhlIktwy\nkCRZBpIkLANJEpaBJAnLQJKEZSBJAv4fGZv3LvlIvBgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hist = thinkstats2.Hist(female_sur.Age)\n", + "thinkplot.Hist(hist, label='females')\n", + "thinkplot.Show(xlabel='age', ylabel='amount')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For women, the highest survival is around the ages of 20's to 30's, with a spike around age 5. " + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEPCAYAAABBUX+lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEvFJREFUeJzt3X+wVOV9x/H3F1ADIoRANRYQk2k0YjsRbYiRMd5oQqyJ\naZvOdEg7aZpW7BCIODYW6j/ea0aDxl9pKZmpmoxNjU1jxmAbTTSBi4kxCUb8ERVFFKJGUEFRokGJ\n3/6xC73ABfZe9uzl7vN+zdzh7Llnz/N9dpcPD885e05kJpKk9jdkoAuQJLWGgS9JhTDwJakQBr4k\nFcLAl6RCGPiSVIhhVTcQEWuATcCbwBuZObXqNiVJu6o88KkFfUdmvtiCtiRJu9GKKZ1oUTuSpD1o\nRRAncEdELI+ImS1oT5LUi1ZM6UzLzGcj4veoBf8jmfnjFrQrSeqh8sDPzGfrfz4fETcDU4EdAj8i\nvKCPJPVRZkZftq90SiciRkTEyPrywcB04Je9bZuZbflz4YUXDngNffmZPe8aZs+7pm371+7vn/0r\np3/9UfUI/zDg5voIfhhwQ2beXnGbkqReVBr4mfkkcFyVbUiSGuPpkhXr6OgY6BIqZf8GN/tXlujv\nXFBTi4jI/aEOwZz51wKwcMFZA1yJpD2JCLKPB21bcVqmpDZz5JFHsnbt2oEuowiTJk1izZo1TdmX\ngS+pz9auXdvvM0XUNxF9GsTvkXP4klQIA1+SCmHgS1IhDHxJbeexxx5jypQpjB49moULF7as3SFD\nhvDEE0+0rL2+8qCtpKbYdkpvVfpyqvBll13GqaeeyooVKyqsaFfNPMBaBUf4ktrO2rVrOfbYY1ve\n7v5+5pKBL6mtnHbaaSxdupTZs2czatQoVq1axec//3kmTZrE4Ycfzmc/+1m2bNkCwLJly5g4cSJf\n+tKXOOywwxg/fjyLFy/mtttu4+ijj2bcuHF88Ytf3L7v5cuXc9JJJzFmzBjGjx/P5z73ObZu3dpr\nHa+//vpu292wYQNnnnkmY8aMYezYsZxyyinVvzAY+JLazA9/+ENOPvlkFi1axMsvv8yiRYt4/PHH\neeCBB3j88cd55plnuOiii7Zvv27dOl5//XV+/etf09XVxcyZM7nhhhtYsWIFd955J1/4whe2f8ls\n6NChXH311WzcuJG7776bJUuWsGjRol7rmDdv3m7bveKKK5g4cSIbNmzgueee45JLLqn+hcHAl9Sm\ntk2vXHPNNVx11VWMHj2agw8+mPnz53PjjTdu3+7AAw/kggsuYOjQocyYMYMXXniBc889lxEjRjB5\n8mQmT57M/fffD8Dxxx/P1KlTiQiOOOIIzj77bJYtW9Zr+3tq94ADDuDZZ5/lySefZOjQoUybNq3i\nV6PGg7aS2tbzzz/Pq6++ygknnLB93ZtvvrnDXPvYsWO3H2wdPnw4AIceeuj23w8fPpzNmzcDsGrV\nKs477zzuueceXnvtNbZu3brDvhtt9/zzz6ezs5Pp06cTEcycOZN58+Y1see9c4QvqW2NGzeOESNG\n8NBDD7Fx40Y2btzISy+9xKZNm/q1v1mzZnHMMcewevVqXnrpJS6++OJeD9Turd2RI0dy+eWXs3r1\nam655RauvPJKli5duk99bYSBL6ltbRs9n3vuuTz//PMAPPPMM9x+e//uw/TKK68watQoRowYwcqV\nK/nKV77Sr3a/+93vsnr1agAOOeQQhg0bxpAh1cexUzqSmmJ/uqR2z/PhFyxYwEUXXcSJJ57Ihg0b\nGD9+PLNmzWL69Ol7fe7Ojy+//HLOPvtsLrvsMqZMmcKMGTNYsmRJr9teeumldHV19druqlWrmDNn\nDi+88AJjxoxh9uzZLTlTx+vhawdeD1+NqF+LfaDLKMLuXuv+XA/fKR1JKoSBL0mFMPAlqRAGviQV\nwsCXpEIY+JJUCM/Dl9RnkyZN2u+v/d4uJk2a1LR9GfiS+mzNmjUDXYL6wSkdSSqEgS9JhTDwJakQ\nBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYVoSeBHxJCIuDcibmlFe5KkXbVqhD8XeLhF\nbUmSelF54EfEBOAM4Nqq25Ik7V4rRvhXAecD3uJekgZQpZdHjoiPAusz876I6AB2ewHtzs7O7csd\nHR10dHTs8Ps58///PwgLF5zV3EKbYFt9+2Ntkga/7u5uuru792kfVV8Pfxrw8Yg4AxgOHBIR/5GZ\nf7Pzhj0DX5K0o50Hwl1dXX3eR6VTOpl5QWYekZnvBGYAS3oLe0lS9TwPX5IK0bJbHGbmMmBZq9qT\nJO3IEb4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+S\nCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqEgS9JhTDwJakQ\nBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klSIYVXuPCIO\nAu4EDqy3dVNmdlXZpiSpd5UGfmZuiYgPZuarETEUuCsibsvMn1fZriRpV5VP6WTmq/XFg6j9A5NV\ntylJ2lXlgR8RQyJiBbAOuCMzl1fdpiRpV60Y4b+ZmVOACcD7ImJy1W1KknZV6Rx+T5n5ckQsBU4H\nHt75952dnduXOzo66OjoaFVpaqI586/dvrxwwVmV7LvZ+1X1qvxclKK7u5vu7u592kfVZ+mMA97I\nzE0RMRz4MLCgt217Br4kaUc7D4S7uvp+wmPVI/zDgesjYgi16aNvZuatFbcpSepF1adlPggcX2Ub\nkqTG+E1bSSpEQ4EfEe9oZJ0kaf/V6Aj/272su6mZhUiSqrXHOfyIeDdwLDA6Ij7R41ejgLdUWZgk\nqbn2dtD2aOBjwFuBM3usfwWYWVVRkqTm22PgZ+ZiYHFEvD8z725RTZKkCjR6WubjEXEBcGTP52Tm\n31VRlCSp+RoN/MXAj4AfAL+rrhxJUlUaDfwRmTmv0kokSZVq9LTM/42IMyqtRJJUqUYDfy610H8t\nIl6OiFci4uUqC5MkNVdDUzqZeUjVhUiSqtVQ4EfEB3pbn5l3NrccSVJVGj1oe36P5bcAU4FfAKc2\nvSJJUiUandLp+S1bImIicHUlFUmSKtHfyyM/DRzTzEIkSdVqdA7/X4GsPxwCHAfcW1VRkqTma3QO\n/54ey1uBGzPzrgrqkSRVpNE5/Osj4kDgqPqqR6srSZJUhUandDqA64E1QAATI+LTnpYpSYNHo1M6\nVwDTM/NRgIg4CrgROKGqwiRJzdXoWToHbAt7gMx8DDigmpIkSVVo+KBtRFwL/Gf98V+z44FcSdJ+\nrtHAnwXMBs6pP/4RsKiSiiRJlWj0LJ0twJX1H0nSINTQHH5EfCwiVkTERi+PLEmDU6NTOlcDnwAe\nzMzc28aSpP1Po2fpPAX80rCXpMGr0RH+PwG3RsQyYMu2lZnpnL4kDRKNBv7FwGZq18I/sLpyJElV\naTTwfz8z/7DSSiRJlWp0Dv/WiJheaSWSpEo1GvizgO9FxGuelilJg1OjX7w6JCLeBryL2jy+JGmQ\nafTyyGcBc4EJwH3AicBPgNOqK02S1EyNTunMBd4LrM3MDwJTgE2VVSVJarpGA/+3mflbgIg4KDNX\nAkfv7UkRMSEilkTEQxHxYEScs7fnSJKq0ehpmU9HxFuB7wB3RMSLwNoGnrcVOC8z74uIkcAvIuL2\n+j8YkqQWavSg7Z/XFzsjYikwGvheA89bB6yrL2+OiEeA8YCBL0kt1ugIf7vMXNafhiLiSOA44Gf9\neb4kad80Ooe/T+rTOTcBczNzcyvalCTtqM8j/L6KiGHUwv7rmbl4d9t1dnZuX+7o6KCjo6Pq0rSP\n5sy/FoCFC85qeNtGtq9q257b99x2d/voy7b7s6reJ7VWd3c33d3d+7SPygMf+CrwcGZ+eU8b9Qx8\nSdKOdh4Id3V19XkflU7pRMQ0ajc8P7V+x6x7I+L0KtuUJPWu0hF+Zt4FDK2yDUlSY1py0FaSNPAM\nfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCX\npEIY+JJUCANfkgph4EtSIQx8SSqEgS9JhTDwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkq\nhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRCVBn5EXBcR6yPi\ngSrbkSTtXdUj/K8BH6m4DUlSAyoN/Mz8MfBilW1IkhrjHL4kFWLYQBewTWdn5/bljo4OOjo6Gnre\nnPnXbl9euOCsfrW9bR+NPL8/2+68fV/2sbf99rS7/fXWXjNet2bY19eiVfvd3WteVXt704z3tJmf\nw2Z+vne3j770b3/5fPemv7V1d3fT3d29T23vl4EvSdrRzgPhrq6uPu+jFVM6Uf+RJA2gqk/L/Abw\nE+CoiPhVRHymyvYkSbtX6ZROZv5VlfuXJDXOs3QkqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8\nSSqEgS9JhTDwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJek\nQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqE\ngS9JhTDwJakQBr4kFcLAl6RCVB74EXF6RKyMiMciYl7V7UmSeldp4EfEEGAh8BHgWOCTEfHuKtvc\n3zzzq0cHuoRK2b/Bzf6VpeoR/lRgVWauzcw3gP8C/rTiNvcr7f6Bs3+Dm/0rS9WBPx54qsfjp+vr\nJEkt5kFbSSpEZGZ1O484EejMzNPrj+cDmZmX7rRddUVIUpvKzOjL9lUH/lDgUeA04Fng58AnM/OR\nyhqVJPVqWJU7z8zfRcQc4HZq00fXGfaSNDAqHeFLkvYfA3rQtt2+lBUR10XE+oh4oMe6MRFxe0Q8\nGhHfj4jRA1njvoiICRGxJCIeiogHI+Kc+vpB38eIOCgifhYRK+p9u7C+ftD3raeIGBIR90bELfXH\nbdO/iFgTEffX38Of19e1U/9GR8S3IuKR+t/B9/W1fwMW+G36payvUetPT/OBH2Tm0cAS4J9bXlXz\nbAXOy8xjgfcDs+vv2aDvY2ZuAT6YmVOA44A/iYiptEHfdjIXeLjH43bq35tAR2ZOycyp9XXt1L8v\nA7dm5jHAe4CV9LV/mTkgP8CJwG09Hs8H5g1UPU3s1yTggR6PVwKH1ZffDqwc6Bqb2NfvAB9qtz4C\nI4B7gPe2U9+ACcAdQAdwS31dO/XvSWDsTuvaon/AKGB1L+v71L+BnNIp5UtZh2bmeoDMXAccOsD1\nNEVEHEltJPxTah+4Qd/H+nTHCmAdcEdmLqdN+lZ3FXA+0PPAXTv1L4E7ImJ5RJxVX9cu/XsH8EJE\nfK0+JffvETGCPvbPL1613qA/Sh4RI4GbgLmZuZld+zQo+5iZb2ZtSmcCMDUijqVN+hYRHwXWZ+Z9\nwJ7O3R6U/aublpnHA2dQm248mTZ5/6idUXk88G/1Pv6G2qxIn/o3kIH/DHBEj8cT6uvazfqIOAwg\nIt4OPDfA9eyTiBhGLey/npmL66vbqo+Z+TLQDZxO+/RtGvDxiHgCuBE4NSK+Dqxrk/6Rmc/W/3ye\n2nTjVNrn/XsaeCoz76k//ja1fwD61L+BDPzlwB9ExKSIOBCYAdwygPU0S7DjCOoW4G/ry58GFu/8\nhEHmq8DDmfnlHusGfR8jYty2MxwiYjjwYeAR2qBvAJl5QWYekZnvpPZ3bUlmfgr4H9qgfxExov4/\nTyLiYGA68CDt8/6tB56KiKPqq04DHqKP/RvQ8/Aj4nRqR563fSlrwYAV0wQR8Q1qB8TGAuuBC6mN\nNL4FTATWAn+ZmS8NVI37IiKmAXdS+4uU9Z8LqH2D+r8ZxH2MiD8Crqf2WRwCfDMzL46ItzHI+7az\niDgF+MfM/Hi79C8i3gHcTO0zOQy4ITMXtEv/ACLiPcC1wAHAE8BngKH0oX9+8UqSCuFBW0kqhIEv\nSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHwVLSJurl9d8cFtV1iMiL+v31Dip/WrEv5L\nff24iLipfqOUn0XESQNbvdQ3ftNWRYuIt2bmSxHxFmrXd/oIcBe1Sz9vBpYC92XmORFxA7WrFf4k\nIiYC38/MyQNWvNRHld7EXBoEzo2IP6svTwA+BXRn5iaAiPgW8K767z8EHBMR2y6ONzIiRmTmqy2t\nWOonA1/Fql9E7FTgfZm5JSKWUrtC5jG7e0p92zdaVaPUTM7hq2SjgRfrYf9uarfdHAl8oH7D6GHA\nX/TY/nZq94QFtl+9UBo0DHyV7HvAARHxEHAJcDe1G01cQu2Szz+idp/UTfXt5wJ/HBH3R8QvgX9o\nfclS/3nQVtpJRBycmb+JiKHUrrF+XY+7e0mDliN8aVed9ZuZPwg8YdirXTjCl6RCOMKXpEIY+JJU\nCANfkgph4EtSIQx8SSqEgS9Jhfg/ZmaGjfWlz/oAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "female_not = females[females.Survived == 0]\n", + "hist = thinkstats2.Hist(female_not.Age)\n", + "thinkplot.Hist(hist, label='females')\n", + "thinkplot.Show(xlabel='age', ylabel='amount')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The first thing that I notice about this graph is that the y-axis range is noticeably smaller than the survival y-axis range, corroborating the fact that %70 of women in this data set survived. This highest numbers here were very small children, possibly because of weaker immune systems, and between the ages of 15 to 30. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The other area that potentially holds useful information is visualizing survival rate by passenger class and fare, to see if there was a higher priority for first class or higher paying passengers, or if it didn't make a huge difference overall. " + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHFtJREFUeJzt3X+cVXW97/HXe0Al5DcdBgMO1MUfhKVwr6SVuTFT6FZ6\nTD1pmmne9MAYUpcAuzV4qgdyudkv5ZinJLRS0R4FJ03Qi2OKPwaukOAQB1QQpxgz+aFlysjn/rEX\nuJ0ZZm2GWXtvnPfz8dgP1qz9XWt99sxi3rPWd631VURgZmbWnqpyF2BmZpXPYWFmZqkcFmZmlsph\nYWZmqRwWZmaWymFhZmapMg0LSYdJelzSKklrJNUm8/tLWippvaQlkvoWLDNT0gZJ6ySdnmV9ZmZW\nHGV9n4WknhHxN0ndgOXAl4BPA3+JiP8taTrQPyJmSHov8HPgBGAocD9wZPhmEDOzssr8NFRE/C2Z\nPAzoDgRwJrAgmb8AOCuZ/hRwe0Q0R8QmYAMwLusazcysfZmHhaQqSauArcB9EbECqI6IJoCI2AoM\nSpoPAbYULN6YzDMzszIqxZHF7ogYQ/600jhJo8kfXbylWdZ1mJlZx3Uv1YYiYqekOmAC0CSpOiKa\nJA0GXkiaNQLDChYbmsx7C0kOFzOzDogIdWS5rK+GeueeK50kvQP4GLAOWAx8Pml2MbAomV4MfEbS\noZLeDYwE6ttad0RU3Ku2trbsNbgm19QV63JNxb0ORNZHFkcACyRVkQ+mOyLiHkmPAQslXQpsBs4D\niIgGSQuBBmAXMCkO9BOamdkByzQsImINMLaN+S8Bp+1jmdnA7CzrMjOz/eM7uDtRLpcrdwmtuKbi\nuKbiVWJdril7md+UlwVJPjtlZrafJBEd7OAu2dVQZtZ1jRgxgs2bN5e7jC5j+PDhbNq0qVPX6SML\nM8tc8hdtucvoMvb1/T6QIwv3WZiZWSqHhZmZpXJYmJlZKoeFmVkHPPjggwwbNiy94duEr4Yys7Ko\nmfHjTNd//bWXFd12xIgRvPDCC3Tv3p3DDz+cCRMmcMMNN9CzZ892l5M61FfcIXfeeSff+973WL16\nNR/4wAdYtmxZybYNPrIwM0MSd999Nzt37uSJJ55g5cqVfOtb3yp3WW8xcOBApk6dysyZM8uyfYeF\nmRnsvdT0iCOOYOLEiaxduxaAbdu2cemllzJkyBAGDhzI2Wef3ebyc+bMYeTIkfTp04djjz2WX//6\n13vfe/rpp8nlcvTr149BgwZx/vnn731v6tSpVFdX07dvX4477jgaGhraXP+pp57KOeecwxFHHNFZ\nH3m/+DSUmVmBLVu2cM8993DOOecAcOGFF9KnTx/WrVvH4YcfziOPPNLmciNHjmT58uVUV1dz5513\ncuGFF/L0009TXV3N17/+dc444wzq6up4/fXXWblyJQBLly7l4YcfZuPGjfTu3Zv169fTr1+/kn3W\n/eEjCzMz4KyzzmLAgAF85CMfYfz48cycOZOtW7eyZMkSfvSjH9GnTx+6devGySef3Obyn/70p6mu\nrgbg3HPP5cgjj6S+Pj/CwiGHHMLmzZtpbGzk0EMP5YMf/ODe+S+//DINDQ1EBEcfffTedVQah4WZ\nGbBo0SJeeuklnn32WX74wx9y2GGHsWXLFgYMGECfPn1Sl7/lllsYM2YM/fv3p3///jz11FO8+OKL\nAMydO5fdu3czbtw43ve+9zF//nwAxo8fT01NDZMnT6a6uporrriCV155JdPP2VEOCzMzaPPxGMOG\nDeOll15i586d7S773HPP8cUvfpF58+axbds2tm3bxujRo/euc9CgQdx00000NjZy4403MmnSJJ55\n5hkAampqWLlyJQ0NDaxfv565c+d2/ofrBA4LM7N9GDx4MBMnTmTSpEls376d5uZmHnrooVbt/vrX\nv1JVVcU73/lOdu/ezfz58/d2kAPcddddNDbmR4ju168fVVVVVFVVsXLlSurr62lubuYd73gHPXr0\noKqq7V/Lu3fv5rXXXmPXrl288cYbvPbaazQ3N2fzwdvgDm4zK4v9uQ8ia+3dL3Hrrbdy1VVXccwx\nx7Br1y7Gjx/fqt9i1KhRfOUrX+HEE0+kW7dufO5zn+PDH/7w3vdXrFjBVVddxc6dO6muruYHP/gB\nI0aM4JlnnmHq1Kk8++yz9OjRgzPOOINp06bts45LLrlkb609e/bk4osv5uabb+6E70A6P3XWzDLn\np86WVhZPne3yRxbXrd1Y7hIy9eVjR5a7BDN7G3CfhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVy\nWJiZWSqHhZmZpXJYmJl1gIdVNTMrga/NX5Hp+r99yQlFtz0YhlWdNm0aixYtoqmpiSFDhjBz5kwu\nuuiikm0/0yMLSUMlLZP0lKQ1kq5M5tdKel7SE8lrQsEyMyVtkLRO0ulZ1mdmBgfHsKq9evXi7rvv\nZseOHfz0pz9lypQpPPbYYyXbftanoZqBL0fEaOAkoEbSMcl710XE2OR1L4CkUcB5wChgIjBPpYxu\nM+uyKn1Y1draWo488kgAxo0bx8knn8yjjz7aKZ+9GJmehoqIrcDWZPoVSeuAIcnbbYXAmcDtEdEM\nbJK0ARgHPJ5lnWZmexwMw6q++uqrrFixgsmTJ3feB09Rsg5uSSOA43nzF3+NpNWSfiypbzJvCLCl\nYLFG3gwXM7PMHEzDql5xxRWMGTOG008v3Zn6koSFpF7AXcCUiHgFmAe8JyKOJ3/k8Z1S1GFmti8H\ny7Cq06ZNo6GhgTvuuOPAP/R+yPxqKEndyQfFrRGxCCAi/lzQ5N+B/0imG4HCa9GGJvNamTVr1t7p\nXC5HLpfrtJrNrOtJG1a1vcDYM6zqAw88wEknnQTAmDFjWg2rCrB8+XJOO+00TjnlFN7znvdQU1ND\nTU0NL774Iueeey5z587lmmuuaXM7tbW1LFmyhN/97nf06tUr9TPV1dVRV1eX2q4Ypbh09magISK+\nv2eGpMFJfwbA2cCe8QcXAz+X9F3yp59GAvVtrbQwLMzMslA4rOr1119Pr169ePTRR1udimo5rOqC\nBQtaDat60kknMWTIkFbDqu7evZuxY8emDqs6e/ZsbrvtNh5++OGi+jWg9R/S+wqhYmQaFpI+BHwW\nWCNpFRDA1cAFko4HdgObgMsBIqJB0kKgAdgFTPKQeGZvT/tzH0TWDoZhVb/2ta9x2GGHMXLkSCIC\nSVx99dXMmDGjc74JKbr8sKoeKc8sex5WtbSyGFbVj/swM7NUDgszM0vlsDAzs1QOCzMzS+WwMDOz\nVA4LMzNL5bAwM7NUDgszM0vlsDAz6wAPq2pmVgJZPz1hf55ecDAMqzp9+nRuu+02duzYwYABA7j8\n8stL9qgP8JGFmdlBMazqF77wBRoaGtixYwePPPIIP/vZz94yGl/WHBZmZlT+sKpHHXXU3seS7969\nm6qqKjZuLN2z7RwWZmYF9gyrOnbsWCA/rOqrr77KunXreOGFF5g6dWqby+0ZVnXnzp3U1tZy4YUX\n0tTUBLB3WNXt27fz/PPPc+WVVwJvHVZ1x44dLFy4kIEDB+6ztjlz5tC7d2+GDRvG3/72Ny644IJO\n/vT75rAwM+PgGFZ1+vTpvPzyy6xatYqLLrqIvn377rNtZ3NYmJlx8AyrCnDcccfRo0cPvvGNbxzY\nh94PDgszM9KHVW3PnmFV582bx7Zt29i2bRujR49uNaxqY2MjN954I5MmTeKZZ54BoKamhpUrV9LQ\n0MD69euZO3duUfU2NzfvXUcpOCzMzPahcFjV7du309zczEMPPdSqXcthVefPn99qWNXGxkaAVsOq\n1tfX09zc3O6wqhHBTTfdxPbt2wGor6/nhhtu4LTTTsvok7fm+yzMrCwqaRTHg2FY1V/96ldcffXV\nvP7667zrXe9iypQpTJ48uXO+AUXwsKoeVtUscx5WtbQ8rKqZmZWFw8LMzFI5LMzMLJXDwszMUjks\nzMwslcPCzMxS+T4LM8vc8OHDSzr2Q1c3fPjwTl+nw8LMMrdp06Zyl2AHyKehzMwslcPCzMxSZRoW\nkoZKWibpKUlrJH0pmd9f0lJJ6yUtkdS3YJmZkjZIWifp9CzrMzOz4mR9ZNEMfDkiRgMnAZMlHQPM\nAO6PiKOBZcBMAEnvBc4DRgETgXlyr5iZWdllGhYRsTUiVifTrwDrgKHAmcCCpNkC4Kxk+lPA7RHR\nHBGbgA3AuCxrNDOzdCXrs5A0AjgeeAyojogmyAcKMChpNgTYUrBYYzLPzMzKqCSXzkrqBdwFTImI\nVyS1fHbufj+7eNasWXunc7kcuVzuQEo0M3vbqauro66urlPWlfl4FpK6A78BfhsR30/mrQNyEdEk\naTDwQESMkjQDiIiYk7S7F6iNiMdbrNPjWRTJ41mY2R6VPp7FzUDDnqBILAY+n0xfDCwqmP8ZSYdK\nejcwEqgvQY1mZtaOTE9DSfoQ8FlgjaRV5E83XQ3MARZKuhTYTP4KKCKiQdJCoAHYBUzqtEMIMzPr\nsEzDIiKWA9328XabI41HxGxgdmZFmZnZfvMd3GZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFm\nZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWqqiwSEat\nS51nZmZvT8UeWfyyjXl3dWYhZmZWudodKU/SMcBooK+kswve6gP0yLIwMzOrHGnDqh4NfALoB3yy\nYP7LwP/IqigzM6ss7YZFRCwCFkk6KSIeLVFNZmZWYdKOLPbYKOlqYEThMhFxaRZFmZlZZSk2LBYB\nDwH3A29kV46ZmVWiYsOiZ0RMz7QSMzOrWMVeOvsbSR/PtBIzM6tYxYbFFPKB8aqknZJelrQzy8LM\nzKxyFHUaKiJ6Z12ImZlVrqLCQtJH2pofEb/r3HLMzKwSFdvBPa1gugcwDvh/wKmdXpGZmVWcovos\nIuKTBa+PAccC29KWk/QTSU2SniyYVyvpeUlPJK8JBe/NlLRB0jpJp3fkA5mZWefr6CPKnwdGFdFu\nPnBGG/Ovi4ixyeteAEmjgPOS9U4E5klSB+szM7NOVGyfxQ+BSL6sAo4HnkhbLiIeljS8rVW2Me9M\n4PaIaAY2SdpA/nTX48XUaGZm2Sm2z2JlwXQzcFtELD+A7dZIuihZ71ciYgcwBCh8/lRjMs/MzMqs\n2EtnF0g6FDgqmbX+ALY5D/jXiAhJ3wK+A1y2vyuZNWvW3ulcLkculzuAkszM3n7q6uqoq6vrlHUp\nItIbSTlgAbCJ/CmkYcDFxVw6m5yG+o+IeH9770maAUREzEneuxeojYhWp6EkRTF1F+O6tRs7ZT2V\n6svHjix3CWZWISQRER3qCy62g/s7wOkRcUpEfIR8p/V3i62Pgj4KSYML3jsbWJtMLwY+I+nQZMjW\nkUB9kdswM7MMFdtncUhE7D31FBH/KemQtIUk/QLIAQMlPQfUAuMlHQ/sJn+kcnmyzgZJC4EGYBcw\nqdMOH8zM7IAUexrqZvK/3H+WzPos0K1c41n4NFTxfBrKzPY4kNNQxR5Z/AswGfhS8vVD5Duqzcys\nCyj2aqjXgOuSl5mZdTFFdXBL+oSkVZJe8iPKzcy6nmJPQ32P/JVLa9zpbGbW9RR76ewWYK2Dwsys\nayr2yOKrwD2SHgRe2zMzItyHYWbWBRQbFt8GXiE/lsWh2ZVjZmaVqNiweFdEHJtpJWZmVrGK7bO4\nx4MRmZl1XcWGxb8A90p61ZfOmpl1PcXelNdb0gDgSPL9FmZm1oUUO1LeZcAUYCiwGjgReAT4aHal\nmZlZpSj2NNQU4ARgc0SMB8YAOzKryszMKkqxYfH3iPg7gKTDIuIPwNHZlWVmZpWk2Etnn5fUD/g1\ncJ+kbcDm7MoyM7NKUmwH9z8lk7MkPQD0Be7NrCozM6soxR5Z7BURD2ZRiJlZR9XM+HG5S8jU9dde\nVu4Siu6zMDOzLsxhYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFh\nZmapHBZmZpYq07CQ9BNJTZKeLJjXX9JSSeslLZHUt+C9mZI2SFrnMb/NzCpH1kcW84EzWsybAdwf\nEUcDy4CZAJLeC5wHjAImAvMkKeP6zMysCJmGRUQ8DGxrMftMYEEyvQA4K5n+FHB7RDRHxCZgAzAu\ny/rMzKw45eizGBQRTQARsRUYlMwfAmwpaNeYzDMzszLb7/EsMhAdWWjWrFl7p3O5HLlcrpPKMTN7\ne6irq6Ourq5T1lWOsGiSVB0RTZIGAy8k8xuBYQXthibz2lQYFmZm1lrLP6SvueaaDq+rFKehlLz2\nWAx8Ppm+GFhUMP8zkg6V9G5gJFBfgvrMzCxFpkcWkn4B5ICBkp4DaoFrgTslXQpsJn8FFBHRIGkh\n0ADsAiZFRIdOUZmZWefKNCwi4oJ9vHXaPtrPBmZnV5GZmXWE7+A2M7NUDgszM0vlsDAzs1SVcJ9F\nl1K//s8l3d7XVrS8gT5b377khJJuz8xKw0cWZmaWymFhZmapHBZmZpbKfRZmXcB1azeWuwQ7yDks\nzKzTlfpCjq07Divp9o7t+1pJt1cJfBrKzMxSOSzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwslcPC\nzMxSOSzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwslcPCzMxS+amzb3PL6/9Q0u3VrP99Sbd3/bWX\nlXR7Zl2VjyzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwsVdmuhpK0CdgB7AZ2RcQ4Sf2BO4DhwCbg\nvIjYUa4azcwsr5xHFruBXESMiYhxybwZwP0RcTSwDJhZturMzGyvcoaF2tj+mcCCZHoBcFZJKzIz\nszaVMywCuE/SCkl77qyqjogmgIjYCgwqW3VmZrZXOe/g/lBE/EnSPwBLJa0nHyCFWn5tZmZlULaw\niIg/Jf/+WdKvgXFAk6TqiGiSNBh4YV/Lz5o1a+90Lpcjl8tlW7CZ2UGmrq6Ourq6TllXWcJCUk+g\nKiJekXQ4cDpwDbAY+DwwB7gYWLSvdRSGhZmZtdbyD+lrrrmmw+sq15FFNfArSZHU8POIWCppJbBQ\n0qXAZuC8MtVnZmYFyhIWEfEscHwb818CTit9RWZm1h7fwW1mZqkcFmZmlsphYWZmqRwWZmaWymFh\nZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZm\nqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkc\nFmZmlsphYWZmqRwWZmaWqiLDQtIESX+Q9J+Sppe7HjOzrq7iwkJSFXA9cAYwGjhf0jHlrao4G1c8\nXu4SWtneuK7cJbTS+Nz6cpfQSl1dXblLaKUSawLv58WqxP38QFRcWADjgA0RsTkidgG3A2eWuaai\nPF2J/4n+6P9ExajEX8yVWBN4Py9WJe7nB6ISw2IIsKXg6+eTeWZmViaVGBZmZlZhFBHlruEtJJ0I\nzIqICcnXM4CIiDkFbSqraDOzg0REqCPLVWJYdAPWAx8F/gTUA+dHROWdlDQz6yK6l7uAliLiDUk1\nwFLyp8l+4qAwMyuvijuyMDOzynNQdHBL6i9pqaT1kpZI6ttO2ypJT0haXO6aJA2VtEzSU5LWSPpS\nRrWk3sQo6QeSNkhaLen4LOrY37okXSDp98nrYUnvK3dNBe1OkLRL0tmVUJOknKRVktZKeqDcNUnq\nI2lxsj+tkfT5EtT0E0lNkp5sp01J9/O0msq0j6d+n5J2+7ePR0TFv4A5wFeT6enAte20nQr8DFhc\n7pqAwcDxyXQv8n0xx3RyHVXARmA4cAiwuuU2gInA3cn0B4DHSvAzK6auE4G+yfSErOsqpqaCdv8X\n+A1wdrlrAvoCTwFDkq/fWQE1zQRm76kH+AvQPeO6PgwcDzy5j/fLsZ+n1VTSfbyYmgp+xvu1jx8U\nRxbkb8pbkEwvAM5qq5GkocDHgR9XQk0RsTUiVifTrwDr6Px7Roq5ifFM4JakjseBvpKqO7mO/a4r\nIh6LiB3Jl4+R/f00xd7weSVwF/BCxvUUW9MFwC8johEgIl6sgJoC6J1M9wb+EhHNWRYVEQ8D29pp\nUvL9PK2mMuzjxXyfoAP7+MESFoMiognyv4CBQfto911gGvkduVJqAkDSCPJp39m3vxZzE2PLNo1t\ntOls+3tz5WXAbzOtqIiaJL0LOCsi/g3o0CWGnV0TcBQwQNIDklZIuqgCaroeeK+kPwK/B6ZkXFMx\nyrGf749S7OOpOrqPV8zVUJLuAwr/ChD5X/r/q43mrcJA0n8HmiJitaQcnfAf/UBrKlhPL/IpPiU5\nwrACksYDl5A/fC6375E/rbhHKQIjTXdgLHAqcDjwqKRHI2JjGWs6A1gVEadK+i/AfZLe7/27bW+H\nfbxiwiIiPrav95LOmuqIaJI0mLYPnT4EfErSx4F3AL0l3RIRnytjTUjqTj4obo2IRR2tpR2NwD8W\nfD00mdeyzbCUNuWoC0nvB24CJkRE2qFzKWr6b8DtkkT+XPxESbsiIqsLJoqp6XngxYj4O/B3Sb8D\njiPfr1Cumi4BZgNExNOSngWOAVZmVFMxyrGfpyrxPl6Mju3jWXe2dFKHzRxgejLdbgd30uYUStPB\nnVoT+XOo12VYRzfe7Iw8lHxn5KgWbT7Omx1/J1KaTrZi6vpHYANwYon2o9SaWrSfT/Yd3MV8n44B\n7kva9gTWAO8tc003ALXJdDX50z8DSvAzHAGs2cd7Jd/Pi6ippPt4MTW1aFf0Pl6y4g/wgw8A7id/\nNdFSoF8y/wjgN220L0VYpNZE/mjnjeQ/2yrgCfJ/XXR2LROSOjYAM5J5lwNfLGhzffIL4PfA2BL9\n3NqtC/h38lfRPJF8f+rLXVOLtjdnHRb78fP7n+SviHoSuLLcNSX7+ZKknifJP2Uh65p+AfwReA14\njvzRTVn387SayrSPp36fCtoWvY/7pjwzM0t1sFwNZWZmZeSwMDOzVA4LMzNL5bAwM7NUDgszM0vl\nsDAzs1QOC7NOJumTkr7aSet6uTPWY3agfJ+FWQdI6hYRb5RgOzsjok/W2zFL4yML69Ik9ZT0m2Rg\noSclnSfpWUkDkvf/657BhiTVSrpF0kPArZIelTSqYF0PSBor6WJJP0wGCNrUYlvPSeom6T2Sfps8\nRfZBSUclbUZIeiQZLOebpf1umO2bw8K6uglAY0SMiYj3A/fS+gnChV+PAj4aEReQH+fhnwGSh0kO\njogn9iwTETuBVZJOSeZ9Arg3OSK5CaiJiBPIP1b/35I23wduiIjjgD915gc1OxAOC+vq1gAfkzRb\n0oeTX/DtPbJ5cUS8nkzfCXw6mT6P/NOFW1pIEijAZ4A7JB0OfBC4U9Iq4Ee8+Sj8D5EPIYBbO/KB\nzLJQMY8oNyuHiNggaSz5J5Z+U9IyYBdv/iHVo8Uify1Y9o+S/pKMq/zP5B/W1tJi4NuS+pMfk2IZ\n+SF2t0XE2LZK4s0jmUoYS8MM8JGFdXGSjgBejYhfAP+H/C/0TeSf+Q9vHjnsyx3AV4E+EbG25ZsR\n8VfyYzx8n/zTiCMiXgaelXROQR3vTyaXA+cn05/t0Icyy4DDwrq69wH1yemgbwDfBP4V+L6keiBt\nXOlfkj+quKOdNneQ/8V/e8G8zwJfkLRa0lrgU8n8q4DJkn5P/jHgZhXBl86amVkqH1mYmVkqh4WZ\nmaVyWJiZWSqHhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaX6/4zO+YAcs2bUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hist = thinkstats2.Hist(titanic_df[titanic_df.Pclass == 1].Survived)\n", + "hist1 = thinkstats2.Hist(titanic_df[titanic_df.Pclass == 2].Survived)\n", + "hist2 = thinkstats2.Hist(titanic_df[titanic_df.Pclass == 3].Survived)\n", + "thinkplot.PrePlot(3)\n", + "thinkplot.Hist(hist, align='left', width=0.3, label='Pclass 1')\n", + "thinkplot.Hist(hist1, align='center', width=0.3, label='Pclass 2')\n", + "thinkplot.Hist(hist2, align='right', width=0.3, label='Pclass 3')\n", + "thinkplot.Show(xlabel='survived', ylabel='amount')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this, two things can be seen. The first, that Pclass 1 is the smallest quantity of passengers, and that the majority were in class 3. However, the second piece of information that is seen is that the majority who survived were from Pclass 1. This indicates that either there was a higher priority placed on these passengers due to the money they had paid, or that there is a higher distribution of females and passengers between 25-35 in Pclass 1. " + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 40)\n", + "(2, 22)\n", + "(3, 16)\n", + "(4, 86)\n", + "(5, 114)\n", + "(6, 106)\n", + "(7, 95)\n", + "(8, 235)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtwXOd5HvDnXSwuiwtxIUDwTvAGXgECoAxKoWzBjlVL\ndh25tieO67itOx6rHnms1J3YqWLXnCZ21CadWoqTyG6cjOzaEm2lkmU7bmNHQiQ7I5AUCF7AG3i/\nASRBAARxIa5v/9izu2eXC+4usLtnz/me3wxGu4uDxacz4IuD7zzf+4mqgoiIvMXn9ACIiCj9WNyJ\niDyIxZ2IyINY3ImIPIjFnYjIg1jciYg8KGFxF5FCEekQkYMickREvjrHcc+KSI+IdIlIU/qHSkRE\nyfInOkBVJ0Tk3ao6JiJ5AH4tIj9X1X2hY0TkUQDrVXWjiOwC8ByA+zM3bCIiupekpmVUdcx6WIjg\nL4TYlU+PAfiudWwHgHIRqU3XIImIKDVJFXcR8YnIQQB9AH6hqvtjDlkB4JLt+RXrNSIickCyV+6z\nqtoMYCWAXSKyNbPDIiKihUg4526nqsMi8jqARwAcs33qCoBVtucrrdeiiAgb2RARzYOqSirHJyzu\nIlINYEpVb4lIAMDDAJ6OOexVAE8A2Csi9wMYUtVrcwwwlfFhanoG7/pg3IBOVk0UlGK0JHIbQXQW\nFUPnkNLZtrnU8wZWbXxXegbncm49FyMj5ZiZDv4TKikZRkHhxILf8+KpN7G6/p0Lfh8vcNO5+PXP\nvp7R9xdJvdJIomIrIg0AnkdwCscHYK+qfk1EHgegqvpt67hvInhFPwrgU6raGee91K1dKP/0h4fx\nq+6+qNf2fLIFzRuq5/V+e/bswZ49e9IwMvdz67nY+3I39r7cDQB4aPcaPPn4rgW/p1vPRSbwXESI\nSPqv3FX1CICWOK9/K+b551L5xm4yOT2Dt3v673p938kb8y7u5H47dywLF/euI9cwO6vw+eb7txxR\nenGFahKOnh/E+OQ0ACA/L3LK9p28kfI0U0hbW1s6huYJbj0X6+oqUVZaCAC4NXwH5y4OLfg93Xou\nMoHnYmFY3JOw78SN8OOHd65AaSAfANB/6w7O9t6e13vyBzfCrefC5xM0NywNPz94uHfB7+nWc5EJ\nPBcLw+KewOysouPE9fDz39hai50bI1Mx+07eiPdlZIjmxkhx7zzUd48jibKLxT2BM73DGLgdTEGU\nBvKxdU0Fdm2uCX/eXvjJPE0NtYCVmTp5+iZGRiadHRCRhcU9AXvxfkd9DfJ8PrRsqA7PvZ/ru43r\nQ+NODY8cVr6oCOvXVgIIxnwPdcdNABNlHYt7Ah22+fZW64o9UOjHdusfNADs59SM0XbusM+7c2qG\ncgOL+z30DYzh4vURAEC+34fm9YvDn9u1eUn4MadmzNbcuCz8+ODhvnknqIjSicX9Huw3S3esq0Kg\nMLIs4B2bIvPuR88PYmR8Kqtjo9yxcV0VSksKAACDt8Zx/uIth0dExOJ+T28dj1yRt25aEvW56kVF\n2LB8EQBgZlZx8PTNrI6NcofPJ9ixPdKaIh2RSKKFYnGfw/DoJI5bi1JEIvPtdq2bmJqhoJYdkamZ\nTs67Uw5gcZ/DgZ5+zFpzp5tWVqDSWolo12qbd3+7px9T07NZGx/lFvtipuOn+jE6xkgkOYvFfQ72\nK/F4V+0AUFdbitqKAABgbGIaxy4MZmVslHsqyouwri4SiTzczb/kyFks7nFMTM1EzaHviplvDxGR\nqBurb3FqxmjRrQg4NUPOYnGP49CZm5iYmgEALF9cjJU1JXMea1+tupBGYuR+0fPuvfxZIEexuMfR\nYYtA2vPs8WxdU4mSokgjsfPXRjI6Nspd9eurUFIcjEQODI7j4mVGIsk5LO4xZmcVB2zF/f4Exd2f\n54tqJGaPT5JZ8vJ8UZFIpmbISSzuMU5dvoWh0WDSoaKkAPUryxN+TfTUDIu7yTjvTrmCxT2G/abo\nfZtqktpZp2VjNfx5wePO9t5G/607GRsf5bbmHdGRyPE7XLlMzmBxj2FvObBrU/wIZKziQj8a6qrC\nz7mgyVxVFQHUra4AAMzMzDISSY5hcbe5fGMUV/pHAQCF+XnYYWsUloh9QRM38DBbS2N0aobICSzu\nNh22+fLmDYtRmJ+X9NfaFzodPT+AUf45biz77kzsEklOYXG3se+VmigCGat6URHWLws2EpueUXT2\nsJGYqTZtWIxAKB57cwyXrgw7PCIyEYu7ZWhkAicvBxuF+URwny3emCz71XsHUzPG8vt9MV0imZqh\n7GNxtwRXlwYfb1ldgUVWf+5U2K/2O3v6MT3DRmKmauHuTOQwFndL9JRMcimZWHW1pVhiNRIbvTON\n7vNsJGYqe9792KkbjERS1rG4AxifmEbX2cgceWuK8+0hsY3EOpiaMdbiqmKsthbATU/P4ugx/ixQ\ndrG4Azh45ma4F/vqJaVYVlU87/eyZ+P3nbjOpITBWmypGUYiKdtY3JGeKZmQbXWVKCkK7rV6g43E\njMaNs8lJxhf3mdlZ7D81/whkLH+eDy22pA1Xq5prc/1iFFm/6K/3j+Jq322HR0QmMb64H784hJHx\n4M2uqrLCcFZ9Ieybe9j/KiCz5Pvz0LjV1iXyEFMzlD3GF/cOW/FtTbJRWCItGxeHG4md6R1G/zAb\niZmqOWrencWdssfo4q6q6Dhu3yt1YVMyISVF+dhuayTGq3dz2W+qHjtxAxMT0w6OhkxidHG/cH0E\n14bGAQCBAj8a1lam7b1bY1IzZKaa6hKsWhGc6puansFR/qKnLDG6uNuvqHdurEaBP/lGYYnYi/uR\n8wMY4xWbsZobbF0iDzESSdlhdHG3J1laFxiBjFVTEcC6ZWUAQo3E+tP6/uQe9g08OO9O2WJsce8f\nvoPTV4Pd+vJ8ErUParq02lIzHfxz3Fhb6qtRWBiMRF67PoJeRiIpC4wt7vYpme11lSgN5Kf9e9gX\nRL3NRmLGKsjPQ8NWW1M5Xr1TFhhc3CNTMgtduDSXtUvLUFNeBAAYvTOFYxfYSMxUbEVA2WZkcR+9\nM4Uj5wfCz1uT3Cs1VXc1EuPUjLHsrQiOHruByckZB0dDJjCyuHf23MT0TLDPx7plZaix2vRmgv2v\ngv0nb7C/iKFqa0qwfGnwBvvU9Ay6+YueMszI4m7fJcl+0zMTtq2pRHHoZtrQOBuJGaxlBzfOpuwx\nrrhPTc9GxRLv35LZ4p7v90UlcbigyVxR8+7sM0MZZlxx774wiNE7wQVFSyoCqKstzfj3tGfo93ED\nD2Nt3VyDgvzgQrnea7fRd51/xVHmGFfcoxYubaqByMIbhSXSsqEaeVZDstNX2UjMVAX5edhu+0uR\ne6tSJhlV3FU16sp5oRtzJKs0kI/tdZG+Nft59W4sbpxN2WJUcT/bexv9t4JXzSVF+di6Jn2NwhKx\nd5zk1Iy5WmyRyMPHrmNyipFIygyjirs9JXNffTX8edn7349qJHZ2AONsJGakpbWlWFYbjEROTk7j\n+Cn2HKLMSFjdRGSliLwmIt0ickREPh/nmIdEZEhEOq2PL2dmuAvTcTz7UzIhSyoCWBvKOc/MovM0\n/1GbqrnRvjsTI5GUGclcuk4D+IKqbgPwAIAnRGRznOPeUNUW6+OP0zrKNLg2OI7z14INm/LzfGjZ\nkP5GYYkwNUNA9NQM590pUxIWd1XtU9Uu6/EIgOMAVsQ5NPOxkwWwp2Qa1lUhYC0syib73qoHTrGR\nmKm2b1mCfGvvgMtXh3G9f9ThEZEXpTTpLCJ1AJoAdMT59AMi0iUiPxORrWkYW1rZr5Tvz1CjsETW\nLSvD4kXBRmIj41M4dnHIkXGQswoK8rB9a+SvOF69UyYkffkqIqUAXgLwpHUFb/c2gNWqOiYijwJ4\nBUB9vPfZs2dP+HFbWxva2tpSHHLqbo9Poft8pCPjffXZn5IBgo3Edm2uwd/vuwQguFq1cW1Vgq8i\nL2puWBou6p2HevG+96x3eESUS9rb29He3r6g95BkGlmJiB/ATwH8XFWfSeL4cwB2qupAzOvqROOs\n1w9dxTf+z1EAwMYV5fizz+zK+hhCDp7ux57vdQIAaisC+NbvPZiVhVSUW6723cbnvvhzAEBRkR/P\n/+Vj4akaolgiAlVNqVAkOy3zNwCOzVXYRaTW9rgVwV8aA/GOdYK91W62UzKxttdVIVAQaSR2gUvQ\njbSsthS1NSUAgDt3pnH8JNNTlF7JRCF3A/gEgPeIyEEr6viIiDwuIp+xDvuoiBwVkYMAvgHgYxkc\nc0omp2dw0BY7zNTGHMm6u5EYUzMmEpGoLpFdRzjvTumVTFrm16qap6pNqtpsRR3/r6p+S1W/bR3z\nF6q63fr8b6hqvBuujjh8dgB3rI0RllUVY5V1teQkeySyg10ijdXUEGlF8Da7RFKaeX6FamwvmVyY\n327ZGN1I7CYbiRmpYcsS+P3Bf4KXrtxC/80xh0dEXuLp4j47q1HTHq0OT8mElAXysW0NG4mZrqjI\nj622thTcOJvSydPFvefqLQyOTAAAFhUXYMuqCodHFGH/RdPB4m6snZx3pwzxdHG395Jp3VQDn8/5\nKZkQNhIjIHre/dDRa5ie5qplSg9PF/d99r1SHY5AxqqtDKCu1t5I7KbDIyInrFxehprFwZv843em\ncJI/B5Qmni3uV2+O4tKNYM+OAr8PTesWOzyiu+2KaiTG1IyJRATNjfbUDLtEUnp4trjbFy41rV+M\nwoLcW/1nn3c/cKofM7P8k9xEnHenTPBscd9ny487vXBpLutjG4ldYCMxE23fWoM8a+OY8xeHMDA4\n7vCIyAs8WdyHRiZw/FKwUIo41ygsERGJurHKHu9mChTlY+umyM8ou0RSOniyuB841Y9Qf7ItqypQ\nUVro7IDuIWoDjxPX4URjNXJes20Dj87DnHenhfNkcbcv6c+VhUtz2V5XGW4k1jc4jovXuXGDiVoa\noyORM9zIhRbIc8V9YnIGXWcicTKnu0AmUuDPQ8vGSJKHqRkzrVqxCFWVAQDA2DgjkbRwnivuXWdv\nYtJaCLKqpgTLFzvfKCyRVtv2ex3sEmkkEYlKzXDenRbKc8U9qpfMptyekgnZWV8Nn9XQrOfKLTYS\nM5Q9797JvDstkKeK++ys3tUF0g3KAvnYVhdpJHbgFDduMFHjttpwi4xzF4cwOMRf8jR/niruxy8N\nYXhsEgBQWVqIjSvKHR5R8uyRSPZ4N1NxIB+bbRu5cEETLYSnivu+E9G9ZHKpUVgi9oVWh8+xkZip\n7LszMRJJC+GZ4q6qUTcj7VfCblBbGcCa2lIAwNT0LA6eYVrCRIxEUrp4prhfujGK3oHgTjZFBXlo\nXFfl8IhSt8t2A5h7q5ppzapyVFYEI5Ejo5PoOZsz+8yTy3imuNunZJo3VKPAn3uNwhKxr1bdf+oG\nG4kZSETQbOvxzkgkzZdnivtbJ9yXkom1ftkiVJUFWyWMjE/h+EU2EjNRyw5bJJLFnebJE8X95vAd\n9Fy5BQDwieC+encWd58vppEYp2aM1LitNryR+5lzAxi6xUgkpc4Txd2eC99WV4myQL6Do1mY2L1V\n2UjMPKUlBdGRyKO8eqfUeaK4v2WPQLosJROrYa2tkdjAWHg3KTJLc2Nt+DHn3Wk+XF/cxyemccSW\nKMjVjTmSVeDPQ/MGWyMxLmgyUktjdJ+Z2Vn+BUepcX1x7zzdjykrC1xXW4Zaq7Oem9lTMx3cwMNI\na9dUoKLc2qVrdBKnGYmkFLm+uNsXLu3a4u4pmZD76mvCjcROXb6FgdsTDo+Isi1242ymZihVri7u\n0zOzUTdTd7mkC2QiZYF8bF1TEX6+n1fvRmLenRbC1cX92IVBjN6ZAgBUlxdh3bIyh0eUPvZ7B9zA\nw0xN25eGI5E9ZwcwzL/gKAWuLu6xvWRC/xC8wJ76OXSWjcRMVFpagPr1oTYaikNHrzk6HnIX1xZ3\n1dje7d6YkglZWlWM1UsijcS6zrKRmImiukRyAw9KgWuL+/lrI7g+NA4AKCnyY9uaygRf4T72Ngpc\nrWqmqHn3I4xEUvJcW9zfOh6Zh27ZWI18v2v/V+Zk3yaQjcTMtK6uEuWLgpHI4dsTOHt+0OERkVu4\ntiLabzJ6JSUTa8PyRai0GondHpvCiUu3HB4RZZvPJ2jablutyt2ZKEmuLO43hsZxtvc2AMCfJ9hZ\nX53gK9zp7kZiTM2YiBtn03y4srjbb6Q21FWhuNDv4GgyK3pvVTYSM1FTw1IA1qK2MwMYGZl0dkDk\nCq4s7h1Re6V6c0ompHFdFYoKghuP9A6M4XI/G4mZZlFZITZaO4upKrtEUlJcV9xHxqdw1HZTqdWl\nG3MkK9hILDLt1MHUjJHsUzOcd6dkuK64v93TjxkrDrZh+SJUW0kCL9vFeXfj2TfOZpdISobrivu+\nE95duDSX++qrI43ErtzC4AiXoZtmw7oqlJYUAACGbt3BeW7BSAm4qrhPTs/g7Z5IozCvT8mElBUX\nYMvqYCMxVTYSM5HPF9slkqkZujdXFfej5wcxPhnssVJbEcAaa3m+CbhalaLm3Q+zzwzdm6uKe4dt\nVequLUs81SgsEXsqqOvsTdyZZCMx0zRtjxT3Ez39GBllJJLm5priPjsb2yjMjCmZkGVVxVhdY2sk\ndoY785imorwI69dGIpGHu3n1TnNzTXE/0zsc3pGoNJAfnoM2SetmpmZM1xK1WpWRSJqba4q7feHS\nO+prkOdzzdDTxl7c95/qZxzOQLF5d65Yprm4pkJGbcxh2JRMyMbl5agsDTYSGx6bxIlLjMOZpn79\n4nAkcnBoHBfYTI7mkLC4i8hKEXlNRLpF5IiIfH6O454VkR4R6RKRpnQOsndgDBevjwAA8v0+NK9f\nnM63dw2fT/AOe68ZRiKN4/MJdti6RHLjbJpLMlfu0wC+oKrbADwA4AkR2Ww/QEQeBbBeVTcCeBzA\nc+kcpH1+uWndYgQ83CgskV2cdzdeSyN3Z6LEElZJVe0D0Gc9HhGR4wBWADhhO+wxAN+1jukQkXIR\nqVXVtNzO55RMROO6KhTm52FiagZXb47hl51XsKg43+lhURbNBvwYQXCu/fCpG3jrwGUj70HlisZt\nS1CYgxecKY1IROoANAHoiPnUCgCXbM+vWK8tuLgPj07iuLXUWiS6Ba6Jgo3EFod3ovrzH3c7PCJy\nws2CPExMzgCq+Mqzv0YZzFnzkWv+6n98ALU1Li7uIlIK4CUAT6rqyHy/4Z49e8KP29ra0NbWds/j\nD/T0Y9ZKBGxaWYEK64aiyR7ctjRqm0EyT0lJASYmg3sI9wHwQxFggfeM9vZ2tLe3L+g9JJkolYj4\nAfwUwM9V9Zk4n38OwOuqutd6fgLAQ7HTMiKiqUa3Lt0Ywetdvdh38jre3bQcH3lwbUpf70Wqir97\n8xy33TPYzMws/vlQL4asVaoFeT68a3UlSvLzHB6ZeT777+9DZUVmu9OKCFQ1pd/eyRb37wLoV9Uv\nzPH59wN4QlU/ICL3A/iGqt4f57iUi7vd7KzC5+PVCREA9A2M4ff/1z4MjwUL/MrqEjz96VaUBXgP\nxmsyUtxFZDeANwAcAaDWx1MA1gBQVf22ddw3ATwCYBTAp1S1M857Lai4E1G0ExeH8OXnD2BqehYA\n0LC2Cl/93Rbk+3mD1UsyduWeLizuROn35pE+/NlLh8PP39u8Ap97bKtRjfW8bj7Fnb/eiVzunQ1L\n8bu/uSH8/JcHr+Dv3jzn4IgoF7C4E3nAR9+5Fr/ZtDz8/Hv/eBpvcq9Vo7G4E3mAiOCzH9yKBqsl\nMAA888pRnOB2fMZicSfyiHy/D1/62A6sqC4BEOz7/7UXutA3MObwyMgJLO5EHlIWyMd/+UQzFhUH\nO0cOj03ij75/ELfHpxweGWUbizuRxyytKsYffrwpHIe83D+K/7b3UDguSWZgcSfyoM2rK/Dkh7aH\nnx85N4Dnfnqcm3sYhMWdyKPiRSRfYkTSGCzuRB4WG5H834xIGoPFncjDGJE0F4s7kceFIpIrGZE0\nCos7kQHKAvn4SkxE8r8yIulpLO5EhoiNSF5hRNLTWNyJDBIvIvlXPznGiKQHsbgTGSY2IvmPXVcZ\nkfQgFnciAzEi6X0s7kQGYkTS+1jciQw1V0SylxFJT2BxJzJYKCJZXsIukl7D4k5kuKVVxXjqdxiR\n9BoWdyJiRNKDWNyJCAAjkl7D4k5EYR9951q8t3lF+Dkjku7F4k5EYSKC//AvtzAi6QEs7kQUhRFJ\nb2BxJ6K7MCLpfizuRBRXvIjk0y92MSLpEizuRDSn2Ijk0fODjEi6BIs7Ed0TI5LuxOJORAkxIuk+\nLO5ElBAjku7D4k5ESWFE0l1Y3IkoaYxIugeLOxGlhBFJd2BxJ6KUbV5dgd/7V9ERyb9kRDKnsLgT\n0bw8uH0pPmmLSL7GiGROYXEnonn7CCOSOYvFnYjmLRSRbGREMuewuBPRguT7ffgiI5I5h8WdiBaM\nEcncw+JORGnBiGRuYXEnorRhRDJ3sLgTUVoxIpkbWNyJKO3iRSTfONLr4IjMw+JORGkXLyL57Cvd\nOH5x0MFRmYXFnYgyIl5E8usvHGJEMktY3IkoYxiRdE7C4i4i3xGRayJyeI7PPyQiQyLSaX18Of3D\nJCK3YkTSGclcuf8tgPclOOYNVW2xPv44DeMiIg9hRDL7EhZ3Vf0VgER3QSQ9wyEir4oXkfzRG4xI\nZkq65twfEJEuEfmZiGxN03sSkcfERiS//xojkpniT8N7vA1gtaqOicijAF4BUD/XwXv27Ak/bmtr\nQ1tbWxqGQERuICL47Ae34PrQOA6fGwAAPPtyN2rKi7BldaXDo8sd7e3taG9vX9B7SDJzXiKyBsBP\nVLUxiWPPAdipqgNxPqecYyOi2+NT+IO/3ofL/aMAgLLifPz3T+/C8sXFDo8sN4kIVDWl6e9kp2UE\nc8yri0it7XErgr8w7irsREQhsRHJ22NT+KPvdzIimUbJRCF/AOCfAdSLyEUR+ZSIPC4in7EO+aiI\nHBWRgwC+AeBjGRwvEXlEbETy6s0xRiTTKKlpmbR9M07LEFGMXx3tw5/+KLKM5j1Ny/H5D22DCEN4\nIZmcliEiyghGJDODxZ2IHMeIZPqxuBOR40IRyaguki+zi+RCsLgTUU7w5/nwpY/twKoaq4vkTHCj\n7as32UVyPljciShnlAby8ZVPtDAimQYs7kSUU2orA/jDj0dHJP/kBUYkU8XiTkQ5Z9OqCvzHD0e6\nSHZfGMRfvMoukqlgcSeinLR721J88r0bw89fP8SIZCpY3IkoZ33kwTq8t4URyflgcSeinCUi+Gzs\nRtsvd+PYBUYkE2FxJ6KcFi8i+fUXGZFMhMWdiHIeI5KpY3EnIldgRDI1LO5E5BqMSCaPxZ2IXCVe\nRPKH/3TWwRHlJhZ3InKd2IjkD14/g386zIikHYs7EblOKCK5Y10kIvnnrzAiacfiTkSu5M/z4Yu/\nzYjkXFjcici1GJGcG4s7EbkaI5LxsbgTkesxInk3Fnci8gRGJKOxuBORZzAiGcHiTkSewYhkBIs7\nEXkKI5JBLO5E5DmMSLK4E5FHzRWRnJyecXhk2cHiTkSeZXJEksWdiDwtNiLZfqjXiIgkizsReZ6J\nEUkWdyLyPBMjkizuRGQE0yKSLO5EZIw5I5Jjkw6PLP1Y3InIKHEjki8e8lxEksWdiIwTjEg2hJ97\nMSLJ4k5ERtq9rRb/5uHoiOReD0UkWdyJyFgf3h0dkXzBQxFJFnciMpaXI5Is7kRkNK9GJFncich4\nXoxIsrgTEcF7EUkWdyIii5cikizuREQ2XolIsrgTEcWIF5FsP+SuiCSLOxFRjHgRyW/+uBvdLopI\nsrgTEcURikiurikFEIxI/smLXbh6c9ThkSUnYXEXke+IyDUROXyPY54VkR4R6RKRpvQOkYjIGaWB\nfHz5E82oiIpIHnRFRDKZK/e/BfC+uT4pIo8CWK+qGwE8DuC5NI3N09rb250eQs7guYjguYjIlXNR\nWxnAU//afRHJhMVdVX8F4F4TTY8B+K51bAeAchGpTc/wvCtXfnBzAc9FBM9FRC6di00r3ReRTMec\n+woAl2zPr1ivERF5htsikryhSkSUpA/vrsPDLolISjJ/VojIGgA/UdXGOJ97DsDrqrrXen4CwEOq\nei3Osbn7NwwRUQ5TVUnleH+Sx4n1Ec+rAJ4AsFdE7gcwFK+wz2dwREQ0PwmLu4j8AEAbgMUichHA\nVwEUAFBV/baq/r2IvF9ETgMYBfCpTA6YiIgSS2pahoiI3CVrN1RF5BEROSEip0TkS9n6vrkg3kIw\nEakUkX8QkZMi8v9EpNzJMWaDiKwUkddEpFtEjojI563XTTwXhSLSISIHrXPxVet1485FiIj4RKRT\nRF61nht5LkTkvIgcsn429lmvpXwuslLcRcQH4JsILobaBuDjIrI5G987R8RbCPYHAH6pqpsAvAbg\nP2d9VNk3DeALqroNwAMAnrB+Dow7F6o6AeDdqtoMoAnAoyLSCgPPhc2TAI7Znpt6LmYBtKlqs6q2\nWq+lfC6ydeXeCqBHVS+o6hSAFxFc/GSEORaCPQbgeevx8wA+lNVBOUBV+1S1y3o8AuA4gJUw8FwA\ngKqG9nErRPD+l8LQcyEiKwG8H8Bf21428lwgGF6Jrc0pn4tsFffYhU6XwYVOS0KpIlXtA7DE4fFk\nlYjUIXjF+haAWhPPhTUNcRBAH4BfqOp+GHouAPxPAL+P4C+4EFPPhQL4hYjsF5FPW6+lfC6SjUJS\n5hlzZ1tESgG8BOBJVR2Js/7BiHOhqrMAmkVkEYCXRWQb7v5/9/y5EJEPALimql0i0naPQz1/Liy7\nVbVXRGoA/IOInMQ8fi6ydeV+BcBq2/OV1msmuxbqwSMiSwFcd3g8WSEifgQL+/dU9cfWy0aeixBV\nHQbQDuARmHkudgP4LRE5C+AFAO8Rke8B6DPwXEBVe63/3gDwCoLT2in/XGSruO8HsEFE1ohIAYDf\nQXDxk0liF4K9CuDfWY//LYAfx36BR/0NgGOq+oztNePOhYhUhxIPIhIA8DCC9yCMOxeq+pSqrlbV\ndQjWhtf57mugAAAAw0lEQVRU9ZMAfgLDzoWIFFt/2UJESgD8CwBHMI+fi6zl3EXkEQDPIPgL5Tuq\n+nRWvnEOsC8EA3ANwYVgrwD4EYBVAC4A+G1VHXJqjNkgIrsBvIHgD6taH08B2AfghzDrXDQgeGPM\nZ33sVdWviUgVDDsXdiLyEID/pKq/ZeK5EJG1AF5G8N+GH8D3VfXp+ZwLLmIiIvIgdoUkIvIgFnci\nIg9icSci8iAWdyIiD2JxJyLyIBZ3IiIPYnEnIvIgFnciIg/6/9ntD8Xxb3j7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bins = np.arange(0, 40, 5)\n", + "indices = np.digitize(titanic_df.Age, bins)\n", + "groups = titanic_df.groupby(indices)\n", + "\n", + "for i, group in groups:\n", + " print(i, len(group))\n", + " age = [group.Age.mean() for i, group in groups]\n", + " cdfs = [thinkstats2.Cdf(group.Pclass) for i, group in groups]\n", + " \n", + "for percent in [75, 50, 25]:\n", + " Pclasses = [cdf.Percentile(percent) for cdf in cdfs]\n", + " label = '%dth' % percent\n", + " thinkplot.Plot(age, Pclasses, label=label)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Very surprisingly, it appears that the majority of passengers in class 1 appear to be older. Thus, we will look at distribution of gender in each class. " + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 23)\n", + "(2, 9)\n", + "(3, 7)\n", + "(4, 50)\n", + "(5, 72)\n", + "(6, 76)\n", + "(7, 62)\n", + "(8, 154)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcW+f1P/DPkYTYGwzGGGNsPBg2xnthkrYZTZukSZNm\nOOvbkXzrtNmzduI4oxlOs/tN06b5Jc4erZNmtUkdG9vxBgw23sZ4gtl7SOj5/SFxucJgJJB0h877\n9fIrPOICJxdxdPXc5zyHhBBgjDGmLwalA2CMMeZ5nNwZY0yHOLkzxpgOcXJnjDEd4uTOGGM6xMmd\nMcZ0aNDkTkSBRLSFiIqIqJSIHh7guBeJ6AARFRNRjudDZYwx5irTYAcIITqJ6BwhRBsRGQFsJKKv\nhBBbe44hogsBjBNCpBPRbACvApjjvbAZY4ydjUvTMkKINseHgbC/IPStfLoEwFuOY7cAiCSiBE8F\nyRhjzD0uJXciMhBREYBKAN8IIbb1OWQUgGOy8QnHY4wxxhTg6pW7TQgxDUAygNlElOHdsBhjjA3H\noHPuckKIJiL6DsAFAMpknzoBYLRsnOx4zAkR8UY2jDE2BEIIcuf4QZM7EcUBsAghGokoGMCPADzZ\n57DPACwB8AERzQHQIISoGiBAl4Pr7rZhwU8ecvl4X2oPikZ7cAwAIMDShtDW0259/fEDa5Gcnu/S\nsZaAELSGjgAAGGwWRDYehVu/ZZU7dqAAo9PzXDq2KXwUrKYgaRzSVo2gziZvheZz7pwLAOjqCkR7\nW5g0Nge2IySkBaSDJ8jR/euRMmGh0mEM2cYvnvDY96Ih/EJpsGRLRNkA3oR9CscA4AMhxONEdDMA\nIYR4zXHcy7Bf0bcCuEkIUdjP9xJ62IVSCIHfvrQRJ2vt95nvvXIK5mcmuvU9li9fjuXLl7t0bKel\nGzc8vQ7tXVYAwMrfzEb6qEi3fp6auXouOru6cc2Ta2Dt7n0O5abH4eHFuV6MzrfceV70eOv9nVj9\n5T5pfOWlmbjqskwPR+Z7QzkXekVEnr9yF0KUAjjjr0cI8Zc+41vd+cFadvBkk5TYg80mzJgQ79Wf\nFxhgxJzJI/DdzpMAgILSSl0ld1ftPdbglNgBoPRwHdo7rQgOdGuGUVcWXzkF9Q0dWPd9BQDgw9W7\nER0VhPPPHadwZExJXKE6BAWlldLHcyaPQGCA0e3vkZ+f79bxi6b0vjNYX1oJm03774B6uHouSo/U\nnfGYpduG4sO1Ho5IOe4+LwDAYCAs+dVM5GT3Pkdee7MQW3eccdtLU4ZyLlgvTu5ustkE1u/qTe7y\npOsOd5+4U9JiEBVqBgDUt3SitPzMRKdVrp6LksO9/88p8b3zzNv31Xg6JMUMNaGZTAbc87u5GDfW\nfh9ICIFnX9mMPfu1e244uQ8PJ3c3lZbXob65EwAQFWrGlLQYn/xco8GA+Vm9LyTydw/+oL3TigMn\nem+c3nBeuvTx9v3VunonM1TBQQH4w50LkDDC/sJnsXbjj89twNHjjQpHxpTAyd1N8qS6ICsRRoPv\nTuEi2dvuTXuq0GXt9tnPVlrZ0QbYHDfjxyaGI3d8nPROpqG1CwdOcAIDgKjIIDx8Tx4iI+wrilpa\nu/DoyvWorWsb5CuZ3nByd0OXtRvfl/Wu8Mwb4pTMUE1IjkRCVDAAoLXDih0HtPuW213yaajssTEw\nGMjpRva2/dVKhKVKiQlh+MNdCxAUZL/JXFvXhhXPrEdLS5fCkTFf4uTuhu37a9DWaV+OmBgTggk+\nXrFCRE4vKAUl/jM145TcU6MBADMmxkmPbd3HyV1u/NgY3Pu7eTAY7Kvnjp1oxB+f34gui/+82/N3\nnNzdIJ+SWZSdOKTCguHKyx4pfbxtf7X0YqNnLe0WHD7VDAAwECFjjD2556TFIsBofwpXVLXgdEO7\nYjGqUU52Im799UxpvGd/NZ7/vy18f8JPcHJ3UUu7Bdtlb/0XZvt2SqZHyogwjE0MBwBYrDZs3uNe\nZawWlVXUS/PtaSPDERYcAAAIDjQhW3ZDextfvZ8hf34qrr9qqjTevP04/raqyK1KcaZNnNxdtHnP\naVisNgD2BDNathTP1/Ky5VMzpxSLw1dKj9RLH2ePdV6dNFM+787JvV+XXDgBPzl/gjT++r8H8cm/\n9igYEfMFTu4uKijtTaKLZFMjSlgoWxK583AdGlo6FYzG+/reTJWbOaF33n3XkXq0+8E0lbuICDde\nPRXzZ/fu7ffux7vw33XlCkbFvI2TuwvqmjtR4kgwRMAChaZkesRHBUvzzjYhsGF3v3u06UJzWxfK\nK2Xz7SlRTp+PjwrunabqtqHokH6qVT3JYCD87jezMCWjt4fOn/++HduLTyoYFfMmTu4u2LCrEj1T\nlFmpMYiLCDr7F/jAIj+ZmpFPyaSPiuh3Dxn51Mx2npoZkDnAiHtvm4dUxwukEAIrX9qE/Qf5BVGP\nOLm7YJ0seeYpfNXeY15GAoyOZW77jjeiUqdFKmebkukxc6IsuR+o4dUgZxESHIBld+dhRFwoAKDL\n0o3Hnl2PE6f0s20ys+PkPoiTta04eNL+xA8wGjA3Qx2tYSNCzZg2PlYay/e70ZNd5b1X7lMGSO7j\nkyIQHRYIAGhs7cJ+Lrc/q+ioIDx0bx7CHeespbULK55ej7p6XkqqJ5zcB7FOViiUmx6HcMcyPDWQ\nr3lfV3JKd8vbGlo6cbS6BQBgMhImjY7q9ziDgTBddmOVq1UHl5QYjqV3LYDZbJ/mqq5txWPPrkdr\nG1ex6gUn97MQQjivkvHxdgODmTUxXtpu+Fh1K45UtSgckWeVyq7aJyRHIdA88NbKs2RTM1yt6pr0\ncbG493dzpWK8I0cb8NQL33MVq05wcj8LXzflcFdwoAmzJvXGtE5nN1bl+7dnj40+67FT02IQYLI/\nnY+ebkEVTzG4JHfqSCz55QxpvGvPabz4l61830IHOLmfhXy7gbkZQ2vK4W3yNfcFOmvi4byfzNm3\nVg4ym5xuuPLUjOvOzRuLa3+eLY2/33oMb7xTrLtpPn/DyX0ANpvAellyV8sqmb6mjY9FeIj9PkBt\nUwfKjtYP8hXaUNPUIb1rCjAZMHH04Ju0yadmuFrVPZf9dBIu/OF4afzFNwec+rIy7eHkPoDS8jrU\nt/i+KYe7TEYD5stW8OiliYf8qn3y6CiYTYO/a5Kvd991pM4vNlXzFCLCLxdPw9yZydJjqz4owXcb\njigXFBsWTu4DULIph7vypvROzWzcXSXtgaNl8iWQA61v7ysuMkiqVrV2CxRxcY5bDAbCbbfMRobs\nHdArf9uGwp36upfjL9SbsRSkdFMOd00eHYW4SEfnnXYLinVQgu9cvHT2m6lyPDUzPOYAI+6/fT5S\nku3TYDabwDMvb8LBw/rp2esvOLn3Q+mmHO4yGMhpM7F1pdq+0qqqb0eVY2/2wAAjxie5fv7l1ao7\nuFp1SMJCzVh290LExYYAADo7rXjs2fU45djjh2kDJ/d+qKEph7sWyaZmtu6t1vTuiPKr9owxUdIS\nR1eMG9lbrdrUxtWqQxUbE4Jld+chzNGntqm5EyueKUBDY4fCkTFXcXLvo29TjjyFt/d1VWpCGFIc\ne8x3Wro1XcjjvL7dvRvZ9t6q3H7PE0aPisCDdy6A2bEEuKq6FY+tXI/2DovCkTFXcHLvQ96UY9zI\nCCTHhyockWvO6K+q0akZIYRTZepg69v7w/PunjMpPQ53LemtYj1cUY+nXvgeFitXsaodJ/c+5ElR\nrWvbByKfdy86WIumVu3tE3Kqrg21Tfa3/sFmE8Ylhbv9PaamxfZWq1ZztepwzcxNwi03TZfGJbur\n8Mpft/P9DJXj5C6jtqYc7kqMCcFExyqHbptwWvGjFfKr9szUqCEtQQ00GzFVVpfAUzPD96P8NFx1\nWZY0LthUgVUflCgYERsMJ3cZNTblcJd8zfs6DRY0yW+mDrTFrytmTRwhfbxtn/6biPvCFZdMxo/O\nSZPGn361D599xVWsasXJXUaNTTnctSAzAQbH/GhZRT2qG7QzJWGfbx/6zVQ5+RbAuyvquVrVA4gI\nN98wHbNyR0mP/b/3dmL9pqMKRsUGwsndQa1NOdwVFRboNCWhpSYex2ta0eC4TxAWHIDUBPfn23vE\nRQQhbaS8WrXGIzH6O4OBcOdv52BSeu+L54uvbcVOHffx1SpO7g5qbsrhLvnUjJb2mimRVUFmjomG\nwTC8+oKZvMe7V5jNRjx4xwKMHhUBAOjutuGpFzbi8BF9bFqnF5zcof6mHO6aM3mEtFqkvLIZR09r\no4mHvBn2cKZkesg3EuNqVc8KCzNj2d15iIkOBgB0dFjx6Mr1qNTIc80fcHKH+ptyuCsk0OSU2LSw\n5t1mE9h1xDM3U3uMGxmB6HB7tWpzmwV7jzUM+3uyXnGxIXjonjyEhtirWBubOrDimQI0NnEVqxpw\ncoc2mnK4y6mgqaRS9Y0XKk63oLnNXvkYGWpGyojhF48ZDOT0IsdTM56XkhyJB+6YjwDHlsyVVS14\n7NkNXMWqAn6f3Ps25ZDv0aJl09PjEBpkb35c1dCOfcfUvceKfJVMVmq0x/bzmSlbNbOduzN5RcbE\neNzx29nS7+xQeR1WvrwJVh1sPa1lfp/c+zblcGd7WTUzm4xOK37UvlOkp5ZA9iWvVj1W3YpTdW0e\n+96s15wZyfjNDbnSuKikEn/++3bVv2PUM79P7lpqyuGuRbK1+ht3V6Hbps4rKZtNYHfF8PaTGUig\n2YictFhpzHvNeM/5547DFZdkSOO1G47gnY92KRiRf9NPJhuCvk059DIl0yMrNUa6odjY2oWdKm24\ncLiyGa0d9iKj6PBAjIoL8ej3ly+J5KkZ77rqskz8IG+sNP7H53vwxX8OKBiR//Lr5N63KUe6Y92u\nXvRt4lFQos41705TMqkxHt8/X74F8K4j9Wjlm31eQ0S45abpmJGTJD32+tvF2LjlmIJR+Se/Tu5a\nbMrhLvk2Cpv3nEanRX1btQ61pZ6rYiOCMD7JUXBj496q3mY0GnDXkjmYMK5nOkzghb9swa49vMeP\nL/ltcm9pt2D7Pu015XDX+KQIJDnapbV3WVU3LWHttqGsonf9uSdvpsrJaxe2qewc6FFgoAkP3rkA\nST0Ny602/PG5jThylGsNfMVvk/vmPadh6dZeUw53EZHTC9c6lU3NHDrZhPYu+9RYXGQQEh0Vj542\ny2nevUa1N5f1JCI8EMvuyUN0pP132t5hwaPPrMfpmlaFI/MPfpvc9bTdwGDkUzOFB2rQ3K6eOee+\nW/x6a2osbWQ4Yhw3l1vaLdir8nX/epEQH4qldy9EcJB9r6b6xnaseLoAzY7lx8x7/DK51zZ1ODXl\nmJ+l7+Q+Ki5UmnO2dNuwWUVzn57eT2YgROS0aoaXRPrO2DFRuP/2+TA56g1OVjbj8Wc3oJO3YfYq\nv0zuG3dXab4ph7vkV+8FJeooaLJYbShzWt/u3QIy+VYEnNx9KztjBG67eTYA+zuz/Ydq8ewrm9Hd\nzdNj3uKXyV3elENva9sHMj8rET0zHqVH6qQ+pUraf6IRXY4S9cToYMRHeWe+vceUtBiYHVePx2ta\npc3imG/Mnz0av1ycI423F5/Eq2/s4CpWLxk0uRNRMhGtIaLdRFRKRL/v55hFRNRARIWOf0u9E+7w\nnahxbsoxZ/KIQb5CH+IigpDlqPwUwv7uRWlO+8l4cUqmR2CAETnjeqtV1bZyyB9cdF46fvaTSdL4\nvwXl+OCfuxWMSL9cuXK3ArhTCJEJYC6AJUQ0qZ/jCoQQuY5/j3k0Sg+Sr23XelMOd8mnZtapYGrG\nU/1S3TGDd4lU3OIrsrFo/hhp/OHqMvx7zSEFI9KnQZO7EKJSCFHs+LgFwB4Ao/o5VPUVQEIIv5yS\n6TE3IwEmo/3XZN/DXrklaV3Wbuw73rtixZs3U+XkN1XLKurRoqKVQ/6CiLDklzMxTbZK7bU3C7F5\n+3EFo9Ift+bciSgVQA6ALf18ei4RFRPRF0SU0c/nFXfwZJO0K6C9KUfcIF+hL+HBAZgu632p5Jr3\nvccaYXHMt4+KC5WWKXpbTHggV6uqgMlkwN23zsW4sT1ThQLP/XkLyvjdlMeYXD2QiMIAfAzgNscV\nvNwOAClCiDYiuhDAagAT+vs+y5cvlz7Oz89Hfn6+myEPnXxKZp5OmnK4Ky97JLbstf8BFZSewlX5\naYpsu1B6WL6fjG+3WZ45MV6677JtfzUWZut7KaxaBQcFYOldC/DAo2tQWdUCi7Ubf3xuIx5feg5S\nkiOVDk9Ra9euxdq1a4f1PciVO9VEZALwOYCvhBAvuHB8OYDpQoi6Po8Lpe6M22wC//NsgbR3+yPX\nT3e6ueYvOru6ccMz66Sq0GdvniNdyfrS/a9vxR5HKfo9V0zBAh/WGhw+1YQ7Xt0MAAgLDsBb9y7S\n1VbPWlN5ugUPrFgjteeLiQ7Gkw/9AHGxnt0dVMuICEIIt67CXH1G/x1A2UCJnYgSZB/Pgv1FQ1X7\ny+q1KYe7As1GzJ7cO++sxI3Vji4rDpzonW/P8vGV+9jEcMQ6ahta2i3SiwxTRuKIMCy9eyGCHJ3D\n6urb8ejKArS0dCkcmba5shRyPoBrAZxLREWOpY4XENHNRPQbx2E/J6JdRFQE4HkAv/BizEMin5JZ\nmK2vphzukt9IXr+rEjabb99N7TnaAGu3/WemjAhDVJhv5tt7EJFT+71t+2t8+vPZmcalRuO+38+D\n0ejomnWiCU88vwFdXerbxVQrXFkts1EIYRRC5AghpjmWOn4thPiLEOI1xzGvCCGyHJ+fJ4To74ar\nYvo25dDrDpCumpoWg8hQe8f6+uZO7Dri2zdZpeW+2XLgbHgrAvWZmpWI3/16pjTeu78Gf/rzZp9f\nfOiFX1y+6r0ph7uMBgPmZ8r7q/p21UyJl/dvd8WUtBjphvqJmlZFl4WyXnnzxuDGq6dK462FJ/CX\nN7mKdSj8Irk7r23XZ1MOdy2SvXvZVFaFLqtv3v62dVpxyLFShQhS1ayvmU1GTE3r/dl89a4eF184\nERdfMFEaf/PdYXz06R4FI9Im3Sf3lnYLdsjmVBf5+ZRMj4mjI5Hg2MultcOKwgO+We9dVlEPm+Mq\nbGxiuKIVwvKpGa5WVZfrr5qChXNTpPH7/9iFb9YeVjAi7dF9cpc35RifFIFRcfpsyuEuIkKerEJQ\nvr+9N/Xtl6ok+VYEZRUNqtrn3t8ZDIRbfz0TUzJ6pw9ffWMHthWeVDAqbdF9cpdPyeRxsYoT+Y3l\nrfuqpfsS3qSGm6k95NWqNiFQdJBXzahJgMmI+26fh7Qx9vsyQgg8+8om7D3AvydX6Dq51zZ1oPSI\n/zTlcFfKiDCkJth7XFqsNmzxchOP5nYLDlfa59sNRMgYE+XVn+eKWTw1o2rBQQFYevdCJDjaYHZZ\nuvHEnzbguOO+DRuYrpO7vClHtp805XCXfGpmnZenZnYfqZd+H2kjwxEapPyOnLMm9W75XHigFlZu\nHqE6UZFBWHZPHiJ62iS2dmHFMwWoq29XODJ103Vyd5qS8bMdIF21UPZuZuehOjR4sbel0xa/acpO\nyfRITQhDXKT9Rb+1g6tV1SopMRxL71qIwEB7FWtNbRtWPFOAllauYh2IbpN736Ycc/2kKYe7RkQF\nIyPFPj1iE8KrTTxKj8jXt6sjudurVbmgSQvGp8XgnlvnwmCwL2U+erwRTz6/EV0WrmLtj26Tu3yK\nYfqEOIT5UVMOd8nf1RR4qaCpsbULFVX2zUSNBsLk0crPt/dwqlbl7kyqljt1JJb8qreKtWxfNV54\ndQtXsfZDl8ldCIEC2V7l/r7dwGDmZyTA6Lga2nusAZV1nu8tKt/iIH1UJIIDXd5t2uuyx0YjyGyv\nVj1Z28bVqip3zoJULL5yijTetO04Xn+7iKtY+9Blcpc35QgJ9L+mHO6KCDU7bX+8fpfnr96dl0Cq\na0dOe7Vq7///1r189a52P7toIi76Ubo0/urbg/jn53sVjEh9dJnc5TdS5072z6Yc7pK/uykoqfT4\nVZAS/VLdwUsitYWIcNO1OZg3a7T02NsflWJNQbmCUamL7pK7zSawXjZvzKtkXDN7UjzMJvvT4Wh1\nC45U9W22NXR1zZ04XmOf6ggwGjBRRfPtPWZMiEPPlkN7jnK1qhYYDITf3zwLmZN6X5hfeX07Cncq\n3/xdDXSX3EvL69DgWB4VFWpW5VWiGgUHmjBbtubbk9sRyOfbJyRHqvKdVFRYINJH2Vu72YRAIVdB\naoI5wIj7b5+PMY4LBiEEnn5pEw4c4t64ukvu8imZhdmJ0rIpNjinJh6lnmviUXJYfUsg+8NLIrUp\nNMSMZXcvRHyso4q1y4rHnt2Ak5XNCkemLF0l905LN74v6y2h51Uy7skZFystGa1u7MCeY54p6Ck9\not6bqXLyJZGFB2u4WlVDYqKD8dC9CxHmaELT3NKJFU8XoL6hQ+HIlKOr5L59f43U+HkkN+VwW4DJ\nuYlHgQf6q9Y0dkhLK80mAyaouKu9c7WqFWVcraopo0ZG4A93LYTZMe13uqYVj60sQJuf3j/RVXKX\nzxPncVOOIZHvnLlhdxUs1uFdvcpXyUxOiYLZpL759h5E5LRqhqdmtGfi+Fjcdetc6W+//GgDnn7h\ne1h81IxGTXST3Lkph2dkpEQj1rHBWku7BTsPD+/GlNP+7Sqeb+8xo8+8OxfGaM/MaUn47f/MkMYl\nZVV46bVtflfFqpvkvombcniEwUBOV+/rSoZe0CSEcO6XqnBzDlfIq1VP1bXhRI3nq3WZ9/1g0Vhc\nfXmWNN6w+SjefH+nghH5nm6SewE35fAY+aqZLXtPo6NraE08qurbUd1ov6EVZDZivAbugZhNRqdq\n3a37vLvHPfOen188GeefO04a/+vr/fj0y30KRuRbukjufZtyLOCmHMOSmhCG0Y7mCJ2W7iFXbMpX\nyWSMiYbJqI2nm9OSyP283l2riAi/vj4Xc2YkS4+9+f5OrNtYoWBUvqONv7ZBbNhV6dSUI5abcgwL\nEZ2xHcFQOPdLVe8SyL7k1ap7uVpV0wwGwu3/OxuTZS/YL/11K4q9tPupmugiuRfwdgMet1A2tVV4\nsAbNbe41RRBCaO5mao+osEBMkFWr7uCrd00zBxjxwO3zMdoxLWizCTz90vc4KHt+6pHmkzs35fCO\nkTEh0pr0bptwKg5zxcnaNtQ127s6hQaZMG6k+ufb5eQFTdt5j3fNCwsz46F78hATHQwA6Oiw4vFn\nN6DSg3soqY3mkzs35fAe+dTMOjcLmuRX7ZljojW3DQRXq+pPbEwIHronT6pibWzqwCPPFKChUZ9V\nrJpO7n2bciziKRmPWpCVAINj8nl3RT1q3PgjcN6/XTtTMj3GjAjDiCj7VV5rhxVlFfWDfAXTgpTk\nSDxwxwIEOIrpqk634PE/bUB7h/7uq2g6uR844dyUY3o6N+XwpOiwQKdG1q7uFCmEcNoJUovJnYic\nmrzwqhn9mDwhDncumSNVsR4qr8MzL22CdZjV2Gqj6eQuTzbclMM75DUDrvZXPVbdKm27HB4SgDEj\nwrwSm7fN7NPAg6tV9WP29FH4zQ250ri4tBKv/G2brn7Hmk3ufZty8JSMd8yZPAIBjiYe5ZXNOHp6\n8BtQ8qrUrNQYzc2398hKjUaw2d7rtbKuTWo4wvTh/HPH4cpLM6Xxuu8rsOrDUgUj8izNJveSPk05\ntPjWXwtCgwKc9ltZ78LVu1bXt/dlNhmRM763WpU3EtOfX/wsAz/KT5PGq7/Yi8//vV/BiDxHs8m9\ngJty+Izz1Myps751tdkEdh3R9s1UuZnyeXdO7rpDRPjNDbmYMS1Jeuzv7+zEhs1HFYzKMzSZ3Ps2\n5eApGe+aMSEOoUGO6Yn6duw/0TjgsRWnW9DiqOiMCjVL2xho1fR0WbXqsUa3i7mY+hmNBtz12zmY\nKL1LE3jxta0o2V2laFzDpcnk3rcpx/gkbRXIaI3ZZMTcyfImHgNPzfStStX6nvpRYYGYmGzvz2kT\nAtu5t6ouBQaa8OCdCzDKUWxntdrw5AsbUV6h3YYtmkzu8lUyi6aM1HwC0QKnJh67KtFt63/ZmFb6\npbqDp2b8Q3hYIJbdsxDRUb1VrI+uLEBVtTZvpGsuuTf3acrB2/v6RvbYGESHBQIAGlq7nJJ4j26b\nDbsrtNEv1R0zJ/ZuaVF4oHbY3amYeo2IC8VD9yxEiKPSvaGxAyueLkCTYysNLdFcct/MTTkUYTCQ\n02Zi/a15P3yqGW2d9umy2IggjIwJ8Vl83pQyIhQJjqu59i6uVtW7MaOj8MAdC2ByLAE+VdWMx5/d\ngI6OofU1UIrmkrt8lQzfSPUt+bukTWWn0Wlx7kvpPN8erZvpMiLCDHlvVd5ITPcyJ8Xj9ltmA7A/\nhw8crsXKl7VVxaqp5F7TpynH/MyEQb6CedL4pAjpary9y4rtfUry5c05tNBSzx19G2frqZKR9W/e\nrNH41XU50riw5BRefWOHZn73mkruG7kph6KICHlTnNe897B225ymK/RyM7VH5hhZtWp9O45p9CYb\nc8+Pf5SOy386WRqvWV+Odz/epWBErtNUcl/HO0AqLi+r97zv2F8jrWk/eKIJHV32aZqEqGAkOPbN\n1osAkwHT5NWqPDXjN675eRbOWZgqjT/51x589e1B5QJykWaS+/HqVhw61duUYw435VBEcnyo1HjD\n0m3D5j32YrJSje8C6YqZfaZmmH8gIvzvTTOQK7ug/OtbRdi07biCUQ1OM8m9YFfvFMCMifHclENB\nfbcjAJxvpmbpZAlkX/Jq1X3HGtHUytWq/sJkMuDuW+divLQFtsDz/7cFu/eq90VeE8ldCOE0JcNr\n25W1IDtRSnIl5XWoqm9H2dHeSj69XrlHhpqdqlV3cLWqXwkKMuEPdy7AyIRwAIDF2o0/PrcBFcfU\nWcWqieR+4EQTKmVNOeRNFJjvxUUEIXOM/epcCOD1r/dJhT0jY0IQp+Mb3X33eGf+JTIiCA/dm4eo\nSPtzvK3dgkdXrke1CreD1kRyl6/KmJeRALOJm3IoTd5fdcve3k3c5J2b9Ei+JLLoIFer+qOE+FAs\nvWshghzQFqSzAAAUIElEQVSb6dXVt+PRlevR0qKuabpBkzsRJRPRGiLaTUSlRPT7AY57kYgOEFEx\nEeX0d8xQdNtsTnuI85SMOszLTIDJeGaRkt7Wt/c1Ot65WnU3V6v6pbTUaNx323wYjfYUevxkEx7/\n03p0dXUP8pW+48qVuxXAnUKITABzASwhoknyA4joQgDjhBDpAG4G8KqnAiwtr5eackSHBep2Pldr\nwoMDkDv+zOkxvd5M7UFEPDXDAABTMxNw282zpPG+g7VY+comdHer492cabADhBCVACodH7cQ0R4A\nowDslR12CYC3HMdsIaJIIkoQQgx7Q+R13JRDtfKyRzolt9HxodLmYno2a2I8Pt9ib+awde9p5Cg8\nFZUyIgyJOtnHR2sWzElBfUMH3ni3GACwvegkXnurELfcOF3x7TcGTe5yRJQKIAfAlj6fGgXgmGx8\nwvHYsJJ7p6Ubm2RNOXhKRl1mTYxHsNkk7a3vL++qMsZEIyTQhLZOK6obO/D4e8WKxhNgNOCBq3Mw\nPZ0XGijhpxdMQH1DO1Z/uQ8A8M13hxEdGYyrLssc5Cu9y+XkTkRhAD4GcJsQYvAuyQNYvny59HF+\nfj7y8/MHPFbelCMplptyqE2g2Yj5mQn4tugEAPhNcgkwGTBrUjzW7jw1+ME+YOm24akPduKxG2dg\nQnKk0uH4pcVXTkF9QwfWfV8BAFi74QguvnCCtHWwu9auXYu1a9cOKyZyZRMcIjIB+BzAV0KIF/r5\n/KsAvhNCfOAY7wWwqO+0DBEJdzbdqWnswHc7T2JdySnMz0zE1eeMc/lrmW80t3Xh3e8OIT4yCD+b\nn6r4W1FfaWjpxHvfHUJtk7L7fB881YR6x17jESFmPPWrmUiK5W2wlWCxduOJP21EY1MHlt2dh+go\nzy0JJiIIIdz643I1ub8FoEYIcecAn/8xgCVCiIuIaA6A54UQc/o5zq3k3kMIAWu3QIBJEys3GfOZ\nEzWtuO/1rWhus+/xkxAVjKd+Pcsv7n2oUXuHBUJgyFfsA/FKciei+QAKAJQCEI5/DwIYA0AIIV5z\nHPcygAsAtAK4SQhR2M/3GlJyZ4wNbN/xBix9Yzu6HGvu00aG44mbZiI40K1bakzFvHbl7imc3Bnz\njm37qvHEe8WwOf6+pqbFYNm1ufxuVyeGktz5N8+YDsycGI8lF2dI452H6/Di6t2w2fhiyl9xcmdM\nJ36YOwqLfzBeGheUnsKb3+xXMCKmJE7ujOnIzxeOxY9njZbGq7+vwOqNR5QLiCmGkztjOkJE+PWF\nkzA3o7e/8Bv/2e9U6c38Ayd3xnTGYCDceXmWtC0zALy4eheKD9UqGBXzNU7ujOmQ2WTEg1fnIGVE\nGADA2i3w5Ps7cehkk8KRMV/h5M6YToUFB+Dh63IR52gs0d5lxYq3C3HK0fiG6Rsnd8Z0LC4iCA8v\nzpV6Dje0duGRVYVoaFF22wTmfZzcGdO5lBFhWHpNjlTQdKquDY++U4T2TqvCkTFv4uTOmB+YnBKN\ne66YAoNjY7eDJ5vw1Ic7YVVJYwnmeZzcGfMTsyeNwC0/mSyNiw7W4uVPy8BbgugTJ3fG/Mj5M5Jx\nVX7v1tnf7TyJVd8eVDAi5i2c3BnzM1flp+G86cnS+JMN5fjX5qMKRsS8gZM7Y36GiHDLTyZhlqzR\n9+tf78WGXZUKRsU8jZM7Y37IaDDg7p9PwaTRUQAAIYDn/7ELJeV1CkfGPIWTO2N+KtBsxNJrp2F0\nvL0tn6Xbhj++V4zyymaFI2OewMmdMT8WHhyAhxfnIibc3pavrdOKR94uRFV9u8KRseHi5M6Yn4uP\nCsbD1+UiNMjelq++uROPvF2IptYuhSNjw8HJnTGG1IRwPHh1bxXriZpWPPpuETq6uIpVqzi5M8YA\nAFmpMbjz8mw4ilix/3gjnvmoBN02rmLVIk7ujDHJvIwE/PrCSdJ4+/4a/PmzPVzFqkGc3BljTi6a\nnYIr8sZK42+LTuDdNYcUjIgNBSd3xtgZrj13PH6QkySNPyw4jC+3HlMwIuYuTu6MsTMQEX57cQam\np8dJj7325R58X1alYFTMHZzcGWP9MhkNuPfKKUgfFQnAXsX6p09KsbuiXuHImCs4uTPGBhRkNuGh\na6chKTYEAGCx2vD4u8WoqGpRODI2GE7ujLGzigg1Y/l10xEdZq9ibe2w4JG3C1HT2KFwZOxsOLkz\nxgaVEG2vYg0226tYa5s6sHzVDjS3WxSOjA2EkztjzCVjE8Px4NVTYTLaq5yOVbfi8XeL0GnpVjgy\n1h9O7owxl01Ji8XtP8uWxnuONuDZj7mKVY04uTPG3LIwOxG/vGCiNN6ytxp/+WIvV7GqDCd3xpjb\nLp47Bj+bnyqN/739OD5Yd1i5gNgZOLkzxobk+h+mI3/qSGn83neH8O/txxWMiMlxcmeMDYnBQLj1\n4kxMGxcrPfbq53uwde9pBaNiPTi5M8aGLMBkwH2/mIrxSREAAJsQePqjEuw92qBwZIyTO2NsWIID\nTVh27TQkxvRWsT76bhGOVXMVq5I4uTPGhi0qLBDLr8tFVKgZANDSbsHyVYWoaeIqVqVwcmeMecTI\nmBAsW5yLILMRAFDT2IEVbxeihatYFcHJnTHmMeOTInD/L6bCaLBXsVZUteCJ94rRZeUqVl/j5M4Y\n86hp4+Pwu0szpfHuino898ku2Gxc5ORLnNwZYx53ztQk3HjeBGn8fVkV/voVV7H6Eid3xphXXDpv\nDC6eO0Yaf7n1GD5ZX65gRP6FkztjzCuICDedNwELsxKlx1b99yD+W3RCwaj8Byd3xpjXGAyE3/8s\nE1PGxkiPvfxpGbbvr1YwKv/AyZ0x5lVmkxEPXJ2DsYnhABxVrB+WYN9xrmL1Jk7ujDGvCwk04aHF\nuUiICgYAdFq68eg7RThZ26pwZPrFyZ0x5hMx4YFYfn0uIkLsVazNbRYsf6sQdc2dCkemT4MmdyJ6\nnYiqiKhkgM8vIqIGIip0/Fvq+TAZY3qQFBuKpdfmIDDAXsVa1dCOFW8XorWDq1g9zZUr9zcAnD/I\nMQVCiFzHv8c8EBdjTKcmJkfh3iunwED2KtbyymY8+f5OrmL1sEGTuxBiA4D6QQ4jz4TDGPMHMybE\n49ZLMqRxSXkdXvznbq5i9SBPzbnPJaJiIvqCiDIGP5wx5u9+MG0UrvvBeGm8flcl3vjPfq5i9RCT\nB77HDgApQog2IroQwGoAEwY6ePny5dLH+fn5yM/P90AIjDEtunzhWNQ2d+LLrccAAJ9tqkBMeKBT\nf1Z/tHbtWqxdu3ZY34NceZUkojEA/iWEmOLCseUApgsh6vr5nOBXZcaYnM0m8MxHJfi+rEp67PbL\nsnDO1CQFo1IXIoIQwq3pb1enZQgDzKsTUYLs41mwv2CckdgZY6w/BgPhjsuzkDkmWnrspdW7UXSw\nRsGotG/QK3ciehdAPoBYAFUAHgZgBiCEEK8R0RIA/wvAAqAdwB1CiC0DfC++cmeM9aul3YIH/r4N\nR0/b2/MFmY147MYZSB8VqXBkyhvKlbtL0zKewsmdMXY2NU0duO9vW1HTaG/PFxlqxpO/nIWk2BCF\nI1OWN6dlGGPM6+IigrD8ulyEBQcAABpbu/DI24VoaOEqVndxcmeMqcro+DAsu2YaAkz29FRZ14ZH\n3ylCe6dV4ci0hZM7Y0x1JqVE4d4reqtYD55swlMf7ITFalM4Mu3g5M4YU6VZk0bglp9MlsZFh2rx\n0qdcxeoqTu6MMdU6f0Yyrj5nnDReV3IKb317QMGItIOTO2NM1X6xKA3nz0iWxv/ceASfbapQMCJt\n4OTOGFM1IsItF03G7EkjpMde/3of1pdWKhiV+nFyZ4ypnsFAuOvn2ZicEiU99vw/S7HzUK2CUakb\nJ3fGmCYEBhjxh2umYXR8KADA2i3wx/d3oryyWeHI1ImTO2NMM8KDA/Dw4lzERgQBANq7rHhkVSGq\n6tsVjkx9OLkzxjQlPioYDy/ORWiQfcfy+pZOLF+1A42tXQpHpi6c3BljmjMmIQwPXp0jVbGerLVX\nsXZ0cRVrD07ujDFNykqNwZ2XZ8NRxIoDJxrx9IclsHZzFSvAyZ0xpmHzMhJw80W9Vaw7DtTgz5+V\ncas+cHJnjGnchTNH48q8NGn83+KTeGfNQQUjUgdO7owxzbvm3HH44bRR0vijgnJ8seWoghEpj5M7\nY0zziAi/vXgyZk6Ilx7761d7sXF31Vm+St84uTPGdMFoMOCeK6ZgYrK9LZ8QwHOflKK03D9bOnNy\nZ4zpRqDZiKXXTJPa8lm6bXjivWK/rGLl5M4Y05WIUDOWXzcd0WGBAIC2TitWvF2I0w3+VcXKyZ0x\npjsJ0cF4+LpchATaq1jrmjvxyKpCNLf5TxUrJ3fGmC6NTQzHA1fnIMBoT3PHa1rx2LvF6OzqVjgy\n3+DkzhjTrSljY3D7ZVlSFeveYw1Y+XEJum36r2Ll5M4Y07UFWYn45QWTpPHWfdV49fO9uq9i5eTO\nGNO9n85JwWULUqXxf3Ycx/trDysXkA9wcmeM+YXrf5iOc6YmSeP31x7Cv7cfVzAi7+LkzhjzC0SE\nWy/JwLTxsdJjr36+B5v3nFYwKu/h5M4Y8xsmowH3XTkV45MiAAA2IbDy4xKUVdQrHJnncXJnjPmV\n4EATll07DSNjHFWsVhsee7cYR0+3KByZZ3FyZ4z5naiwQCy/LhdRoWYAQGuHBctXFaKmqUPhyDyH\nkztjzC8lxoRg2eJcBJvtVay1TR145K1CNLdbFI7MMzi5M8b81vikCNx/1VQYDfYqp6PVLXjivWJ0\nWrRfxcrJnTHm13LGxeL3l2ZJ47KKevzpk1LYbNoucuLkzhjze/lTR+Km8yZI4817TuMvX+zRdBUr\nJ3fGGANw6fxUXDJ3jDT+evtxfFRQrmBEw8PJnTHGHG48bwIWZidK43fWHMS3hScUjGjoOLkzxpiD\nwUC47dIsTE2LkR575bMybNtXrWBUQ8PJnTHGZAJMBtx/VQ7SRoYDsFexPv3hTuw71qBwZO7h5M4Y\nY32EBJrw0OJcJEQFAwC6rDaseKcIx6tbFY7MdZzcGWOsH9FhgVh+fS4iQuxVrC3tFjzydiFqNVLF\nysmdMcYGkBQbimXXTkNggBEAcLqhHSveLkJrh/qrWDm5M8bYWUxIjsR9v5gKg6NX35GqZjzxXjG6\nrOquYuXkzhhjg5ieHoffXZopjXcdqcfz/9il6ipWTu6MMeaCc3OScN0P06Xxxt1V+NvX+1RbxcrJ\nnTHGXHT5glRcNDtFGn+x5Sj+sfGIcgGdBSd3xhhzERHhVxdMxPzMBOmxt745gDXFJxWMqn+DJnci\nep2Iqoio5CzHvEhEB4iomIhyPBsiY4yph8FAuP2yLGSlRkuPvbR6N3YcqFEwqjO5cuX+BoDzB/ok\nEV0IYJwQIh3AzQBe9VBsurZ27VqlQ1ANPhe9+Fz0UvO5MJuMePDqHKQm9FaxPvXBThw40ahwZL0G\nTe5CiA0AztY99hIAbzmO3QIgkogSznI8g7qfuL7G56IXn4teaj8XoUEBeGjxNMRHBgEAOi3dePSd\nIpysVUcVqyfm3EcBOCYbn3A8xhhjuhYbEYTl101HWHAAAKCxtQvL3ypEfUunwpHxDVXGGBuW5PhQ\nLLtmGswmezqtamjHircL0d5pVTQucmWNJhGNAfAvIcSUfj73KoDvhBAfOMZ7ASwSQlT1c6w6F4Qy\nxpjKCSHIneNNLh5Hjn/9+QzAEgAfENEcAA39JfahBMcYY2xoBk3uRPQugHwAsUR0FMDDAMwAhBDi\nNSHEl0T0YyI6CKAVwE3eDJgxxtjgXJqWYYwxpi0+u6FKRBcQ0V4i2k9E9/nq56pBf4VgRBRNRP8h\non1E9G8iilQyRl8gomQiWkNEu4molIh+73jcH89FIBFtIaIix7l42PG4352LHkRkIKJCIvrMMfbL\nc0FER4hop+O5sdXxmNvnwifJnYgMAF6GvRgqE8DVRDTJFz9bJforBLsfwLdCiIkA1gB4wOdR+Z4V\nwJ1CiEwAcwEscTwP/O5cCCE6AZwjhJgGIAfAhUQ0C354LmRuA1AmG/vrubAByBdCTBNCzHI85va5\n8NWV+ywAB4QQFUIIC4D3YS9+8gsDFIJdAuBNx8dvArjUp0EpQAhRKYQodnzcAmAPgGT44bkAACFE\nm+PDQNjvfwn46bkgomQAPwbwN9nDfnkuYF+80jc3u30ufJXc+xY6HQcXOo3oWVUkhKgEMELheHyK\niFJhv2LdDCDBH8+FYxqiCEAlgG+EENvgp+cCwHMA7oH9Ba6Hv54LAeAbItpGRL9yPOb2uXB1KSTz\nPr+5s01EYQA+BnCbEKKln/oHvzgXQggbgGlEFAHgn0SUiTP/33V/LojoIgBVQohiIso/y6G6PxcO\n84UQp4goHsB/iGgfhvC88NWV+wkAKbJxsuMxf1bVswcPESUCOK1wPD5BRCbYE/sqIcSnjof98lz0\nEEI0AVgL4AL457mYD+BiIjoM4D0A5xLRKgCVfnguIIQ45fhvNYDVsE9ru/288FVy3wZgPBGNISIz\ngKtgL37yJ30LwT4DcKPj4xsAfNr3C3Tq7wDKhBAvyB7zu3NBRHE9Kx6IKBjAj2C/B+F350II8aAQ\nIkUIkQZ7blgjhLgOwL/gZ+eCiEIc72xBRKEAzgNQiiE8L3y2zp2ILgDwAuwvKK8LIZ70yQ9WAXkh\nGIAq2AvBVgP4CMBoABUArhRCNCgVoy8Q0XwABbA/WYXj34MAtgL4EP51LrJhvzFmcPz7QAjxOBHF\nwM/OhRwRLQJwlxDiYn88F0Q0FsA/Yf/bMAF4Rwjx5FDOBRcxMcaYDvGukIwxpkOc3BljTIc4uTPG\nmA5xcmeMMR3i5M4YYzrEyZ0xxnSIkztjjOkQJ3fGGNOh/w+U1us/zrPSmQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bins = np.arange(0, 40, 5)\n", + "indices = np.digitize(males.Age, bins)\n", + "groups = males.groupby(indices)\n", + "\n", + "for i, group in groups:\n", + " print(i, len(group))\n", + " age = [group.Age.mean() for i, group in groups]\n", + " cdfs = [thinkstats2.Cdf(group.Pclass) for i, group in groups]\n", + " \n", + "for percent in [75, 50, 25]:\n", + " Pclasses = [cdf.Percentile(percent) for cdf in cdfs]\n", + " label = '%dth' % percent\n", + " thinkplot.Plot(age, Pclasses, label=label)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 17)\n", + "(2, 13)\n", + "(3, 9)\n", + "(4, 36)\n", + "(5, 42)\n", + "(6, 30)\n", + "(7, 33)\n", + "(8, 81)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XOV5L/DfM/umzdr3zbvNvm+2SkoC2UiTNMnN0hTa\nQgIOuU1Smob0WjRJC71Nm8UQICFcSEpDmoWQUFogYMwSHINtgm15ka3FWm3J2mbf3vvHOZo5M9Y2\n0pk5M+c838+HT3TkGenNkebRmfc87+8lIQQYY4zpi0nrATDGGFMfF3fGGNMhLu6MMaZDXNwZY0yH\nuLgzxpgOcXFnjDEdWrS4E5GdiHYT0T4iepuIts/zuO8Q0TEi2k9E56s/VMYYY0tlWewBQogQEf2R\nEMJPRGYArxLRM0KI388+hohuANAuhFhDRJcBeADA5dkbNmOMsYUsaVpGCOGXP7RD+oOQvvLpRgCP\nyY/dDaCEiKrVGiRjjLHMLKm4E5GJiPYBGAHwnBBiT9pD6gGcVBwPyp9jjDGmgaVeuceFEBcAaABw\nGRFtzO6wGGOMrcSic+5KQohpInoRwPUADin+aRBAo+K4Qf5cCiLiIBvGGFsGIQRl8vhFizsRVQCI\nCCGmiMgJ4DoA96Q97CkAtwN4goguBzAphBidZ4CZjC9FOBbHwExg2c+fy7fv+QY+/+W7VP2aasjG\nuH7RP4zDUzMAgPc21OCa6vKMnn/vN76Gv73r71Ud00rxmJZmqWMSAL6/bwCvnJwAABAId13dhisa\nSrMyrs7OTnR2dmblay9XPo6JKKO6DmBpV+61AB4lIhOkaZwnhBD/RUS3AhBCiIfk43cTUTcAH4Cb\nMh7JEtjMJrSVulX9mmUOm+pfUw3ZGNelwTJ0z3gBAH1+Pz7gqs3o+S6rGeUum6pjWike09JkMqYv\nXNaC8UAEXWNeCAj88+96cM+1a7GuPP9eJ2x+S2mFfBvAhXN8/sG0420qjotlweayosTHx6Z9CMVi\nsJvNGo6I5SO7xYSvXt2GLz1/BMPeEMKxOP5h13F887p1qPHYtR4eWyLDr1Dt6OjQeghzysa4Vtlt\nqHM5AADReBxHpryaj2mleExLk+mYSh1W3L11NYps0vXfZCiCzl3dmAlFNR1XLuTjmJaDcrlZBxEJ\n3hxEW7/oHcKzg6cAAFtqKvDx9gaNR8Ty2cHTXtz14lFE4tLr9pyqInxt62pYzYa/LswpIsr4hir/\nhAxmc1lx4uODk9MrusHN9G9TpQdfuKwlcfz2qRl8Z08f/94UAC7uBtNe5E7Ms48HwxgJhDQeEct3\nW5pX4dPnJtckvtB7Bo8fHNZwRGwpuLgbjNlE2FiavLF6cGJaw9GwQvGnG6rxrraKxPHjB4bxfM+4\nhiNii+HibkCbFF0zByZnNBwJKxREhNsubsKFNclpve/8vg9vjfLFQb7i4m5AmxRX7semvAjGYhqO\nhhUKi4nw5Svb0FLiBADEhMA3XjmBvil1FxYydXBxN6Ayuw317uQL9MhkZi2RzLjcNjM6t67GKocV\nAOCLxND5UjcmAhGNR8bScXE3KGXXzIFJfmvNlq7SZUPn1tVwWKTyccofxt0vH0cwyu8A8wkXd4NS\nTs0cmJjh1jaWkfYyF758ZRtMcubJsTM+/N/f9SLOv0d5g4u7QbUXueG0SC2RE6EwhrklkmXokroS\n3HphMgz29cFJPLxvQMMRMSUu7gZlNhE2lCiv3nlqhmXuvWsq8cH1yU3Xnjx6Ck8dPaXhiNgsLu4G\npmyJ5H53tlw3nVePKxWRwA/tHcDrA5MajogBXNwNTXlT9di0DwG+IcaWwUSEL13eivVyJPBsTPDR\ncZ/GIzM2Lu4GVmKzolFuiYwLkdjIg7FM2S0m/P017ahxS5HAoVgcd+86jlEf38vRChd3g0tpiZzg\n4s6Wb86Y4JeOwxtWNyaYLQ0Xd4NLTYnklki2Mg3FDtx1dRusJqlFsn86gH989QQisbjGIzMeLu4G\n11LkgktuiZwMhTHoD2o8Ilbozqkqwv++tCVx/NboDHa80c8XDjnGxd3gzETYWKq4euepGaaCjpZV\n+LNz6hLHz/eM4ycHRzQckfFwcWdpKZHcEsnU8ZGNNbiutTxx/OMDQ3ihl2OCc4WLO0uJIujmlkim\nEiLCtkuacX518p3ht3f34Q+n+N1hLnBxZyi2WdHkcQEAhBDo4ox3phKLifCVq9rQVCy13EaFwDde\nPo5+jgnOOi7uDACwuYyjCFh2uG1m3L11NcrkmGBvJIbOXccxGeSY4Gzi4s4AAJtKuSWSZU+V24bt\nW9phN0slZ9QXwt27jiMY5RbJbOHizgAArUUuuCzS4pOpcAQD3BLJVLZmlRt/e2VrIib46Bkfvvl6\nD8cEZwkXdwZAygfZxFMzLMsuqy/FLRc0JI5fG5jED/cPajgi/eLizhKUXTOcEsmy5X1rq/An65Ix\nwb88Mopfc0yw6ri4s4RNZcUg+S3z8Rk/fBHOBGHZcfP5aTHB+wawe5BjgtXExZ0lFFktaPZILWtC\nCHRN8cbZLDtMRPji5a1Yu0qKCY4LgXtf68GxMxwTrBYu7izF5pQoAp6aYdnjsJiwfUs7qtNigk/5\nwhqPTB+4uLMUm9IigLmTgWVTqcOKzi3t8Fjl/XyDEWx/qRu+MK+SXiku7ixFs8cJj1VqiZyJRDDg\n45WELLuaSpy465p2WCg1Jjga5wuLleDizlKYiFK6ZngDD5YL51YV4fOXNSeO949OY8eePl5MtwJc\n3NlZUqdmeN6d5ca1LeX45OZkTPBzPeP46SGOCV4uLu7sLBtLixItkT1ebolkufOxTTX4Y0VM8GNv\nD2Fn7xkNR1S4uLizs3isFrQoUiIPcUokyxEiwraLm3BedXJq8Fu/78XbHBOcMS7ubE4cRcC0YjWb\nUmKCI3GBb7xyAgPTnHeUCS7ubE7KfvdDk9wSyXLLY7Ogc2s7Su1STPBMOIrtL3VzTHAGuLizOTV5\nnCiyyi+sSBT9Xm6JZLlV7banxASP+EL42svHEeKY4CXh4s7mdFZKJO+tyjSwtlyKCSZIN/gPj/vw\nLxwTvCRc3Nm8UlMi+YYW08Zl9aW45cLUmOBH3uKY4MVwcWfzUrZE9nr98HJLJNPI+9dW4ca1VYnj\nXxwexdPHTms4ovzHxZ3Ny221oFXREnmQWyKZhv7yggZcXp+MCX5g70nsGZrScET5jYs7W9A5ZZwS\nyfKDiQh/c0UL1ihigu957QSOT/g1Hll+4uLOFqS8qXqQWyKZxhwWMzq3tKPKZQMABKNxdL7UjdN+\njglOx8WdLajB7USxTWqJ9EWi6PPyVRLTVqnDis6tq+GWY4LPBCPofKkb/gjHBCtxcWcL4pRIlo+a\nS5y46+q2RExw71QA/8QxwSkWLe5E1EBELxDRQSJ6m4jumOMxW4lokoj2yv99NTvDZVrYzCmRLA+d\nV12MOy5NxgTvHZnG/W/0c0ywzLKEx0QBfEEIsZ+IPADeJKJnhRCH0x63SwjxfvWHyLS2odQDIoIQ\nAn1eP6bDkcRUDWNaekdrOUZ8ITx+YBgA8D8nxlDjseMjG2s0Hpn2Fr1yF0KMCCH2yx97AXQBqJ/j\noaTy2FiecFksaC9yJ445JZLlk49vqsW1LasSx4/+YRC7+jgmOKM5dyJqAXA+gN1z/PMVRLSfiJ4m\noo0qjI3lkdSUSC7uLH8QEe64pBnnViV/R/91dy8OnvZqOCrtLWVaBgAgT8n8DMDn5St4pTcBNAkh\n/ER0A4AnAayd6+t0dnYmPu7o6EBHR0eGQ2Za2FxWjF/1SW99Z1MiTcRv1lh+mI0J/tLzRzAwE0Qk\nLvC1l4/jm9etQ32RQ+vhZWznzp3YuXPnir4GLeXmAxFZAPwGwDNCiG8v4fE9AC4SQpxJ+7zgmx2F\nSQiBv3vjECbDUuTq35yzBu3F7kWexVhujXhD+OJzRzAZkn5Paz12/Msfr0Opo7DvEcn3vDK6mlrq\ntMwPARyar7ATUbXi40sh/dHgSS8dISLeW5XlvRqPHf9nSztsckzwsDeEr79ywpAxwUtphbwKwCcA\nXEtE++RWx+uJ6FYiukV+2IeJ6AAR7QPwLQAfzeKYmUbSV6sylo/Wlbtx5xXJmOCuMS/+dXev4VZX\nL2laRrVvxtMyBS0QjeGLvz+QeJHce8kmlHBLJMtTTx4Zxff3DSSOP7S+Gjef37DAM/JXNqdlGIPT\nYk6ZZ+eWSJbPblxbhfetScYE//zwKJ7pNk5MMBd3lpFzeN6dFQgiwi0XNuCyupLE5+5/8yTeGDZG\nTDAXd5YRZc5M1+QMYjzNxvKYiQh3XtmK1WXSvgRxIXDPqz04YYCYYC7uLCN1LgdK7VLcqj8aQ8+M\nT+MRMbYwh8WM7VtWo1KOCQ5EY7h713GM6TwmmIs7ywgRYTPvrcoKzCqnFXdvXQ2XRYoJHguE0blL\n3zHBXNxZxpQpkW/zvDsrELMxwWZ5ZXXPZAD36DgmmIs7y9j6Uk/iBTLgCyRWAzKW786vKcbnLmlK\nHL85Mo0H3tRnTDAXd5Yxh9mM1cWexPHBSb56Z4XjurYKfGxTbeL4meNj+PnhUQ1HlB1c3NmypKxW\n5Xl3VmA+uTk1JviRtwaxq19fiSlc3NmyKOfdD03OIKbTeUumT0SEz13SjM2VyYuUf3u9D4d0FBPM\nxZ0tS63TjlVyS2QwFsNxbolkBcZmNuGrV7ehQY4EDsfj+IeXj2NoJqjxyNTBxZ0tCxHx3qqs4BXZ\nLbh762qU2KWtLWbCUWx/qRtToajGI1s5Lu5s2TglkulBjceO7VtWw2aSyuGQN4Svv3wc4VhhxwRz\ncWfLtq7EA4v8ghj0BTAR0veKP6Zf68rd+NIVLYmY4ENjXvxbgccEc3Fnyya1RCZTIvnqnRWyqxrL\n8Bfn1yeOd/VP4Ed/GNJwRCvDxZ2tiDKKgOfdWaH7wLoqvHdNZeL4p10j+O/jYxqOaPm4uLMVUd5U\n7Zr0Ihov7HlKZmxEhFsuaMSlipjg+97ox5sFGBPMxZ2tSLXTjnKH1BIZ4pZIpgNmE+HOK1rRrogJ\n/qdXe9AzWVgxwVzc2YpIKZHJq3dercr0wGk1Y/s17SkxwZ0vFVZMMBd3tmLKlkhOiWR6Ue6yoXNL\nakzw3buOI1AgMcFc3NmKKVsih/1BnOGWSKYTLaVOfEURE3xi0o97XuspiLgNLu5sxexmM9YoWiIP\n8NQM05ELaoqx7eJkTPAbw1P43psn8z4mmIs7U4Wya+YgT80wnXlnewU+urEmcfzM8dP4xeFTGo5o\ncVzcmSqUxf3wlBcRbolkOvOpc+rQ0ZyMCf7hWwN45eSEhiNaGBd3pooqhw2VDjsAqSWye5pbIpm+\nEBE+f2kzNlUmN6r55u960TWWnzHBXNyZKogopWuGV6syPZJigttRnxYTPDwT0nhkZ+PizlSTMu/O\nOTNMp4rtFty9ZTWK5Zjg6VAU23d1YzrPYoK5uDPVrC1OtkSO+IMYC+bf1QxjaqgtsuP/XNOeiAke\nnAni66/kV0wwF3emGpvZhHUlio2zuSWS6diGCg++eEVL4vjgaS++tbsvb2KCubgzVW3mDTyYgVzd\nWIabz2tIHL/UfwY/fjs/YoK5uDNVbSpVtkTOcEsk070Prq/Cu1cnY4KfODSCZ09oHxPMxZ2pqspp\nR5VTaokMx+LcEsl0j4jwmQsbcXFtMiZ4x55+7BvRtmOMiztTHW+czYzGbCJ8+cpWtJVKMcExIfCP\nr5xA72RAszFxcWeq25SyOxPPuzNjcFrN2L6lHRVOKSbYH42hc1c3xjWKCebizlS3tsQDq9wiNhoI\n4jS3RDKDqHDZ0Lm1HU45Jvi0P4x/eFmbmGAu7kx1VhO3RDLjai114e+uaoVJjgnunvDj3t/lPiaY\nizvLCp53Z0Z2UW0JblfEBO8ZmsKDe3MbE8zFnWWFst/9yJQ3r1buMZYL17dX4CMbkjHBT3efxpNH\nchcTzMWdZUWFw44apxSuFInHcXQ6P5PzGMumT51bhy1NZYnjh/cP4tUcxQRzcWdZo0yJ5Hl3ZkQm\nIvz1ZS3YWCHdgxIQ+Jff9eLIePbXf3BxZ1mTMu8+yfPuzJhsZhO+ek1qTPDdu7ox4s1uFxkXd5Y1\nq4vdsJvllrBACKMBbolkxlRit6BzSzuKbFJM8FQoiu0vdWMmizHBXNxZ1pzdEslX78y46oocKTHB\nAzNBfP2VE1lrNuDizrKKUyIZS9pY6cFfX96cOD5wegbf+X1fVlokubizrFKmRHJLJGPAlqZVuOm8\n+sTxi31n8OMDw6p/Hy7uLKvKHTbUuqQbSVFuiWQMAPCh9dW4ob0icfyTg8N4TuWYYC7uLOuUV++8\nWpUxKSb4sxc14SJFTPB39/Rjv4oxwYsWdyJqIKIXiOggEb1NRHfM87jvENExItpPROerNkJW8JTz\n7gcmZnK6BJuxfGU2Ef4uLSb4G6+cQN+UOjHBS7lyjwL4ghBiE4ArANxOROuVDyCiGwC0CyHWALgV\nwAOqjI7pgrIlciwYwiinRDIGIBkTXO60ApBigre/1I2JQGTFX5syvYoioicBfFcI8VvF5x4A8KIQ\n4gn5uAtAhxBiNO25YiVXbZF4DIM+flu/Eg6zBVVOTyKxLle+d7gHb41PAQA6aiuwQZH5zpLiQmAm\nEoDH4oDZpM2sqQmE1iIXPFaLJt/fiE5M+HHnb48iEJWigVeXuXDvO9bCIUcHExGEEBm9aDMq7kTU\nAmAngM1CCK/i878G8E9CiNfk4+cB3CmE2Jv2/BUV96lwED858dayn88km8uqcVV1S06/566RcTx+\n/GROv2ch8lh8sJsjiMbNmIp4AOT2j/CsIqsVd56zGpXyloks+94YnsLdu44jLtfIy+pK8NVr2mEi\nWlZxX/KfZiLyAPgZgM8rC3umOjs7Ex93dHSgo6NjuV+KLdORyTFcVtkESw6vDM8pK4KZCDGeb58X\nIQ67WXo7bjHFYKEYokKbq+eZSAQ7unpw5zmr4eYr+Jy4uLYEt13UiB1v9GP80Bt4/Od7Mf50Bcrk\nKZtMLenKnYgsAH4D4BkhxLfn+Pf0aZnDALaqPS3ji4bx8kjPsp9vdCN+L0JxabnzexrXo8Fdssgz\n1LVvfBK7T09wgZ9HKOaDP5JMDHRYiuG0FC/wDPUJARye8iIal9YjrCnx4I6NbYmdtVj2/XD/AH7b\ncwbbt7RjbbkbQBanZYjoMQBjQogvzPPv7wZwuxDiPUR0OYBvCSEun+NxKyrubGVeHe3FgQnp7+25\nZTW4orp5kWewXHrm5BH0+yYTx5UONz7Ysjnn49g7NomHjvQmji+pLMPNa5pAOb5PY1RxITAZjGKV\n4op9OcV9Ka2QVwH4BIBriWgfEe0louuJ6FYiugUAhBD/BaCHiLoBPAjgtkwGwXKj0V2a+LjfN6Xh\nSFi6cDyGQX9qs8BY0A9/dOVdE5m6sKIUH2ypSxzvOT2Bp/pHcj4OozIRpRT25Vp0Mk0I8SoA8xIe\nt23Fo2FZVecqhplMiIk4JsMBTIdDKLbxDbN8MOibQkykRjMICAz4prC2pGKeZ2XPdXWVGAuGsWtE\nWjX5zMAoKhw2XFVdnvOxsOXhiTQDsZhMqHcl53BPKqYAmLb6vMmfhcOcvObq92rzMyIifLStHpsU\nmfz/fnwAXRz+VjC4uBtMoyc5NcPFPT/EhUgp7pdWNiY+HvBNJVrjcs1MhL9a14wGtxOANM4HD/di\n0KfOCkqWXVzcDaZR0SEz6JtOdEUw7YwGvAjGpLl1l8WGdSWVcFtsAIBQPIpTAe3C1hxmM27f0IpS\nuzSeYCyGHV09mArn/l4AywwXd4MpsTlQYpVTGkUcwwF+m621Pm+y/bHZUwoTUcof4ZMa3/wus9uw\nbUNrIkJiIhTGfV09CMZimo6LLYyLuwE1KadmNJrTZUmpxb0MQOr0mVbz7koNbiduWdecaIfs9/rx\n8NE+zaaM2OK4uBtQvhUOI5sMBTAZDgIALJS84d3gKoFJjh4YC/ngj4Y1G+OsTWXF+HhbQ+L47TPT\n+GnPIKd85iku7gZU6yyChaQf/VQkiCm5uLDcU95IbXCXJCIhbGYzalzJcLWT3vxYl3BNTTne1VCd\nON45PIYXhtXdZIKpg4u7AVlMJtS7lS2R+VE4jEg5JdMiT8nMUs679+dRZ9ONTTW4uCI51p/1DmHf\neP6Mj0m4uBtUympVnprRRCAawYjcCUOglHshQOq9ES1bItOZiPDpNY1oL5ZyT4QQ+OHRfvTM+DQe\nGVPi4m5QyuI+5OeWSC30+yYhIBXsaqcHTkvqkvMymxMeuSUyHI9hNI86m6wmEz67vjURCRyJx3F/\nVw/GeCOWvMHF3aCKbXaU2qTFKTERx5CfN0HJtb6Z5Dum5rSrdkBaJZp68zu/ps88Vgu2bWhLRALP\nRKLYcagHvkhU45ExgIu7oTWl9FLz1EwuReNxDCjudTSnzbfPanLn94riaqcdt61vTdwIHgkE8eCR\nXkT4naDmuLgbWEoUQZ5dFerdkH8aESEtAiqxOlBqc8z5uDp3caIlcjzkhzeifUtkuvZiN/58TVPi\n+OiUFz/uPsktkhrj4m5gNc4iWEladTgVCSb6rVn29Sq7ZIrK5s1Kt5nMqC2AsLeLK0rxJ83JmODd\npyfwm5OjCzyDZRsXdwOzmEyoU7ZEctdMTsSFSOlQmmu+XanJo5g+y+N3WO+sr8Q1NclI4KdPjuB3\np85oOCJj4+JucPk+p6tHY0EffPKKU4fZgmpn0YKPV3Y2DfjPzn3PF0SEj7U1pMQE/6j7JMcEa4SL\nu8E1Kq4Kh/wziMQ5DCrblKtSm9xSUNhCSm0OFFlnWw5jGPFrlxK5GDMR/nJtM+oVMcEPHenFkJ+n\n/HKNi7vBFVntKEtpieSrrGxLCQormrtLRomICuodltNixrYNrSi1SX37gWgMOw6d4JjgHOPizjgl\nModmIiGMh/wAADOZ0KBoR11IoYW9ldltuH1jWyIm+EwojPu7ehDimOCc4eLO0jbOnuQWtizqm0le\ntde5imEzLbo9sfzYIpjlsLeJcAAzkfxfCdroduKvFDHBfV4/Hj7anzcxCnrHxZ2hxuWBVS4yM5EQ\np0RmUa/iqrtlkS4ZJavJjLo8TIlczOayYvwvRUzwH85M4T97hjQckXFwcWfS9IBLmUBYGIWj0IRi\nUQwrYh6a5lmVOp/0d1iFYktNOd5ZX5U4fnH4NH47dFrDERkDF3cGILVrhufds+OkbwpxOSis0uGG\nx2rL6PnKefehAtv/9gPNtbiwIjn+n/UO4a1xvojIJi7uDEDqVeFwYAZhbolU3Vzb6WWiVLH/bUTE\nMJJHKZGLMRHhz1c3oa0oGRP8g6N96J3xazwy/eLizgAAHqsNq+wuAHJLpI9TItUUE/GUefLFVqXO\np9C6ZpRsZhM+u6EVlY5kTPB9HBOcNVzcWQKnRGbPiH8GobgUheux2FEu/yHNVGOB/4yKrBZs29gG\nl2U2JjiCHV098Ec5JlhtXNxZQnpKJLdEqqcvLUtmvqCwxdS5ihP7306Gg5guwM6maqcdt21oScYE\n+4N48HBvQd1DKARc3FlCtdOT6LueiYYwEQ5oPCJ9EEKclQK5XBaTCXWKlMhC7WxaXezBp1c3Jo6P\nTHnx4+MDfEGhIi7uLMFMJtS7CiOBsJAoFx1ZTWbUuhYOCltMo05WFF9SWYYbm2sTx6+fOoOnBzgm\nWC1c3FmKlHjZApzTzUe9ilWpTe7SxErT5VLeGyn0/W+vr6/CVdXJmODf9I/gdY4JVgUXd5YipSXS\nzy2Rakifb1+pYlty56Zoge9/S0T4eFsDNpQm3838qPskjk7lb/JloeDizlK4rbZEJ0ccAoMFOqeb\nL3zRME4FpUJFSN3weiUaCyglcjFmE+GWdS2JmOCYEHjgcA+GOSZ4Rbi4s7OkpERycV8RZS96rasI\nDrNFla/bpLP9b50WM27f0IoSOSbYH41hR9cJTHNM8LJxcWdnUfZS93s5JXIlVroqdT563P92ld2G\n2ze0JmKCx4Nh3NfVg3CscO8paImLOztLtbMo0RLpi4a5JXKZIvEYBhQrfTNJgVyMXve/bfK4zo4J\nPtbHMcHLwMWdncVElLKJRKEtc88XA77kfqerbC4UyzdB1VJIuzNlYnNZMT7aWp84fmt8Cj/v5Zjg\nTHFxZ3NKLRyFP6erhZQumSL1rtpn6Xn/247aClyniAn+7dBpvDjMMcGZ4OLO5qQsHCP+GYR5e7SM\nxIVIecej5nz7LL3vf/snzbW4oDz5R/GnPUN46wxfaCwVF3c2J5fFhgq7FM8ah8CAn19UmTgV8CIQ\nkzo9nGYrKh3urHwfPe9/ayLCTWua0KqICX74aB/6vBwTvBRc3Nm8eAOP5UvtkimFaZlBYYvR+/63\nNrMJn13fggo5Jjgck2KCx4NhjUeW/7i4s3mlz7vrrXBkU1+Wp2Rmpe9/q4eWyHTFNiu2bWxNxARP\nhyPY0XWCY4IXwcWdzavK6YHdJL2gfNEwzoS4JXIpJsPBRPuohUwpnUdqS9//Vk9dM0o1Tgc+sz4Z\nEzzsD+KhI30FnauTbVzc2bzOaonUaeFQW58iKKzBXZIoSNminD7r18Fq1fmsLfHgzxQxwYcnZ/A4\nxwTPi4s7W5DelrnnQq6mZGalhr1N6zrs7dLKMtzYlIwJfu3UGTwzcErDEeUvLu5sQcor95HADEIx\nnudcSDAWTWxcTaCUP47Z4kkLe9P7/rfXN1ThyqpVieOn+oc5JngOXNzZglyWZBufgMCgzgvHSvV7\nJyEgTRNUOd1wWaw5+b7pXTN6RkT4RHsj1nNM8IK4uLNFNRmocKyUcmOOlhxMycxqSmtb1fs8tNlE\nuHVdC2pdUqSDFBPcixGOCU5YtLgT0cNENEpEf5jn37cS0SQR7ZX/+6r6w2RaSt/WTe+FY7mi8TgG\nFFENuZhvn6UMe/MaJOzNaTHjcxvbUJyICY7iuxwTnLCUK/dHALxrkcfsEkJcKP/3dRXGxfJIpcOd\nyCH3xyIYD/EKwbkM+acREdLNzBJrcrekXDBq2NtsTLDNLJWy8WAY3zvcyzHBWEJxF0K8AmBikYdl\nZ/kdywvlI00aAAARJ0lEQVRGLRyZSt9Oj7K0KnU+Rg17a/a48BdrkzHBPTM+PHKs3/AxwWrNuV9B\nRPuJ6Gki2qjS12R5xKiFY6mEEKmRA0W5m5KZZeSwt/NWlaTEBO8bn8Qveoc1HJH21Njz600ATUII\nPxHdAOBJAGvne3BnZ2fi446ODnR0dKgwBJZtDe4SEAgCAqMBL4KxqGpbxunBWMgPX1TKO7GbLKhx\nFi3yDPXNhr2NhXyJsLe2olWLP1EnOmorcDoYwm+HpGjg54dOocJhQ0dthcYjy9zOnTuxc+fOFX0N\nWsrNMSJqBvBrIcS5S3hsD4CLhBBnNZ4SkeCbcYXrl70HE5s9v6NuNVYXl2s8ovzxxukBvDk+CABY\nU1yBa+vaNRnHntMD2CuPY31JJbbWtmkyDq3EhcBDR3qxf1x6d0lE+Oz6Fpy7KnsRELlARBBCZDTP\nt9RpGcI88+pEVK34+FJIfzB4RYEOcUrk/Hq92rRAplPuf2vEsDcTEW5e04yWImlRlxQT3I9+A8YE\nL6UV8nEArwFYS0T9RHQTEd1KRLfID/kwER0gon0AvgXgo1kcL9NQ+ry70W9YzZqJhBIdRGYyocGj\n3VVietibETubbGYTblvfinKHDQAQisVwX1cPzoSMFRO8lG6Zjwsh6oQQdiFEkxDiESHEg0KIh+R/\nv08IsVkIcYEQ4kohxO7sD5tpocLhhtMs9RQHYhGMB41XOOai7JKpcyX7zbVgIjrr6t2Iim1WbNvQ\nBpdF+llMhSPYcegEAlHj3GTmFapsyTglcm6pG3NoNyUzS7nozMhtq7UuBz6zvhVmuUVyyB/EQ0d6\nEYsb4x0nF3eWkZSUSC7uCMWiKUFd+VDcZzubACQ6m4xqbYkHn1LEBHdNzuDxE8aICebizjKiLByn\nAj5DFw4AGPBNIS4HhVXY3fBYbRqPaK6wN2NOzcy6vGoV3ttUkzh+dXQc/22AmGAu7iwjDrMFVc5k\n4RgweOFIWZValP1436VK3cCD32G9p6Ealytign/VP4w9pxdbeF/YuLizjKXEyxq4cMREPOX/v5Yt\nkOm4sykVEeGT7Q1YV5JcXPZo90kc03FMMBd3ljEuHJLRgBehuDQt5bYkN8zIBxUONxzc2ZTCYjLh\n1vXNiZjgaDyO7x3uxUhAnzHBXNxZxsodrkRLZDAWwVjQp/GItJGe3Z7roLCFpLdEcmeTxGWx4PYN\nrSiyJmOCdxzqwUxEf/eOuLizjHHhyI+gsMVwZ9PcKhz2lJjgsWAI3+vq0V1MMBd3tiyNBt84eyIc\nwHQkBACwmsyo1SAobDHpnU2BKG9iMaulKDUm+MSMD/9PZzHBXNzZsigLx+mg8QqHskum0V0Ciyn/\nXkrc2bSw81aV4E9b6hLHe8cn8WSffmKC8+83khUEh9mCaqcHgFQ4jLbMvW8mv1alzodz+Bd2bV0l\nrq2rTBw/O3gKu0bGNByReri4s2VLzTAxzpyuPxrGKfkmMoFS5rbzTSN3Ni3qwy11OE8RCfwfJwZx\nYGJ6gWcUBi7ubNma0ubdjVI4+r2TEPKq1BpnUV5vWsKdTYszEeHmtU1o9iRjgr9/pK/gY4K5uLNl\nK7e74LLIsarxKE4bpHD0Khcu5WGXjJKJUt9ZGLGzaSnsZjNu29CKVfZkTPD9XT2YKOCYYC7ubNko\nPV7WAKtVI/FYyo3J5jyekpnVyJubL0mJzYptG9vglGOCJ8MR7OjqKdiYYC7ubEWUN+yMcFU46JtG\nTEj90GU2J0psDo1HtLh6RWfTWNAPv8E6mzJR53Lg1nUtiZjgQV8A3z/aV5AxwVzc2YrUu4tTWiL1\nXjjyLbt9KRxmC2oUnU3cErmw9aVF+KQiJvjQxHRBxgRzcWcrYjdbUKNYwKPnwhEXIjUFsgCmZGbx\nBh6ZuaJqFd7bmBoT/D+DhRUTzMWdrZhR4mVPBbwIxKR3Jk6zFVXy1XAhUM67D3BL5JK8p7Eal1Um\n35092VdYMcFc3NmKKefd9Vw40q/aTXkUFLaYcrsLbkVn06mAfqNu1UJE+NTqRqwtSf4Rf7T7JLqn\nC+PccXFnK7bK7jRE4SjE+fZZ6Z1NRrj5rQaLyYRb17WgxpmMCb6/qxejgZDGI1scF3e2YkYoHFPh\nICbCAQCAmUyodxdrPKLMGT3sbbncVgu2bUyLCe46AW+exwRzcWeq0HvhUE7JNLhLYDWZNRzN8jS4\nSmCabYkM+eCLFu4CnVyrcNhx24ZWWOWAuNOBEO7v6kEknr8xwVzcmSrSC4dfZ4UjdUqmcLpklGxm\nM2pcyc4mPf4RzqbWAosJ5uLOVKHnwhGMRTHsnwEgBYUV2ny7klHD3tRyfnkJPqyICX5zLH9jgrm4\nM9Xodd5dGRRW5XDDZbFqPKLlU+bM6LmzKZuura1AR21F4liKCR7XcERz4+LOVKPXwpHv2+lloszm\nhEfubArHYxgNzGg8osJDRPhIaz3OTYkJHsi7mGAu7kw1ZbZkS6ReCkc0Hk/Z5KJQ59tnEVHaalX9\nTJ/lkokIf7G2CU1pMcEnfQGNR5bExZ2phtLiZfWw889wYAaRuJQKWGy1o8zm1HhEK5e6O5N+ps9y\nzW424/a0mOD78igmmIs7U5Xe4mXTt9OjAlqVOp86d3Gis2k85Ic3kh/FqBDNxgQ7zHJMcCiM+7p6\nEIxpHxPMxZ2pqt5dopvCIYRAr2K+Pd835lgqm8mMWldyERZfva9MncuBW9e3JOIoBnwBfP9IH2Ia\n33Pi4s5UJRUOZUpk4RaO8ZA/sdDHbkpuCK4HTR7lJiuFP32mtQ2lRfhEe0Pi+ODENH6icUwwF3em\nOuWmzIV8w0551d7kKYWZ9PNyUf6MBvxTiQ1I2PJdVV2OdzdWJ45fHhnHc0OnNRuPfn5bWd5QRgAP\nFnDh6JspzOz2pSi1OVBktQOQtg4c8esz7C3X3tdYg0sVMcG/6B3Cm2PavHvl4s5UV2ZzosgiFQ6p\nJbLwCoc3EsZYSNrw2wRKudLVAyLirpksmI0JXqOICX7kWD+OT+d+83gu7kx1Ui91YXfNKBcu1bmL\nYTMXXlDYYnh3puywmkz4zLoWVCtigr93uAenchwTzMWdZUWju7D73Qs5u32p6lxFifsIE+EAZiL5\nn1FeKJIxwRYAgDeS+5hgLu4sK+rdxYnCcSbkh7eACkc4FsOgL7mUXG/z7bOsJjPqUsLe+OpdTZVy\nTLBFjgk+FQjhgcO5iwnm4s6ywmoyo1axcXYhXb0P+KYQl4PCyu2uxI1HPUrpbCqgn1GhaC1y4+a1\nTYnFb93TPjx67GROcpe4uLOsKdQ53ZSFSzqdkpml/BkN+qYQzePNJwrVheWl+FBzbeL4jbEJ/Lp/\nJOvfl4s7y5omt7IlcrogWiLjQqT8ISr0FMjFlNocKLHKN/5EHCM6CHvLR++oq8TWmmRM8DMDo3hl\nNLsxwVzcWdaUnNVLnf+FYyQwg1BcuunltthQYXdpPKLsK9R3WIWEiPCRtnpsLkvGPvz78QEcmsje\na4KLO8uas3up839OV49BYYvh3Zlyw0yEv1zXjEa3lCwqhMCDR3oxmKWYYC7uLKsK6apQCgrT76rU\n+dS5imGRO5smw0FMh4Maj0i/HGYzbt/QhjJFTPB3u3owGYqo/r24uLOsKqRe6slwENMRqbBJbYLF\nizxDHywmU8r/V+6aya5SuxXbNrTCrogJ3tF1QvWYYC7uLKvO7qXO38KhXLjU4CpJ9CcbgfIdFve7\nZ1+924nPpMUE/0DlmOBFf3uJ6GEiGiWiPyzwmO8Q0TEi2k9E56s2OqYLqb3U+Vs49JjdvlTKzqYh\n/zS3ROZAekzwgYlpPHFiULWY4KVcmjwC4F3z/SMR3QCgXQixBsCtAB5QZWQ5snPnTq2HMKd8HNdy\nx6S8KhzyqVs41DpP/mgEpwJSuBMhdbtArcakpsXGVGxzoFTeQjAq4hjy52az50I8V2q6qrocNzQk\nY4J3jYzheZVighct7kKIVwBMLPCQGwE8Jj92N4ASIqpe4PF5JR9/uYD8HNdyx6TspY6ImKq91Gqd\np37vJIS8KrXGWQSH2aL5mNS0lDFp0TVTqOdKTe9rqsElipjgn/cOYe/4ys//8n+Dk+oBnFQcD8qf\nG1XhazOdaPSUYGpCuln52mgfim3qLOnvnh7Dfw8cWfHXORNMtqMZpUsmXZOnFG9PSCsnj02N5+Tm\nt1o/PzVpMaZaJ9DoDmMyLO389cTxgxjwVuL9zWuX/TXVKO6MLarRXYoDE9Lf+4lwABNhdXp7J8NB\n9Kl8A1Dvq1LnU+MsgpXMiIgYQvGo6ud1Ltn4+a2UVmNaZRcIx2OIxqV3kLtPn8IV1c2odCzvQoiW\nMnlPRM0Afi2EOHeOf3sAwItCiCfk48MAtgohzrpyJyJtd4xljLECJYTIaEXdUq/cSf5vLk8BuB3A\nE0R0OYDJuQr7cgbHGGNseRYt7kT0OIAOAOVE1A9gOwAbACGEeEgI8V9E9G4i6gbgA3BTNgfMGGNs\ncUualmGMMVZYcrYEj4iuJ6LDRHSUiP42V993IUTUS0RvEdE+Ivq9RmM4a5EYEZUR0bNEdISI/oeI\nShb6Gjkc13YiGiCivfJ/1+dwPA1E9AIRHSSit4noDvnzmp6rOcb1OfnzWp4rOxHtln+v3yai7fLn\nNTtXC4xJs/OkGJtJ/t5Pycf58PozyedqdkwZn6ecXLkTkQnAUQDvADAEYA+AjwkhDmf9my88rhMA\nLhJCLNTHn+0xXA3AC+Cx2RvWRHQvgHEhxD/LfwjLhBBfzoNxbQcwI4T411yORf7eNQBqhBD7icgD\n4E1IayxugobnaoFxfRQanSt5XC4hhJ+IzABeBXAHgA9B23M115hugIbnSR7XXwO4CECxEOL9efL6\nSx9Txq+9XF25XwrgmBCiTwgRAfATSC8ArRE0zteZZ5HYjQAelT9+FMAHcjooLLh4TZOb4kKIESHE\nfvljL4AuAA3Q+FzNM656+Z81ayAQQvjlD+2Q7q0JaH+u5hoToOF5IqIGAO8G8APFpzU9T/OMCcjw\nPOWqsKUvdBpA8gWgJQHgOSLaQ0R/pfVgFKpmO46EECMAqjQej9I2OUPoB1q8XQUAImoBcD6A1wFU\n58u5Uoxrt/wpzc7V7Nt6ACMAnhNC7IHG52qeMQHa/k79G4C/QfIPDaD979RcYwIyPE/Gib2b21VC\niAsh/ZW8XZ6KyEf5ctf7fgBtQojzIb1AtZie8QD4GYDPy1fK6edGk3M1x7g0PVdCiLgQ4gJI724u\nJaJN0PhczTGmjdDwPBHRewCMyu+8Froqztl5WmBMGZ+nXBX3QQBNiuMG+XOaEkIMy/97GsAvIU0f\n5YNRkvN55DndUxqPB4B0nkTyJs33AVySy+9PRBZIBfRHQohfyZ/W/FzNNS6tz9UsIcQ0gJ0Arkce\nnKv0MWl8nq4C8H753tt/ALiWiH4EYETD8zTXmB5bznnKVXHfA2A1ETUTkQ3AxyAtftIMEbnkqy0Q\nkRvAOwEc0Go4SP0r/RSAP5c//jSAX6U/IUdSxiX/os/6IHJ/vn4I4JAQ4tuKz+XDuTprXFqeKyKq\nmH3bTkROANdBuheg2bmaZ0yHtTxPQoivCCGahBBtkGrSC0KITwH4NTQ6T/OM6c+Wc55yki0jhIgR\n0TYAz0L6g/KwEKIrF997AdUAfklSJIIFwL8LIZ7N9SBo7kVi9wD4TyK6GUAfgI/kybj+iKS8/jiA\nXkgRz7kaz1UAPgHgbXneVgD4CoB7AfxUq3O1wLg+rtW5AlAL4FG5S80E4Al5seHr0O5czTemxzQ8\nT/O5Bxr+Ts3jnzM9T7yIiTHGdMjoN1QZY0yXuLgzxpgOcXFnjDEd4uLOGGM6xMWdMcZ0iIs7Y4zp\nEBd3xhjTIS7ujDGmQ/8fFq3GYjKIqOcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bins = np.arange(0, 40, 5)\n", + "indices = np.digitize(females.Age, bins)\n", + "groups = females.groupby(indices)\n", + "\n", + "for i, group in groups:\n", + " print(i, len(group))\n", + " age = [group.Age.mean() for i, group in groups]\n", + " cdfs = [thinkstats2.Cdf(group.Pclass) for i, group in groups]\n", + " \n", + "for percent in [75, 50, 25]:\n", + " Pclasses = [cdf.Percentile(percent) for cdf in cdfs]\n", + " label = '%dth' % percent\n", + " thinkplot.Plot(age, Pclasses, label=label)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From these plots, it seems that my hypothesis was correct - more females are among classes 1 and 2, particularly among 1. There are very few women among the third class, potentially because of the ages - many of the women could be unmarried, and would probably be less likely to travel alone in class 3. " + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEACAYAAABRQBpkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnWlsZNd15/+nqrgVtyabS5PNJnvfZLllJW4vcmJ6iSw5\nE0uDTBRlEI1txRhgbMMCPAnc8mAg+UPGcYDA8SDjwQR2DDlw7CjxItmxZbUgMY5tWZKjXd3qZrd6\nZTfZzX0naznz4dTVe6+quBSryCqS/x9AsN6rV6/Ou/XeOfeec+65oqoghBCyuQkVWwBCCCHFh8aA\nEEIIjQEhhBAaA0IIIaAxIIQQAhoDQgghKJAxEJF6EfknETkpIq+JyDtEpEFEHheRUyLyUxGp9x1/\nv4j0po6/tRAyEEIIWTmFGhl8BcCPVfUQgCMAXgdwDMATqnoAwJMA7gcAETkM4C4AhwDcDuCrIiIF\nkoMQQsgKyNsYiEgdgN9S1W8AgKrGVXUMwB0AHkod9hCAO1OvPwLgO6njzgPoBXA0XzkIIYSsnEKM\nDHYBGBSRb4jI8yLytyISBdCqqgMAoKr9AFpSx28HcMn3+b7UPkIIIUWiEMYgAuBmAP9HVW8GMAVz\nEaXXuWDdC0IIKVEiBTjHZQCXVPXXqe3vwozBgIi0quqAiGwDcC31fh+AHb7Pd6T2ZSAiNCCEELIC\nVDWnWGzeI4OUK+iSiOxP7foAgNcAPArgY6l9HwXwSOr1owDuFpFyEdkFYC+AZxc5f8n/PfDAA0WX\nYSPISDkpZ6n/rRc5V0IhRgYA8BkA3xKRMgBvAPg4gDCAh0XkXgAXYBlEUNUTIvIwgBMAYgA+qSuV\nnhBCSEEoiDFQ1ZcAvD3LWx9c4PgvAvhiIb6bEEJI/nAGcgHo7u4utghLsh5kBChnoaGchWW9yLkS\npJQ9NCJCDxIhhOSIiEBzDCAXKmZACCGrxs6dO3HhwoVii1FydHV14fz58wU5F0cGhJCSJ9XTLbYY\nJcdC7bKSkQFjBoQQQmgMCCGE0BgQQggBjQEhhBDQGBBCSF7s3LkT0WgUdXV1qK2tRV1dHfr7+4st\nVs4wtZQQsqEZHQWmpoDqamDLlsKfX0TwL//yL3jf+9634nMkk0mEQsXtm3NkQAhZtyQSwOAgcO0a\nEItlvn/+PHD2LNDfb/9Xa6pCenqnquIP/uAP0NbWhsbGRrz//e/H66+//ub799xzDz796U/j9ttv\nR21tLX7+859jbm4On/3sZ9HZ2Ym2tjZ8+tOfxvz8/OoInAUaA0LIuiQWA06cMAV/6RLw6qvA9LT3\n/twcMDQU/MzgIODXr6rA5cvASy/Z569fL5x8v/d7v4ezZ8+iv78fb3nLW3DPPfcE3v/2t7+NL3zh\nC5iYmMA73/lO/Omf/ikuXLiAV199Fb29vTh//jz+/M//vHACLQEnnRFCSp5sk6uuXAGuXg0et2UL\nsGePvZ6aAnyd8Tc5dAiIRu311at2Hj/79gF1dcuXbdeuXRgaGkIkYl737u5ufO973wscMzg4iJaW\nFkxNTaGqqgr33HMPKioq8LWvfQ2AjSSi0ShOnz6NHTtsuZef//znuPfee3H69OkFv7uQk84YMyCE\nrEuyeVD8+6JRoKLCRgiOykrPEADAyEjmOUZGcjMGAPDII48EYgbJZBLHjh3Dd7/7XQwNDUFEICIY\nHBx8U9m7/wDQ39+Pubk5HDlyJHCOtYwj0BgQQtYlW7ZkuoH8AWIRYO9ecyFNT1sAeceO4PFlZcDM\nTHBfeXnusqT3zr/5zW/iscceQ09PD3bs2IGhoSE0NzcHjhPxOu6tra2oqKjAqVOn0NzcnLsABYAx\nA0LIumTLFqCjwxR6OAy0tgLbtgWPqaw0t8+RI2YYKiqC77e1Af7Od3k50NSUv2wTExOoqKhAQ0MD\npqam8PnPfz6g/NMJhUL4xCc+gfvuuw+Dg4MAgMuXL+P48eP5C7NMaAwIIeuW1lbgrW8FbrrJDMMi\n+jYrNTXA4cPA9u1AZ6e9LivL7RzZlPzHP/5xtLW1ob29HTfeeCPe8573LPmZv/qrv0JXVxeOHj2K\nLVu24LbbbsOZM2dyEyYPGEAmhJQ8rFqaHVYtJYQQUlBoDAghhNAYEFIKzM9nT5UkZK1gaikhRSSZ\nBM6ds/o5gOW379kTzHAhZC3gLUdIEbl2zTMEADA+bnV0CFlrCmIMROS8iLwkIi+IyLOpfQ0i8riI\nnBKRn4pIve/4+0WkV0ROisithZCBkPXI5OTy9hGy2hTKTZQE0K2q/sndxwA8oap/KSKfA3A/gGMi\nchjAXQAOAegA8ISI7GMOKdmMRKPA2FjmPhKkq6tr0Ulbm5Wurq6CnatQxkCQOcq4A8B7U68fAtAD\nMxAfAfAdVY0DOC8ivQCOAnimQLIQsm5obTXX0NSUbVdVZc6iJcD58+eLLcKGp1DGQAEcF5EEgP+n\nql8D0KqqAwCgqv0i0pI6djuAp32f7UvtI2TTEQ4DBw+aMVC1GbGEFINCGYNbVPWqiDQDeFxETsEM\nhJ8VuYEefPDBN193d3eju7t7pTISUrJUVxdbArKe6enpQU9PT17nKHg5ChF5AMAkgE/A4ggDIrIN\nwFOqekhEjgFQVf1S6vjHADygqhluIpajIISQ3ClKOQoRiYpITep1NYBbAbwC4FEAH0sd9lEAj6Re\nPwrgbhEpF5FdAPYCeDZfOQghhKycQriJWgF8X0Q0db5vqerjIvJrAA+LyL0ALsAyiKCqJ0TkYQAn\nAMQAfJLdf0IIKS6sWkoIIRsMVi0lhBCyImgMCCGE0BgQQgihMSCEEAIaA0IIIaAxIIQQAhoDQggh\noDEghBACGgNCCCGgMSCEEAIaA0IIIaAxIIQQAhoDQgghoDEghBACGgNCCCGgMSCEEAIaA0IIIaAx\nIIQQAhoDQgghoDEghBACGgNCCCGgMSCEEAIaA0IIISigMRCRkIg8LyKPprYbRORxETklIj8VkXrf\nsfeLSK+InBSRWwslAyGEkJVRyJHBfQBO+LaPAXhCVQ8AeBLA/QAgIocB3AXgEIDbAXxVRKSAchBC\nCMmRghgDEekA8GEAX/PtvgPAQ6nXDwG4M/X6IwC+o6pxVT0PoBfA0ULIQQghZGUUamTwZQB/BkB9\n+1pVdQAAVLUfQEtq/3YAl3zH9aX2EUIIKRKRfE8gIr8LYEBVXxSR7kUO1UXeW5AHH3zwzdfd3d3o\n7l7sKwghZPPR09ODnp6evM4hqivS0d4JRP4XgD8GEAdQBaAWwPcB/CaAblUdEJFtAJ5S1UMicgyA\nquqXUp9/DMADqvpMlnNrvvIRQshmQ0SgqjnFYvN2E6nq51W1U1V3A7gbwJOqeg+AHwL4WOqwjwJ4\nJPX6UQB3i0i5iOwCsBfAs/nKQQghZOXk7SZahL8A8LCI3AvgAiyDCKp6QkQehmUexQB8kt1/Qggp\nLnm7iVYTuokIISR3iuImIoQQsv6hMSCEEEJjQAghhMaAEEIIaAwIIYSAxoAQQghoDAghhIDGgBBC\nCGgMCCGEgMaAEEIIaAwIIYSAxoAQQghoDAghhIDGgBBCCGgMCCGEgMaAEEIIaAwIIYSAxoAQQgho\nDAghhIDGgBBCCGgMCCGEgMaAEEIIaAwIIYSgAMZARCpE5BkReUFEXhGRB1L7G0TkcRE5JSI/FZF6\n32fuF5FeETkpIrfmKwMhhJD8EFXN/yQiUVWdFpEwgF8A+AyA3wcwpKp/KSKfA9CgqsdE5DCAbwF4\nO4AOAE8A2KdZBBGRbLsJIYQsgohAVSWXzxTETaSq06mXFQAiABTAHQAeSu1/CMCdqdcfAfAdVY2r\n6nkAvQCOFkIOQgghK6MgxkBEQiLyAoB+AMdV9TkArao6AACq2g+gJXX4dgCXfB/vS+0jhBBSJCKF\nOImqJgG8TUTqAHxfRG6AjQ4Ch63k3A8++OCbr7u7u9Hd3b1CKQkhZGPS09ODnp6evM5RkJhB4IQi\n/xPANIBPAOhW1QER2QbgKVU9JCLHAKiqfil1/GMAHlDVZ7KcizEDQgjJkaLEDESkyWUKiUgVgN8B\ncBLAowA+ljrsowAeSb1+FMDdIlIuIrsA7AXwbL5yEEIIWTmFcBO1AXhIREIw4/KPqvpjEfkVgIdF\n5F4AFwDcBQCqekJEHgZwAkAMwCfZ/SeEkOJScDdRIaGbiBBCcqdoqaWEEELWNzQGhBBCaAwIIYTQ\nGBBCCEGBJp0RshTz88DoKBAKAQ0NQDi89GfGx4HpaaCmxv7SGR0FRkaASARoaQHicWBw0N5ragKq\nqwt7DYRsZJhNRFadyUmgtxdIJm27ogI4eNCU+EKcPw8MDXnbbW1Ae7u3ff06cPGitz0/bwbGGRkR\nYP/+7EaEkI0Os4lISXL1qmcIAGBuzuvBZ2N2NmgIAKC/H0gkvO2BgeD7167ZSMGhagaDELI8aAzI\nqjM/v7x9i72nam4g/3a2YxbbJoQsDI0BWXW2bFnePkdNTaYLqarK3EuOpqbg+w0NQF1dcF/6MYSQ\nhWHMgKw6qsClS8DwsAWQt22zgO9iTE3ZZ1wAuasraAwAcwMNDwNlZUBrKxCLea6h5ubFDQ4pDYaG\nvCSA1lYz+iR/VhIzoDEghBSFgQHg8mVvOxwGDh8GysuLJ9NGgQFkQsi6IT3An0jYSI8UBxoDQggh\nNAaEkOLQ3BzcDoeBxsbiyEI4A5kQUiRaWy347w8gM15QPBhAJmtCMgmMjVnvLz0FlOTO/LzN7K6q\nWnkGztSUTQCsrTWlTDYOKwkgc2RAVp2ZGeD0aW/SWDQKHDhgaaYkdwYHgQsXvO3WVqCjI7dznDvn\nBWtFgN27mYq72eHjSFadK1eCs4enpxcvR0EWJpkMpmMClqI5N7f8c0xOBrN23DwQsrmhMSCrzuzs\n8vaRpYnFgjWaHLm0Z7Zj5+eD9aPI5oPGgKw62WIEtbVrL8dGoKIicyZ2KJRbue5sbV9dTbfdZoc/\nP1kR8bi5e5YT329v9/zRrhxFQ8PqyldIZmcXL6y31uzeDVRW2uuyMmDXrsXLgadTUWHlPdxnolE7\nRzJpvylHCJsTZhORnOnvtziAqqUC7t69vJ5pImHByvXSA43HgTNnLOsGMAO2a5ddQykQj1t21krl\nUbXfJBKx9M4LF2w7HDZjsZ4MNgnCchRk1ZmZAfr6vBHB/Hwws2UxwuH1YwgAM3jOEACmMEsp8B2J\n5GeYROwcyaRnCAD7f/589tgE2bjk/WiKSIeIPCkir4nIKyLymdT+BhF5XEROichPRaTe95n7RaRX\nRE6KyK35ykDWDr9ydMzMbEzXQrZrzbZvvTMzk6n4k0kG+TcbheinxQF8VlVvAPAuAJ8SkYMAjgF4\nQlUPAHgSwP0AICKHAdwF4BCA2wF8VaRUBt5kKaLRzH2Vleurx79csl1rtn3rnWy/XyjkxSXI5iDv\nR1hV+1X1xdTrSQAnAXQAuAPAQ6nDHgJwZ+r1RwB8R1XjqnoeQC+Ao/nKQdaGaNQCwI5IxPzLG5H2\n9uDs3rq6jblgTjgMdHZ6BiEUAnbs8NaTJpuDgs5AFpGdAG4C8CsArao6AJjBEBG3nMl2AE/7PtaX\n2kfWCdu3W5Gx+XkzDhtxVABYps7hw+YaCoU29sIrW7cC9fXmMqqqyi07iWwMCvaTi0gNgH8GcJ+q\nTopIehrQitKCHnzwwTdfd3d3o7u7e6UikgJSXr55iorlksO/nolEOP9jvdLT04Oenp68zlGQ1FIR\niQD4EYCfqOpXUvtOAuhW1QER2QbgKVU9JCLHAKiqfil13GMAHlDVZ7Kcl6mlhBCSI8VMLf07ACec\nIUjxKICPpV5/FMAjvv13i0i5iOwCsBfAswWSgxBCyArIe2QgIrcA+BmAV2CuIAXweZiCfxjADgAX\nANylqqOpz9wP4E8AxGBupccXODdHBoQQkiMrGRlwBjIhhGwwOAOZEELIiqAxIIQQQmNACCGExoCQ\nvJmcBIaGbOGZjUwiYSukjY0tr3Q5WV9wniEheXD2LDA6aq9FgD17bCbvRiPbOtb797NkxUaCIwNC\nVsjYmGcIgI29lnBfH9ex3ujQGBCyQrItQp/LwvTric10rZsVuolWmVjMW0SE5M/8vLXlcovjJRJW\nm7+srPCyZFvbOdu+YjA6aj13EaClJf+aQ3V1mesblMq15svcnK3eNz9vLr6WlqU/sxGhilolEgng\n3DlzJYhYVcjOztJZMnG9MT0NvPGGPbjhsJVY3rp18c/09QEDA+a+qamx5TkLaRQqK618t3Oh1NSU\nRjnv0VGLZTjGxsy/X1Oz8nO2t1vHZmTEDHFrq7eu9XomkQBef91zgY2Pm1Ho6CiuXMWAxmCVuHrV\nHkLAlNHgoFW/3Ij18NeCc+c8t0QiYcs01tYuXDl1bMx6e47JSeDyZVvDuJA0NZlRSiZLJ5h6/Xpw\n291/+RiDcNiMaTJpHZqN0qkZGTHlPz5uxq6mxtqPxoAUjImJ7PtoDHInFst0UajaOgMLGYOF2n81\nECkdQ7AQhVLeG23tClXrWLj7a3DQ1uvYjGywn7Z0yLYQykZeHGU1iUSyu3cWW5ZxM7d/us9bhJ2Q\nhRAJZkkBmdubBRqDVaK9Pdhrra621cFI7ohYjMDfu21tXVy5NzYGA5yRSGkP/VXNBbPQdi7U1wP7\n9gENDdYOBw5sngV6ciWZBHbutLaqrQXa2paORW1UWLV0FVE110QolJ+/lhjxuPn+KyuXv1j71JR9\nrra2NF0cqhbLGBy011u32rVdvWqxkfp6U1a5ZqNNTHjZRM3Ndu3Xrtk5Gxs3RvC3EMzPA6++GpxR\n3dhY+NjSWsMS1oSsM65fBy5e9Lanp+3P79bJVTmNjQFnznjbsZj1gCsqvH07d27eHnA64+PAlSte\namlHR+nHgJZiJcaAAWRCisj4eHB7airTGKQfsxTp2UQjIzYiaGvz9l27RmPgqKvbOHMm8qEEB86E\nbB78vXXAAuXpGVLpxyxF+mBalYXlyNJwZECWhQtorvfhc6nR2mqTxNwciqYm8+/PzXkzp3NNdWxu\nDo4mGhpsZOCH2UUkHcYMyJJcuWIzeZNJCzzu3EmjUEiSSW+CYn29uXl6e80gtLdbZlCuAeT0chSh\nkP2GiYS5hxobC38dpHRgAJkUnPTSBoD1PDs7iyPPRmdyEjh1KrivocFm/xKyXBhAJgUnW/Ay14Dm\napBMWk2gkRHrNbe1mdJca8bHTQ6XibJjR36jpmxtu9yZ07Oz1hYsikhWAm8bsijZ8vmXk+M/OWmu\nj4oKc0kUOse/r88yYgBLnXzjDeDQIVt0Za2Yn7cUTjd4HRoyI5VPLz5b2y4VQJ6bs9HbzIy5hVpb\nN29JBbJyaAzIojQ1mZKbnrbtcNj82Itx7VpwkZfBQZsFW8jiZiMjmftGR1ffGExO2vUlk9mzdPyL\n3ayEhgZrLzcaCIWWnjl98aIZAsDk6e+3VMl8y1aTzUVBjIGIfB3AfwAwoKpvTe1rAPCPALoAnAdw\nl6qOpd67H8C9AOIA7lPVxwshByk8oRBw8KC5L9yM2KXcIFevBrenpmyUUMhZr2VlmWsOr8aaBX6m\np23pR2cAxse9oLojXxeNiJWbHh+3mdN1dUufc3Iy+z4aA5ILhRq8fwPAh9L2HQPwhKoeAPAkgPsB\nQEQOA7gLwCEAtwP4qshGKYi7MRExI9DYuLQhUM1MYwQKX/yrrS040qisXP0MmaGh4EigtjZzta+l\nRk3Lpa7Ormc5xiXbaGgt3WVkY1AQY6CqPweQPnC/A8BDqdcPAbgz9fojAL6jqnFVPQ+gF8DRQshB\nio9I5gggFCr8IvFbtliMoL3dMpsOHlz7dFcRKxPR1WXG6eDB4uTv79gRNBqNjYVvb7LxWc2YQYuq\nDgCAqvaLiCusux3A077j+lL7yAahq8sUswsgt7evjgunqmpty1I3NdmcCzdCqK+3YHExspj8RKPA\njTeaa6i8fPlF/NYD8/M27yIeNyNH19fqsZYB5BVNGHjwwQfffN3d3Y3u7u4CiUNWi3B46eUfR0a8\nJSm3bl0f686GQhYjcOsqJxLLy5KanLQYQGWlGY50p2gsBgwP2+uGhoUX7FlKto1WXycWA06e9FyM\ng4M2EuOEuUx6enrQ09OT1zkKNulMRLoA/NAXQD4JoFtVB0RkG4CnVPWQiBwDoKr6pdRxjwF4QFWf\nyXJOTjpbJ8zMWKC4unrp3vr4uM2w9dPVVfolEi5ftkydyUkzBjU15q7av3/hz1y7ZmmvblW21tbg\n8XNzwTV4w2HLvNosC/EsRn+/pRD7qaoCDh8ujjzriWJPOpPUn+NRAB8D8CUAHwXwiG//t0TkyzD3\n0F4AzxZQDrLGXL1q7hNHW9vigVTXC/YzNJS/MXDrRwDmTih0WkIsFlyLORy2uMVi8pw8aUbE9WlG\nRoBt27xe/MCAnc8v98CAlfzIhUTCzlFWtnEWssmWiLCSBX9UrQMSCtHNtBiFSi39BwDdALaKyEUA\nDwD4CwD/JCL3ArgAyyCCqp4QkYcBnAAQA/BJdv/XL/F4Zippf7+VrEiPE8zMmALNFujNN/gbi1na\np1vLtrLSetiFnI2bTAazhxKJzPRWP4mEtY3/7h4ft7kIzhhMTZmBcee5dm15yjwWs89WVdnrM2ds\nOxIxo7p79/pftL6x0XMlOnItuz03Z/fF/LxtV1dbradCJxuo2ohRdXU6ImtBQR4VVf3PC7z1wQWO\n/yKALxbiu0lxmZvLXjJ5ft4zBk5ZuYlr1dWe/x3wZs36SSRMMc7MmDumuXnxB6y/3zMEgL3u7w9O\n2JqctF767Kw9sJ2duQW2IxHL3PEHkLMpbnf94bAF0P1ptSLBGcXxeNCgJBKZ6arpDA3ZIu6u3YeH\n7S8Ws/MPDprSLMXVzBIJM1qVldljI1NTJj9gRq29HXjtNWtPl7WVfj7nuotG7X1/B8AtWpN+/vT7\nLR/icTM4buJfZaXJOjJi7zU0lOZvkQ5nIJO8iEYzJ4BFIsE8974+zxAA9kBu22avXQA53Ufe22vH\nAfZQTU0tvtqX3xBk2xeP2zmdARodNUWymL8/nbo6M0z+JUzTUzhHR01Rx+PWLm1t1rudmjIj0Noa\nzD6KRi147mZUb9my+BKpyaTN7vYb4JdesjYsK7P9IyNmSEtNAY2NWfzE/Qbp7sSJCfuN3LVdvRqc\n1DczY23pV+Rnz3outslJe+2PKWS7L5zSXi7JpMnikgDa2oIZWwMDwXNOTgK/+IXn9hweto5Hqa+B\nzsVtSF6ImEvCPRyVlcCePcFevFPqfuJxq5/T0ZFpCKamMj/jer4Lkc0X7N/nZgv7mZjI7pdeiIYG\nUwShkF1fY2Owp5pImMvHjQRiMRsd7N9vLqt9+4Abbgj2iOvrTZHv3Wt/TU1mdJxC9/dq3TkTCa8s\nxtiYyZLeNqW23rOqGUn/b3D1alBZX78eNHKuDLcf/7Y/1uJwiQyObIY117jBhQs2+pietvvw9Ong\ndaQbl7GxzPt3YCC37ywGHBmQvKmpMSWXSGT3xUajmT20xfziC0WQ3AI72RRdSwvwwgvmUhAB3vIW\n4OabvfezuYPC4dyVZnu7GQDVzM9OT2canFDIXAaVldm/q6nJlJorutfYaArHKZjLl81IuBhDebm9\n71cuZWVmVJybqKmp9FJ1091hjpkZryOR3nYimfeCv5OxkNvQv7+93drXGc2mptziDslkZh2sWMzO\n50Z4tbXeehSAyZx+f6+HqCiNASkYCwXltm83RekMwpYtiz+Q1dWmIPwGpKIimKLZ2Rl00Zw9awrS\nKf2rV+34PXtsu7bWFKq/RHR6SYvlIpL9c5WVmQosFDLZFzM627d7VUYHB4O9X1VzszljkEzaSMq5\n5tzIo7HRM1AtLaUx58C5rFzcp6IiGA8RCSrNpqagUs0Wk/EbufJyu5f8xQFraoIuynDYjGk8bt+3\nksBxNqPk/z1bWrxRA2DGP31kUOpp0wAXtyFryNSUPYzLmSEbi5lCn562B3xkJOgyCYVs1q0LFv74\nxzYycL3LUAj4jd8AbrvN+4yqKY7ZWVOWq5GCOTBgvXnAlEhnZ26K4MqVzOysSAQ4csRez88Dr7xi\nr2Mxe0/EFF4kkn0N5WJx9mymop6bM7ldNdZ0P/roqLmLAFOyFRU2anIzkNPjIMmkHe8CyC0thc8U\nunw5OBKrqrKU4vQOgXMPRiJ23/b327U2NKz9SK3Y8wzIJiYWswfABZSzkYvyLSvzVlOLxTJ9rsmk\n+YvdUH1qKuhmSCYze2ciq186wgWIp6ftenMtw7FlS6Yx8I+AysvtvFNT3rnLymzkU+g4gYtNVFTk\nXuJiejqznPfUlBnweNyuI5vS3rIlU+Evtqqeqp0vkbC/1eg7uriWCyAvlNnmz2KKRtff6nQ0BiRv\nrl/3MlxcmujsrFebqKMjv8JpbvWu2VlTMq7+jj9Fc9euYGAvHM594tZyuHbNWw9661Zz76QrhvLy\nlffOo1GT+8oVr1e5Y0fwmD17rL0nJ01JdXSYYRwZse/NNscjVyYmrGfvAuy5LnWarUqti/kUcnb1\nG294rr+JCftbbCLgStm6Nfc5DusNGgOSF4lEcIatKvDrX1vqqFPgZ89aQHelClLElOSrr3rfs3t3\n0De8axfw27/tLaqzY8fiqagrYWwsuGjPwIAZnfTcdz+qdpzrVW7bltkOo6Om1Nx1LKV4ysqCvc5s\niwndcEN+7pKLF4OZVtevm5tmsbTXRMK+OxYzN1x6ynE0uvSqbcshHjd3UzicuUzo9LRXFoXkBo0B\nyYvZ2aB7xpWE8NfiVzVFutI8a1V7yN2qazU1pmhmZrxe5tat1nOdmzPj0dVV+IJm2VYxGx1d3Bhc\nvOgFhCcmrB1uuMFz6QwPA8ePe0rz9GngAx/Ira3SXWiu8F0+7b1Qfv5CxiCZtBpL7nMDA+Ynn531\nPrfUim3Lob/fRk1ulTnnjvOzHmf/lgI0BiQvnDJ2E2+qqrIHifMJasbjllHjsjXGx03h7d3rff/U\nlL3vYgKu1lEhF3nJ5npZzB2TTJocfubng2mJr78e7D3H48CJE8B737t8ubLV68m1hk88borW9arL\nyzPnOCwLtUb7AAAZMUlEQVQ2KhgezjQgo6MWIygUs7PBwnUi5irzG4Pqai7ss1JoDNYY16MptUlB\nKyUU8nr+iYQpkKam4PXV1uYXMwiHvWCwm2cwOxsMFrp1iR3JpO0rZNygudmUu1OSodDio4KF8Pdc\n0xUusPjkumxs3RocHYRCuQfKXW0jwBSsM+izs3a+9vbFff3ZJu/lMqFvOWSbvNjcbDGquTmTr5Bl\nJjYbNAZrSF+fKShVy5jYudN6ZPPz1qNZj8PbmRkvhXJiwhR/ZaX5vmMx8xHnu+qWC9a++KI3z+DQ\noaDBWQtlVFZmpQ6Gh02mpdYeCIXMMLpUSSCzPbq67L7wG7al1oJIZ/t2c8mNjHglMMrLzYUiYkrS\nTZ5KJOze88udPmsXsOMOHLBriESWjj9s2ZJ5HY2Ndk84N1G+PfZscQAXQCf5Q2OwRoyM2DDcvz00\n5Cm0SMTcHust8OUKozmFNzhovbXDhwvns49ErOfX0uItKDM9Heypbt0anLDk9hWacDg3X/yOHWYc\nXQC5tTVo9HfutGs7c8YU6e7ddh/kgogFpl29p3jcSme7elBVVcEZwH19VhrDuX0Wm8m73IBvRYWd\n02VBbdniVZJ1bN/uybgSKivtHC5mEInkbjjJwtAYrBHZsh76+72skHjcgo3paXHxuPWuKiuXl5K3\n1pNdIpHM2izT0/mXjnaTzmZmTNE0NHhzByoqrMc9Pe0pq4YGUwz+CUulUKhNxGRJ/x1mZ82wlJXZ\n2skHDhTOfegm6zlcppGb/OYKr+3bZ9uVlZmzs+vqcp9bUFtr1wHY9b30knUOZmdtVKBqhjSfLKdt\n27wSHtHo+hxNlyo0BqvI8LA9DM6v7md2NtPFMD5uRbGmpqzXVllprpGJCTv24EHvAc7G/Lwd79aM\nrauzlM70Ymr9/XbOqirPpbAY/phAfX1Q0c/NWW/NBRArK21EMDe3eHDVndOVgk5Xgv61CSYmzL22\nfXuw/lF6r7WpKXO27/i4tUV9fWFmpk5PW/smEjbyyNUF5i/n7WrldHYuXOIiG4mE9Y79v+HYmN1r\nFRWZxdvi8cy8//RYxZ491sYugJxvJ2Juzu5l9z0zM7bvxhvz/x3cvBNSWNikq8TQkOXFDw97AT1/\nT6a2NtOHOjBgD/XMjL137px3zMwM8O//bj2jsjKvVwnYA+fy2U+d8hS3i0P4jcG5c547ZWrKFMcN\nNyysiBIJU8yup+lq4Ti5olEzJn4lnF7COp143OQcHvbiJwcOeMp9cjKYmSJi13r6tMlTVmYjqPTv\nSCSs3d1M47NnvWqlzo0RjXrlpReTLxz22mR+3n7DWMzkdoHqkREb2dXW2nsLjdyGhuyvutra0bWl\nqhmW2trMgG8yaX/ZlJ5/otXMjLXLxIQX7A2FLGbjPuvKQPjZssWbvVtWZp9Jd+G4zkx1tbm3Jidt\nRBGJZK82m60dAc+Az89bm7r2VbVRy/Xrdg91dBRvfeO5OS92t1GSO3KFxmCV6O21yVeuB1hbC9x6\nq2VluB72wIDnYw2FTDm7h3xkxPy+N97o9dzn5oBf/tJTvI2NpjBc/vulS15dHMBz17hiYZWVmX51\nVwZ4ocJmQ0NBl0Mi4fmcAbu2PXuA8+ftXBUV5q7J9kA5pXr1KvCjH9lnADNWf/iHnoshm2GanDT/\nu/sO19t1Cm92FnjqKS/9NBIxZTUx4VWRdDnp8bi9t2tXUKHNz1ubDwx4pbhPnbLfyP2Gra2egamr\nM4NfXW3fUVFhn/Gf88wZq5nkJknFYhZPicetLcJhuza/Mejv92r519aanP6FgtJdjidPmpGLRu0z\nsViwVMf27d5ymm5EU1YGvPyyyRGN2nf43ULnzlnnwxmY6mprH2dUTp8G3v/+hQ1COGzff+KEtbtz\nIbkF7svK7P/5894zcvUq8Fu/lXug2S0mVF6+MrfRxYueezESsd9wsTTajQqNwSpx9mywBzg+bj06\np8BjMXuwLl70lJRbAQqwBzCRCKZLDg0Fe/mnTwdXDBsfN8Xiv5EHB73ZrfG4GY50V0o2xe3cWtlW\n3UrfV1Nj7ii/cvYTj5sMExP2sD7zjGcIAFMCTz3lGYPqaq893OfLy03xOOXjJrc5hffqq8Gc/vPn\nTUG4WchjY2Yo3/1u256ZMYXX0eEVOTtzxvL+HU8/bQo/kTC5+/rMyFdW2ve79YZ37rTfMxo118jB\ng/b5ZNL85q69EglTyO56RKyHvn27yeJGSf5c+okJM/IutuTcSX6348xMsEZ/OGy9/L17g0FgV+a6\nrMxKfTump629nNyqJrcbnSWTwK9+ZXK6OMzIiDezPBtVVSaXP9Xz0iXP/RSL2QIwzn3nRkmXL+e2\n4ND4uMnuivZ1deUWK5qYCGZ7udidf4GczQKNQQGYnQWefdaUWnU1cNNNmf7sZNJ6mK7n3ttrf2Vl\n9t7wsCmSujpTHpWV3qQqF1jcujU4jB4ft16kU4hjY6YUams9xezvuUUitt+/JkA0GjQebujuFGu2\nIOJCfvKF/Lh9fdY2V67Yg3/unBdfcKSPWPbt85a9rK629kxPFfW38ciInf/KFU8WvysofV4CYEpk\nYsKT++mngz30y5dNXpeVNDhoBsplsLjYjotLVFfbb+aUaiKRORHLGbGtW711c48f93q0s7OeMnSu\nPv9IIBKxz/rLXHd2Bq8tEjEl7NpX1QzwG294WTgdHcH2d4X+XHwrPdV0bs6Mhl/RZsv7d0xO2neM\njHjxMX8PHrDXs7PBDLpsM58XQjW4mFA8bttvfevy4xLZVj3LdSW0jQKNQQH4xS9MCY2O2gPT22sl\nh7dts4fC9fL9Qblr16wHEol4Pu3hYa+mT0WFuUXe/W578Gtq7FyTk945ZmaCCri21vPXz89n90W3\ntpqranbWDEV6oHBgINhTmp42peFW2HJKdnDQHsa6uuzph3NzpsTcOgT/9m92rlDIc+W4Hq5z2fhJ\nr/kTDpuxdLjZxc4VNjVlvVe3EEk0CrzjHd7IqaHB2sS5syorrf22brX/Li/fGZ1w2KuEOTLizXZ1\npa+dP9+/TOPYmH3fnj3eaK+mxnOFuFm973iHV1v/7Fk7vzM4sZi5Al3ufCjkGRdHZ6ed2xWq27fP\nEgdGR00mN9Hu9dfte6anbdTjmJiw9266ydtXXu51EEIhy/pxC+4AJl91tX1HOGz3VvqEO5cUEItZ\n+4bD3ijUjY7992trazCwXVERXAZzKWZnMwPjsZhdWyJh1+RcZAuRLZV7M7qIABqDvHFpesPDXq38\nSMQUalubKQL3UPgfHud2cD0mwFPkiYT9b2y0/859MjdnriGXobF9u9fzAjw3iguS1tRk9pBqahZ/\n4NJ76IC37uupU3beZ57xen41NabI/SOWkRFzMwwNmTzPPms9Nv8kKLfcI2C9zQ98IHvbzs97qaQ1\nNWaE6uut3V57zbv2l1+2tnbyu9HL/v12HmdMnOtubMxe//KXJmd9vR13/Lgpy7IyMyCu5y/iue1O\nnLDXrq0doZB9h2ufyUn77NSUHRsKWTuNjXkTxK5dy1RIfX1mlGMxu+50t0ksZveaCxrX1AC33GLf\nVVZm98lzz9l3uBiNiym433NoyH6T+Xnv836OHrXfzbXF+94H/OxnJpeIBfD995Gq3Zuus+J+Z9fL\nFjHjMzXl3e9vf7vJfPmyHbt7d25zQ5wB87tSXU2kSMTaqbc3e5HEWMyLJbW3Wxu5uE8u1Vk3EjQG\neRIK2Y2WvkLVlSumYFymhlNszm1TVmYPpXN9JJOmnMrKPMU6MBDsSVVU2I3tFomZnbVet3OBTE/b\nfv9QPpGwh935lZe60Ssq7IF2K0MB5jY6dcoeWrf+bzJp+44csf3RqF1/Y6P10J9/3uSMRKzXOj7u\nuWSam23Rma4uU1y33GLv/exndi3bt5vMTz/txUmOHDEDc/q0jZ527rTvHB629n/5ZbtW5/oQMUXb\n2GhyuIli166Zkty5E/jWt7y1lcvK7LvcSCkU8lI1Z2ftfOXlXvzFlRXZscOOcbNsL12y1/399rnB\nQXNbANbD7++363AyumQCx9iYtW1NjRerePFFM0zuNxwf9zoEU1PW67/xRm8U+Morpuhdiun0tP2m\nbsTgAuhtbXaeaDQ4OgHsHnr/++0cFRWWDNHe7q3RUFVloxrXURkZCY5aXfscPuwtUFRRYd/nUmKT\nSeDJJ63jFImY4cslABwOW/tfvOgZmMrK4DPjFjRyv6tbi9m5QWtrzQi1tHgjmkIwPm4GJh731s4u\n9TkRNAYF4MYbrYfpqKnxyk74A2bxuN1syaQpp9/8TVNGbgKN83c7nMvC7/sW8YaxVVX2MLjhfF1d\nZl2bykrvgV0OLS3W43auEZeqeP26NwoZHfUevtFRU7gvveQFN3/1q+Dw/cKFoN97ctKOcYbwu98N\nGp++PlOArvf22mumuN0C9iKmQP1ujuvXg26zmRlTzO53SSZNBudGeuUVb9Tmair19VmbuvYdHPRS\nHkXsfLGYKZDJSZPt1VftnC4bq7HRjvGnUSaTnmupv9/a2LmJysq8DoObczE357lskklT9m97m9d2\nV68GjbqbmOiMSl9fsGPifkc/+/fbveGUnzNC/uMiEc/AXLtm53W/6+SkfYe7t7LVWHKdH3/cqrzc\nMzpPPmm/iRsZnTplSjOX8hJNTXbdbkZ6euE/IPj8uDRfx8SEteeOHYVbIW121ptRDniZYaVeNqNo\nxkBEbgPw1wBCAL6uql8qliz5cugQ8J732M3sVkI6eTIzlz0SsZx+wB6CwUFPecXj1hvbscMLrtbU\nLJ3z7J/dOj9vitM/bM517dXRUZPfred79aopu6oq+x+LmRLt7LRjpqbsWp2bJ5GwHqOrlwN4gUY3\nqpibCxq+ixftGOcOuX7dzunWL56dtZ5pZ6fnVjtxwpt1DJhCqa31DJLL1HFMTdnowS0UMz9v19rZ\n6bVxIhFUJK4uv8uIuXzZrqmmxguylpXZ++GwXXN/v3ed7vdxMRVX4yd95uyBAzbiU7W2PX48qJz9\nPXZXiiM9c8vvBnGZSk4ZhcPAO99p956bD+HP5nKyLXavJZNBAz8zE7y/6+uDWVBu32L4DZajvz93\npVlW5n1Xe3swtlRVFbwP/KMXR/okvXwZGclMVhgepjHIioiEAPwNgA8AuALgORF5RFVfX/yTpcuR\nI6ZEnY81FMpc/NvvY62rs4fTDSX9hepczzS9oNhSlJebYsmnHMXERNDVdP26t2ZwU5Pd1C6IWlvr\nBVKdchIJKq9w2JvI4953uev+tvFncKSXX3bB6/SF5v3te/CgV7IC8Go9OVxwuLnZq53j1hJ2MnR2\nej18t33woPd7Hj4czF5JJOw3bW72Jm25/4mEfefOnV5gf98+U04nT3rXUlZmSsL9zm5ugxt9xePB\n9EwXf/Ibk4aGYO979277nVz8pKHBrsV/nqGhoBJcKnC7e7fdVy5+0toavLeqquxa3eihvn5pl2R9\nfTBZAci/nlRTk8kyOuqNQvxtlW1eRKFLXmcbYRR6XebVoFgjg6MAelX1AgCIyHcA3AFg3RqDri7P\n1xsOW0/v4kUbXotYjzS9qNbu3V753bo6zx3jUhZXsjhJvmuvVlYGe0+uOBxgMt58s11Ta6u3jKG/\nFpGIGaTaWi9LZ2bGK/3sJl75S0unj15aWrxRAeAFvf2GsaHB3Gxu9NTSYrEHJ2s4HHQH1Neb/M7Q\nqgLvepcpLpeS291tvfsLF2x7xw47h1P+O3fapKgXXrA2aGryFKpztxw5YnJNT3s9+2jU67nW1dl3\nu1Fh+qLwkQjw4Q/b6GpuzhTqwEDwN7nhBjufyyZKz6vv6rJ7aGwsOJfBz7591oOdm7NzLaUQm5ut\nvVy8KhrNnKjoVmhzy58uxdvfbq4ilwTQ0VGYwnNunko2mputXdzvlmsG03JwJcX9rrOVlDpfa0RX\nYwXppb5U5PcBfEhV/2tq+48BHFXVz6Qdp8WQLx/8pQxcHrmbwbkemJ+3IK3rdTufryvbXF9vvcPe\nXi/rqavLlJfLIT9yxNphcNBzd/3gB2YcnaE8dMirPukCxG6iXkeHnftf/9UeXJeJ9cMfmhxVVcAH\nP2jKyCm8fftsJOAvVHfmjMnpSmC3t3s+5Zoa88MPD9ufc9G5Gdeuhn9zs/WIIxE7p6s+e+WKyehi\nEw0NNiJ417uWVqzuvnBKdSncIjkuc2g5axVMT3ulOZqa8g+MxuP2+zij1NRUGMXtFtVx2XNrhZtX\nUVOzOoFdd/+7Efpap6uKCFQ1pysreWPwwAMPvLnd3d2N7u7utRR1U+Jywl0JBn9apfMTu7VmGxpM\nUSYS9hnnEgHsQQiHTbHOz1smTmWlF6xzWVALlTRwZRXcLNW5OfN1t7V5PeyxMevdLXSO+Xk7jzPG\nToH7H043e9UpBb/cixGPewF+N6t4o+OC24vVdiJrT09PD3p6et7c/sIXvrBujME7ATyoqrelto8B\n0PQg8nocGRBCSLFZycigWPX5ngOwV0S6RKQcwN0AHi2SLIQQsukpSgBZVRMi8mkAj8NLLT1ZDFkI\nIYQUyU20XOgmIoSQ3FlPbiJCCCElBI0BIYQQGgNCCCE0BoQQQkBjQAghBDQGhBBCQGNACCEENAaE\nEEJAY0AIIQQ0BoQQQkBjQAghBDQGhBBCQGNACCEENAaEEEJAY0AIIQQ0BoQQQkBjQAghBDQGhBBC\nQGNACCEENAaEEEJAY0AIIQQ0BoQQQpCnMRCR/yQir4pIQkRuTnvvfhHpFZGTInKrb//NIvKyiJwW\nkb/O5/sJIYQUhnxHBq8A+I8A/tW/U0QOAbgLwCEAtwP4qohI6u3/C+BPVHU/gP0i8qE8ZSg6PT09\nxRZhSdaDjADlLDSUs7CsFzlXQl7GQFVPqWovAEl76w4A31HVuKqeB9AL4KiIbANQq6rPpY77JoA7\n85GhFFgPN8h6kBGgnIWGchaW9SLnSlitmMF2AJd8232pfdsBXPbtv5zaRwghpIhEljpARI4DaPXv\nAqAA/oeq/nC1BCOEELJ2iKrmfxKRpwD8d1V9PrV9DICq6pdS248BeADABQBPqeqh1P67AbxXVf/b\nAufNXzhCCNmEqGq6+35RlhwZ5ID/ix8F8C0R+TLMDbQXwLOqqiIyJiJHATwH4L8A+N8LnTDXiyGE\nELIy8k0tvVNELgF4J4AfichPAEBVTwB4GMAJAD8G8En1hiCfAvB1AKcB9KrqY/nIQAghJH8K4iYi\nhBCyvim5GcgrmchWLETkNhF5PTWB7nPFlschIl8XkQERedm3r0FEHheRUyLyUxGpL6aMKZk6RORJ\nEXlNRF4Rkc+UmqwiUiEiz4jICykZHyg1Gf2ISEhEnheRR1PbJSeniJwXkZdSbfpsCctZLyL/lNI3\nr4nIO0pNThHZn2rH51P/x0TkMyuRs+SMAVY2kW3NEZEQgL8B8CEANwD4IxE5WCx50vgGTC4/xwA8\noaoHADwJ4P41lyqTOIDPquoNAN4F4FOpNiwZWVV1DsD7VPVtAG4CcHsq5lUyMqZxH8w96yhFOZMA\nulX1bap6NLWvFOX8CoAfpxJejgB4HSUmp6qeTrXjzQB+A8AUgO9jJXKqakn+AXgKwM2+7WMAPufb\n/gmAdxRRvncC+MlC8hX7D0AXgJd9268DaE293gbg9WLLmEXmHwD4YKnKCiAK4NcA3l6KMgLoAHAc\nQDeAR0v1dwdwDsDWtH0lJSeAOgBns+wvKTnTZLsVwL+tVM5SHBksxEIT2YpFujylPoGuRVUHAEBV\n+wG0FFmeACKyE9bz/hXsJi4ZWVOulxcA9AM4rjaDvqRkTPFlAH8GmwfkKEU5FcBxEXlORD6R2ldq\ncu4CMCgi30i5YP5WRKIoPTn9/CGAf0i9zlnOQqaWLhtOZCsJSiZzQERqAPwzgPtUdTLL/JKiyqqq\nSQBvE5E6AN8XkRuyyFRUGUXkdwEMqOqLItK9yKGl8LvfoqpXRaQZwOMicgol1p4w3XgzgE+p6q9T\nafLHUHpyAgBEpAzARwC42GXOchbFGKjq76zgY30Advi2O1L7ikUfgE7fdrHlWYoBEWlV1YFUjahr\nxRYIAEQkAjMEf6+qj6R2l6SsqjouIj0AbkPpyXgLgI+IyIcBVAGoFZG/B9BfYnJCVa+m/l8XkR8A\nOIrSa8/LAC6p6q9T29+FGYNSk9NxO4B/V9XB1HbOcpa6myh9ItvdIlIuIruQmshWHLEA2KS5vSLS\nJSLlAO5OyVgqCDLb72Op1x8F8Ej6B4rE3wE4oapf8e0rGVlFpMllYohIFYDfAXASJSQjAKjq51W1\nU1V3w+7FJ1X1HgA/RAnJKSLR1EgQIlIN83O/gtJrzwEAl0Rkf2rXBwC8hhKT08cfAfi2bzt3OYsd\n9MgSBLkT5oufAXAVwSDt/QDOwB7GW0tA1tsAnIJVZT1WbHl8cv0DgCsA5gBcBPBxAA0AnkjJ+ziA\nLSUg5y0AEgBeBPACgOdTbdpYKrICuDEl14sAXoa5MlFKMmaR+b3wAsglJSfMF+9+71fcc1NqcqZk\nOgLr9L0I4HsA6ktUziiA67CK0G5fznJy0hkhhJCSdxMRQghZA2gMCCGE0BgQQgihMSCEEAIaA0II\nIaAxIIQQAhoDQgghoDEghBAC4P8DOqqUeTVxGSkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s1 = thinkplot.Scatter(females.Age, females.Fare)\n", + "thinkplot.Show()" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEACAYAAACwB81wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlwZNd13r/TaKCx7zswAGY4nI2kKDESJZtyCbYcifIi\nKZWIoSthJDGqVEVWpIrilIdKpUj94dhKlctWKlEqLtkqyqWYpiy7SFsORdEk7CiiSGrnaMiZ4cwA\ng2UADPYdvd38cfrwvgYae2N9368Khe7Xr9+77/Z73z333HPPFeccCCGEHH0i+10AQgghewMFnxBC\nQgIFnxBCQgIFnxBCQgIFnxBCQgIFnxBCQkJeBF9EqkTk6yLymoj8TETeKSI1IvKsiFwSkW+JSFVg\n/0dE5Epm//flowyEEELWJ18W/hcB/K1z7iyAuwG8DuA8gOecc6cBPA/gEQAQkXMAHgBwFsAHAHxJ\nRCRP5SCEELIGOxZ8EakE8AvOua8AgHMu6ZybBvAhAI9ndnscwIczrz8I4InMfr0ArgC4d6flIIQQ\nsj75sPCPAxgTka+IyA9F5I9EpBRAk3NuBACcc8MAGjP7twHoD3x/MLONEELILpIPwY8CuAfA/3DO\n3QNgHurOWZmzgTkcCCFkH4nm4RgDAPqdc9/PvP8GVPBHRKTJOTciIs0ARjOfDwI4Fvh+e2bbKkSE\njQQhhGwD59yqsdEdW/gZt02/iJzKbHovgJ8BeBrAxzLbPgrgqczrpwE8KCJFInIcwEkAL69z/H39\ne/TRR/e9DAflj3XBumBdHI66WIt8WPgA8GkAXxORQgDXAHwcQAGAJ0XkYQB90MgcOOcuisiTAC4C\nSAD4pFuvhIQQQvJCXgTfOfcTAO/I8dEvr7H/7wL43XycmxBCyObgTNsN6O7u3u8iHBhYFx7WhYd1\n4TnodSEH2ZsiIvT2EELIFhERuByDtvny4RNCyK7R1dWFvr6+/S7GgaOzsxO9vb2b3p8WPiHkwJOx\nWPe7GAeOteplLQufPnxCCAkJFHxCCAkJFHxCCAkJFHxCCAkJFHxCCNkBXV1dKC0tRWVlJSoqKlBZ\nWYnh4eH9LlZOGJZJCDnSTE0B8/NAWRlQXZ3/44sIvvnNb+IXf/EXt32MdDqNSGT37W9a+ISQQ0sq\nBYyNAaOjQCKx+vPeXuDqVWB4WP/vVij/ytBI5xw+8pGPoKWlBbW1tfilX/olvP76629+/tBDD+FT\nn/oUPvCBD6CiogLf+c53sLy8jM9+9rPo6OhAS0sLPvWpTyEej+e1nBR8QsihJJEALl5UEe/vBy5c\nABYW/OfLy8D4ePZ3xsaAoIY6BwwMAD/5iX7/1q38le/Xf/3XcfXqVQwPD+POO+/EQw89lPX5n/3Z\nn+Hzn/88Zmdn8a53vQu/9Vu/hb6+Ply4cAFXrlxBb28vfud3fid/BQInXhFCDgG5JhgNDQE3b2bv\nV10N3Habvp6fBwJG9ZucPQuUlurrmzf1OEFuvx2orNx82Y4fP47x8XFEo+oh7+7uxl/+5V9m7TM2\nNobGxkbMz8+jpKQEDz30EGKxGL785S8D0B5BaWkpLl++jGPHdLmQ73znO3j44Ydx+fLlNc+91YlX\n9OETQg4lubwdwW2lpUAsppa+UVzsxR4AJidXH2NycmuCDwBPPfVUlg8/nU7j/Pnz+MY3voHx8XGI\nCEQEY2Njbwq6/QeA4eFhLC8v4+677846Rr79+hR8QsihpLp6tcsmOCgrApw8qe6ehQUdtD12LHv/\nwkJgcTF7W1HR1suy0sr+6le/imeeeQY9PT04duwYxsfH0dDQkLWfiDfAm5qaEIvFcOnSJTQ0NGy9\nAJuEPnxCyKGkuhpob1fRLigAmpqA5ubsfYqL1UVz990q/rFY9uctLUDQiC4qAurrd1622dlZxGIx\n1NTUYH5+Hp/73OeyBH4lkUgEn/jEJ/CZz3wGY2NjAICBgQF8+9vf3nlhgufJ69EIIWQPaWoC3vIW\n4K1vVfFfR1NzUl4OnDsHtLUBHR36urBwa8fIJeQf//jH0dLSgtbWVtx1111497vfveF3fv/3fx+d\nnZ249957UV1djfvvvx9vvPHG1gqzUVkP8qAoB20JIQCzZa4Fs2USQgjJCQWfEEJCAgWfhIpUClha\n0gk3gL5Opfa3TITsFQzLJKFhdBQYHATSaf1zTqM7IhGN1lgZ4UHIUYMWPgkFy8saj51O6/sbNzTP\nCqDbBgezp+UTchTJi+CLSK+I/EREfiQiL2e21YjIsyJySUS+JSJVgf0fEZErIvKaiLwvH2UgZD3m\n5/1r53SyTTwOJJN++9zc3peLkL0kXy6dNIBu51xwovJ5AM855/6riPw2gEcAnBeRcwAeAHAWQDuA\n50TkdsZfkt2kpMS/FtEJOOk0EA08AcEp9+Rg0dnZue7EpbDS2dm5pf3zJfiC1b2FDwF4T+b14wB6\noI3ABwE84ZxLAugVkSsA7gXwUp7KQsgqSkrUR2/rUrS1ZQ/WNjToJBxyMOk1/xvZEfkSfAfg2yKS\nAvC/nHNfBtDknBsBAOfcsIg0ZvZtA/Bi4LuDmW2E7CptbSrsS0uaV0VE3Tix2Oop94QcRfIl+Pc5\n526KSAOAZ0XkErQRCLItl81jjz325uvu7m50d3dvt4yEoKgoOznWVrMiEnIQ6enpQU9Pz4b75T21\ngog8CmAOwCegfv0REWkG8IJz7qyInAfgnHNfyOz/DIBHnXOrXDpMrUAIIVtn11IriEipiJRnXpcB\neB+AVwE8DeBjmd0+CuCpzOunATwoIkUichzASQAv77QchBBC1icfLp0mAH8lIi5zvK85554Vke8D\neFJEHgbQB43MgXPuoog8CeAigASAT9KMJ4SQ3YfZMgkh5IjBbJmEEBJyKPiEEBISKPiEEBISKPiE\nEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBIS\nKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiE\nEBIS8ib4IhIRkR+KyNOZ9zUi8qyIXBKRb4lIVWDfR0Tkioi8JiLvy1cZCCGErE0+LfzPALgYeH8e\nwHPOudMAngfwCACIyDkADwA4C+ADAL4kIpLHchBCCMlBXgRfRNoB/AqALwc2fwjA45nXjwP4cOb1\nBwE84ZxLOud6AVwBcG8+ykEIIWRt8mXh/wGA/wjABbY1OedGAMA5NwygMbO9DUB/YL/BzDZCCCG7\nSHSnBxCRXwUw4pz7sYh0r7OrW+ezNXnsscfefN3d3Y3u7vVOQQgh4aOnpwc9PT0b7ifObUuH/QFE\n/guAfwkgCaAEQAWAvwLwdgDdzrkREWkG8IJz7qyInAfgnHNfyHz/GQCPOudeynFst9PyEUJI2BAR\nOOdWjY3u2KXjnPucc67DOXcCwIMAnnfOPQTgrwF8LLPbRwE8lXn9NIAHRaRIRI4DOAng5Z2WgxBC\nyPrs2KWzDr8H4EkReRhAHzQyB865iyLyJDSiJwHgkzTjCSFk99mxS2c3oUuHEEK2zq65dAghhBwO\nKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiE\nEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBIS\nKPiEEBISKPiEEBISKPiEEBISdiz4IhITkZdE5Eci8qqIPJrZXiMiz4rIJRH5lohUBb7ziIhcEZHX\nROR9Oy0DIYSQjRHn3M4PIlLqnFsQkQIA/w/ApwH8UwDjzrn/KiK/DaDGOXdeRM4B+BqAdwBoB/Ac\ngNtdjoKISK7NhBBC1kFE4JyTldvz4tJxzi1kXsYARAE4AB8C8Hhm++MAPpx5/UEATzjnks65XgBX\nANybj3IQQghZm7wIvohERORHAIYBfNs59wqAJufcCAA454YBNGZ2bwPQH/j6YGYbIYSQXSSaj4M4\n59IA3iYilQD+SkTugFr5Wbtt59iPPfbYm6+7u7vR3d29zVISQsjRpKenBz09PRvulxcfftYBRf4z\ngAUAnwDQ7ZwbEZFmAC84586KyHkAzjn3hcz+zwB41Dn3Uo5j0YdPCCFbZNd8+CJSbxE4IlIC4B8D\neA3A0wA+ltntowCeyrx+GsCDIlIkIscBnATw8k7LQQghZH3y4dJpAfC4iESgDcifO+f+VkS+B+BJ\nEXkYQB+ABwDAOXdRRJ4EcBFAAsAnacYTQsjuk3eXTj6hS4cQQrbOroZlEkIIOfhQ8AkhJCRQ8Akh\nJCRQ8AkhJCTkZeIVOXpMTQGTk0A0CjQ2ArHYfpeIHAVSKeDWLWBhASgvBxoaAFk1tEh2C0bpkFWM\njgL9geQX0Shw7hxQWLh/ZSJHg0uXgLk5/76mBjhxYv/Kc1RhlA7ZNKOj2e+TSWBiYn/KQo4OCwvZ\nYg9oLzIe35/yhBEKPllFrk4VO1pkp6TTubfz3to7KPhkFfX12e8jEaC2dn/KQo4O5eVASUn2tooK\njg/tJfThk5yMjmp3u7AQaG4GSku39v1UChgZAebn9btNTToWQMJNIgHcvOkHbVtagIKC/S7V0WMt\nHz4Fn+wKV64AMzP+fVkZcObM/pWHkDDBQVuyZywvZ4s9oJb+wkLu/QkhewMFnxBCQgIFn+SdWAyo\nrMzeVla29XEAQkh+oQ+f7Arp9OpBWw7OEbI3cNCWEEJCAgdtCSEk5FDwCSEkJFDwCSEkJFDwCSEk\nJFDwyb6TSmkWxWRyv0tCyNGG2U3IvjI1BVy/rmGcIkB7uy64QgjJP7Twyb7hHNDX59PmOgcMDDA/\nOiG7xY4FX0TaReR5EfmZiLwqIp/ObK8RkWdF5JKIfEtEqgLfeURErojIayLyvp2WgRxO4vHVbhzn\ngMXF/SkPIUedfFj4SQCfdc7dAeDnAPymiJwBcB7Ac8650wCeB/AIAIjIOQAPADgL4AMAviTCVS3D\nSFHR6mUTRZiCgZDdYseC75wbds79OPN6DsBrANoBfAjA45ndHgfw4czrDwJ4wjmXdM71ArgC4N6d\nloMcPkSAri6fJz8SATo6uHYuIbtFXgdtRaQLwFsBfA9Ak3NuBNBGQURsKK4NwIuBrw1mtpEQUlkJ\n3HUXsLSkSdeYb4eQ3SNvgi8i5QD+AsBnnHNzIrIyCc62kuI89thjb77u7u5Gd3f3dotIDiiRCN04\nhOyEnp4e9PT0bLhfXpKniUgUwN8A+D/OuS9mtr0GoNs5NyIizQBecM6dFZHzAJxz7guZ/Z4B8Khz\n7qUcx2XyNEII2SK7nTztTwBcNLHP8DSAj2VefxTAU4HtD4pIkYgcB3ASwMt5KgchhJA12LGFLyL3\nAfgHAK9C3TYOwOegIv4kgGMA+gA84JybynznEQD/GkAC6gJ6do1j08InhJAtwnz4hBASEpgPnxBC\nQg4FnxBCQgIFnxBCQgIFnxBCQgIFnxBCQgIFnxBCQgIFnxBCQgJXvNok6bTmbi8q2u+SkN0mkQCG\nhzUvf0UF0NSk+X4IOexQ8DfB8DBw86aKfmkpcOKEZnYkRw/ngMuXNXsnAMzOqvCfOLG/5SIkH9Bu\n2YD5eWBw0C/Dt7AA3Lixv2Uiu8fsrBd7Y3KSC6yTowEFfwPm5lZvm53d+3KQvYFrr5GjDAV/A4qL\nV28rKdn7cpC9obx89e9bW+tX5SLkMMPkaZvg+nVgYkJfFxQAJ0+qMBAlnVbL+KhYx8kkMDLiB20b\nG4/OtZFwwGyZO2RhQaM3ysu5DJ+RSgG9vcDUlNZJc7P+kd1ncVFdi6WlND7IatYSfHZUNwmX4FvN\nwICKPaDiPzio9VRZub/lOuqMjGjdG/X1QGfn/pWHHB7owyfbZmZmc9tI/kingaGh7G1jY6sjiwjJ\nBQWfbJtccxE4P2F3SSR8iHCQ5eW9Lws5fFDwDxnpdO4Hfj9oa8sezygrA+rq9q882yGV0slWh4VY\nbHXkWEEB/fhkc3DQ9pDgHNDfr913QIW1o2P/o0eSSWB6WsMWKyv3vzybJR7X6Ku5OS17W5v6wg8D\nS0s6WD4/r+Lf0aHRRIQYjNI55IyOquAHaW/XPC9k61y+vHoC3R135J53cVBx7vA0sGRvYZTOIWet\nAdKdCr75hMPke3cu92zpmZmDLfjJpP5ZGfdC7OfnNSJoaUl7cO3tQGHh7p+X7A4U/ENCLkHeiTg5\nB/T1AePj+r6sTGeU2lyDqqrtH/ugI6L1uXKg8yCL/eCghmM6pzOBb7tt9xvpVAq4ckX/Azr5MJEA\nTp3a3fOS3YOCf0hoblZfuYlUUdHOrPvxcS/2AHDpkvqybeJUYyNw7Nj2j3/QOXYMuHrVD9hWVx/c\n+QOzs5qx1ZifB77/faChQcW/uXl3rO6ZGS/2wbKkUpx8eFjJi+CLyB8D+DUAI865t2S21QD4cwCd\nAHoBPOCcm8589giAhwEkAXzGOfdsPspxlCksBM6d866dysqd5WgPJoVbWtIHOWgx3roFtLQc3Rwy\nVVXAXXdpfcZiBzvKZWUCv6Eh3VZcrL/bzIzeG/l28eT67QsKuDbAYSZfP91XALx/xbbzAJ5zzp0G\n8DyARwBARM4BeADAWQAfAPAlEQ49bYZIRC3R6uqdP3TBmcNmxQVdGs6ttu6OGoWFGu10kMUeyP6t\nkkkV+eBvtbSUO6vrTqmoWB3909zMgeLDTF4E3zn3HQCTKzZ/CMDjmdePA/hw5vUHATzhnEs653oB\nXAFwbz7KQTZPfb1/mEtL1TXQ0OA/Ly0N10DuQaaqSsdXDMtbFGS3RPj224Hjx7W3d+oUcyUddnaz\nw97onBsBAOfcsIg0Zra3AXgxsN9gZhvZQyIRfYAXFtSSP3dOBwYXFtTiPcr++8OIiW48rr2S6Wn/\n2W4mUBPJbmzI4WYvPbTbCqh/7LHH3nzd3d2N7u7uPBWHANnugttv373zjIzoIHFBgQ42V1fv3rl2\ninOaFM7SI+djUtP0tA62lpVtPwIqElG/+okTOsYyO6s9M87FID09Pejp6dlwv7xNvBKRTgB/HRi0\nfQ1At3NuRESaAbzgnDsrIucBOOfcFzL7PQPgUefcSzmOyYlXR4CV2R0B4MwZFb+DyNWrPgsoALS2\nqnW9Xfr6/AxpQF1nHR1bO8aNGyrygEZonTzJhXjI2qw18Sqf4+2S+TOeBvCxzOuPAngqsP1BESkS\nkeMATgJ4OY/lIAeMYPinYQvKHDQWFrLFHtCQyO3mL4rHs8UeAG7eVPfZ5OTm8vjMzHixt2OunHVN\nyGbIV1jm/wbQDaBORG4AeBTA7wH4uog8DKAPGpkD59xFEXkSwEUACQCfPCpmfDyuluzcnFpf7e20\nwtaK2c61zfIFjY+r77ipaWeW9XZIJFZvS6c1OqaoaOfHW1hQa91mzJaU6FhKJLJ25NX8/Oa2Bc+Z\nSOixdzuixhpChmoeDphLJ4+89po+0EZhIXDnnUfvYZid1essK1t7sHB+XhN8LS1pQ5hIeBdONAqc\nPesFNJXS/aemsi1ZQP3VNTX5v4ZkUhuX6WktR1ub+tbTaeDVV/Vzo6xMXVDbwTngwgWtA0DdO4mE\numQAbdyiUT13VRXQ1eXj353Tepmb0x5BkIqK3DNegzNyV7p+kkntVYhone508tTAgP5ezunAbkfH\n0bvXDyvMpbPLLC9niz2gD/bc3MGdwbmSZFIFuqRkbTHo71cL1a6ro0PFMohz6gdfWtJ6KSrSxq++\n3v83sZ+c1IYhndb/5eXZWSunpjYn+PG4/pWWbk50+vq862ZxUct7551eJAcG/KDtTiKWRHQwvL9f\nxbuoyIc2zs9rUrzaWhX76Wk9b1eX1tuVK35m9dycv7aiotxlmpvLnpEbj+t1njmjv8WlS74hGxrS\n7dvptQDaUI2MZL8vKtLxDnJwoeDniYICfbhXdkgOy0zVW7dUlJxTUenqWi208Tjwyivak0mndb9z\n54Bf+7Xsqf1LS+q3vnnTZ3RsblZhC0a8pNPaeJhbIBrVclRV+eNtZi7A4KAXumhU88ysF6boXHZY\nY3BbQ4Na9KdPb3zezVJc7COgamt9L8bcMsGy2kzqoaHsXD/l5VqH1dUq/LlcNeu5foaHs3stiYQK\n9nYbs5X1Z2XfD8G3XlBpKdNEbwQ7YHkiGtX8M0Hs4TzoJBJe7AEV4L6+1QOV8/Ne7G2/ixdXC01B\ngXcrAPp/eHh1ryGRyBah+nptREzoYjEV4PUGTBcWsq3aZFLLvh4iuRvivcgC2d6uoi/iQyqD0UrW\nwK3sLQJ6bWVla/vlc0U92f1nLqUgubZtllyJ5vYj+dzQEPD669ozunxZDQiyNofE/jwctLerhWGD\ntrvhe94NFhdX90xSKRWElVP4V4pNUKCNZDLbkgX0/cpUDebqsYHN4mJ1p3R06PZ0WhuYRELdR11d\nq0U5l1W7tOR7IGvR1qYuJGMn8fFbIRLRSVRdXVrnV674tAgFBd49Vl6+ep3ajSZXlZer0TE6qu8L\nC/3i5tXVq1NC72QuRGOjuuOsjIWFez/AnkxmN/aA3nNNTZwlvhYU/Dxjg2+HCXMRBEU/Gl390NTV\naZd9dFRFPhZTN4Mta3jrlrpx4nF9GM0XXVys51jZ2xFR8bt+XUW9oEC/U1enjdDFi37fmRm13G2w\n08glgiUlG/vx6+p0v+lpvY6amr3NESOif6dPa50tL2vdmk+9rS07R05d3dozXtNpvQ4RvyhOPJ7d\nG2hoyA4RbWzc2XKU0ai686an9b6pqtregO38vDYc0aj28LbiAk0kcoe1xuMU/LVglA4BoELQ36/i\nUVCgQpyr4bp6VVPzJhJq1d17r+47N6eDgoZF8jQ1qRB0dKwtMM6puMViXjRyTdYSAe65Z/X3b970\n4wWFherDP6iTuoLY4Lb5w6NR9fUHG8blZa2TtdxNS0vqygj2kk6fPhxjRxMT2tgbRUXaiGwleujC\nheweZjSqWVDDHi3EKB2yLvX1auWaRb7WA3PbbeommJpSl4AJy8pBvIoK/fzUKRXyVEpFPBLR96Oj\nKlLV1dpLsNDBsTH9m5vTv+AgXNBqGxzUHoWIiuH4uJapq+vwWHeTk9n1lkzqdQVTXNi1TE6qvzqR\n0Ia4tFR7QaOjWgf2ey0t+dTWB52V7ph4XH/HlWNh63HbbT5qrLSUoaEbQcEnb1JQ4K3LsTEVmcJC\ntdKDE8is+x0kV3hfSYkeb25OfdXptArWjRvaaESj+tnQkAr74qIKljUik5O+TOauAFTkLCd8IqE9\njpoaPcalS9povfvdW7v28XG1lFMpdRttJyvk9LReW0lJdjz9Wiwurt42NaV1b9lKbdGbwUHvnvnZ\nz7R30NrqZ9x2dfljrPT9G86pa0xE62q/0xwHB+yNrabkLinJb0TVUYeCT1YxPJw90WdqSrva68Vs\n19WpUFl0SSTiQ/Ru3vSRNtPTaslNTWmjMTSk3zl1ysfjnzihYtTR4ccJKiv9+UdHgR/8QBuEsTE9\n1unTvjfQ1wf8/M9v3tIbHweefdaLTV8f8J73+AZmM9y4Afzf/+t9yhcvAr/yK+uL/srxh7ExFetI\nRP8vLKjffmxMhbqz04ePmliXlenni4u+Uc417yMe1wbN3B8HwfVTW5sdy28TwnbCwoJP0hec70EU\nCv4mSKVUtObn1fLazZWglpf9IF5VlVrX9nBPT/vIl4aGtQeHZ2ZUFJ3zrpqtsHK2ayql/tb1rN5I\nRCfyTE2p5VZd7f3OwfQC5p+1BblnZ/1+kYgKwPKyilddnXbvV/Yment9GW3AcmLCNzBb/W0uXcq2\nLJ3TbVsR/J/8JHsAcWYGeOON9WfoVlVpnY6MaB3Nz/sonbExrZuKCr2e5WWt26oqP1YBaB3F4z4q\nqaEh91jJ8HC2r3tpSc+7ctLcXtLWpve29SRbWnYW2jk9nb1s5a1b2TO6CQV/U1y96kPazLd89mz+\nz5NKaUyxdXXn5vRh7ujwAmJMT6vrYaXom/vEmJnJT3qCzXT/17LQqqvVAk2nVcDGx7OtWxOoggIV\nbntABweBO+7Ifa5IRI9XXa0PdjBW//bbt+bHzRXnv1XXQi43Si6XzUra2lT05+ayGyoT53hcLfbJ\nSX0djWrdWUhlJKK/79mz+nqt3ylX+dZy/ewVInr9+Wp0gnM/AH2Obt3a30btoEHB3wBb73VuTi2s\nykq1xnp7VbxqarY3SLSw4JeqM9E26zjI2JjOhlyZcdE+Wyn4Y2MqVrOzevNXVOg2E+KlJZ8/pro6\nt0A0NmZHyBQU7GwRjMZG4No19TcXFKggNzdrPRYX+2tOJPwMXxEtX64JSI2Nan3Pz+t+ra36u7S3\n6+vjxzdXrulp/Ssv9zOCjZXhnxvR1qbXaIhsfhZrQYF3WVlIa3m53g8WYtrZqQ1jaan2GiYm/HyP\n1taNI1sqKlbH4edjVqrN4TgIEwxzNdJHfZnOrULB3wARtZh/8hM/M7G2FujuVrG6eVMfwK24EVaG\nHNqkHxP84LFMhHIJc65tiYQKj4no6KgPUZyc1DA4s4IshcDK4zQ1+cHVkhIV6J3MQr1502eFBLxA\nVFerKI6Oqng1NmZ3v6PR3I3pHXeo9T815ccK3v/+rbkDVo5TtLSopZ9Oq9ifOLG1a3zHO/S7g4Na\njjvvXO2KCpJIaNlNqEX0+r/3PW8IdHX5lB0tLdlpC7YadtrUpI39xIQer64ue0lLwPcgNmPApNPa\n47RGpLRU620vZiuvRW3tagNhJ3MNjiIU/A0Q0VhfS7Q1NaUuife8R98vL6sFvdmojnRaBdBYWlI3\nTmenDlDeuKGWqglfY6OWoaEhO3+6bctF0KoxEQNUjMw3bAt4T06utt4nJ7VRisV8UrMzZ7afXdHy\nw6zcZouxW93V1QF///faAJiQnzu3+rvOeX+vLcG31ekawcFCQHsVx49vvydTWKiRQem0n1SVi2RS\nXYRzc17k29t9+onSUj1GWZle31ve4kV/J9gMX1t4JfhbLi6qkbC05Gf7rnVvGaOj2T2G+Xm9jysr\n929h+Kb8E8GxAAAYb0lEQVQmdeFcu6a/x7lzh2M+xl5Cwd+A8XG9ecrLfY7xwkIVzrY2FfzLl1Uk\nKyv1YZ2a0u5yW9tqiyeV8oKcTOpxbOJRUZEKwNCQni+40lJ5uVrjNlhZX5/7obLZqpOT3sdtsdwW\nuw7oQz43pw3NSpELNkiAtww3EoG1KC5e7S9OJPSYlZU++dXwsF9aENDXQ0N6DZWVvi5HR/W1xWun\n0yo29fXejbXRzM9cXf3ZWf0NgvXqnJ5vakrPWVWlZU2lVNhWutQ2so5tvQQ79siIni8W04bVRNTq\n5Pbbt+Z6Saf1no3Htd5WCp4JfTqt9W9BAnNzes7CQj9uYPdNPK6/X1mZ//5KS/rSJT1Oc7Me4+1v\n1xj5vcQG/IMD33vV+Fj01E5mHe8FFPwNqKzMnuIejerNPjSkIjA7q933mRngRz9SP3U0qiJ3993A\nffdlW2eFhfrQXL6sD5LdpOm0HnNyUkW4vl63//CH+uAWF6sFE4y3zkV1tR4jOPHGBvgsWiaV8lZo\nrgHLXIuA5IqZ3iytrVp/lotnfFzLYPnvLeb8+9/XfaqqdL/+fhXbEyd8KmYRFZbCQi/aQ0P6oF28\nqP+bmlR4Tp9WAbceRmWlD9urrNTwS3M3JRJa3yMjKmynTuk5hoZ8psl4HPi7v/MZRVtbgZ/7OT8+\nkkjovsXF+vslk1pGczUlEnq/pNO63/S0n4twxx3+HjMWFrTswfkRa2E9hhs3vBgPD/t7yYjHtfzX\nr6vAp1LAy5n15iy30fS09gYaGrIzkdoAcVWV1pHl0pmZ0eNZw5RIaFbVoiI/AS+Ic1o3hYX6em5O\nX+80+VquVdQmJnZf8BMJP/8D0Ou2e++gQcHfgNlZvfkvXtQfNB7XG2hiQq21VErFqqhI47ALC9XC\nWFgAvvtdbQxyJakKJg2zgS97wM09MTLiY8xFfDz8etZDba1vSCws0yzhhgYVOQuDW2td1Npan4AL\n8AOoW2VmRh/mWEwf5vFxb70XFGjdDQ6qwDQ2+tWumptVEG7c0DKaoLz6qtaFrRpVU6OvR0a0/hMJ\n/Z9K6TUMDmr33gRreNiL4fS01oPVeVWVTsm3MNCyMm1cb97UxnliQs9z44aWr7xcP4vFgPe+V63J\nnh7fqEUiWnaLJioo0N/jjTf0eKOjfrzm3Dk97uKilsn8++Xlet3Dw9pA3Xbb6t8+kdDj2WD85GT2\nbNOhId/4fPe7WscLC1oeS0EwPq4Nr7kPLTBhcTF7Nqyls77zTq3fn/5U68Qm6ZmRMTurz8vcnB+L\nsIlw09N+EZig8APerbZd99VmV1bLN2a0GfG41ttW1y3eCyj4GzA9rZa6ZX8cGFBrq6pKhWVoSB+Y\nmhrdNyigy8v6naBYJhL6PbsZbODXltAzwbZJRUGX0PKy932vR3Nz7jEFC4ssKlKhSSSy0xAkk/qQ\n23eD8dFbXarRrHPArwnb2qrnNLdSNKrXbg94QYG3pm3ikbkobtzQbTU1Kr6W2gHQMptwxOP6m7S3\nq9jbnIS5ORWh5mYtx49/rMdvbfVWf329lsXGUrq6dMD+6lU9z9Wr+psEXWDXrqng/+AH3m01O+t7\nLq2teozycjUERka0fDbr2HqJFRV+Nar6ei13MFvpzIyWcaVbbWjInzeV8o2GDVZaz+zCBZ862LJM\nlperwDqn5bFIJXufK6w0HtfzjI9rPZjrcX5eryMW0zqxFBqAuqpsoZxr13yvsr9f7+mTJ308fk3N\n9kOIm5r0dzaDKRrdvhtyKxzEkNe1oOBvQHGx3pjXr3t3xMSE3rSzs/q+uFhvMueyI2xisdX+8WhU\n/+xBLC5W4Tp+XIX4pZe8xdDfr/HVJogzMyoeVVV6I2/1wbBJSrduadnOnFGxq6xUURwYyF4AZbuL\nYwRFHVAxWFjw1m5vr/rcS0v1tYVROqdlqanR+rl2TY9TUKBiZXW5vOwHPAHdx+rT0jOYdX/tmlrr\nlo6huFhFf3bWr5IFeBdTQ4O+NlEKDkzGYlrGYB55c2MEc+IEV6myVM0mnsvLeo7FRZ/VcWFBX9fV\n+c9t4HZx0btzcoWoBrdVVOh1BsXG7pHgILWlqpiY0N+5osIbMeZaKSzMPeBZXOzdmoDes5b0rL/f\nuwlvvz3bUrcGOuhCXFrSurb8TXY92xX8qiofshqJ7N1M28rK1bmkDuoqdxT8DSgoUOtocVFvnsVF\n744oKNAbeGFBf3AbsCor033PnFkdFmbx2b29Kh51dbpvcbEKY1mZCub0tN7AJi5zc/owl5erCM3O\nahd/K66WGzf84GM6rY3H29+u5zOxB3zInaU2EFHBSKXU0o/H/Zq2x45l+6hv3dKyTkxoGRcXvWsq\nmdSH+/p1vQ6zYBcXfUx9U5OKz9iY7j8z41MZ2+ImtlSg+Zxrarx7ZmJCy1RXp9cwP6/XZb+Vncf8\n9ktL/vOKChWKigrfA6ur82vLnjzpZwjPzOg1dHZ6y9RE1USmtta7mmZmvLjZddrgqjVyNmhqczPS\n6WwDIpcvurzci29hofZszI1RX+9nC1dW6m9jLqfmZj2nhZAuL/vAAZvFHYtpPQwMaFmKirSBSCT0\nN5qc9OXo6FAXUV2dH0cK0ti42kdveZaCvdid+ttzpeHebRoa/CpvgNZBU9PelmGzUPA34MIF75NN\npbx/uaZGH4iKCv0rL/cTsU6d0v2Cs3EXF32u+Opqfchs4kxxsQq8+YgLC/WmNWuyrEwf6s7ObB/u\njRtaloqKzWWINLExH3FhoZZhcVH/Llzwg1yW3iAW8yFuIuq3LSrS8pWU6H533qnl+PrXdRxjcVHP\ncfy4is/UlLpDXn9dG4FkUr8Ti/nB7okJP5loedlbtq2tev2trToXor9fy9fUpNcvonXT1uYbJEs3\n4JzuPzurwmnRVsmkCuGNG74n0toKvPWtKlytrV4oT5zQ846P+xDQ1lbfy/vxj7XnUFen1zg6qtd1\n8qSKnPX8Skp0/5YWPWdzs/5u6bSOS1RWqsvJFhq3Hkdvrx8PsB5OPK5lt6gi62nab2oLx1tkVWmp\n3ouvvOIt0dpa4P77tW5PntSyx+O+wRsc1HI3NGhoqI03Xb/ue2tm9AD6Hfu977tPw2snJvyC9eYm\nbGnxUWBNTVpvFnba2KjlsbUWNotzfu3k/YiOsbxPds8c1AgdgIK/LouLfqBRxFvhbW1qzfT1efE3\n//HcXPbAaVub7hPM1zI/rw9Q0GVSXb06SsOyGp4+rQ9AMArBHkh7EG3hkFzYfqWlaq1dvaoP1l13\n6USfCxfUlTQwoNdrYwWAPrAtLX6AzWbIjo2paJ84AfzRH+l3rl71lvzsrB7XYv0jET1nOq3HnpjQ\n+lxe9r2W8XEVFJsAVFys+8ZiPhTSkosNDenxbCaqhcbW1fkIqKEh/X5pqYqK9QrMgm5u9gPux46p\nMB07pr/Z8LAvT3m5HttyBFVU6DFu3dLrKC1VEVtc1HJbDH1xsZ73jju0Iejv95ZwebneN3av2DjE\nzZt6XrsnKiu9xTo7q++tnhcWtD4mJ7UeFhbUhWVzFEZGgBdf1DGG2VmNKLJxlcZGP+YUj+t120xf\nG7MAslN4XLqk57DFamzWdCyWLdA2Wc8av+CEsdZWP0GqvNyHOBcX63X89Kd6r5WVaQ92o4lcMzPa\nKNpymS0tei0bDfxadJDdl/ngIAu9QcFfh95evTELC/UBW1rSB+W++7wfNJn01tvYWHYu7+FhPwC3\nMu57fHy1j7y8XG/Y0VEfztfe7q0fm3i1uKgPcDAKYGDAr5UaZGJChSaZBL79bY3UcE6P/93v+hQC\ntniJ5bOx8yeTaoGbpW8ukuJijUpJJvWzeNynObC6SKVUtOz6i4p842OCaA/+3JyKq00Ks+s0F9n0\ntJatuNg3cubv/sEP9L31GGx94YkJ3dd8wrOzahlfu+bDCFta9DxvvKENVEkJ8M1vetH9wQ+0DPY7\nXr/uJ0fNz+uxx8b0Xhkc1M8iEa3bkRHtlb34ol5nUZEeLxZTq3l6Whuot79d6+36dT1OMqn3QDoN\nvO1tes0TE7pvcXF2qOTVq1ruigotTzyu96dZ1Lbf4mL2JDdAz29uJau/XAI7NqYNjUWm2aIs5sqo\nrPQN7OKi7m+9X0AbscpK766x335xUXt95vKamfEJ1ebn9TrXC0O28NJEwjfub7yhvdHTp9d27cTj\n6s60sY7ycn0O9iKiZ7/ZN8EXkfsB/CF0IfU/ds59Yb/KkotUSkWorMznMUmndYWnd77T71Nd7a27\n+vrVU/JzrQML5N5WVaUPvkUARaO+m1hWpmMClg64qyvbJ2ox30Gfr+X8Md/8pUs+QmdkxHf7i4u9\n0Nq57fpsMNQyMgYXJg/mwAG80FdU+M9SqezP7c/CWS1PEaCiaNdgYXs2c9UailhMj22T1fr7s336\ny8v6Z+MsFlUSifjxFxvYXVjQ38yu06KqXn3Vp36wRqO2Vj+3hqC0VAXGXCgWcWIuiclJbVjM1VNU\n5N05yaQfu7l5U3uK8biKaTBxnkUpAb6RF8nOq3TtmnfDmbXc1+eF3azXsrLVuXRWDgIvL2sjkCse\n3gIWbEA6nfZjFs5lp16+ccOP7xhzc6v98/39/t6w3FLWi7HvrMfSktbX3JzvkTqnxxgY8Kk8VnLz\nZvbA9tycd7MddfZF8EUkAuC/A3gvgCEAr4jIU8651/ejPLkwkWhv95NprKtqWCyzhRsODmYLrsVS\nA95/b+Qa1LE1TsfGfHrk4Gi/rejT0qKiFEwnUFa2Op+PWePBa7Jsi8PDPqLCfPsreyEr0xUE3wcb\nrJUZCk2kLXtjcL3cYJKyggJvzVt9mavAhC94HIsgikSyQweDKz4Fr7WoSB9sc0FYqKBz+pm5RAC/\nFvH0tA87TCT8GIGFdtoksURC6zES0YahqMiL8/Ky1nNBgYqPWZomypGId/0Bes7KSv2LRv3kM3Ox\nlJZqmSwraDCEMpXSY4ro8c1FY3X31rfq6+ZmP+cA0DKbWAYpL9djBn9TG4uoqPCzSQF/b87OZseh\nFxfrcYN5oXKF9QbDPq2RsR7DWt8JEotpHQfF28Jqc0U05TrvetuOIvtl4d8L4Ipzrg8AROQJAB8C\ncGAEv6jIW0e33eZzkK+M641GvXjX1KhFbdEOHR2+m3jmjIqGDdquFXoWiWy8xFthoQ6QDQz4Qd1c\nGSJXWmpnz2pDYeKwuOjdQDbgVVjoJ4VFo15gbNAzKMTB8gD+2lpavB++sFD/B106S0v6MFuESXm5\n1tX8vDaMxcW679SUDwOMRvWc5o93TkXMQk3NTWDJv2Ix7145dcrPbrb8OzYgbXlsSkv1d7Reh/Uy\n7D5oafE5hurrveuro0OPPz+vv31hoR57cVEt3NpaPVZJiRf1hYXslAxVVVoHdXX+nist1f2OH9dr\nMKs+mdRzx2L6nTNn1KIvL9ftb3ubzhu58069NjM4zN9ujUFRkV7LSsFvadFzB1N4mGumvt6PFVg0\nUUlJ7uR7weSAtbW5126wjKBWBzbeYuXbKK1xJKJ1bI2Y5Zcyo2Ytysv191q5LQzsyyLmIvJPAbzf\nOfdvMu//JYB7nXOfXrHfvi5ibt3s2Vm9sdvbNxfyZQ/lXiwhZwtfrMXAgO96z86qH7+/3wuqpXWw\nyBAbzLJBShunsLBGc5MERd6suLo64OGHVSxGRtRPurzs1xCwtBIW/WF5a06f9sfr7/fuJou+sAHz\noKunqUndZ9XV6qq6dMlblPX1WlZroC2V8sCA7/XYYucWJVJXp4Or0aimGrD1Y21Q1o5hIZhLS1q2\njg7gH/0jFeAXXtA6jUZVwG6/3edYsfGXoiLvNpua0sbdooOc0/ESE1TLhTMxofVhLgdbvKSzU7e/\n9JIX7q4u4J//881lrXRO3S/mpqqvX3/Ac2ZG3VPWk6mt9YbG669ni2htrdapNYC5iMfV5269tMZG\n/V4qpffFZp+fZFIbc2uoS0r0t10r0ieV8pPyrKxdXfu/5GM+WWsR8wMv+I8++uib77u7u9Hd3b2X\nRT0SLC3pQ2UuBUu/W1AAvPaaPjBnzvioFHP9XLyo4mbjGQUFKjIdHbrfO96hD8lXv6oP60c+4mPb\nTdD6+rzr6MUX1Vp85zv1f0mJHm9hQV1MloxsZES/Y3ldZma0d7K4qD2Uzk61RGdnffz8zIzPHdPb\nqw1HdbUKdTyun9tAYTzuw/hsu8WcFxaqqC0sqIDduuUtyWD+fAuFLS3Vc5aX6/HGx/W6ior0u4mE\nCqlZ7OaeMZG1QelgorKFBd8DSSR032AqZ8BPdrKxipERfW3pEbaCCfhmokxsrQULzQ1uv3VL67ei\nQn/LzZbDxlx2uoqczZHYbE4eCzTYz5TO+aKnpwc9PT1vvv/85z9/oAT/XQAec87dn3l/HoBbOXC7\n3xZ+WLl1y0/DB/yEHpHtZQK0OHyjoEAFfCux1ltlo57PzZtqxRuxmM9TFLRWLYqlpcUvJt7Z6V11\nuVYdyzeplC5cHkxqd+zYxq4/El4OmoVfAOASdND2JoCXAfyGc+61FftR8PcJc0OYW2SnU9Tn5vzi\n0g0Nuyv2m2Vy0q/+1djoLUyzVpeWvG/c9rOBS0uPvFe+30RCx4AszHS3GxlyuDlQgg+8GZb5Rfiw\nzN/LsQ8FnxBCtsiBE/zNQMEnhJCts5bgH4LJwIQQQvIBBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkIC\nBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8Q\nQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkLCjgRfRP6ZiFwQkZSI\n3LPis0dE5IqIvCYi7wtsv0dEfioil0XkD3dyfkIIIZtnpxb+qwD+CYC/D24UkbMAHgBwFsAHAHxJ\nRCTz8f8E8K+dc6cAnBKR9++wDLtKT0/PfhfhwMC68LAuPKwLz0Gvix0JvnPuknPuCgBZ8dGHADzh\nnEs653oBXAFwr4g0A6hwzr2S2e+rAD68kzLsNgf9B9xLWBce1oWHdeE56HWxWz78NgD9gfeDmW1t\nAAYC2wcy2wghhOwy0Y12EJFvA2gKbgLgAPwn59xf71bBCCGE5Bdxzu38ICIvAPgPzrkfZt6fB+Cc\nc1/IvH8GwKMA+gC84Jw7m9n+IID3OOf+7RrH3XnhCCEkhDjnVrraN7bwt0Dw4E8D+JqI/AHUZXMS\nwMvOOSci0yJyL4BXAPwrAP9tKwUmhBCyPXYalvlhEekH8C4AfyMi/wcAnHMXATwJ4CKAvwXwSee7\nEr8J4I8BXAZwxTn3zE7KQAghZHPkxaVDCCHk4MOZtusgIveLyOuZSWK/vd/l2UtEpF1EnheRn4nI\nqyLy6cz2GhF5VkQuici3RKRqv8u6F4hIRER+KCJPZ96HtR6qROTrmQmVPxORd4a4Lv59ZuLpT0Xk\nayJSdNDrgoK/BiISAfDfAbwfwB0AfkNEzuxvqfaUJIDPOufuAPBzAH4zc/3nATznnDsN4HkAj+xj\nGfeSz0BdlEZY6+GLAP42E3hxN4DXEcK6EJFWAP8OwD3OubdAx0N/Awe8Lij4a3MvdIyhzzmXAPAE\ndEJZKHDODTvnfpx5PQfgNQDt0Dp4PLPb4zjgE+fygYi0A/gVAF8ObA5jPVQC+AXn3FcAIDOxchoh\nrIsMBQDKRCQKoAQ63+hA1wUFf21WTh4L7SQxEekC8FYA3wPQ5JwbAbRRANC4fyXbM/4AwH+Ezj8x\nwlgPxwGMichXMu6tPxKRUoSwLpxzQwB+H8ANqNBPO+eewwGvCwo+WRcRKQfwFwA+k7H0V47yH+lR\nfxH5VQAjmd7OemHCR7oeMkQB3APgfzjn7gEwD3VhhOqeAAARqYZa850AWqGW/r/AAa8LCv7aDALo\nCLxvz2wLDZmu6l8A+FPn3FOZzSMi0pT5vBnA6H6Vb4+4D8AHReQagD8D8Esi8qcAhkNWD4D2cvud\nc9/PvP8GtAEI2z0BAL8M4JpzbsI5lwLwVwB+Hge8Lij4a/MKgJMi0ikiRQAehE4oCxN/AuCic+6L\ngW1PA/hY5vVHATy18ktHCefc55xzHc65E9B74Hnn3EMA/hohqgcAyLgq+kXkVGbTewH8DCG7JzLc\nAPAuESnOZAJ+L3RQ/0DXBePw10FE7odGJUQA/LFz7vf2uUh7hojcB+AfoCmwXebvcwBehk6qOwZN\nlfGAc25qv8q5l4jIe6ApRD4oIrUIYT2IyN3QwetCANcAfBw6eBnGungUagQkAPwIwCcAVOAA1wUF\nnxBCQgJdOoQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhL+P19W\nzfGfDXAJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s1 = thinkplot.Scatter(males.Age, males.Fare)\n", + "thinkplot.Show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is definitely clear that the majority of males were younger and spent less on their tickets, while there is much more variation for females. It does seem that more females spent more in tickets, regardless of age, so it seems likely that there are more females in pclass 1. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/test.csv b/test.csv new file mode 100644 index 0000000..f705412 --- /dev/null +++ b/test.csv @@ -0,0 +1,419 @@ +PassengerId,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +892,3,"Kelly, Mr. James",male,34.5,0,0,330911,7.8292,,Q +893,3,"Wilkes, Mrs. James (Ellen Needs)",female,47,1,0,363272,7,,S +894,2,"Myles, Mr. Thomas Francis",male,62,0,0,240276,9.6875,,Q +895,3,"Wirz, Mr. Albert",male,27,0,0,315154,8.6625,,S +896,3,"Hirvonen, Mrs. Alexander (Helga E Lindqvist)",female,22,1,1,3101298,12.2875,,S +897,3,"Svensson, Mr. Johan Cervin",male,14,0,0,7538,9.225,,S +898,3,"Connolly, Miss. Kate",female,30,0,0,330972,7.6292,,Q +899,2,"Caldwell, Mr. Albert Francis",male,26,1,1,248738,29,,S +900,3,"Abrahim, Mrs. Joseph (Sophie Halaut Easu)",female,18,0,0,2657,7.2292,,C +901,3,"Davies, Mr. John Samuel",male,21,2,0,A/4 48871,24.15,,S +902,3,"Ilieff, Mr. Ylio",male,,0,0,349220,7.8958,,S +903,1,"Jones, Mr. Charles Cresson",male,46,0,0,694,26,,S +904,1,"Snyder, Mrs. John Pillsbury (Nelle Stevenson)",female,23,1,0,21228,82.2667,B45,S +905,2,"Howard, Mr. Benjamin",male,63,1,0,24065,26,,S +906,1,"Chaffee, Mrs. Herbert Fuller (Carrie Constance Toogood)",female,47,1,0,W.E.P. 5734,61.175,E31,S +907,2,"del Carlo, Mrs. Sebastiano (Argenia Genovesi)",female,24,1,0,SC/PARIS 2167,27.7208,,C +908,2,"Keane, Mr. Daniel",male,35,0,0,233734,12.35,,Q +909,3,"Assaf, Mr. Gerios",male,21,0,0,2692,7.225,,C +910,3,"Ilmakangas, Miss. Ida Livija",female,27,1,0,STON/O2. 3101270,7.925,,S +911,3,"Assaf Khalil, Mrs. Mariana (Miriam"")""",female,45,0,0,2696,7.225,,C +912,1,"Rothschild, Mr. Martin",male,55,1,0,PC 17603,59.4,,C +913,3,"Olsen, Master. Artur Karl",male,9,0,1,C 17368,3.1708,,S +914,1,"Flegenheim, Mrs. Alfred (Antoinette)",female,,0,0,PC 17598,31.6833,,S +915,1,"Williams, Mr. Richard Norris II",male,21,0,1,PC 17597,61.3792,,C +916,1,"Ryerson, Mrs. Arthur Larned (Emily Maria Borie)",female,48,1,3,PC 17608,262.375,B57 B59 B63 B66,C +917,3,"Robins, Mr. Alexander A",male,50,1,0,A/5. 3337,14.5,,S +918,1,"Ostby, Miss. Helene Ragnhild",female,22,0,1,113509,61.9792,B36,C +919,3,"Daher, Mr. Shedid",male,22.5,0,0,2698,7.225,,C +920,1,"Brady, Mr. John Bertram",male,41,0,0,113054,30.5,A21,S +921,3,"Samaan, Mr. Elias",male,,2,0,2662,21.6792,,C +922,2,"Louch, Mr. Charles Alexander",male,50,1,0,SC/AH 3085,26,,S +923,2,"Jefferys, Mr. Clifford Thomas",male,24,2,0,C.A. 31029,31.5,,S +924,3,"Dean, Mrs. Bertram (Eva Georgetta Light)",female,33,1,2,C.A. 2315,20.575,,S +925,3,"Johnston, Mrs. Andrew G (Elizabeth Lily"" Watson)""",female,,1,2,W./C. 6607,23.45,,S +926,1,"Mock, Mr. Philipp Edmund",male,30,1,0,13236,57.75,C78,C +927,3,"Katavelas, Mr. Vassilios (Catavelas Vassilios"")""",male,18.5,0,0,2682,7.2292,,C +928,3,"Roth, Miss. Sarah A",female,,0,0,342712,8.05,,S +929,3,"Cacic, Miss. Manda",female,21,0,0,315087,8.6625,,S +930,3,"Sap, Mr. Julius",male,25,0,0,345768,9.5,,S +931,3,"Hee, Mr. Ling",male,,0,0,1601,56.4958,,S +932,3,"Karun, Mr. Franz",male,39,0,1,349256,13.4167,,C +933,1,"Franklin, Mr. Thomas Parham",male,,0,0,113778,26.55,D34,S +934,3,"Goldsmith, Mr. Nathan",male,41,0,0,SOTON/O.Q. 3101263,7.85,,S +935,2,"Corbett, Mrs. Walter H (Irene Colvin)",female,30,0,0,237249,13,,S +936,1,"Kimball, Mrs. Edwin Nelson Jr (Gertrude Parsons)",female,45,1,0,11753,52.5542,D19,S +937,3,"Peltomaki, Mr. Nikolai Johannes",male,25,0,0,STON/O 2. 3101291,7.925,,S +938,1,"Chevre, Mr. Paul Romaine",male,45,0,0,PC 17594,29.7,A9,C +939,3,"Shaughnessy, Mr. Patrick",male,,0,0,370374,7.75,,Q +940,1,"Bucknell, Mrs. William Robert (Emma Eliza Ward)",female,60,0,0,11813,76.2917,D15,C +941,3,"Coutts, Mrs. William (Winnie Minnie"" Treanor)""",female,36,0,2,C.A. 37671,15.9,,S +942,1,"Smith, Mr. Lucien Philip",male,24,1,0,13695,60,C31,S +943,2,"Pulbaum, Mr. Franz",male,27,0,0,SC/PARIS 2168,15.0333,,C +944,2,"Hocking, Miss. Ellen Nellie""""",female,20,2,1,29105,23,,S +945,1,"Fortune, Miss. Ethel Flora",female,28,3,2,19950,263,C23 C25 C27,S +946,2,"Mangiavacchi, Mr. Serafino Emilio",male,,0,0,SC/A.3 2861,15.5792,,C +947,3,"Rice, Master. Albert",male,10,4,1,382652,29.125,,Q +948,3,"Cor, Mr. Bartol",male,35,0,0,349230,7.8958,,S +949,3,"Abelseth, Mr. Olaus Jorgensen",male,25,0,0,348122,7.65,F G63,S +950,3,"Davison, Mr. Thomas Henry",male,,1,0,386525,16.1,,S +951,1,"Chaudanson, Miss. Victorine",female,36,0,0,PC 17608,262.375,B61,C +952,3,"Dika, Mr. Mirko",male,17,0,0,349232,7.8958,,S +953,2,"McCrae, Mr. Arthur Gordon",male,32,0,0,237216,13.5,,S +954,3,"Bjorklund, Mr. Ernst Herbert",male,18,0,0,347090,7.75,,S +955,3,"Bradley, Miss. Bridget Delia",female,22,0,0,334914,7.725,,Q +956,1,"Ryerson, Master. John Borie",male,13,2,2,PC 17608,262.375,B57 B59 B63 B66,C +957,2,"Corey, Mrs. Percy C (Mary Phyllis Elizabeth Miller)",female,,0,0,F.C.C. 13534,21,,S +958,3,"Burns, Miss. Mary Delia",female,18,0,0,330963,7.8792,,Q +959,1,"Moore, Mr. Clarence Bloomfield",male,47,0,0,113796,42.4,,S +960,1,"Tucker, Mr. Gilbert Milligan Jr",male,31,0,0,2543,28.5375,C53,C +961,1,"Fortune, Mrs. Mark (Mary McDougald)",female,60,1,4,19950,263,C23 C25 C27,S +962,3,"Mulvihill, Miss. Bertha E",female,24,0,0,382653,7.75,,Q +963,3,"Minkoff, Mr. Lazar",male,21,0,0,349211,7.8958,,S +964,3,"Nieminen, Miss. Manta Josefina",female,29,0,0,3101297,7.925,,S +965,1,"Ovies y Rodriguez, Mr. Servando",male,28.5,0,0,PC 17562,27.7208,D43,C +966,1,"Geiger, Miss. Amalie",female,35,0,0,113503,211.5,C130,C +967,1,"Keeping, Mr. Edwin",male,32.5,0,0,113503,211.5,C132,C +968,3,"Miles, Mr. Frank",male,,0,0,359306,8.05,,S +969,1,"Cornell, Mrs. Robert Clifford (Malvina Helen Lamson)",female,55,2,0,11770,25.7,C101,S +970,2,"Aldworth, Mr. Charles Augustus",male,30,0,0,248744,13,,S +971,3,"Doyle, Miss. Elizabeth",female,24,0,0,368702,7.75,,Q +972,3,"Boulos, Master. Akar",male,6,1,1,2678,15.2458,,C +973,1,"Straus, Mr. Isidor",male,67,1,0,PC 17483,221.7792,C55 C57,S +974,1,"Case, Mr. Howard Brown",male,49,0,0,19924,26,,S +975,3,"Demetri, Mr. Marinko",male,,0,0,349238,7.8958,,S +976,2,"Lamb, Mr. John Joseph",male,,0,0,240261,10.7083,,Q +977,3,"Khalil, Mr. Betros",male,,1,0,2660,14.4542,,C +978,3,"Barry, Miss. Julia",female,27,0,0,330844,7.8792,,Q +979,3,"Badman, Miss. Emily Louisa",female,18,0,0,A/4 31416,8.05,,S +980,3,"O'Donoghue, Ms. Bridget",female,,0,0,364856,7.75,,Q +981,2,"Wells, Master. Ralph Lester",male,2,1,1,29103,23,,S +982,3,"Dyker, Mrs. Adolf Fredrik (Anna Elisabeth Judith Andersson)",female,22,1,0,347072,13.9,,S +983,3,"Pedersen, Mr. Olaf",male,,0,0,345498,7.775,,S +984,1,"Davidson, Mrs. Thornton (Orian Hays)",female,27,1,2,F.C. 12750,52,B71,S +985,3,"Guest, Mr. Robert",male,,0,0,376563,8.05,,S +986,1,"Birnbaum, Mr. Jakob",male,25,0,0,13905,26,,C +987,3,"Tenglin, Mr. Gunnar Isidor",male,25,0,0,350033,7.7958,,S +988,1,"Cavendish, Mrs. Tyrell William (Julia Florence Siegel)",female,76,1,0,19877,78.85,C46,S +989,3,"Makinen, Mr. Kalle Edvard",male,29,0,0,STON/O 2. 3101268,7.925,,S +990,3,"Braf, Miss. Elin Ester Maria",female,20,0,0,347471,7.8542,,S +991,3,"Nancarrow, Mr. William Henry",male,33,0,0,A./5. 3338,8.05,,S +992,1,"Stengel, Mrs. Charles Emil Henry (Annie May Morris)",female,43,1,0,11778,55.4417,C116,C +993,2,"Weisz, Mr. Leopold",male,27,1,0,228414,26,,S +994,3,"Foley, Mr. William",male,,0,0,365235,7.75,,Q +995,3,"Johansson Palmquist, Mr. Oskar Leander",male,26,0,0,347070,7.775,,S +996,3,"Thomas, Mrs. Alexander (Thamine Thelma"")""",female,16,1,1,2625,8.5167,,C +997,3,"Holthen, Mr. Johan Martin",male,28,0,0,C 4001,22.525,,S +998,3,"Buckley, Mr. Daniel",male,21,0,0,330920,7.8208,,Q +999,3,"Ryan, Mr. Edward",male,,0,0,383162,7.75,,Q +1000,3,"Willer, Mr. Aaron (Abi Weller"")""",male,,0,0,3410,8.7125,,S +1001,2,"Swane, Mr. George",male,18.5,0,0,248734,13,F,S +1002,2,"Stanton, Mr. Samuel Ward",male,41,0,0,237734,15.0458,,C +1003,3,"Shine, Miss. Ellen Natalia",female,,0,0,330968,7.7792,,Q +1004,1,"Evans, Miss. Edith Corse",female,36,0,0,PC 17531,31.6792,A29,C +1005,3,"Buckley, Miss. Katherine",female,18.5,0,0,329944,7.2833,,Q +1006,1,"Straus, Mrs. Isidor (Rosalie Ida Blun)",female,63,1,0,PC 17483,221.7792,C55 C57,S +1007,3,"Chronopoulos, Mr. Demetrios",male,18,1,0,2680,14.4542,,C +1008,3,"Thomas, Mr. John",male,,0,0,2681,6.4375,,C +1009,3,"Sandstrom, Miss. Beatrice Irene",female,1,1,1,PP 9549,16.7,G6,S +1010,1,"Beattie, Mr. Thomson",male,36,0,0,13050,75.2417,C6,C +1011,2,"Chapman, Mrs. John Henry (Sara Elizabeth Lawry)",female,29,1,0,SC/AH 29037,26,,S +1012,2,"Watt, Miss. Bertha J",female,12,0,0,C.A. 33595,15.75,,S +1013,3,"Kiernan, Mr. John",male,,1,0,367227,7.75,,Q +1014,1,"Schabert, Mrs. Paul (Emma Mock)",female,35,1,0,13236,57.75,C28,C +1015,3,"Carver, Mr. Alfred John",male,28,0,0,392095,7.25,,S +1016,3,"Kennedy, Mr. John",male,,0,0,368783,7.75,,Q +1017,3,"Cribb, Miss. Laura Alice",female,17,0,1,371362,16.1,,S +1018,3,"Brobeck, Mr. Karl Rudolf",male,22,0,0,350045,7.7958,,S +1019,3,"McCoy, Miss. Alicia",female,,2,0,367226,23.25,,Q +1020,2,"Bowenur, Mr. Solomon",male,42,0,0,211535,13,,S +1021,3,"Petersen, Mr. Marius",male,24,0,0,342441,8.05,,S +1022,3,"Spinner, Mr. Henry John",male,32,0,0,STON/OQ. 369943,8.05,,S +1023,1,"Gracie, Col. Archibald IV",male,53,0,0,113780,28.5,C51,C +1024,3,"Lefebre, Mrs. Frank (Frances)",female,,0,4,4133,25.4667,,S +1025,3,"Thomas, Mr. Charles P",male,,1,0,2621,6.4375,,C +1026,3,"Dintcheff, Mr. Valtcho",male,43,0,0,349226,7.8958,,S +1027,3,"Carlsson, Mr. Carl Robert",male,24,0,0,350409,7.8542,,S +1028,3,"Zakarian, Mr. Mapriededer",male,26.5,0,0,2656,7.225,,C +1029,2,"Schmidt, Mr. August",male,26,0,0,248659,13,,S +1030,3,"Drapkin, Miss. Jennie",female,23,0,0,SOTON/OQ 392083,8.05,,S +1031,3,"Goodwin, Mr. Charles Frederick",male,40,1,6,CA 2144,46.9,,S +1032,3,"Goodwin, Miss. Jessie Allis",female,10,5,2,CA 2144,46.9,,S +1033,1,"Daniels, Miss. Sarah",female,33,0,0,113781,151.55,,S +1034,1,"Ryerson, Mr. Arthur Larned",male,61,1,3,PC 17608,262.375,B57 B59 B63 B66,C +1035,2,"Beauchamp, Mr. Henry James",male,28,0,0,244358,26,,S +1036,1,"Lindeberg-Lind, Mr. Erik Gustaf (Mr Edward Lingrey"")""",male,42,0,0,17475,26.55,,S +1037,3,"Vander Planke, Mr. Julius",male,31,3,0,345763,18,,S +1038,1,"Hilliard, Mr. Herbert Henry",male,,0,0,17463,51.8625,E46,S +1039,3,"Davies, Mr. Evan",male,22,0,0,SC/A4 23568,8.05,,S +1040,1,"Crafton, Mr. John Bertram",male,,0,0,113791,26.55,,S +1041,2,"Lahtinen, Rev. William",male,30,1,1,250651,26,,S +1042,1,"Earnshaw, Mrs. Boulton (Olive Potter)",female,23,0,1,11767,83.1583,C54,C +1043,3,"Matinoff, Mr. Nicola",male,,0,0,349255,7.8958,,C +1044,3,"Storey, Mr. Thomas",male,60.5,0,0,3701,,,S +1045,3,"Klasen, Mrs. (Hulda Kristina Eugenia Lofqvist)",female,36,0,2,350405,12.1833,,S +1046,3,"Asplund, Master. Filip Oscar",male,13,4,2,347077,31.3875,,S +1047,3,"Duquemin, Mr. Joseph",male,24,0,0,S.O./P.P. 752,7.55,,S +1048,1,"Bird, Miss. Ellen",female,29,0,0,PC 17483,221.7792,C97,S +1049,3,"Lundin, Miss. Olga Elida",female,23,0,0,347469,7.8542,,S +1050,1,"Borebank, Mr. John James",male,42,0,0,110489,26.55,D22,S +1051,3,"Peacock, Mrs. Benjamin (Edith Nile)",female,26,0,2,SOTON/O.Q. 3101315,13.775,,S +1052,3,"Smyth, Miss. Julia",female,,0,0,335432,7.7333,,Q +1053,3,"Touma, Master. Georges Youssef",male,7,1,1,2650,15.2458,,C +1054,2,"Wright, Miss. Marion",female,26,0,0,220844,13.5,,S +1055,3,"Pearce, Mr. Ernest",male,,0,0,343271,7,,S +1056,2,"Peruschitz, Rev. Joseph Maria",male,41,0,0,237393,13,,S +1057,3,"Kink-Heilmann, Mrs. Anton (Luise Heilmann)",female,26,1,1,315153,22.025,,S +1058,1,"Brandeis, Mr. Emil",male,48,0,0,PC 17591,50.4958,B10,C +1059,3,"Ford, Mr. Edward Watson",male,18,2,2,W./C. 6608,34.375,,S +1060,1,"Cassebeer, Mrs. Henry Arthur Jr (Eleanor Genevieve Fosdick)",female,,0,0,17770,27.7208,,C +1061,3,"Hellstrom, Miss. Hilda Maria",female,22,0,0,7548,8.9625,,S +1062,3,"Lithman, Mr. Simon",male,,0,0,S.O./P.P. 251,7.55,,S +1063,3,"Zakarian, Mr. Ortin",male,27,0,0,2670,7.225,,C +1064,3,"Dyker, Mr. Adolf Fredrik",male,23,1,0,347072,13.9,,S +1065,3,"Torfa, Mr. Assad",male,,0,0,2673,7.2292,,C +1066,3,"Asplund, Mr. Carl Oscar Vilhelm Gustafsson",male,40,1,5,347077,31.3875,,S +1067,2,"Brown, Miss. Edith Eileen",female,15,0,2,29750,39,,S +1068,2,"Sincock, Miss. Maude",female,20,0,0,C.A. 33112,36.75,,S +1069,1,"Stengel, Mr. Charles Emil Henry",male,54,1,0,11778,55.4417,C116,C +1070,2,"Becker, Mrs. Allen Oliver (Nellie E Baumgardner)",female,36,0,3,230136,39,F4,S +1071,1,"Compton, Mrs. Alexander Taylor (Mary Eliza Ingersoll)",female,64,0,2,PC 17756,83.1583,E45,C +1072,2,"McCrie, Mr. James Matthew",male,30,0,0,233478,13,,S +1073,1,"Compton, Mr. Alexander Taylor Jr",male,37,1,1,PC 17756,83.1583,E52,C +1074,1,"Marvin, Mrs. Daniel Warner (Mary Graham Carmichael Farquarson)",female,18,1,0,113773,53.1,D30,S +1075,3,"Lane, Mr. Patrick",male,,0,0,7935,7.75,,Q +1076,1,"Douglas, Mrs. Frederick Charles (Mary Helene Baxter)",female,27,1,1,PC 17558,247.5208,B58 B60,C +1077,2,"Maybery, Mr. Frank Hubert",male,40,0,0,239059,16,,S +1078,2,"Phillips, Miss. Alice Frances Louisa",female,21,0,1,S.O./P.P. 2,21,,S +1079,3,"Davies, Mr. Joseph",male,17,2,0,A/4 48873,8.05,,S +1080,3,"Sage, Miss. Ada",female,,8,2,CA. 2343,69.55,,S +1081,2,"Veal, Mr. James",male,40,0,0,28221,13,,S +1082,2,"Angle, Mr. William A",male,34,1,0,226875,26,,S +1083,1,"Salomon, Mr. Abraham L",male,,0,0,111163,26,,S +1084,3,"van Billiard, Master. Walter John",male,11.5,1,1,A/5. 851,14.5,,S +1085,2,"Lingane, Mr. John",male,61,0,0,235509,12.35,,Q +1086,2,"Drew, Master. Marshall Brines",male,8,0,2,28220,32.5,,S +1087,3,"Karlsson, Mr. Julius Konrad Eugen",male,33,0,0,347465,7.8542,,S +1088,1,"Spedden, Master. Robert Douglas",male,6,0,2,16966,134.5,E34,C +1089,3,"Nilsson, Miss. Berta Olivia",female,18,0,0,347066,7.775,,S +1090,2,"Baimbrigge, Mr. Charles Robert",male,23,0,0,C.A. 31030,10.5,,S +1091,3,"Rasmussen, Mrs. (Lena Jacobsen Solvang)",female,,0,0,65305,8.1125,,S +1092,3,"Murphy, Miss. Nora",female,,0,0,36568,15.5,,Q +1093,3,"Danbom, Master. Gilbert Sigvard Emanuel",male,0.33,0,2,347080,14.4,,S +1094,1,"Astor, Col. John Jacob",male,47,1,0,PC 17757,227.525,C62 C64,C +1095,2,"Quick, Miss. Winifred Vera",female,8,1,1,26360,26,,S +1096,2,"Andrew, Mr. Frank Thomas",male,25,0,0,C.A. 34050,10.5,,S +1097,1,"Omont, Mr. Alfred Fernand",male,,0,0,F.C. 12998,25.7417,,C +1098,3,"McGowan, Miss. Katherine",female,35,0,0,9232,7.75,,Q +1099,2,"Collett, Mr. Sidney C Stuart",male,24,0,0,28034,10.5,,S +1100,1,"Rosenbaum, Miss. Edith Louise",female,33,0,0,PC 17613,27.7208,A11,C +1101,3,"Delalic, Mr. Redjo",male,25,0,0,349250,7.8958,,S +1102,3,"Andersen, Mr. Albert Karvin",male,32,0,0,C 4001,22.525,,S +1103,3,"Finoli, Mr. Luigi",male,,0,0,SOTON/O.Q. 3101308,7.05,,S +1104,2,"Deacon, Mr. Percy William",male,17,0,0,S.O.C. 14879,73.5,,S +1105,2,"Howard, Mrs. Benjamin (Ellen Truelove Arman)",female,60,1,0,24065,26,,S +1106,3,"Andersson, Miss. Ida Augusta Margareta",female,38,4,2,347091,7.775,,S +1107,1,"Head, Mr. Christopher",male,42,0,0,113038,42.5,B11,S +1108,3,"Mahon, Miss. Bridget Delia",female,,0,0,330924,7.8792,,Q +1109,1,"Wick, Mr. George Dennick",male,57,1,1,36928,164.8667,,S +1110,1,"Widener, Mrs. George Dunton (Eleanor Elkins)",female,50,1,1,113503,211.5,C80,C +1111,3,"Thomson, Mr. Alexander Morrison",male,,0,0,32302,8.05,,S +1112,2,"Duran y More, Miss. Florentina",female,30,1,0,SC/PARIS 2148,13.8583,,C +1113,3,"Reynolds, Mr. Harold J",male,21,0,0,342684,8.05,,S +1114,2,"Cook, Mrs. (Selena Rogers)",female,22,0,0,W./C. 14266,10.5,F33,S +1115,3,"Karlsson, Mr. Einar Gervasius",male,21,0,0,350053,7.7958,,S +1116,1,"Candee, Mrs. Edward (Helen Churchill Hungerford)",female,53,0,0,PC 17606,27.4458,,C +1117,3,"Moubarek, Mrs. George (Omine Amenia"" Alexander)""",female,,0,2,2661,15.2458,,C +1118,3,"Asplund, Mr. Johan Charles",male,23,0,0,350054,7.7958,,S +1119,3,"McNeill, Miss. Bridget",female,,0,0,370368,7.75,,Q +1120,3,"Everett, Mr. Thomas James",male,40.5,0,0,C.A. 6212,15.1,,S +1121,2,"Hocking, Mr. Samuel James Metcalfe",male,36,0,0,242963,13,,S +1122,2,"Sweet, Mr. George Frederick",male,14,0,0,220845,65,,S +1123,1,"Willard, Miss. Constance",female,21,0,0,113795,26.55,,S +1124,3,"Wiklund, Mr. Karl Johan",male,21,1,0,3101266,6.4958,,S +1125,3,"Linehan, Mr. Michael",male,,0,0,330971,7.8792,,Q +1126,1,"Cumings, Mr. John Bradley",male,39,1,0,PC 17599,71.2833,C85,C +1127,3,"Vendel, Mr. Olof Edvin",male,20,0,0,350416,7.8542,,S +1128,1,"Warren, Mr. Frank Manley",male,64,1,0,110813,75.25,D37,C +1129,3,"Baccos, Mr. Raffull",male,20,0,0,2679,7.225,,C +1130,2,"Hiltunen, Miss. Marta",female,18,1,1,250650,13,,S +1131,1,"Douglas, Mrs. Walter Donald (Mahala Dutton)",female,48,1,0,PC 17761,106.425,C86,C +1132,1,"Lindstrom, Mrs. Carl Johan (Sigrid Posse)",female,55,0,0,112377,27.7208,,C +1133,2,"Christy, Mrs. (Alice Frances)",female,45,0,2,237789,30,,S +1134,1,"Spedden, Mr. Frederic Oakley",male,45,1,1,16966,134.5,E34,C +1135,3,"Hyman, Mr. Abraham",male,,0,0,3470,7.8875,,S +1136,3,"Johnston, Master. William Arthur Willie""""",male,,1,2,W./C. 6607,23.45,,S +1137,1,"Kenyon, Mr. Frederick R",male,41,1,0,17464,51.8625,D21,S +1138,2,"Karnes, Mrs. J Frank (Claire Bennett)",female,22,0,0,F.C.C. 13534,21,,S +1139,2,"Drew, Mr. James Vivian",male,42,1,1,28220,32.5,,S +1140,2,"Hold, Mrs. Stephen (Annie Margaret Hill)",female,29,1,0,26707,26,,S +1141,3,"Khalil, Mrs. Betros (Zahie Maria"" Elias)""",female,,1,0,2660,14.4542,,C +1142,2,"West, Miss. Barbara J",female,0.92,1,2,C.A. 34651,27.75,,S +1143,3,"Abrahamsson, Mr. Abraham August Johannes",male,20,0,0,SOTON/O2 3101284,7.925,,S +1144,1,"Clark, Mr. Walter Miller",male,27,1,0,13508,136.7792,C89,C +1145,3,"Salander, Mr. Karl Johan",male,24,0,0,7266,9.325,,S +1146,3,"Wenzel, Mr. Linhart",male,32.5,0,0,345775,9.5,,S +1147,3,"MacKay, Mr. George William",male,,0,0,C.A. 42795,7.55,,S +1148,3,"Mahon, Mr. John",male,,0,0,AQ/4 3130,7.75,,Q +1149,3,"Niklasson, Mr. Samuel",male,28,0,0,363611,8.05,,S +1150,2,"Bentham, Miss. Lilian W",female,19,0,0,28404,13,,S +1151,3,"Midtsjo, Mr. Karl Albert",male,21,0,0,345501,7.775,,S +1152,3,"de Messemaeker, Mr. Guillaume Joseph",male,36.5,1,0,345572,17.4,,S +1153,3,"Nilsson, Mr. August Ferdinand",male,21,0,0,350410,7.8542,,S +1154,2,"Wells, Mrs. Arthur Henry (Addie"" Dart Trevaskis)""",female,29,0,2,29103,23,,S +1155,3,"Klasen, Miss. Gertrud Emilia",female,1,1,1,350405,12.1833,,S +1156,2,"Portaluppi, Mr. Emilio Ilario Giuseppe",male,30,0,0,C.A. 34644,12.7375,,C +1157,3,"Lyntakoff, Mr. Stanko",male,,0,0,349235,7.8958,,S +1158,1,"Chisholm, Mr. Roderick Robert Crispin",male,,0,0,112051,0,,S +1159,3,"Warren, Mr. Charles William",male,,0,0,C.A. 49867,7.55,,S +1160,3,"Howard, Miss. May Elizabeth",female,,0,0,A. 2. 39186,8.05,,S +1161,3,"Pokrnic, Mr. Mate",male,17,0,0,315095,8.6625,,S +1162,1,"McCaffry, Mr. Thomas Francis",male,46,0,0,13050,75.2417,C6,C +1163,3,"Fox, Mr. Patrick",male,,0,0,368573,7.75,,Q +1164,1,"Clark, Mrs. Walter Miller (Virginia McDowell)",female,26,1,0,13508,136.7792,C89,C +1165,3,"Lennon, Miss. Mary",female,,1,0,370371,15.5,,Q +1166,3,"Saade, Mr. Jean Nassr",male,,0,0,2676,7.225,,C +1167,2,"Bryhl, Miss. Dagmar Jenny Ingeborg ",female,20,1,0,236853,26,,S +1168,2,"Parker, Mr. Clifford Richard",male,28,0,0,SC 14888,10.5,,S +1169,2,"Faunthorpe, Mr. Harry",male,40,1,0,2926,26,,S +1170,2,"Ware, Mr. John James",male,30,1,0,CA 31352,21,,S +1171,2,"Oxenham, Mr. Percy Thomas",male,22,0,0,W./C. 14260,10.5,,S +1172,3,"Oreskovic, Miss. Jelka",female,23,0,0,315085,8.6625,,S +1173,3,"Peacock, Master. Alfred Edward",male,0.75,1,1,SOTON/O.Q. 3101315,13.775,,S +1174,3,"Fleming, Miss. Honora",female,,0,0,364859,7.75,,Q +1175,3,"Touma, Miss. Maria Youssef",female,9,1,1,2650,15.2458,,C +1176,3,"Rosblom, Miss. Salli Helena",female,2,1,1,370129,20.2125,,S +1177,3,"Dennis, Mr. William",male,36,0,0,A/5 21175,7.25,,S +1178,3,"Franklin, Mr. Charles (Charles Fardon)",male,,0,0,SOTON/O.Q. 3101314,7.25,,S +1179,1,"Snyder, Mr. John Pillsbury",male,24,1,0,21228,82.2667,B45,S +1180,3,"Mardirosian, Mr. Sarkis",male,,0,0,2655,7.2292,F E46,C +1181,3,"Ford, Mr. Arthur",male,,0,0,A/5 1478,8.05,,S +1182,1,"Rheims, Mr. George Alexander Lucien",male,,0,0,PC 17607,39.6,,S +1183,3,"Daly, Miss. Margaret Marcella Maggie""""",female,30,0,0,382650,6.95,,Q +1184,3,"Nasr, Mr. Mustafa",male,,0,0,2652,7.2292,,C +1185,1,"Dodge, Dr. Washington",male,53,1,1,33638,81.8583,A34,S +1186,3,"Wittevrongel, Mr. Camille",male,36,0,0,345771,9.5,,S +1187,3,"Angheloff, Mr. Minko",male,26,0,0,349202,7.8958,,S +1188,2,"Laroche, Miss. Louise",female,1,1,2,SC/Paris 2123,41.5792,,C +1189,3,"Samaan, Mr. Hanna",male,,2,0,2662,21.6792,,C +1190,1,"Loring, Mr. Joseph Holland",male,30,0,0,113801,45.5,,S +1191,3,"Johansson, Mr. Nils",male,29,0,0,347467,7.8542,,S +1192,3,"Olsson, Mr. Oscar Wilhelm",male,32,0,0,347079,7.775,,S +1193,2,"Malachard, Mr. Noel",male,,0,0,237735,15.0458,D,C +1194,2,"Phillips, Mr. Escott Robert",male,43,0,1,S.O./P.P. 2,21,,S +1195,3,"Pokrnic, Mr. Tome",male,24,0,0,315092,8.6625,,S +1196,3,"McCarthy, Miss. Catherine Katie""""",female,,0,0,383123,7.75,,Q +1197,1,"Crosby, Mrs. Edward Gifford (Catherine Elizabeth Halstead)",female,64,1,1,112901,26.55,B26,S +1198,1,"Allison, Mr. Hudson Joshua Creighton",male,30,1,2,113781,151.55,C22 C26,S +1199,3,"Aks, Master. Philip Frank",male,0.83,0,1,392091,9.35,,S +1200,1,"Hays, Mr. Charles Melville",male,55,1,1,12749,93.5,B69,S +1201,3,"Hansen, Mrs. Claus Peter (Jennie L Howard)",female,45,1,0,350026,14.1083,,S +1202,3,"Cacic, Mr. Jego Grga",male,18,0,0,315091,8.6625,,S +1203,3,"Vartanian, Mr. David",male,22,0,0,2658,7.225,,C +1204,3,"Sadowitz, Mr. Harry",male,,0,0,LP 1588,7.575,,S +1205,3,"Carr, Miss. Jeannie",female,37,0,0,368364,7.75,,Q +1206,1,"White, Mrs. John Stuart (Ella Holmes)",female,55,0,0,PC 17760,135.6333,C32,C +1207,3,"Hagardon, Miss. Kate",female,17,0,0,AQ/3. 30631,7.7333,,Q +1208,1,"Spencer, Mr. William Augustus",male,57,1,0,PC 17569,146.5208,B78,C +1209,2,"Rogers, Mr. Reginald Harry",male,19,0,0,28004,10.5,,S +1210,3,"Jonsson, Mr. Nils Hilding",male,27,0,0,350408,7.8542,,S +1211,2,"Jefferys, Mr. Ernest Wilfred",male,22,2,0,C.A. 31029,31.5,,S +1212,3,"Andersson, Mr. Johan Samuel",male,26,0,0,347075,7.775,,S +1213,3,"Krekorian, Mr. Neshan",male,25,0,0,2654,7.2292,F E57,C +1214,2,"Nesson, Mr. Israel",male,26,0,0,244368,13,F2,S +1215,1,"Rowe, Mr. Alfred G",male,33,0,0,113790,26.55,,S +1216,1,"Kreuchen, Miss. Emilie",female,39,0,0,24160,211.3375,,S +1217,3,"Assam, Mr. Ali",male,23,0,0,SOTON/O.Q. 3101309,7.05,,S +1218,2,"Becker, Miss. Ruth Elizabeth",female,12,2,1,230136,39,F4,S +1219,1,"Rosenshine, Mr. George (Mr George Thorne"")""",male,46,0,0,PC 17585,79.2,,C +1220,2,"Clarke, Mr. Charles Valentine",male,29,1,0,2003,26,,S +1221,2,"Enander, Mr. Ingvar",male,21,0,0,236854,13,,S +1222,2,"Davies, Mrs. John Morgan (Elizabeth Agnes Mary White) ",female,48,0,2,C.A. 33112,36.75,,S +1223,1,"Dulles, Mr. William Crothers",male,39,0,0,PC 17580,29.7,A18,C +1224,3,"Thomas, Mr. Tannous",male,,0,0,2684,7.225,,C +1225,3,"Nakid, Mrs. Said (Waika Mary"" Mowad)""",female,19,1,1,2653,15.7417,,C +1226,3,"Cor, Mr. Ivan",male,27,0,0,349229,7.8958,,S +1227,1,"Maguire, Mr. John Edward",male,30,0,0,110469,26,C106,S +1228,2,"de Brito, Mr. Jose Joaquim",male,32,0,0,244360,13,,S +1229,3,"Elias, Mr. Joseph",male,39,0,2,2675,7.2292,,C +1230,2,"Denbury, Mr. Herbert",male,25,0,0,C.A. 31029,31.5,,S +1231,3,"Betros, Master. Seman",male,,0,0,2622,7.2292,,C +1232,2,"Fillbrook, Mr. Joseph Charles",male,18,0,0,C.A. 15185,10.5,,S +1233,3,"Lundstrom, Mr. Thure Edvin",male,32,0,0,350403,7.5792,,S +1234,3,"Sage, Mr. John George",male,,1,9,CA. 2343,69.55,,S +1235,1,"Cardeza, Mrs. James Warburton Martinez (Charlotte Wardle Drake)",female,58,0,1,PC 17755,512.3292,B51 B53 B55,C +1236,3,"van Billiard, Master. James William",male,,1,1,A/5. 851,14.5,,S +1237,3,"Abelseth, Miss. Karen Marie",female,16,0,0,348125,7.65,,S +1238,2,"Botsford, Mr. William Hull",male,26,0,0,237670,13,,S +1239,3,"Whabee, Mrs. George Joseph (Shawneene Abi-Saab)",female,38,0,0,2688,7.2292,,C +1240,2,"Giles, Mr. Ralph",male,24,0,0,248726,13.5,,S +1241,2,"Walcroft, Miss. Nellie",female,31,0,0,F.C.C. 13528,21,,S +1242,1,"Greenfield, Mrs. Leo David (Blanche Strouse)",female,45,0,1,PC 17759,63.3583,D10 D12,C +1243,2,"Stokes, Mr. Philip Joseph",male,25,0,0,F.C.C. 13540,10.5,,S +1244,2,"Dibden, Mr. William",male,18,0,0,S.O.C. 14879,73.5,,S +1245,2,"Herman, Mr. Samuel",male,49,1,2,220845,65,,S +1246,3,"Dean, Miss. Elizabeth Gladys Millvina""""",female,0.17,1,2,C.A. 2315,20.575,,S +1247,1,"Julian, Mr. Henry Forbes",male,50,0,0,113044,26,E60,S +1248,1,"Brown, Mrs. John Murray (Caroline Lane Lamson)",female,59,2,0,11769,51.4792,C101,S +1249,3,"Lockyer, Mr. Edward",male,,0,0,1222,7.8792,,S +1250,3,"O'Keefe, Mr. Patrick",male,,0,0,368402,7.75,,Q +1251,3,"Lindell, Mrs. Edvard Bengtsson (Elin Gerda Persson)",female,30,1,0,349910,15.55,,S +1252,3,"Sage, Master. William Henry",male,14.5,8,2,CA. 2343,69.55,,S +1253,2,"Mallet, Mrs. Albert (Antoinette Magnin)",female,24,1,1,S.C./PARIS 2079,37.0042,,C +1254,2,"Ware, Mrs. John James (Florence Louise Long)",female,31,0,0,CA 31352,21,,S +1255,3,"Strilic, Mr. Ivan",male,27,0,0,315083,8.6625,,S +1256,1,"Harder, Mrs. George Achilles (Dorothy Annan)",female,25,1,0,11765,55.4417,E50,C +1257,3,"Sage, Mrs. John (Annie Bullen)",female,,1,9,CA. 2343,69.55,,S +1258,3,"Caram, Mr. Joseph",male,,1,0,2689,14.4583,,C +1259,3,"Riihivouri, Miss. Susanna Juhantytar Sanni""""",female,22,0,0,3101295,39.6875,,S +1260,1,"Gibson, Mrs. Leonard (Pauline C Boeson)",female,45,0,1,112378,59.4,,C +1261,2,"Pallas y Castello, Mr. Emilio",male,29,0,0,SC/PARIS 2147,13.8583,,C +1262,2,"Giles, Mr. Edgar",male,21,1,0,28133,11.5,,S +1263,1,"Wilson, Miss. Helen Alice",female,31,0,0,16966,134.5,E39 E41,C +1264,1,"Ismay, Mr. Joseph Bruce",male,49,0,0,112058,0,B52 B54 B56,S +1265,2,"Harbeck, Mr. William H",male,44,0,0,248746,13,,S +1266,1,"Dodge, Mrs. Washington (Ruth Vidaver)",female,54,1,1,33638,81.8583,A34,S +1267,1,"Bowen, Miss. Grace Scott",female,45,0,0,PC 17608,262.375,,C +1268,3,"Kink, Miss. Maria",female,22,2,0,315152,8.6625,,S +1269,2,"Cotterill, Mr. Henry Harry""""",male,21,0,0,29107,11.5,,S +1270,1,"Hipkins, Mr. William Edward",male,55,0,0,680,50,C39,S +1271,3,"Asplund, Master. Carl Edgar",male,5,4,2,347077,31.3875,,S +1272,3,"O'Connor, Mr. Patrick",male,,0,0,366713,7.75,,Q +1273,3,"Foley, Mr. Joseph",male,26,0,0,330910,7.8792,,Q +1274,3,"Risien, Mrs. Samuel (Emma)",female,,0,0,364498,14.5,,S +1275,3,"McNamee, Mrs. Neal (Eileen O'Leary)",female,19,1,0,376566,16.1,,S +1276,2,"Wheeler, Mr. Edwin Frederick""""",male,,0,0,SC/PARIS 2159,12.875,,S +1277,2,"Herman, Miss. Kate",female,24,1,2,220845,65,,S +1278,3,"Aronsson, Mr. Ernst Axel Algot",male,24,0,0,349911,7.775,,S +1279,2,"Ashby, Mr. John",male,57,0,0,244346,13,,S +1280,3,"Canavan, Mr. Patrick",male,21,0,0,364858,7.75,,Q +1281,3,"Palsson, Master. Paul Folke",male,6,3,1,349909,21.075,,S +1282,1,"Payne, Mr. Vivian Ponsonby",male,23,0,0,12749,93.5,B24,S +1283,1,"Lines, Mrs. Ernest H (Elizabeth Lindsey James)",female,51,0,1,PC 17592,39.4,D28,S +1284,3,"Abbott, Master. Eugene Joseph",male,13,0,2,C.A. 2673,20.25,,S +1285,2,"Gilbert, Mr. William",male,47,0,0,C.A. 30769,10.5,,S +1286,3,"Kink-Heilmann, Mr. Anton",male,29,3,1,315153,22.025,,S +1287,1,"Smith, Mrs. Lucien Philip (Mary Eloise Hughes)",female,18,1,0,13695,60,C31,S +1288,3,"Colbert, Mr. Patrick",male,24,0,0,371109,7.25,,Q +1289,1,"Frolicher-Stehli, Mrs. Maxmillian (Margaretha Emerentia Stehli)",female,48,1,1,13567,79.2,B41,C +1290,3,"Larsson-Rondberg, Mr. Edvard A",male,22,0,0,347065,7.775,,S +1291,3,"Conlon, Mr. Thomas Henry",male,31,0,0,21332,7.7333,,Q +1292,1,"Bonnell, Miss. Caroline",female,30,0,0,36928,164.8667,C7,S +1293,2,"Gale, Mr. Harry",male,38,1,0,28664,21,,S +1294,1,"Gibson, Miss. Dorothy Winifred",female,22,0,1,112378,59.4,,C +1295,1,"Carrau, Mr. Jose Pedro",male,17,0,0,113059,47.1,,S +1296,1,"Frauenthal, Mr. Isaac Gerald",male,43,1,0,17765,27.7208,D40,C +1297,2,"Nourney, Mr. Alfred (Baron von Drachstedt"")""",male,20,0,0,SC/PARIS 2166,13.8625,D38,C +1298,2,"Ware, Mr. William Jeffery",male,23,1,0,28666,10.5,,S +1299,1,"Widener, Mr. George Dunton",male,50,1,1,113503,211.5,C80,C +1300,3,"Riordan, Miss. Johanna Hannah""""",female,,0,0,334915,7.7208,,Q +1301,3,"Peacock, Miss. Treasteall",female,3,1,1,SOTON/O.Q. 3101315,13.775,,S +1302,3,"Naughton, Miss. Hannah",female,,0,0,365237,7.75,,Q +1303,1,"Minahan, Mrs. William Edward (Lillian E Thorpe)",female,37,1,0,19928,90,C78,Q +1304,3,"Henriksson, Miss. Jenny Lovisa",female,28,0,0,347086,7.775,,S +1305,3,"Spector, Mr. Woolf",male,,0,0,A.5. 3236,8.05,,S +1306,1,"Oliva y Ocana, Dona. Fermina",female,39,0,0,PC 17758,108.9,C105,C +1307,3,"Saether, Mr. Simon Sivertsen",male,38.5,0,0,SOTON/O.Q. 3101262,7.25,,S +1308,3,"Ware, Mr. Frederick",male,,0,0,359309,8.05,,S +1309,3,"Peter, Master. Michael J",male,,1,1,2668,22.3583,,C diff --git a/thinkplot.pyc b/thinkplot.pyc new file mode 100644 index 0000000000000000000000000000000000000000..37664267d30b343e1e13ff6edef42e17e069b15e GIT binary patch literal 19381 zcmc&+X>c6Jb?(^(7uY30fFKDH6h#dwN(3bc5-ExjX+{zOkg^>aqzAMhZA5PdJA>T; z_u|YffmMTa=d4Pc%IQi{Ny@n@SEYPZ#VP-=tCa$kM^XP+vXh>lDWrtwq)*Q1^yk7=99)dXuLaRM)w(io5@cZf7s;jH~w~$f57;oCV$lU zJ5BzW@$WYI2aUhm_#n*3Xg zf5_xd8~-ko{~qHXG5JT0e~-yOX8cK$f82P7WK?I2KW)6b%;l5`os@sZU}>!ycqwh> zC+-H1MZb^aVmXNHrJ&;5#ds7lH`hG3;-A3p~(NwWs&E;n5jaC?x%CUXy zfuqOQ_mF!sDEhU?KV?5L_b&U13r}8s&@RVuMHdb!nj zkQJ1m!%hjLN(=D_6r#5wc8GqG@_thqpdkAgfJnv-NXdX)ihS@gE0-cAyv)g^$O(UM9qpD`;qP1H4xX1{3}hrhD?14oKUHU(Nr#H<7d9? zdZ>ot#Y)q+hTJE&=G+pT$a(XH8wzU>839Mnq9AS(Nw^nqHX&}~IU z7mPB|Y}j!f&u!GPW=E!^h9uMVFs!fmp7K({1~QmMS;=F<3sN=W0^j+-BS&W+dPMWb z9(wTj$>T}>*h6Q}B;`kEPad6lK+BIGojx&>)Oq;a% zsMJer(waZY)9hK7L9hArVkMfumyskIL@uU$HY)Xas?mzsWJXr*G2|kS()1Pi#m3SB z2X-76s|S*?U9-&i?4?n2JtYN}xt22HPgz&CnS~haZ5c4nd%*B1%z`~c3rO0tz-kAv zAG$Fxqs=vT6hjhAZRX*GYNzaSeZ{W2wN}DeK$l8|oC2g#24TJEUiOVn>&+g*ki!x| zo|4%;;n(z;b26fsbXX||#d1OE<#5LF5R&=0-guh~5Rf319nK-!qk6yJ7MEJsQ<*x$2}ELbd|YetPbbykj-A*sM#ESbIi{ms|=GKwnkEO z6YMG;KvF2w+^SzF$Ql+3)w(E~^_{TVBhN?U7xv+1;zv9i{nHEfMqyR7}`;mmMu zc+2pXA{mV1;p2t#_o6>gI2f>j%zQ1yC(N_5zqpd#IlFPNn}@C7S$mpO4g%}&tg65uXv zE@w>m&n8Zrs6ve^{+2J{+9YXQKa-K}kLwv)DS5R7ZsyX=9

QmXQ}=mGgL7(pU% z6Ljk7CAmsE&`W7c!0fq8NV)Z0K11)yg9IzsLPyYT%Mr*}w6av`wv|zJ+seQ>vXbC}Cu~b}&DM67R7b2i^A*dD0ek78aP*ilz{JW+vJbC_N!8yM$zoua3 z{FCz&6b^^ND!9iLkqlQscc0?PdaDyC%?J$C}ehTdXKdum9a!t`IL^V-j53~X(LNny)FXL*hRGnnS<6}ZnHn+ znfxpaOaez&k<8R<7;Y2xy=bqlerj`@T7qS_R%$D_W*EXLuu0*Bzm;Pl1U;opB~Rnb4qBBY>3dY3S_b?b~=8pIaGB#M=4hBI)`*WEH6U2SGd0 ze|#c8-%G3M95SE>(Fy>xiMUfO4#73d<;00#jxf;2bayI(nI z7EqR00zZlV&Ul`E*>Bx<)umzGaDxyut=pbmuT@%hu*91-+_YLfrWNER#CzKks-T$4 zbkZ({KFoLb_?9-Rg0uKJW%sHNI~8^qrajdKySa%0bRh~_rupRg8ATNWp75p=7b{E7E|w7f z)p)p_Iec!#lQPfB(kDZh0rzMLde!f_riEt_nreqLd2hZy*w3$h?XUacc`{3fjPx zL^*h2c|fYYEY-3?an#ST=9QOOv)l9U(l%WlG}rJr8Pbaoxf;yDPAP_^H>gtvKz%CX z=s%DUff26Q5YM1u~;a8=mL99|pc=A-(j7OB%g$d;-hF zk))RvFt0br(Mmc=Zbxyef+&=HB~C0LIf8>~yOlcn1U9ObFhxbv9@|>TE{lMy;Al=GG9*&Zm|y5aBHuP&k)e96c+t>1u9EgI>#|H*ebxQhme$* zGv?nOOYA9fk8;dT4BE2WJ!GIaVAtcn^Bt0rrq$H_)-ePi0Yv*ggX;PZ@e+A<-LD!B7a9#1>YK(UCM+lq_V7&yFr5d53tvu8lx2yw|YT zC7^t*ktyQ!8nSnY-nL;j&^zf?X+Fhy5;PdLR_<3A{la5nv_`>x*5KHDujGpXpiWv1 zhV`7fiXAj{PNJSeM(~1d9SF z#i{_xG}bBV8kA*!bumc7wy$0as2$$wuTBTGVc2mIX=eH%1~lqOX?}!=&m#jCUls!s zdp$6Rl1qe~?hdRpgm9uc9@!9R6{2HtXfeS$_fPt#*iAGSRAYs zF7YSvA`y-ZghN>8eHcw!0bTHxChZGVB(QGY%3T6?6XU4iEuFGAHi2sPi?7>CA-h%T zE3$xP?A78ycsig`uj1HJlkFGBvH`Eva1~+Xqjx0(*40uEGM1 zP0a)j2UBE>QJtdxyI>g{f_)(Cx<)t-qVDQ#B>U{89TL$HZGy#k5%I_?{bm6RmpI}7 z!+ybtByX?oy)b*Oy@7FF4Lo?s^w4|EL2i_~*u{{#whgDeRd3oWE&?51u(Skyo`f#i zXvGG;TP)jHu}SQPT=wlMyy&38Jy`T4PB>=Svme%L1f$hDorEXTG{!P(gb#-DYqUn^ z)LnZPWY91Q#f1;j#mciBpIdo2tc?Lj>_sIlH`EQC&{h*k`*&n01#-xM0wQ8X@j)=9 z-(Y{Xb%1iDNT!;fcxKE_ijZaC%@yIz^@%rE5N}RSIzT32Bv`mfhYrez)m1#UEnqQ{glC&L+tGRO709aX_?lfte=?zUak=!s_25}JDybhoOVPv#w zhmvHazxZ?heEqSA<_)KP%ARp+hhxUo8%+erNOYyH+l=ebKmmoWH8oTAimG1FtotCILin6N@d5;YAGREcV7ji5;)FVU2sNQkNG!xcheWqJcR| zC&{g{+|i(~B+#7j2@3Q+v^PVeaK6&k0c*(GxrOf72y!EcN9{o_4$1rn3&pdFl_tKj;!th{*3Op8G>&0RY7hv4p!RHJ}Hp+RI zrQaYZSGbVWY{D|~L|sW5ahok7ahIcsp4kA)3`uoh`D?hn5tivhi|+-stQoq{8bbmo z1KEIou$8XEh>@)~hQnVlt#OW%J7LmT!{Mm2aODLcH?S6Qxc3Nh513^fM3Y(;ZW6gm zh~@Q5dqkFS-X?9XXU*!z89G9DjD4k`%wLkwI%=RaXRZyHJ;3_QeJ1>dxrRs;B2Us3 zTYFRrNfD0Lq`BM2B0Q;6dM(>7?H1uQ+`6`y;qGhQVmuWE7$M3q!YiLbK!4+tIqH4` z7xYI`y>Bx%3dwFm7uTGT?=4w~rm>uV)7 zaP*0a35p2%b-1nb5GMsSojWjYv}z3oAf@)XpdpIDZ8Q+x6B%|x9D(YA>KRmRb(KZv&$2I+< z)_97$h-qt_*q_d%vN#K{57@s0!MGhrcc-{7vBMgbdV5iKEcG2T$O-C-!>??RzxfJ) zr;|1)fkt(MLH>?6$smU`_ZsAQkU~G4{!O7@406=|@eRn&1t#*#t_s5z;BE9qw1-&^ z2(io_d~pL)V>)W@?jFZ&WXJcsJ7uoyrs)nuPQ0hjvA@K+qS4oOdy24}+UBV1ExWXZ zY`@~uZWNo!?KoRE(XF-()2-JT)2(1#{N&_Wdt(4+#(E;Az0aS(G1U?+=^75&;V3Gs zQkc52?gexYD2Vuk+^QB)K_gYUpr47I0j8uHd*0MRCE;gL>Ej*3XHV+JJHz@NmHTDf zCQ^4iATAnr4dov7yy(q8Rd%{c+#CJu)J(cVkijEXT^Sycs&gUs6{Q21GduNUiPQKM5sgd ziivDx&v#nrxjT{#gU`v_e%pf8%)arots9=ECEcfub)SYuwV(7OJx@~NAauo04^%6b z5S_rm#D*L$L23{&Elwb4IWMQYB7$jK+0MXK-%QCC8N`|K;3@WcLv&qKY);w9cEBW# z3*q1wLZ{qZLg+%=t!_o^{M&d~qMc)~c7(VC4io9IOoWsm5O6OK`>PFPYdnc~c+x)H zKzt*vGq>Ugi_MA@mU#BCa`<(qdTFvwSi5Hv;Dbt-(wStrkLHGw)icMi$q?o3PFbbBUQ(SZb5Cr6 zZ#)LR!+}zzf;eeXNok=wDGYGQ8mpN=dq5gtuZ=1`ap8)w*bH)YF>LC7n+F_>eJO(r zT6W&cw)Ff~8|y6tB8Q9<%pp=Te=Sf}?%Nnnw{K0#lA$FZc zWjKA=@zB87M{3w18L;bUy`8$!@#Urt8Mbp`( z*`@<%Kw`wtpwM79cx_bf+i1}ioL+nfU&9FK=wgs%T|kUd)*BG(66|%!Plv#7TzXz- zVD3YpgzUiy!*IgRkD|!=F(!wYyu=##Y!;%!+D2dH;!;bQ0fgw7q2b9z+RD>SAH?mJ z9IsH_^h3rh)ON#jLxc{V+Yx$hKs^-KEb}y7Lm+EgD}hO&ZFq{nN?8yV@HEcd+%Rn) z2x*R>5#8QdB(|_tGHvb?_m*8Q2<^?#4IJAapKwT&e zC`j~)KT#6&N^=w$xKqn;ouE765*Z5)V?1J(w{u8vtl%3hkDBEj^y1J1k86gzE!NnX zbVTA+(i=hs$ziO(!w zxLSh#-zI(RrcX=N0*4Nd2D#Az-U^wY*oHNVX0Sf(y)(YAQ*X8-h#hgjNiXcQ=$jK0 zs|fEMp^A7;HW5@PXanICp2YTGqTz`0ERKtbKs99d>*i7-krCH!M1B*;l6j0p6pyq^ z#=rXM80nBk=i9}c+xCh zbypFp+JPLNQ>ePj^{_yLMH_Oi%9?zzOf6YXc_hxk^B@gTOqoTzX@@UaNTD`$K8ov{vDMbc;xpN=~HQ(VAtBb;>b zSNsRr0S5l|?EivqiJ{n?2RatoDUEg z#<2kTelGd`u0q#$2#B1QK?CQbNJQYBk1O<9Q+D$vPmU-uX3_Pc>1}>`D~|>$jPtr^4FNq(RY5G2@fzjzllV7 zADNp#9C`JEK=B>|95L18$nBXfkAu&#DNiJzWDVdWTZNAxL+{PTs;XjthQg2P-a?lMRQW#UXy#Ta;^Cs zsjsWX^@_J6!LFKYG0C0~Lmz^scq2{Fu1w$rGyo{MXT`MB@j!4&)~@z$hNy=_&Gx_gUQ8rtM$~@S#^|A+0cCN(jDNX7xBV zc036&3SA)VmD0Yta<9SP0{9sQ5KNpCeA#syzVI^n2)^(J`6#~d z+W1a<;r;M2eBq7oJ@~?F;Cu0fcfa@H3om@{*Oz#pqM@1Zps|OCxp2dQQ(qCs9OX92 z#&V4@fP1tAR%{Jc)dBFzLCiXO9trSS`9n7@=~5@0asgg2UXMxk|C4tT>9lGQ!d>mN z_HuGu4hKjlRTy5v5v*LqE3JM6Ut6|Q)h4mquPG<)jA+6*h~XMic2>J;ttDB919e_N zqW7t4RZq7x%XJh*%FJpds0!P(kP$qI=>0Ykhz@PtdIUQtKWHI$DCNYd@CeR*prVwq zJ87(C+IR~JC0;J)!R5B@c50h`wxP;O3bhd>TuQYky%%KLr8UfbJv6Nxdh}K5=$#)}c5!UqGS)bBMP&V!mycobEzSOe%C&;394&L0k`I zk+YPcyK!kUIGCCmg0|k@^Uh7@-J8DAR0a`okuTDj7$@?@xH@EI85}65w!ok~5+t(1 z!}^$FazdRR$q5eo28zkCodaA=^uh4Q24;n^)n?U61Vw#Y2c59;&7q7h-_l12YFFzx zjB?ctgL*Sc?B*_yD!3iNlM~|0PRRRl?ffN^4ouOickV$^&mnm>+l;>CFixmU>T=<^ z^T2%tytl+F-tSQGA}%(gpax0t-!VW(ja0)a1#_r3N^emPWrY{i_7U1bfg~@5{QuH6 zISxRH(5`D<01){aSbFB^tjw0}18mxa!C=sd61+Mq7Kv=JH zM?(w?`HvffBAcZmSvJp}z~AXPPtdNbnKNroLB>Jl#S8>vdp^Qhq5EaB(irbdVvCEAzgr(}H;49#Ou3sP< z?n9p@2XH{daX6L6rsQ^f`d~<6dlGEv{5|dqXA&<2x9QOnb-_>M4sqwl01UA}Dp-@; zk{FaQ8}!7c7(R4T;ISl!Gv9+g7DBuNrwmhE^U4$vlr|>f*f(LKgj-%4KU918MW`w) z5Rs~PMN@a_tEe0h4gm=kD0PLTULy!5;cTiQDXLHYHHyNtC}&U8`A1a#I2VK@HvK#gRAi2rK+4aM>Ql&o$~XoB+7ozTmh9mo$X=0ZJ-K0B z8N-20aFFPXIeGP7M@BzfUu^#pa;j3uYYzL~WPrkVRs2JnKk5t;?)8u*6U2-5xKk)h z%&@0XB*M-G{Not>V-CE3PbbSbA7H|)Sn^^A(~ niO&>1L&FaZ4~`xlzAZbg2-G-W+Vy)22M3wqeJXrzfM08KW! zn_UeOkfr!RC3YM;*-V^d@^Ciej2%0Z_ins#GMntoY$lJL#JibHHanS|&E&C@$yv|% zBxkeEPO{nW`~F+EsvC_4NJ@%l&O++qt*Tp9_x|tu-~ax1@Gmxv{>f{fd12c5zd`)_ zP`TvNKVR=$?A$3FOD-O8wUV13aHj^`{GdBE=t{gg=xXcSsdcJ>@_Kh_eO4ZFr-rif z26t*hRvvbzhO_dBJ2j&6I#(NY^Bdi%jrQL4t~Tc8H@Q=r!gsE5r>@DK+w4wVo0YF~ zr>@J&TimHFDi68Z7B|1uo!V;8Z_xQRcWRrR59|DTcj|gOA91xC-28TTYP%~X8{F9) zE*^E4O77H77jJa00Sa$%@t6v`T)atz8(n;j3OBiUvrBGvGXTi7ymHC8_nx}N#n)w5 zw}h)@7jJb*S#`ICtGBxN`t0fr;p%P|Z+FRV)!h-U-sa++JUMl{OYU&-Tik1C=AA0< zQhATcH>y0Y@=Yr5RrzL>?^5{|mEY=OwCYxs_qlktUcTSOw`HxrJ$!pYkKLiF2UNaO z<%25kQTdR{<0>Ckd9TWMyBJ@+N4AMYKHy@!`iQ>qP8Yv}H%>k1 z;-e}&1ThE`G_yr}d`y zxcL1po>KX}F8&4=S5!Xb;xnrJKH(0{pH}N$%1&dQo>tovJ%ablxOi6ODV66`#yfGn zs&d7}XZ6}Md=DAnoZd6-;+n3}8xcHlN@f8<;vkI?LWW^uV-EVa9 z$FeVd3-9VnA9V4@RrNzI`LK(>)twt~t^cq-`4DfH>W<=ka{LpJ|LO1I@Z4NAEzeYI zNqM?aZ&#}I6ooh`&oo-)g)}K&thVRMyHTrtt~}YUwA0CF$;cN*XIhQ<@@y+f>g}Y`Y$a(rG2NIS9X-}) zF14z&bM5lsgNN?ve#7X~)#;?3CP&JTpLo9f_{pa)++Ch)x0^=}9JqM#;>2uyVWQER zJy5e+>4Dj1ZDOuHUmLCdE&j#_(8KmMI5b<;dV6YSp+4QNqMyUK6jv`)Q=FU_FR|7J z9F8>>(7Kjg7{!HZJDHzN+Tj|MrArBg{F$_wOjj$l{6amh&R1p=yRZ%qG@41h%9c#? zL;UgN7`5-MD72kBTXL@eeI-|F54f|%bEw}*^&))~RiCU^+xS-X<)qx6OUf-^0zk#F zTyIYJv)QDcv?}dJE1eh}E#q(TNEv-Er%4j){KWVmzdD42JELw8uQJCc9NDGaSRFtIabQE)e9i6W~*_ga;93VwwHVtA6=}>H)|l0 z<^u;O?z^`Z%^GJE7)}wpnnXvfMUb-b|9Lxmi{6R0nsGs0&XFPS`ZV>1{kV7TLwT3 z{p>(D-Wv}b_DDb6jani6@PWIFuQtFmiXZ`m+pX$!8<=Z0Qn1;Dq$l_a4a}ivFcLg@ zX!M8KMpQYO)9_OS1fk(Zruh$lfopQGy;5=n8{eP)1P-qU*dV+gIJ~c1Z#;15a=Wc>KrPL%p zc{WXIGtqVwq8&K&r`KWBn3|#-!jaGN1+Fww3gpTQYST^>&>*NVYndswvyk&NIz+qo zpvu#Y#<{e-&@3-Xd9_SJN!)fa{e?4buMW9ahCmNuv}@7ECz2YN zC+M>YQkjzlH_MW9Uwu&8%G46OcSa;IEVspHU0FSa0ol3dJD7)Z=L1d8bpb8so(e+WB_ z9)U6wcEZPNka|Ndf!79}8WVYN)2x^5gO6rN1q?7YsIbw+!zzrqctnLw9DeX6aMGB^ zWV5~nrwRNM@Ya~q4A;unL6QB~W>K_ABz^~J1S*9X4b`M_9s;PLE%P44V9dbcZ~ z<&fq6-J4nU?6u*68}c``ujAM8U4FU^V5kxCpgXtDwT_qAVzhg!-g;bb-Nx5wbP7<6 zuOl)(hC@E!Nu?cPs7a|&;K3_aDpDZqNcjoe+gCn0KeMlVEXLs^55(ENaub7;N?M*w zT2P$ptEmeg09`ZmMM=ebHcH#POcc-+*YeUKj`Rf$(`LxH4>|4Z&w@F7$r zSWhO@S@2!S%?!93Y>09~qnbO?@jKGJqD#SRYHGSxNmB^>-FTNk3A%~);-sL-3Bl=F z+P~GNIq>w<)aOv&8&_kwaTVZ1&1B7{1aKTj7opYtbNLyJWc>#62s5G}e0&p53`u|)Ae4QX6{7oiQ0Mu~8c=1OhOcO9>L>BU6@68#LfXEpFAw8$ zFk|u9)YQ*h{-;x^bZ@U#>KM(Nv!&dCHC8^CETt1h0LKZ4%K-@+#<%euKN}jBTc#bD z009^!oTD8@pqm$~7Y#@r^rrz1r9jf&0XQ}FrSScn3`xx5o~tP$MR(Ys{6g7eB2N=b&7@e2#6r;?LV-xi6{1c>(D-nF{PA7K@UCCRzv(azZgg|$`qItDO%%+kK_A5loEYU? zat^oyIv`*NeuFxC>Vq>`h{&qc~x>BG22<9gZ`6XjUQEIfE4IZoyC*7vfiB?;>F{q z9~2&h3Sgl1jk>*oIDrWQy=-XNg^vg=PwV~&@8eSG{L}75+WR7`^iycu(+zkx;fhbq zd(`O$1@g?@M*0rGj*@vOoV4sws!5uHXR>^-fZ1T%rI{01)KIImX5ob^!!YHObV}nX zeuaPOooE=W!vnOc%at1Z)v@`s>4(QNd5ces(}0WKii0fN7wEHjwAF%tjCgpiwUCIN zG)8`=viNlMTw+Xih|fiQjuq!C?Ku&JbxvGqltTSBFV{}A8O8p@F^C#~=pW*rbPEn{ z!$@g!iT3E`fg4LhrLw8i4ib44)r>^aDZmu`n(gRE8PN-PBD#wQiPrb9L<=DbL=e3f zr;-zBc8>k%eXK>BV2#KJ1pgAXWm$A0f0~4p{UjS`hZ^F&*xZH-k0)^W5|D)fzl}jI z$DZS>@uuS#%Wc3n&2;E%&Or=8HhDG7hCp5}Ye-K!Pmt`-7HkgQ$L4G-G$(@w{}n`N z=Nm+5=V!)L`lq-oxWMLJsCW6kX#$ue>JU4eO9O#H>MXRT<;8`CIkUhyR}vqmvjk>Z zynF@cv;uYKurF6Y$wY@2cB+|3^B>S?pYxx%A0F+j*Y%>AmO1RfO9#3*%Oqd9Y{sh0 zS4s&sZ>>X6DjmtcbaMdmhUH|p0+8Rf8j#1;wSAaNPtL3Ld(DU8#~gv5*4SKW<{hD- z18OMsCuQhUv`&tr&^Cg|j1ovLFe$7Lx~?YZB!XTvol5_Wd9O%8a7f7@#Y~E)>Hk*! z)ATfCO(o2o$QRSVbO{8|LbYw-0+>u{)*9_L1lMw^YSIyhSAa6Avyfky+79T?jFfPJ zcx^9Wewg1G_p~cWh87e+8m`$qEFVtyqv2G9M_{}9Ac+%|6Zavf$eSrVFb7Clt?Vx?7Qnb3c^+LSJ|)(TPi7)rGp z27~@wPkM~hxEqOPp1R?iOV{Rdh!ifyr~dXy$VRpRgWQCU2)?}aW>(|U%03A~hOfmd_p;q=q#M{}t{j3Vw3?oW#e+R)^!VwW z(!prFIbAgll0kL@46q<)@5KvFGC0H}t(P4XDP%H}5t_@aqzFXOOmw3KWKYmQ3Vb-d(EVVYilXZ|KoC!rE1SN?d;Uo2h`7zTdGp(9^o&zhw zmw!UCP1qVOJ&A4=D2O1Fjm-D;=Xi1kyLdDQ-DN;+TQ8`62VSY+ma)hi3$bh*S~P8o zV^IUx+CUaf5{&q*ENKWX4wD}(fQtl|{UjQ@ygPx@K8T9hNUUP)QDCL#=30%55R7%0 z;nRtvb-79_$6GSAfv7xip_LS#>&b$qu3+Yab}{k`lv89ewmE09zWt66@9j>6J`V@Y z&v&TLoK#(|`7t5}M|oTMo%~*5>b~7*S88U+8DB9lVws)AxDdhs@f3bepQ0gMm>16sADHHM_B-rl!Us`eZk@gDY!sC5I^_n2^?2XlGfe6OewioMFl$s~JrXsKW}F7@ur zd}YztxP^DE)fVH3=ybryK$WI~oEbz3`y#YZZgw>tA`d15bTTkg_LkNhs`ctb-5b#e zT4P*i&ps7Mu^!|*EGPORApuB&3@8gEC~Kr;(Fitd)7OJB8Zl_6fK2q!)%zoo`u}P3 zPgDX()?YC+C|--uNEx9=-^UvPj_3lrON4dV1{(e5aELCl9)2qer(xWj^lhEX;c!Be z)zNO;jc()Nb{_WdpwNS(EIovSpAl;zj0rPUkMQy_9v`a;axmD&BHT1$c6Vj zOE2;8ejYG1b91rt6P+vz49-2H*z(k-_7ip-!$kGxHd5=}<;s4jX z=!a1?eF%r4($K)>TQH%x4iOQ9`fr{8cW`X;$Tefz#;#MO#0ZX?#@3Il9~&7P!Qbe} z`jK^G8>BXAyHDd~`Xl{ab$Hmf<0T#8VHmr%8?&v-d>#*4R?rxj3^BUit_1gFJeNCj zUZBGaVb{Gnkm&%;OwAfHMs^3w3#D+WwESuGML*dHaK^WL$5N(sN=r>c7vIoJ_ zku?fYOs|uf7{r5TygcfS8XWd^=v9{)WE>*tAuEXDZ;e__xPFXsIxvfcR1zXVgqCqK ztFg}U)7Q)8j=?I<<(_^2fIGh-Q*d{ora+W|2RQSQ$XVDQ)t%vX!UR1GsG{Yz9j9vu zN~1@c4NpH5TAsTpL(7k#*5cjX-n~Ru^c@91qa2HH+E_=r!Z*ng}L3s5x zgLfR8OQsQjhd5{29=S!LagHL312v1@Dj1fZNfX9Q1hfV-#y^z!=-lw+gvmgO3IfHP zf6@gKjx;c$hk1Ao2ceE&&gDZ7(IA2LWICzVyhczB<5@Sj6O${$x$8dwj2~ZoD@_(4 zSOB}J05G6k(1J^LqXvcmR6a0#2+!g}aLiA4jt#y2V!_CvyT<07z{40()GHWJG#0#? zq36*z@&B#lP*wNkI_^*z{;evQIyRQvQ0CdO$Y%0ID_l?okwm z)(w?LHbS5dM{mdJG=BPHZzMWzK+OapRTyyLh_EM3p8z8auCI`Kp z$-~zXcxG{Bh&sdnh$zEFM4eeg8KTY*PKL)3b!OpYh&tP@D;89STZlTdg?AQOhARj; zv(Pfcn^|btjV`%Sk!BWPhDb9DFuR3;WM#l8{RcR7sE6FuxCF~L&13h?sV=r!RS)DZ zp&+Wj`K54c_>A^9={~b}!6#}rIk>1N2u)5attw{nf}cOOiZqLQxE8v#2IWbZR{SkI z60}C%p4U%rP&;IQSQb&i*zAZ&*xdBYhEed$b_}9c@c~+FdZE!ln04zM>Wf_G$iVe& z$vLS96G@1jga_n%$w*`tH!7{n_pQTETDgqE+Vsyp)D*DuHm^YgeFRSxd98o}U24!Zco-?#PX@StfrzF9*Nu*1Ui20$+woCnv_=BC(*Ea&6QfM|)>=3ENI6`g zTp%e!lWIx;=s$k?=7NgF^g7mi!4%m??9;f~$M6M=)ETq@PXZ{(4_RCI4hhh&>>@H4 zNP>6`dhTUJ3)6s{94ZNxm=ryi!B5!(_$zb%iE)9KoM!Qu^!4BqY{}!8^oGMN_wGjL zaWju#ut~`Pdxd?r`wIv<@(Qp1d7@w#*W8B9h+nv;M|{ZZ0Di3VTOIryjjk2^U^Wb& zHG@}wBXA%n84jMtch-u4=%eUEfA|yD>?L3OD?Ncvsm-6n-6j-B+#-LHt8D!AC0ynk zBrponKw-$v*mCkPm8NNaKXDyxL5Z_b$ z8{4msU0J_o(XZd{(XTBmi4u7tNE~y?)}1AVcS*te}4IU9L;IfAHw}Ngp{UL*zH{^+L>) zDV=8?v*0O2Gc3%@BB|9h*@fXRjCl?cJC`IZ_u^-jvKTuU6Xr2b=Nb#OSiYYb=$l}t zSNO_YaAb}YaA)>pv!E}1$WLbE7ww#MPq9l!Xne5MT%o)yX2+uidg+eNhper|FX9zk z0PP3*Z$)*B@*(;pvvXCcfqMo3vsorti;}*tP>b$IjjxevwxHmK5zB>0F2r)J8^!vp z?G~~?!U!j?~|G)7K_HpGmjOd%yN4bLE}rk%vGAI9PdoSQ620= zQDV2D+OE!XNekid!URAJUc}Nf9!4i* zK&BY5k;%yp9QT1R9|?dDd{!8H9>Pa*7m-Gjd}gh|Z|v?fsK1+FA?UG;5J1_ITa`h= zGNull13fc}XP4&9pI0xfEld&Lq$Q#RSX?4 zy8u4~S3dQE+x)^22{t)0;M>6RB?Kxcvx2!A{i6^%emEAtBLFjV7+`v}F<(WxjyMe3 zY|dJs57onL;!+6Di{r+D+baOkT?gqg{9`~X4C zx47ZWc{mZlED+y`0+a`2#cKv@jB!EvfG+-j3GNO-9q{&Ify%~nyr|cNXo#c)IlaHyZ|m#3jLpk=96k;3sXkq-HHN;;Pm#6=70;aWbK90dAMKUw$=dRgaL$4 zY9Zak!8Q5`(h)pzlzC(po2_>~Lx_;P zh~OekT0l_&2Z)5uJt_~}f3Qn#+<)+n^06li^_QD<`Qw=jD9aFWP$>aA+(8-21A-~J zigQWriF^dshrJTZ8s2no z2rWKQktPqvG43csR7lWaOBZO2;O;TlRgj;>1#A!FPG5M+UpzHciQ}m$xV$nC&tU1g z5)vbkq&MJ4Ge)G%fj4B1(e>i9g0YF6(+}qgckwV)ZDzIHt{dweGbunn1L)Ai>k;&Z z@y(Fic4+|XOb)mgWy1vDJ*R`-NHnYg^hTaE$1H|GlVXI1dD{tEN$Mt$LO@+Oq<@oq2GhtB`@e$;~Jvdn|4{i+d;6R5w*w`fyK7^-N0$5y~k#M*wiLeI16{G;B zc_9U&{~E1Q{|jEXwK6*<$fu@285!K(1ZLmSm)XA_K)eQSk2+~H`YdtqIUM>^>5rhs zw-efWIn7Vn_btI}H#$t#j6thIOnNkT&W#}(?X%cE3;s%DhhriQ}#RcI*0)lNTSg%4ag*Ct(da0knFVOFQPU`7L0jHnM zDRw3GbRViMS5LPD^>jE_PcTzqSaG#3OjfG&K|Gs&7>AWK6tZhp8*c{VYc`>vr;b-I zWZWMS5Lck5ki2qg>YwBQd=vE4uD&e)bphx%j^}?2X!`OBJWoQytu+sDIYZt-lkn|k z!zhHDb5PCGa~wKh8Jbqe<@4rDom8+i&nac&3fc!j4q>!Z7;v(|7`+>`I3m}S_qpiP zDE8OaKY<$mhG3wK<6`|2<7E`OW0*g}Yt*{YH}UW>9zM5`sib$vGJ@;it3r?)!tGE-syCETfFB6y-B4CWOO7?u=WytV zNjuALV3G5(lv>ZhYv|2y#?55@iL^YvkYe5xp=4T4nc50TEid91g8n*=6O60SGK`Tf zxe{mLdW^2J@E{IfVHF@LA%?ITUEPS$6$69V@03IlLeAzfUr?>XsZ(rr#spQY&zsf? zH+h=j@+lB}l>{Fri&^EYO8Fv^Tw`dKvqI*i>2MlEM0-y;!LHlzwagOh$*Q#hY`TWH zoMAljjPKZ2&}TpPvdmf2G!0lIfH%g82QSl9ln`XKc)aK~c$>TfL+(}N9gu^7^PK09 zs^XpQ{EbW*2RIYxN+q}Rl?^%2ab3Rt5^8wx-wKKj;K%GzjNG_Lf_DWNI9{MMV&Ovi zzUpaBUD-RaG7-LMTs?cb`~V5?ab{74__Achn$n>#lorN)WAoJ1rw&zdtfP)qbPtn(BOykv(SLPi1# zCVz&7zaqI@!zVV9T&~45*p7kGf)|y}l|VTZp0o0wf;YjHD4RzQGWYoD9U>d!N(E@a zrOc2mOq+vJhUk2PfB{*9=1PkX^3w6s_hp_aaIj{Iz{;?tO6HKt!u~YXw2Kp~C)~;N zCmjAa{|TFxGADxvtB~N8+5TE^5nrhfw^B9_E*&sTZm((4Al(8XEOXfBU(QlZ6ZKc* z>J8Zjy+rjInSlgYQ5Bj{1t6T(4go3rd+$Se0KKLHxfEP$spPq2F3@^hNPzkpp3yXW z=H>1R4O~NX)MmT_`kkKn%%8joIzQdU_Kb2R&Rel`d@H<|oO~Z1IMFlyd=Dx|{|yhE z0F1tbLr&5v^`PtMr%~FdP2`$>wdGEdm3%j2=APYc?pflSUzK~7^Bcf5Bor+P zPW2$|0BfXQ#34&N(6s^sv+}FwC+UPP0?acLhw!lgzC07j$|=a8S;E)Nd{_qgC!q6+ znX=4`fV^{Babd>wM|n!l$oZrPi)g-wz2-X~!xYKW`1gJSk}&a+<}Bip0dNxv20%hD zxU0X6%PT>T%W`f0#S=O7Ut#rAM&KP;0^%cuOgTpMcuPo5)%k`%ldmgSEn<>uSPY_j zQMv+%GCR&=Js`RUlH@od11i|vVE85zBfh%=8J;BTE32^y2oam8kb{=XqC!&==Mua! zBf`lm1KB_C39?=km`{!8t0p^ncy$`=c*okP@ao{XMjGsbCrR)d`oZ%CKn+X{BNBoU zmR7fH{H5MdElN1C_Wm3o*z!V|kOh@axOU0Lm7b(^#J|2weVO2-C^KvN07{odqtqN^ zMo*(pa^*Vqvs)%917DLLAR}SkG9C&^@-c&`crgr?VDNUTAiT(>bUbAIo(H~_bJkaa zs?LO#ouH-au&mWZ)?5LKm%-QOFf63s2`nx>&d;tvG#dCJ596{gx#9;TN#(s-a?s=+aUwIdzVu0>N#0}+fgY)<=L%xTj(KwTzF;4>Z# zWvsQXE+Q`hv$idBXcPfIpR_A5YRqbqg(hVsvmErI5g%D2q+MK@rY!|29`b52)BYBd zAaQFe?F`Y?5%?dKE)3mh_Ictf4(HhSdvvW$xU~nfa`$L<9Zg%u} z>m@q*eF5N@Hovj74WlHbzM4i&{ZZV=jdu%FZ-S+zkT^JEAsu!tu>axA!@iqA zuZe}TSYL}%ES$CVwOBZ7`!-l`R&|+A3QtoDG{cgtfC_>jo^J zwe_`F#cS(p%Unl$Gk_&Szr$xay?{we%)ead#Y??nr#vY{`dE_FC9*?zW|02t>4Y6o2!R9QlHZpt>bePA=Ut_@P>@= zoy2o^%>$)2_LkVBq55!E4-E|$kwLJ>!-IPGd8WI;a*p~KH~6zJb7kRXzp@bCa4rn_ z{?b|?p{8ByxNXHccXo@rB)DO|;U$E8N*nnO!arSv=T`c_u&AAPv4e#o;HCgr3}TV~ z5dYwarS3a#8o*V4M4mt`buH{{VFW|PAIOYhiCS3#D&%f+h-ZfRj$E%0oQSk%;9TcM zN!gYbCJw#0Jcel!rYt8oEet-C{a%BIR6@9zZR7hKW-ARvq%3$uki%ueWXdcs-sdm_Yk@dIt~t zd6?iq>VX_u!TR`CWl6gSfk5H&NFzvR7tQd%AhGBK4;)_FRtMlKpWWv$O29rsRu|@( z!-`s=;FRM`Q1qKTP?_lE@kRR(2()c6y2iLiD(@^j^W3u{vr&&>LU0Dg0= zpF4)Se^&S$-;(_V1%8gaDx(J=$Udj>@kjV2eV84SDb~Mt??Sb&6h6ndWWVq^Gr72; zD38`=rS^?Dz@p%qXXYqO;%AVfr4c`xWsqBIr=P}qzIvsth<*!Cuk}mMpzdE3zLbF$ zmyF2nK>__WWyNVHtyzF@2B;f%7j9`W35-m;m0^Lzn&(Z$?4#}SC4$TG@-S-k$IBzA z@s~Z?8T9i5sDQSuGzNsVNFtHS^JQrR@DH`mK$a5q-E42RK?tOD6I&cuZsV@p0jrHG zij(jXAAYU+9)5s*l`NC-O4-~KEUeZaEGJRpuLu?jF}I#;>olMvXoH;KEBb&2aPd&+ znHZM#zwZEvq9B&T$kZmsR&A{!tNp-!0Ijn|YeC?2#$)_fd`8i3Y;B~J${`alJ$*#2;U`Z)N0ZSOBsMIWHMaTXdtwhwJn+UjJ6x{j|C@btB zODOVX{5L2o1K*|2B_P`YBW`dK9Nbiuh~1}Mj?T<;4wn`aOo?HaZ8WIE7{J2B*4Fw zJ2|cM(y1*^6Jn&WmoZRO|wwBhx*t^b%imwg2>;;^7 zohz%30>|Krqx38=0Te)Od5~-R9zzs?9I-# zQI0Tz)C3%%8~p}BIEF)tJ#41ud?NPT*v-+XYyXiKmgDLeo5hxHp>L5boLOHz!c0Uzln{hk_@w^O~^*V=}yl)Kg9-m?e`?X zoF?R?9+(CHk9J^9K% zsAdF)6H5tA%0_UqknW%v2E+JP@jHe>GC)M0Q^1Vv7CTi-X4*Cy>r_>iNr@O-U8ujn z+4CofL20Xz9ayl79K)Hm3LHp1(VGJ^qym5G{TW+k*u}-x6ZA}WAlPt;BfR0L3HKla z6DMi-iB&-F77e5d9uOPxd6fZ7`m5 zG#L!?$1+v?K7mE1?bhM_!|5&qg^>i9z1wOJn01{!joueNB=txh4C?`jruZ?B75fuDT1Z2 zaak{=Apg2R@)5#--O06lUy!t~LEV!fFI$A3FizS4v|&0M*aQG=MRg+~ zGoUWXTj>Wm6S%o7F^N%QwTYpkt{ScvpAA-S=gM(<~JzfxSfy zF;0;_Ol3gCnoUgW46|={<#VMBS3|lDCRGF=al{7eN?U`NO-uqHS&ha(#6n89OvhpY zrobRnDr-*(qpTT5;(o)0U@aM3cxvXY;KJ^S=4E3wYVlMv&+MXWSc;8ns|yJ-`nM2# zWDTY<87l3@pzs>}@&o~dWPm1J34o@VNxODHeKJF(m$dRVS($Y>q*lU&j?o3t-2t)x zBJ&3njb3D&B)1j>Il*aC>ou01;^F651wT9VGHQPSH@^pu+BkRP7U0SV<)LqXC}=>^ zzv!OsRuDR*7X69Cap6tnu;?C?q=dc4R5-B!j4;>um^}Psszq`km zaz~8c>_gsJBF=b?0xSP^UrcGHVk%;8ozD|re2KHoKQ^F5!J%!x5)^l@kWgU5qh40&Ht)e)g&Z4V!V*6;`H%QqQ2~Up zAt0}OK&$TyMuM4dR$IVmjRKCq2A12{g?474uEkLAz!X*;V>xPxq}6P28X5W3GWq6* zp!3xfo0f8)r-HM{9ATWH3ugF5u?6AH0mCE{yO7t4pa%SRLYe{S zENzFtGI<7Y#=s8#A8_A9@JgTo(1lAGWNn{%F?qosL4uJq2E^J+Dq*{Urr-Phf5qMC zcUgrTJKdk2_$q-DFuRca_v=7Y!?@&1x0bfzKYg^|ISgOUC)}dnL3LBBBta8Cd?flm zc~EOOT2mm0_PCtF^xUdySi4jF4BI0OvT+0|m~&&Ja4rVe6aErOG*wJJT*_RF>!^iG z?$|(w3$Dc{ikVDEYTnd%qnF^x8>x=7-3F+iWNB^7?|z-YkRuYy?>1ur-mQFgHxIY* za61oscz6pB5ApCa565_T7Y}qm+8!Z~u%rh4E0)giKsRpmzwto7pnO$wcPR3kLw605 zG+>ZvWo!KYh;?a8Mt{tMEPU#d_7)tl&}9ZL8>9@&)+0oJ%35c6_z4_x>Qt$ha@vn- zp9jR!qbLk*7%FYKcVsZ^C4wDAumEoedxebZzs)0?aBuU-wMc)@9Ysd4!^mbVMi?F0 zA+n*w1R#xURtv@a3slTv1gD|6q>)yN3C=wCS+sSR-@en^qP=*I^p132=|w@(tvvAr zp&7*JGm!0zW!{gPk7YDKVAftq00NpgU&39z&eF z!Z&}1%k4Stl(g?$zG@^p2;((ooUJYX4X{6|*?*Pp?gkbBCH*mB7B zSbfn8f^`3`K)!UeYVVsaS5QCjfi!Ip-wnJqzz)7PP*!sO^1=5sW?jG94}3%js1b^K ztx?6_?GZ%dB?szip~MzR%xP8z`V@%;q}LB_mrHibLW{}Y#@hc3rOO8)+xs^Jp%jzC zikFMo%LgO1NDrMz$$IbC)~K1*=I?Kh)qTeig_aQWX0Hqu+^$!a8{o% zZ@_N6EVm_c5wB7YIj?5k#HLfO50zwzPI6V`^0rTPwcSQ1+-=4JWij%w5Lt{lu<#wd zL|~q6JA#xIBJ(Je%Z{rh+wp31cD~K4Dm;krl3#&SNto znxq(HWg$Z8C-Ac8n_yZrA*o>7_pC|K+h;0_MaBAQj*1I>P36N=n{^9o5Hl^c|~N}SahLI zz?H3y`^rx@X02F`8~83#BL>VBb0BnBF?`wDNJBMo@Z$drV2mJL=kV16&KtOrqdWR5 zoJRi-5C4fb@LSP=q!B{s!oeWSHWJI?DO}1Yx1Ynw;^Wk;$4@^f&uKS<89QlU9J~}{ zCi7b;`nYudEm%vkVL6k%SU~-%OomO-3aEJwikOZE<>(HZ&;Yxz`6)}uL>^6GL>f;q zJXvRw=?VhL16NhsAdV{b9K+^*)tYDnYlSr_OeOHV2i!4A0!D;oV!h%;D*>z+RML(DCXL-NqO`%M)oWMoZ1V&(Hd#a;c;T7197qPShMoYfNzC*v| zPleu-#QHuX8qWnEyJBIn?3g)Uf`sb}E0OvX;X^CO4XqhEUqJ0n=rm^G!u&4~LVtsv z&K4j~otiy=y@-<;L)xQ%97>deaRqX zzMu~@{a{WH*uRrEA&(Z&l2X5s@ zx1qosE+b>`Z*E2Av0?nTeq^HztPUfZ?=oHkMTx!?YJ~JYVm*vj2x5#(g1!8ccp@8c zo59=H*J-XDPkWt4Y1e{tn~KXP^;RB-t3i38*S{7OC} z8xq=l5GW8LfhgjX4;4)MT{vW@$VP7%85Xg!nmsb+ghFuAX?M~z*^!7uPg@)iyw%I}QPG4e=h{4b0 zpvP{8m}-ltd8hHyA8ME%>K!N~1wRxJ@fuFo=F5SfhU}9b#G%7alS6C?JDp%Rr1nyn z`Yn&2JpR~TbI*`T*pz;TDZNdPQb@_wVmpAr3y%#ci$P_Xv)RXlV-tcxR1po>9!(0U z>^Yae`tmZZfH`j6`x42vJ0DcCn z#H>MZoSCj+g(l1;bm=6(5LTzbB(D}NhyV~sZ7h4T(CuC}G+Qbgx-U^FbQg_%+PCz7 z2>rF7IGoBfP{_h#IDs6*%pk}KPC*DnAO9m2_DNgItL$JErAW-N|5 z+|6?#^uFJb2LU^VVW(%>F^MPK+@qJ{rE4b)=`)BzNM8a|Qz6Yp)8<#-jw_nG)9M}* z-gM+eRURaxxAP%V;3_6i#988BBl@KJ5Fvz+X%YcP`!qd-!XHN=N8u1r=uZ*ypwj`M z)Z$NY&Q}G{NswS%Fq-`NhoWDs0RMmyZZj@y>J%my^N?+nL77VvM*5?p#Z3C zV-8gSnJ{_ff&E4`f#AA6$;=!Kgejka-@8EPy;{ro7I~h% zZuL#>O|G}#9aQ*CCV!0z;o19B}Yg6^c~S9uuawGkW& z3%$h?o$s>1$W5$=r|i(fP875KE_s6^40p{Pa8|)#g|*w<3(Rj)g_q=kwfStf+2fxG z69h+5Z6#97X6y?}DXa`6B=~1jd9!$nTD8_tU=EW0oIQ{-8nkq$yZM&ec(|Ph!pk71 zh!MzX8(QbEQK=VzXhnRHujgnxWmGLx?usQvV17cZfCiUQ>&xve&r{m5yN4S+6cQ&a8k~Hn+jR!OJ|W2 zr4AvX$tlDu&SwDyL@alA>xkx61vtQ#?F|>$r?IG~uNfaAA75aV~uAXmZ6 zUZd*Jl(kazLwMH^+G13l`)-I)wT0ZqCWIDYp~8;t3)=^Rf65l#0qrzTxRj2)N{`{N zHj6A*<2}r)Dqkk?W#A9p)!KOpu7dX>NUHuQp`;rj2-s)0ey@#JNzMTXH{zr%JaBeJ zbQ^*})k%u3^y4_JU{DujxKi|BrUXHnu%?S)ptdJkZqmRUTWHm>5XshKUY_l3whX%< z4^ACiY^F~<69u>#)yUwXKIji9O1J9*t!y~aQv_<{ODc~Z;vrWfI9uiY*WmqMBX5kN zDn;OyjU$62!&*7==wcIoeJyP%N`ogb?vgVw4 zQHrtgl4AF=XGJLnn=R~oktNHcU57f5Zf4iXio@qzx*Lar6<3iBhctxtMK0fX>iDA* zl2(KvfhiqdLBUAhCv7VVDJ-hD@g*ZpWz1p3iP51>=_SWt(aN~K!JQrU9tUt47zvDq zv}|ay=cpDwmBGM-Y&M3=Rxsp2J{7;PtsvxVrCVo;yN*fBJ_eom?!@>AT9AvmNEAiP z%pyJ^#m>!B=dj|1+=+jqX;xm~A?H$pPNb%w9cz(!3f5?FP&+=D(T5w_g^`dl(tvE_ z-r~oF7aDrNKiHS@NiGlAS|wg!dJq%ZeC_IfD5>kG0$1c#DIZsB zs3lEq`jEO~xbQj{btc|_6)#(>pr=uBA~bcq<`>v${?t?s9<8Z>no*~3^Ecqm8f>(y zv%G|W9cZMc{xZ+RW!qZM=Usf=ZLJ&7x}zBl($>N@K7%70@^yzD0^)dp=Ory20Z{^~ z;BdbN5qxfQ3s9cYq5wPVAkzlUF?NBM3Z5x11GeMaVa^|+U)?(w%UO$TlN#%Fu7{OH z1J{gSx?Gt}R@u(Db4ntMe)Usic_alLKou;*!dj|U6?S&tZfv3FB!ZeHc%=u`vi9za;^An=cOP z0N8^Ya`8FOMnL=V(~oJ=-u9ljj|6a53mlK1-m4py&={nEq?E{hvyU`ki{P|=_xwJG z|6gR(0&e&jrys*NPZknhC^bjLFJ89^eQrGgCs{2){zL_tb>9vfQgr0&2db}XH;LXU za6D=Eq?1>~O92p0L_*Wv1CK${rNI3{mSPI9Xrtm+!SP*MoHWBCjl1wOWmWo2oNN+L7 zbB`RU-e%=(_-~5xAFZX|CttLan!_iU9GF*x62jmIvy$^tA=6p=sS46E*3s@l0nI*r zoo}*9;ulKi;Z4mP<$m(@J5be3kMBiEz96=$uQ*C+Bp;ncx{AeS>zzMFnDWy@-ae^-*H4?>ptkM%s_KF+aI5|5?6s9p2+M+>i%|@WLSbcP9$K&qt9xR+a>Cft9*u z$z`~Lb_sgqyHNjlt8$T4ZWcLx*MOf73*$^M7Y!k-7yq`ZXBIR$bXi!Uiy5<#{`Dy$ zl)DjU6OY-KJ5fi{yL%bx(8rG{%&#ZvZU)|S)J0{y!c63wcmrp)@E5bRNTz}{2kGI7 z=29o_ey)H!84`4q32g|RoAs-q`MNwUykU_f7x6|9FSbxQsq`N}2C@ezyPC>RZ5anaxH_{(w#bSKyLY=-!g@DJ|ECeSc>}m%BJ^qmRMxsp+@0bPX zKLeopf$x@S{4Byk)y%KVUPaduTy#CyH9EBl9#x#Jh#M^^;P4~3@BeXzA2(9v@KMt# zD+L(9aFa0td6O2a9eY?Funm~EydYD{~mTgH0a~% zs~Dss2RPn`i^xhofY8c!z%Iiz^0OaObcwHk|@v<%ZU zMc%T64gn(u+%P-i@nTn3n4f_hoKigq&^gQ#&nu%IXJIS?U=gW~VoaXeDj{2YlI1$+ zh#C-WaGF)Z8S=NAZwusxo8)ta-$V)y2m}AKYSjzFP#X)(Kb9O3BzKT*d zdn+r7le&C(;VHPs54d*n#HeF(eOc6-?6aJN10F)x{lh$m4AbWId`f4Cz zk)aq-Hno$3Pr-4*W-*`Y1Y;G;Yr3FC+Cm7oHO3$&(L;zSWyJ{{pAz)?QxoZifO{f) z9U%870dhmZc@hNn9y~xH?c7!aAWk;IINIj@fHIqys$-Wol)eQIbV%@%jcS@=m0nI! z*oYataRv(Rg)HBz5>g5=g-6y@wDo2oX;Ir5L;25?^d_VQbm079pmQ868jq5B=~%v0KESYfVa_Rz)9q|maDuMapFZb z_M3Tt7z-W~=JAzWzC&4MAgv|UA%ZE;v;Aiv!X=c;5X!iwI33%6h965gY+h9;XISWz z$^z2mft|EzVOk5=kF$kH8LU+yA{8dE7I9iddo5hRW+f$9nF}d;Yo|;l80FAcw2F*X zrnj-}YJ@S$f&K(fj1f3F#{QZZ)4+Ooq;wPVf=G7K9O5q!J}ni{dQS9Ufo&vwuL?ho z`yF&%oE5}eVJ~as@*pkbtkocqITvW$h*}zEb)w#ao{*?JXWho&X0SMb;pI|+zyT32 z1I`XF1RnOUG-1kR{hmOIKq``=iNX%vpD^ZqeLIGM*7ne`f$FcKol=_}9Qy*U<{W#} z8&bx!oeT>@s*7Q9ivK;s`VFJJ6~$=}_9p!`99Co4&Kch#s61g^9xe6cS`paQ8b{*h zo)*$XKW;9VL~AsJNT!5Zkxb`jZX`Cv%_H1_%5yWm+&OuY8vtNqs4nIp1wyyeYwhRU z{~ewo8{`H+fo_9UYGzp1xP#CYFeek34efUG$bkdM5pc13uG&oEYGtC)nmxd?1NQh- z5ubYSwqs$Jr;eLb*+iIGshtjNjC7>-^ai#e`_lz)x8>Pv^19+ION1wzjB-P>TuEz2 znlXCz+2;=1=#tp!FJd_{HR+?OtbgFL{ejEIL?OXAC8ud9cq2bru*rf_B#V^>JXXGp zS}S6u-Xj=Ieb-?HUx4W)Q<+0sXvZW}QNJpEna zGP;LCt_LE8AP+R4Y%g z)dkb8G~u>{j~J2cMe7O5si!3%5NVY~F7M4=&(Aw_ezRfggd3Ou<*M^;e@GsAnOaPF zmekSgGr>7`i*STx)_}s9XzJv#=7q$$xW4i*i$0G?jiIs!9?lXEgu5HP9)aT19KzvJ zZmk#4ARGYTm$dT1hN*OJnTHIXeO&KY(g4bE>Hmns+R%`NA?FAn{Rh)k@b{$OdGSp_ ziVdl9e8^ECAEh)4ftCxRf;Z|SZ*1q`H*x6CDUxPFPmobB2Lx>df=boHc*$}sJ&vp7 z5rorVPWXBjFt1z>9Mp+A8U#YxF8Um{?&!ptnCGA4g=@sx$qI&24eG9JWQH`h-FU0i znsZ2!@OOZ>!eA#LPm{?S_Aa8WGR)M#t45o_0(|vxqK)5k8^;iQetl`{fWG$#b_|~8 zW&V+b6p%KDLQ)J!lMNkf6V2Cbaly)wwFtm{4bOIFq~fzkM}??d?gaX(16JU)jE!(1>` zsn!Z>kxrPSB6P9P?Z3j;MDlu4B|Y390Dq0AJ|6&pz1<3{i2?wwCjc<=C>}8u#6VE0 zU=MD0cy_Wp@>&2{9J)<(H=ob1A-ayq`hJ?NByOB#ec+>^h4im@s{-wm#N--y&Ty)U z6tB75t8f)1W>PWl1rI!8zU6Q3(OM~kVZNJ&5h>0;krSB>`bc>F0nLfzpDlEOJz?|t z2~pV{D1gc^V+#>)eF+^Q@X;y1CPY1=&!tC?{QT+)9m**VlAL5#oQ@?S^3P~WLX}-N zRwBijX)Ye4_A~z?CUX0C{Et!fOYAs%%B|a$d&hR;hKUc57_``qtyE?Bm;Dw;?bw>_ z??IK@Im+TX11-BQsDzwB2xkjzUVUJWR_fgd2>mBHs?3lju14^qB_(`)9tC3xG#2VP zy;-MfF17U$odRXh*>HQwH_fsfUX!zeANmL@_xR~;a$iGt<7wAlx=;-Z zNspht-o2^`NK7zd(h<+F#vErN5k?DJ9-)$`XOofi)Zl}33Y0n`2fqzC%qFK0-ONY| zdZ7^>*1@AWkysu%vsr3ONJ^iS&vJX=#Cv_rg>B%kgfI;$3KA0D?rmiyLu4x0j!7{t zzt7^AwL^9`TZS9qC77=)F8_H1oBvj^u8wvG$5rIX&Hy(obWuy^kZqjvt7q~R)=IiI z4ZCJ$p_b)T3w@YnRy@?NBA+zoOt3Z`OZgwjcW_}J79Ti-#QjflDin9MkQOlM00(_w ztU7Iz@}VEL^#Jo!qdSBS|3tCCG5@~$py?|TSuS28kdo8d=tv&_M~OpC036^AK5H@A zWJ?Ksdi+zpO5-|n{+C&qtfTY+sz+e=&q|}u{_+Npwq{SqZdRc6x`922d%QIdtqTsS zIlLbYg6t~LwZseSXP~{PZBAkuwL_U> zm@+e?XildP_&sTwaKaxJLa?<4N^-J>!K5Lqmo5N(KW;@VKBRQz>yXlC-R2tsy`Am#WxFCN>Kc}W^)Os5 zn<^~T(U3%S2Ji2%R6|>ONuyQG)$sIcHfzwgXV3tnO8^vW%Rsj19fYUtn1@@C?y%>= z`V9zGmN8JqChh}n8*hs+u`rk`Kb|L%a%CnO3KrqJKdI--&~dz9&K1BnC|j84nQEskTGc zS`f89?P=0q%${I>*J#%Nd(u8X<+z!_;7AF%)o2Wm!UGZ9hLa$#V0Qs=H01{zs+K_l z_YK|!!R76FR4mx@y}{wf%EX}0ABgx-N`1;D2;8J~!7?i#Ujz19YB6hJz7;70>7jxQ z5&;R`=)Vu2kDdZo7woXV;NOe+^IdFg{l?r*p$1n`+53(8frdGTnwk2bgABwqZa{>;)$c<1?rhhY5)i$GPAKtfKP5FF-za7rhWjn{F%j!LxIAoXr52Z zD=H(uN%x3N@x9pernF(8IoT50sS6<*&YkZM_^+YLFagg91My^O-M|n`iffE7sg4Kn z6E#LCtcZd;D2IUs(B~u>7L+O*8;zxXEZet?n?TYwGl0(`g$o0Fg^M5NM~WenaD%Uq zH1o~C2fvFa<2pSu7q39;u=#QMgL5&?m4h<7S z&M5Xw_q)zgY6Ou<+lWw?q$J=?YD$@MFJ|DzP=KRtOHSfQe-noesLxkgN@m@m0L^+! zkjrMS3|3A3@FvRgH>!$f-v-%xIiB3myziV`4Z+AsJi+ ze@q!2mR{3X<)Ey~zDQ6se%3;Ma1Rke$>c_vEKQSG#Bo5yy*TMW1xR0*0qA#u@_`D5 zu7VR_w1{PFROlIj7G@S!fep}Nw6l~2e)#68!rM%nAe#Q;~+@9bnQ;%&$?i)*F|B#5@N3PBn@OI1J$>knW~ zlbj44MFZ~*5XLsko3P>0M!sz~54Z7fI}dw!$nA0}kV3M}ll=6%amYWdQZF_9B&z)p z)iB3XFv$ltZ&rrQYmuqun&1{0#7zmottdbU29*p%0*l_G^#Rs0DJCR@K-B3*o>qJ} zl8VnYm{;lCZjZ_iyV3$s1^JE`!w{!xtPpUT&xncmZM->MZ7xYqU|+Op6{Z{WXUx+l zMe>tqY7U(qfDz?qp{d8v{)dSd3Tx~<$A9=EFJzO7pcXy};aF}(#)dg%FB6|6y@n?Q)m^tohl8mZf7lL_?s04zN$ z7l)O8;BEKZcj#>g1Xzpo<|1-fcl$y8`yuh+cWlqi?{CcLLWaBjg%29!UoUJCfYEz- zpt`s$+|Z=L6mJndPY3jDBunZ~cp}pV=|rOf@HY(6r>S8+v^7*WMp_g_m|28;%0o1< zv-M*d?Ms`0*k5(7zFALV*e_J$3JQ5lCr&gsOs+|P1c%%%r2+0&!}^K(f}SlipP|R< zQr99Q6LZ4e*=ie$TC)|a^A&6f*|&i&mC=27$X-p2M`v3}Z`X z*2?5Ek0m66i|*q=3LU^T#bJ$(zL=fAOKpk1f^*X|JF+|06dPSpD)#5L>rlg-dMES6 zqnK#&exBhmOh}HxG~0sIVxt2d!+-FgFibE94D&NRF$`|oh~KE;7%1BA+3xdr!n$GU z3%o)>ZUunRmJuUhnHi~rZyv*>@%`4peIDj}J>Kl;e1TX8#!^cX)B|OzrbCV;EIuk= zN;eJ0U3ej`d<#wgw{RhPFO|SWl==cbdJn2K2xmgj0nRDGd2r(G0__OO)b>hr_)!!B zXkP*&fK{N-p~}StyrLDu^hkh(VBcay0zWW(4>*Mt3@);o@ba&dMQrrQr;IzKQY5h0O`8T|*ZcNO zUd>Ok8+_btkWEXl2BXK1{6fxbbLWF{uTC<2KaZK(qjKq9A4@gCvCFGi~;jQnm?{T_mu-*6+F zF_zmr;8#5HHT;QEZb88$0pJK&nMyWQO-R!DMe<6&jZb8>6QX-#Y?~~9*53gXP5!c{ zIrDabESg2z#ew~)^6%p%Um&;$7dPTFf_DJwKHMm>l($37{bS=SP%6wC7@%g>XdEot zL;&QNJOGdsq-mlqDtsi{qRShavN5@f8i?m&myLPo{=4r#bm*S@&CHbc+Ryjy$MnCBto_nrU#ZqW0BBULhg^e%NnTws%q2{O%>t`nA!yRb>R@t$D;kn-D zN%7&0B95-{VO+tYFK*?A2(r%cm_SQpWKod$(*|`)Rf!ag)y=}3!xdv3S{QQPt!}tT z@(>8WLV%k`;)ZN*H6klWZ;s1@I5GP@fZGG~r%@&F0b$Bc&O?cdXwdyiM|ZrL;N{Dk z3)Wm>+lUED$>!zkG(d11T{6AbYj8`S0)dA>%q8_b2-)!Hm~Ax{ zn#k2NiL4j2K00<7kQ7jj!zktb^u_|!-tqb`)sOk+0(a>=*0?bKo_*!_W`o*J5!XjaQ}FlkT<|tU zDpnzw@rp(25@RB(S~sVeqtTo?u+`tX#^FmY)F;5Tr)@iB*T!EeY(%l;G)EP)_sc|~aE zm34|m5m^w$xCOU52IXPeX}uOL?8-t^&}Wx|@jDFaZrRt zOFYOc_&sQ)4U7Y7q6@g2G3#Ph#HNeXl3e9pUXEFkiX;WaHokdegOuutEz8I5wbb zsBt&i8{NZR^OUVL=<8;najC6E-c40pQn5c#la8~`6Z*#peY1(LFYZ|q5~Fl;lxu;2MRLyKCF=^&qHxab#0$1FPVQ-$7YvN!chfK6 z;H7mr&)%fo8Maa+1ee3r&*6nJ4BV}kZRz#KRF*S}%tLn4*Rh93yVBxR2;(ac=}ED` zxnxP+@M$tMf8?D>iUk53z=LjPZ+F@{*AuE-#VyY&d_=g$aH82CgJhMXmMr6)39-kw z*sCaul@@Ad} z3eUw%-o74|O>a`m_i&MUNazXCtn;?-X5HI5p1?5ByXnVwr!`5!-aJPWVG-A zoYRa8qJN$Gi2BZFd&Pv87r@;jcd<)h1&GOSWczSoxuOxP=BbF%CBO8<#=Go{W}^y5 z+;+vAmYFBP)dmRH{3Ibfx5SC z-_cLd zaIrsdIU#!tVGqZPUH&wI%(u8v=|rN5;GL#UJcWYE4FH)&1cbfJn4Q`>qkw1F=5cWh4Gk%xwjeIgaxcvR(pNO5~S8)z)*-m@g zm3TfM#6&ORhQz(B z3Vhy2DXxlyt$2|3T!QgJ68nxfT0crONc(QsQd&Q-9jiW(ax+5){}n=r;Kf@-@3P^v zUp!>D24&jB!cZ#rhMi^#B3Wcs%E&G%*jnr$Z=_R6{13G4qQ0|{WwZbUyoiapN~2g(NjE`WD_rx(;Y>3&R$F=__+ z-v~53*lSGAA!-r!90J-(s4xl?Sg1fX8b@JkM$+_^ECYNdqv03DbjmW?E+jDeG&`Jo ze#F3`!{+NHCkUJ?!L+>vZJ6|VjQC0G^>4G+GU(9jUaN@-r((aoQ zh1Stp!E6q;J1LLfdl0h3?`?oYJbNijDq#kzr!`Kya*0tTvzR*6UYuG?$Q@y;ZKzSe z60bnEfi9appN^VElkoQk4;rcNN7=SF5S0p%pT@QR;31BlQ7`^55Gt0+1n`hE1RlO- zCGdbI2`W)+9*6faKAKtGgqEyZj*FPA=nVu>$2_#Tw>_->=Ldb^Pp=AS1j>`|j=r)C zVuWUZSjSi#1Z5h@L@e3dj5D*nEe3hAdah|AHqcwcwIt(J&+etLpgh49>NrnF3@l+@m$5d!tf>EEF-Us z2fs$3$&?yoo&g&=v}t!eR$WZu7prl5?gc-FN~dvIfBd9YB;JNX(zPNH%Mr1v5azDs z(OAdjg#y$)sNAuqWZ zfD)sX;~3gM#*OJ@=kX>-o{Ljw5HNBC!*_TB#AXQMN8b)|9`I0^H{%CQitv$#+i;E{ zc{_$b;WdbnOPk3wK9LP0$K|2h$8dwa_7&SBH=ix4qaB3@e6U{D+Olqk56DW_D`k=6 zt#Z?`lC2DsxspAc%4?Q2N|Xqf3X<~uUM0-cE+>iTM+u%E$H7c;Ss26kK9=6cQ!^K5 zx+_TWu|oD4MKFrXu_qR;n+oY=?QqVO-O5>aC!t4>bN$drX$U`aI_zfE+jzL02Q8)e z88#AUg+q_8M4v^qLB5y5NgFL~m44ccQ(D==Neh*rpCDc#XTg>{%JYe_Ec$|FxHw*N z>mhl83?OIm%bMa4Cx4Rp7k*K}wVKDn>Sah>7+kiBuciFMT+W9eT20M^uQ|bo$~eXA zFn5oozW9IG-TIP3ZeJa7ua3G`M!1_BYm9Iz|18!(k5DMIzDUBv{C*vEAm@kOPMjc< z&)JQ7)3CdRqGQY<*AKsitB@y~e0~SK^%Xp~(aj)9Y6*$wA8`2p#TeB$x%e6vZ+7vu zZWgh@V-8z?p54r+NO*ghUh+|yB4fJRS z?m(v>ZR=)yy#b)~>NW0_Ye3yM0RHLs;*e1{Y{7N~%ZIRxs8O%9mWsq3Pq(K?WXlPg zf+@uF@?nZ;e<6$Sg_jdfxcc~BV}rl~Iq?O(QCy`ZL33saPJGG@oiR{2UveBb7N`qo z$TI$TVZQ#-`1t$YzxVWAdtchC!Ah0fA8|W4P?d9K9d}2c%ibr^^m(39M9di1>PvBg z)iAthFHWm}i@)ecP*pl6`U#ZAsVk!cJV>&MsrZao5Zxr%r%>_JbLQ+|u!jlMW(`r+ zROko{Oj;6k60#}%G1g!<{VbE!u^L;}jQ%^6B8dg)VizQc`V)O4T4cEb?_)Lc-Z&Xe zA~{2#NeIdec6|zqyL21!dkSk68wO;CPV=K!^fEnXFaIc?;I#_@WYL%K1xbHmWr_fc zet~U}@E$~6d^8slJ>-L?Ur2r;z2npEJ(LxCWOxr&Fx-G}fFVrEjiE%7V+1jL)E-eSjcI-KeU=QR40F#(+UJ=K@4CFlRwagGeuPzOgytMxq zp5|66XJ+b(wke{bK9w#%Eg&N|r z@Gv&3-`mX%Cl=;UVj)GVRk2m1qP|wrtW~C=YGvN-LGvsSkb*iA8hHb %m>^Ni52 z+31TX^@l%S0JpFp;fChYN374ofaaWe`&diC= z#-u-lgY6}hgB3!e)xeH50&gX^kG%O5BQ86Tw?UKDi;47kt~(w?N6HuH5+JChNq%+7 zkmm2xRn#Sa_=V%P=SB3JWEb`|U&RxBnbiERdF`HX_oq=3Bh=XdJtjoKP@(M>?PN_n zVuxNtPt;ASeG%U9o&ffdo4HC9k30SX*z?hCAZ4mb!Q78-PojQ?M$GBst!sm;2cO?( zyA$395E4Q3FVP;Ox)*V3!*_zAe>XW&$Qs3t&ak7T2e&~Y2WfgLwTrWDu`r34-x3Qy zf`YN7YGo6HI7sbz{JSrU6!@OuHR4qn*l%<|`K9A%K{;m{e!yu+$5Grp$taZ0@(|aB+^KZ0YMWu zA+NhUsh*(-f_EE;li9{80ZyGkAo~9a{1u?{f7=7>;h^*j+V!fqlBNadE{!02AI#~&rp)mHlTlnr&5;Gx_BU! zCIl{134s2jPM6rpq(#RmY$Sm5gM=cnRe>4ouBCCJ;6NLQsjwQ3mLC@?6$0 zNSyZNAZ<8<=i(l3_u};U>79jrCuPub*1zPAo`0u%5!f(hfEvV0^Y{}!sAOaiVZaTe zRR@%e?4q_sV#q47oYKC3Tw9PY*a9N*n^)86D}ce^21Z9%qQk}9@U5kG06 z){0-ojdo;nKNhR%$(7npFQ@T-?GBxgY#~34X=ZFS6g>w)I5ie zvjKe^;sw0-0iV?ON#x@2CtO#`2wT;%KD=qO~ePP13T z!9qdj80kG_`fl&gK9*6%*dHlul5M*Jt(lW-2lUen${JK3&}^G#DE-mtI$m9a+OkDz z{5zY!TJFt#eqraCF)61*n$prVG$}Q`CTQc7$GURc>~9*l_p~bI@e%1al68nT>$??h zs(e0?9r;d-?RibRjm^q!_8GP@DR5e&!MIfm-|kblq2rabB7_ad@{1^AuzXZV?PHM2 zU%GqrFJ)*07k0#MVOy!4O$SLCiD*(v<5(&|j*PV4#P;{u5RJENYMeIh=eg|XsHR$Y z-`sV}yp?P7C$CYhG)f$5($7Z4@l#@YBOr{=w+Bn|B!B z8}+Vov0X0g6CV`{-nyHaery^bwRWFEP+48syhm>5MaLf2_rGnAAF9@@LCW^XNZh@YKF<0tonVw|aRKN7+?=_mC}oktHa+PLQwGVwa9bEVSJvTpF)G~4I_w%j%X zo!_J=`bx>@kzc}kNgmR;m2YT(s3u;~py@#rF1I%coZk*$eOgh9%KSi1quEGmv$9o#`9Chx4P_?$hbR2#LTNe>NoB# zMY-L9xW=^HFeh>0!x1TAw@Fhw7ARYC+_2R%Aq~M<#(_nBFGbZ^Lia0A)UUap1N*bB zU8Mbt$H19|o@hZjVt@sehp)tx4JE4No>8<)CHpR}cN-c5`Ar6QNs{xF^zbBqL3*Su z{|i0ne@SUt^zlHva^QjRM(}6;B8-SOcE%^<%RrWUbtsvboa{_YH1d8j=c=uqxa4O& z$Go(5-znWUp*Y?K&aI(1a}fA;vhU#VRwnOx%M~aV#Bti-)hHl-xZX|C^DO;ON_QfZ zzC631CbKL2qLl75U{hUZ2vHSA07pJKoh&qqh;%2F>{T9zeu>o~>W?c?Iqr)VM&(h( z*`E@5-n5!j%QoSaRtqWeC(ZH@)3Wzy@bYtbucGw;P0gu}Pd1yw4=W3^n3(3!)Db_L zXK6K?*dhy#r#p7G3INJ=b9pT}dLFs)1OJsdUGzwy8hfW12$&cdLL0fop-+ zfwuvxsCNjl(%iiZya&7wd;oj|d;*xbIYa0y@Eh01So z$@1jy!bq|q8jJ_Rrxw?uisIL%G5Vb>NXFu7TvupgvLacQEQ{;Pg-^foisK>qV~e7S z?(A24UmR7dwQ9W@$GSHjOg1OG6kmyl;#l|f>B>O7Sou|ya Date: Wed, 27 Jan 2016 23:08:18 -0500 Subject: [PATCH 2/7] DataQuest iteration completed --- kaggle.csv | 419 ++++++++++++++++++++++++++++++++++++++++ model_iteration_1.ipynb | 373 +++++++++++++++++++++++++++++++++++ 2 files changed, 792 insertions(+) create mode 100644 kaggle.csv create mode 100644 model_iteration_1.ipynb diff --git a/kaggle.csv b/kaggle.csv new file mode 100644 index 0000000..485997c --- /dev/null +++ b/kaggle.csv @@ -0,0 +1,419 @@ +PassengerId,Survived +892,0 +893,0 +894,0 +895,0 +896,1 +897,0 +898,1 +899,0 +900,1 +901,0 +902,0 +903,0 +904,1 +905,0 +906,1 +907,1 +908,0 +909,0 +910,1 +911,1 +912,0 +913,0 +914,1 +915,1 +916,1 +917,0 +918,1 +919,0 +920,0 +921,0 +922,0 +923,0 +924,0 +925,1 +926,0 +927,0 +928,1 +929,1 +930,0 +931,0 +932,0 +933,0 +934,0 +935,1 +936,1 +937,0 +938,0 +939,0 +940,1 +941,1 +942,0 +943,0 +944,1 +945,1 +946,0 +947,0 +948,0 +949,0 +950,0 +951,1 +952,0 +953,0 +954,0 +955,1 +956,1 +957,1 +958,1 +959,0 +960,1 +961,1 +962,1 +963,0 +964,1 +965,1 +966,1 +967,1 +968,0 +969,1 +970,0 +971,1 +972,0 +973,0 +974,0 +975,0 +976,0 +977,0 +978,1 +979,1 +980,1 +981,0 +982,1 +983,0 +984,1 +985,0 +986,1 +987,0 +988,1 +989,0 +990,1 +991,0 +992,1 +993,0 +994,0 +995,0 +996,1 +997,0 +998,0 +999,0 +1000,0 +1001,0 +1002,0 +1003,1 +1004,1 +1005,1 +1006,1 +1007,0 +1008,0 +1009,1 +1010,0 +1011,1 +1012,1 +1013,0 +1014,1 +1015,0 +1016,0 +1017,1 +1018,0 +1019,1 +1020,0 +1021,0 +1022,0 +1023,0 +1024,1 +1025,0 +1026,0 +1027,0 +1028,0 +1029,0 +1030,1 +1031,0 +1032,0 +1033,1 +1034,0 +1035,0 +1036,0 +1037,0 +1038,0 +1039,0 +1040,0 +1041,0 +1042,1 +1043,0 +1044,0 +1045,1 +1046,0 +1047,0 +1048,1 +1049,1 +1050,0 +1051,1 +1052,1 +1053,0 +1054,1 +1055,0 +1056,0 +1057,1 +1058,0 +1059,0 +1060,1 +1061,1 +1062,0 +1063,0 +1064,0 +1065,0 +1066,0 +1067,1 +1068,1 +1069,0 +1070,1 +1071,1 +1072,0 +1073,0 +1074,1 +1075,0 +1076,1 +1077,0 +1078,1 +1079,0 +1080,0 +1081,0 +1082,0 +1083,0 +1084,0 +1085,0 +1086,0 +1087,0 +1088,1 +1089,1 +1090,0 +1091,1 +1092,1 +1093,0 +1094,0 +1095,1 +1096,0 +1097,1 +1098,1 +1099,0 +1100,1 +1101,0 +1102,0 +1103,0 +1104,0 +1105,1 +1106,0 +1107,0 +1108,1 +1109,0 +1110,1 +1111,0 +1112,1 +1113,0 +1114,1 +1115,0 +1116,1 +1117,1 +1118,0 +1119,1 +1120,0 +1121,0 +1122,0 +1123,1 +1124,0 +1125,0 +1126,0 +1127,0 +1128,0 +1129,0 +1130,1 +1131,1 +1132,1 +1133,1 +1134,0 +1135,0 +1136,0 +1137,0 +1138,1 +1139,0 +1140,1 +1141,1 +1142,1 +1143,0 +1144,1 +1145,0 +1146,0 +1147,0 +1148,0 +1149,0 +1150,1 +1151,0 +1152,0 +1153,0 +1154,1 +1155,1 +1156,0 +1157,0 +1158,0 +1159,0 +1160,1 +1161,0 +1162,0 +1163,0 +1164,1 +1165,1 +1166,0 +1167,1 +1168,0 +1169,0 +1170,0 +1171,0 +1172,1 +1173,0 +1174,1 +1175,1 +1176,1 +1177,0 +1178,0 +1179,0 +1180,0 +1181,0 +1182,0 +1183,1 +1184,0 +1185,0 +1186,0 +1187,0 +1188,1 +1189,0 +1190,0 +1191,0 +1192,0 +1193,0 +1194,0 +1195,0 +1196,1 +1197,1 +1198,0 +1199,0 +1200,0 +1201,0 +1202,0 +1203,0 +1204,0 +1205,1 +1206,1 +1207,1 +1208,0 +1209,0 +1210,0 +1211,0 +1212,0 +1213,0 +1214,0 +1215,0 +1216,1 +1217,0 +1218,1 +1219,0 +1220,0 +1221,0 +1222,1 +1223,0 +1224,0 +1225,1 +1226,0 +1227,0 +1228,0 +1229,0 +1230,0 +1231,0 +1232,0 +1233,0 +1234,0 +1235,1 +1236,0 +1237,1 +1238,0 +1239,1 +1240,0 +1241,1 +1242,1 +1243,0 +1244,0 +1245,0 +1246,1 +1247,0 +1248,1 +1249,0 +1250,0 +1251,1 +1252,0 +1253,1 +1254,1 +1255,0 +1256,1 +1257,0 +1258,0 +1259,1 +1260,1 +1261,0 +1262,0 +1263,1 +1264,0 +1265,0 +1266,1 +1267,1 +1268,1 +1269,0 +1270,0 +1271,0 +1272,0 +1273,0 +1274,1 +1275,1 +1276,0 +1277,1 +1278,0 +1279,0 +1280,0 +1281,0 +1282,1 +1283,1 +1284,0 +1285,0 +1286,0 +1287,1 +1288,0 +1289,1 +1290,0 +1291,0 +1292,1 +1293,0 +1294,1 +1295,1 +1296,0 +1297,0 +1298,0 +1299,0 +1300,1 +1301,1 +1302,1 +1303,1 +1304,1 +1305,0 +1306,1 +1307,0 +1308,0 +1309,0 diff --git a/model_iteration_1.ipynb b/model_iteration_1.ipynb new file mode 100644 index 0000000..93b8437 --- /dev/null +++ b/model_iteration_1.ipynb @@ -0,0 +1,373 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Shivali Chandra
\n", + "First iteration of model for Titanic Kaggle dataset.
\n", + "1/27/16
\n", + "Score: 0.75120" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First steps: load libraries used, read from training file and show basic statistics of file" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "

\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassAgeSibSpParchFare
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.204208
std257.3538420.4865920.83607114.5264971.1027430.80605749.693429
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.910400
50%446.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%668.5000001.0000003.00000038.0000001.0000000.00000031.000000
max891.0000001.0000003.00000080.0000008.0000006.000000512.329200
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Age SibSp \\\n", + "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", + "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", + "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", + "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", + "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", + "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", + "\n", + " Parch Fare \n", + "count 891.000000 891.000000 \n", + "mean 0.381594 32.204208 \n", + "std 0.806057 49.693429 \n", + "min 0.000000 0.000000 \n", + "25% 0.000000 7.910400 \n", + "50% 0.000000 14.454200 \n", + "75% 0.000000 31.000000 \n", + "max 6.000000 512.329200 " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "from sklearn.linear_model import LinearRegression, LogisticRegression\n", + "from sklearn.cross_validation import KFold\n", + "from sklearn import cross_validation\n", + "import numpy as np\n", + "\n", + "titanic = pd.read_csv(\"train.csv\")\n", + "titanic.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cleaning code, filling in NaN values and replacing text values with number codes: " + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median())\n", + "\n", + "titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0\n", + "titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1\n", + "\n", + "titanic['Embarked'] = titanic['Embarked'].fillna('S')\n", + "titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0\n", + "titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1\n", + "titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Defining columns used to predict target, generating cross validation folds for the dataset (with random state set to ensure splits are the same every time), initializing predictors and target, training algorithm, and making predictions:" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']\n", + "\n", + "alg = LinearRegression()\n", + "kf = KFold(titanic.shape[0], n_folds=3, random_state=1)\n", + "\n", + "predictions = []\n", + "for train, test in kf:\n", + " train_predictors = (titanic[predictors].iloc[train,:])\n", + " train_target = titanic['Survived'].iloc[train]\n", + " alg.fit(train_predictors, train_target)\n", + " test_predictions = alg.predict(titanic[predictors].iloc[test,:])\n", + " predictions.append(test_predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Concatenating three prediction np arrays into one, and mapping the predictions to outcomes. Then, calculating the accuracy: " + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/kiki/anaconda/lib/python2.7/site-packages/IPython/kernel/__main__.py:6: FutureWarning: in the future, boolean array-likes will be handled as a boolean array index\n" + ] + } + ], + "source": [ + "predictions = np.concatenate(predictions, axis=0)\n", + "\n", + "predictions[predictions > 0.5] = 1\n", + "predictions[predictions <= 0.5] = 0\n", + "\n", + "accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Computing accuracy score for all cross validation folds, and taking mean of scores" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.78787878787878773" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "alg = LogisticRegression(random_state=1)\n", + "scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3)\n", + "scores.mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cleaning test data. Filling missing NaN values and replacing text values with number codes: " + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "test = pd.read_csv('test.csv')\n", + "test['Age'] = test['Age'].fillna(titanic['Age'].median())\n", + "\n", + "test.loc[test['Sex'] == 'male', 'Sex'] = 0\n", + "test.loc[test['Sex'] == 'female', 'Sex'] = 1\n", + "\n", + "test['Embarked'] = test['Embarked'].fillna('S')\n", + "test.loc[test['Embarked'] == 'S', 'Embarked'] = 0\n", + "test.loc[test['Embarked'] == 'C', 'Embarked'] = 1\n", + "test.loc[test['Embarked'] == 'Q', 'Embarked'] = 2\n", + "\n", + "test['Fare'] = test['Fare'].fillna(titanic['Fare'].median())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generating submission for competition - training algorithm, making predictions, and creating dataframe with the columns needed: " + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "alg = LogisticRegression(random_state=1)\n", + "\n", + "alg.fit(titanic[predictors], titanic['Survived'])\n", + "\n", + "predictions = alg.predict(test[predictors])\n", + "\n", + "submission = pd.DataFrame({\n", + " 'PassengerId': test['PassengerId'],\n", + " 'Survived': predictions\n", + " })" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "submission.to_csv('kaggle.csv', index=False)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} From 6fec0a3915eb169834c923d3bf838e375aa8c1ba Mon Sep 17 00:00:00 2001 From: Kiki Date: Fri, 29 Jan 2016 00:17:39 -0500 Subject: [PATCH 3/7] Improved accuracy to 0.7799 --- .../DataExploration-checkpoint.ipynb | 178 ++++---- .../model_iteration_1-checkpoint.ipynb | 392 ++++++++++++++++++ DataExploration.ipynb | 180 ++++---- kaggle.csv | 84 ++-- model_iteration_1.ipynb | 153 ++++--- 5 files changed, 707 insertions(+), 280 deletions(-) create mode 100644 .ipynb_checkpoints/model_iteration_1-checkpoint.ipynb diff --git a/.ipynb_checkpoints/DataExploration-checkpoint.ipynb b/.ipynb_checkpoints/DataExploration-checkpoint.ipynb index 59cdf73..5d5c676 100644 --- a/.ipynb_checkpoints/DataExploration-checkpoint.ipynb +++ b/.ipynb_checkpoints/DataExploration-checkpoint.ipynb @@ -11,11 +11,19 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/kiki/anaconda/lib/python2.7/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.\n", + " warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')\n" + ] + }, { "data": { "text/html": [ @@ -1152,7 +1160,7 @@ "[891 rows x 12 columns]" ] }, - "execution_count": 8, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -1172,7 +1180,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -1197,33 +1205,33 @@ " \n", " \n", " count\n", + " 891.000000\n", + " 891.000000\n", + " 891.000000\n", " 714.000000\n", - " 714.000000\n", - " 714.000000\n", - " 714.000000\n", - " 714.000000\n", - " 714.000000\n", - " 714.000000\n", + " 891.000000\n", + " 891.000000\n", + " 891.000000\n", " \n", " \n", " mean\n", - " 448.582633\n", - " 0.406162\n", - " 2.236695\n", + " 446.000000\n", + " 0.383838\n", + " 2.308642\n", " 29.699118\n", - " 0.512605\n", - " 0.431373\n", - " 34.694514\n", + " 0.523008\n", + " 0.381594\n", + " 32.204208\n", " \n", " \n", " std\n", - " 259.119524\n", - " 0.491460\n", - " 0.838250\n", + " 257.353842\n", + " 0.486592\n", + " 0.836071\n", " 14.526497\n", - " 0.929783\n", - " 0.853289\n", - " 52.918930\n", + " 1.102743\n", + " 0.806057\n", + " 49.693429\n", " \n", " \n", " min\n", @@ -1237,33 +1245,33 @@ " \n", " \n", " 25%\n", - " 222.250000\n", + " 223.500000\n", " 0.000000\n", - " 1.000000\n", + " 2.000000\n", " 20.125000\n", " 0.000000\n", " 0.000000\n", - " 8.050000\n", + " 7.910400\n", " \n", " \n", " 50%\n", - " 445.000000\n", + " 446.000000\n", " 0.000000\n", - " 2.000000\n", + " 3.000000\n", " 28.000000\n", " 0.000000\n", " 0.000000\n", - " 15.741700\n", + " 14.454200\n", " \n", " \n", " 75%\n", - " 677.750000\n", + " 668.500000\n", " 1.000000\n", " 3.000000\n", " 38.000000\n", " 1.000000\n", - " 1.000000\n", - " 33.375000\n", + " 0.000000\n", + " 31.000000\n", " \n", " \n", " max\n", @@ -1271,7 +1279,7 @@ " 1.000000\n", " 3.000000\n", " 80.000000\n", - " 5.000000\n", + " 8.000000\n", " 6.000000\n", " 512.329200\n", " \n", @@ -1281,27 +1289,27 @@ ], "text/plain": [ " PassengerId Survived Pclass Age SibSp \\\n", - "count 714.000000 714.000000 714.000000 714.000000 714.000000 \n", - "mean 448.582633 0.406162 2.236695 29.699118 0.512605 \n", - "std 259.119524 0.491460 0.838250 14.526497 0.929783 \n", + "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", + "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", - "25% 222.250000 0.000000 1.000000 20.125000 0.000000 \n", - "50% 445.000000 0.000000 2.000000 28.000000 0.000000 \n", - "75% 677.750000 1.000000 3.000000 38.000000 1.000000 \n", - "max 891.000000 1.000000 3.000000 80.000000 5.000000 \n", + "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", + "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", + "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", "\n", " Parch Fare \n", - "count 714.000000 714.000000 \n", - "mean 0.431373 34.694514 \n", - "std 0.853289 52.918930 \n", + "count 891.000000 891.000000 \n", + "mean 0.381594 32.204208 \n", + "std 0.806057 49.693429 \n", "min 0.000000 0.000000 \n", - "25% 0.000000 8.050000 \n", - "50% 0.000000 15.741700 \n", - "75% 1.000000 33.375000 \n", + "25% 0.000000 7.910400 \n", + "50% 0.000000 14.454200 \n", + "75% 0.000000 31.000000 \n", "max 6.000000 512.329200 " ] }, - "execution_count": 51, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -1321,7 +1329,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -2462,7 +2470,7 @@ "[714 rows x 12 columns]" ] }, - "execution_count": 10, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -2474,7 +2482,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -2511,7 +2519,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -2520,7 +2528,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHEJJREFUeJzt3X+UVXW9//HnCwSFFBrhinwBgTK54L0GWFT++HrUIuWb\nUt27iHSVZqGpePW2Mgf7XhmkBE3NftEP6raor6bUrZjMH6jDkHVL/AGKgTKQg4r8EBER9ArI+/vH\n2UxHmJl9Zpx9zhnm9VjrLPb57M/e533OOszr7M/+pYjAzMysNd3KXYCZmVU+h4WZmaVyWJiZWSqH\nhZmZpXJYmJlZKoeFmZmlKklYSOom6TFJtcnzKkkLJT0t6V5JfQv6TpPUIGmlpPGlqM/MzFpXqi2L\ny4EVBc+rgfsjYgRQB0wDkDQKmASMBM4E5khSiWo0M7MWZB4WkgYDE4AfFzRPBOYl0/OAjyfTZwO3\nR8TuiGgEGoBxWddoZmatK8WWxTeBK4HCU8UHRMRGgIjYAByRtA8Cnivoty5pMzOzMso0LCT9H2Bj\nRCwDWhtO8jVHzMwq2EEZr/9E4GxJE4BewGGSfg5skDQgIjZKOhLYlPRfBwwpWH5w0vYWkhwuZmbt\nEBHt2g+c6ZZFRFwdEUdFxLuAyUBdRHwG+B1wftLtPGBBMl0LTJbUU9Jw4GhgSQvr9qODHtOnTy97\nDQfSw5+nP8tKfbwdWW9ZtGQ2MF/SBcBa8kdAERErJM0nf+TULuCSeLvv0MzM3raShUVELAYWJ9Nb\ngA+30G8WMKtUdZmZWTqfwW3kcrlyl3BA8efZcfxZVg51xlEeSR6dMjNrI0lEO3dwl2ufhZl1McOG\nDWPt2rXlLqNLGDp0KI2NjR26Tm9ZmFlJJL9qy11Gl9DSZ/12tiy8z8LMzFI5LMzMLJXDwszMUjks\nzMw6yOc+9zmuueaacpeRCR8NZWZl8x/XLcp0/TOvPjXT9Xcl3rIwM7NUDgsz6/KGDx/OjTfeyHvf\n+14OO+wwpkyZwqZNm5gwYQJ9+vRh/PjxvPLKKwBMmjSJgQMHUlVVRS6XY8WKFS2u984772TMmDFU\nVVVx0kknsXz58qZ5119/PYMHD6ZPnz6MHDmSRYuy3cp6uxwWZmbAr3/9ax544AFWrVpFbW0tEyZM\nYPbs2WzevJk333yTb3/72wBMmDCBNWvWsGnTJsaOHcu5557b7PqWLl3K5z//eebOncuWLVu46KKL\nOPvss9m1axerVq3ie9/7Ho8++ijbtm3j3nvvZdiwYSV8t23nsDAzAy677DL69+/PwIEDOfnkk/nA\nBz7AcccdR8+ePfnEJz7B0qVLATj//PPp3bs3PXr04JprruHxxx/n1Vdf3W99c+fO5Ytf/CLve9/7\nkMRnPvMZDj74YP7yl7/QvXt3du7cyZNPPsnu3bs56qijGD58eKnfcps4LMzMgAEDBjRN9+rVa7/n\n27dvZ8+ePVRXV3P00Ufzzne+k+HDhyOJzZs377e+tWvXctNNN3H44Ydz+OGHU1VVxfPPP88LL7zA\nu9/9bm655RZqamoYMGAA55xzDuvXry/J+2wvh4WZWZFuu+02amtrqaurY+vWrTQ2NrZ4Y6EhQ4bw\n1a9+lS1btrBlyxZefvlltm/fzqc+9SkAJk+ezIMPPth0vazq6uqSvpe2cliYmRVp+/btHHLIIVRV\nVbFjxw6mTZuG1PyllqZMmcIPfvADlizJ3+xzx44d3HXXXezYsYNVq1axaNEidu7cSc+ePenVqxfd\nulX2n2OfZ2FmZVMp50Hs+we/pQD47Gc/yz333MOgQYPo168fM2fO5Ic//GGzfY8//njmzp3L1KlT\nWb16Nb169eKkk07ilFNO4Y033qC6upqnnnqKHj16cMIJJ/CjH/2ow99XR/JVZ82sJHzV2dLJ4qqz\n3rKwzM+i7Woq5deyWUfKdJBM0sGSHpK0VNJySdOT9umSnpf0WPI4o2CZaZIaJK2UND7L+szMrDiZ\nbllExBuSTo2I1yR1B/4k6e5k9s0RcXNhf0kjgUnASGAwcL+k93jMycysvDLf/R4RryWTB5MPp71/\n+JsbN5sI3B4RuyOiEWgAxmVdo5mZtS7zsJDUTdJSYANwX0Q8nMyaKmmZpB9L6pu0DQKeK1h8XdJm\nZmZlVIotiz0RMYb8sNI4SaOAOcC7ImI0+RC5Kes6zMys/Up2NFREbJNUD5yxz76KucDvkul1wJCC\neYOTtv3U1NQ0TedyOXK5XAdWa2bW+dXX11NfX98h68r0PAtJ/YFdEfGKpF7AvcBs4LGI2JD0+Xfg\n/RFxTrLVcSvwAfLDT/cB++3g9nkWHcuHznYsHzrbPJ9nUTpZnGeR9TDUQGCRpGXAQ8C9EXEXcIOk\nJ5L2U4B/B4iIFcB8YAVwF3CJU8HMSmHVqlWMGTOGvn378t3vfrdkr9utWzf+9re/lez12ivrQ2eX\nA2Obaf9sK8vMAmZlWZeZVYbqulWZrn/2accU3feGG27gtNNOa7oUeam0dGmRSlPZV64yMyuRtWvX\ncuyxx5b8dTvL4InDwsy6vNNPP51FixZx6aWX0qdPHxoaGvjyl7/M0KFDGThwIJdccglvvPEGAIsX\nL2bIkCF84xvfYMCAAQwaNIgFCxZw9913M2LECPr378+sWX8fHHn44Yc54YQTqKqqYtCgQVx22WXs\n3r272Tp27tzZ4uu+9NJLnHXWWVRVVdGvXz9OOeWU7D+YAg4LM+vyHnjgAU4++WTmzJnDtm3bmDNn\nDqtXr+aJJ55g9erVrFu3jmuvvbap/4YNG9i5cycvvPACM2bMYMqUKdx6660sXbqUP/zhD8ycObPp\nPhXdu3fnlltuYcuWLfz5z3+mrq6OOXPmNFvHVVdd1eLr3nTTTQwZMoSXXnqJTZs2cd1112X/wRRw\nWJiZJfYOCc2dO5dvfvOb9O3bl3e84x1UV1fzi1/8oqlfz549ufrqq+nevTuTJ09m8+bNXHHFFfTu\n3ZtRo0YxatQoHn/8cQDGjh3LuHHjkMRRRx3FhRdeyOLFi5t9/dZet0ePHqxfv55nnnmG7t27c+KJ\nJ2b8abyVrzprZlbgxRdf5LXXXuP4449vatuzZ89b9i3069evacd0r169ADjiiCOa5u+9DStAQ0MD\nX/rSl3jkkUd4/fXX2b1791vWXezrXnnlldTU1DB+/HgkMWXKFK666qoOfOet85aFmVmB/v3707t3\nb/7617823RJ169atvPLKK+1a38UXX8zIkSNZs2YNW7du5etf/3qzO7XTXvfQQw/lxhtvZM2aNdTW\n1nLzzTezaFHpzpFyWJiZFdj7q/2KK67gxRdfBGDdunUsXLiwXet79dVX6dOnD7179+app57i+9//\nfrte9/e//z1r1qwB4LDDDuOggw4q6a1YPQxlZmXTlvMgslZ4vsPs2bO59tpr+eAHP8hLL73EoEGD\nuPjiixk/vvlb7LR2W9Ybb7yRCy+8kBtuuIExY8YwefJk6urqmu17/fXXM2PGjGZft6GhgalTp7J5\n82aqqqq49NJLS3pElG+rar7cRwfz5T6a58t9lE5nvNyHmZkdABwWZmaWymFhZmapHBZmZpbKYWFm\nZqkcFmZmlsrnWZhZSQwdOrTT3Luhsxs6dGiHr9NhYWYl0djYWO4S7G3wMJSZmaVyWJiZWapMw0LS\nwZIekrRU0nJJ05P2KkkLJT0t6V5JfQuWmSapQdJKSc1fiMXMzEoq07CIiDeAUyNiDDAaOFPSOKAa\nuD8iRgB1wDQASaOAScBI4ExgjrxHzMys7DIfhoqI15LJg8nvUA9gIjAvaZ8HfDyZPhu4PSJ2R0Qj\n0ACMy7pGMzNrXeZhIambpKXABuC+iHgYGBARGwEiYgOw9xZTg4DnChZfl7SZmVkZZX7obETsAcZI\n6gP8RtKx5Lcu3tKtreutqalpms7lcuRyubdRpZnZgae+vp76+voOWVfJzrOIiG2S6oEzgI2SBkTE\nRklHApuSbuuAIQWLDU7a9lMYFmZmtr99f0jPmDGj3evK+mio/nuPdJLUC/gIsBKoBc5Pup0HLEim\na4HJknpKGg4cDSzJskYzM0uX9ZbFQGCepG7kg+mOiLhL0l+A+ZIuANaSPwKKiFghaT6wAtgFXOJb\n4pmZlV+mYRERy4GxzbRvAT7cwjKzgFlZ1mVmZm3jM7jNzCyVw8LMzFI5LMzMLJXDwszMUjkszMws\nlcPCzMxSOSzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwslcPCzMxSOSzMzCyVw8LMzFI5LMzMLJXD\nwszMUjkszMwslcPCzMxSOSzMzCxVpmEhabCkOkl/lbRc0mVJ+3RJz0t6LHmcUbDMNEkNklZKGp9l\nfWZmVpyDMl7/buBLEbFM0qHAo5LuS+bdHBE3F3aWNBKYBIwEBgP3S3pPRETGdZqZWSsy3bKIiA0R\nsSyZ3g6sBAYls9XMIhOB2yNid0Q0Ag3AuCxrNDOzdCXbZyFpGDAaeChpmippmaQfS+qbtA0CnitY\nbB1/DxczMyuTrIehAEiGoH4FXB4R2yXNAa6NiJD0NeAm4AttWWdNTU3TdC6XI5fLdVzBZmYHgPr6\neurr6ztkXcp6d4Ckg4A7gbsj4lvNzB8K/C4ijpNUDUREXJ/MuweYHhEP7bOMd2N0oP+4blG5Szig\nzLz61HKXYNYsSUREc7sAUpViGOo/gRWFQSHpyIL5nwSeTKZrgcmSekoaDhwNLClBjWZm1opMh6Ek\nnQicCyyXtBQI4GrgHEmjgT1AI3ARQESskDQfWAHsAi7xJoSZWfllGhYR8SegezOz7mllmVnArMyK\nMjOzNvMZ3GZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqmKCovkBLnUNjMzOzAVu2XxX820\n/aojCzEzs8rV6kl5kv4ROBboK+mTBbP6AIdkWZiZmVWOtDO4RwAfA94JnFXQ/iowJauizMyssrQa\nFhGxAFgg6UMR8ecS1WRmZhWm2GtDrZZ0NTCscJmIuCCLoszMrLIUGxYLgAeB+4E3syvHzMwqUbFh\n0Tsirsq0EjMzq1jFHjp7p6QJmVZiZmYVq9iwuJx8YLwuaZukVyVty7IwMzOrHEUNQ0XEYVkXYmZm\nlauosJD0v5trj4g/dGw5ZmZWiYrdwX1lwfQhwDjgUeC0Dq/IzMwqTlH7LCLirILHR4B/Al5OW07S\nYEl1kv4qabmkf0vaqyQtlPS0pHsl9S1YZpqkBkkrJY1v7xszM7OO095LlD8PjCyi327gSxFxLPAh\n4NLkelPVwP0RMQKoA6YBSBoFTErWfSYwR5LaWaOZmXWQYvdZfAeI5Gk3YDTwWNpyEbEB2JBMb5e0\nEhgMTAROSbrNA+rJB8jZwO0RsRtolNRAfsjroSLfj5mZZaDYfRaPFEzvBn4REX9qywtJGkY+ZP4C\nDIiIjZAPFElHJN0GAYXXoFqXtJmZWRkVe+jsPEk9gWOSpqfb8iKSDiV//4vLky2M2KfLvs9T1dTU\nNE3ncjlyuVxbV2FmdkCrr6+nvr6+Q9ZV7DBUjvxwUSMgYIik84o5dFbSQeSD4ufJVWwBNkoaEBEb\nJR0JbEra1wFDChYfnLTtpzAszMxsf/v+kJ4xY0a711XsMNRNwPiIeBpA0jHAL4Dji1j2P4EVEfGt\ngrZa4HzgeuA88hcq3Nt+q6Rvkh9+OhpYUmSNZhWhum5VuUs4YMw+7Zj0TlYSxYZFj71BARARqyT1\nSFtI0onAucBySUvJDzddTT4k5ku6AFhL/ggoImKFpPnACmAXcElEtHmIyszMOlbRO7gl/Rj4f8nz\nc3nrTu9mJTvBu7cw+8MtLDMLmFVkXWZmVgLFhsXFwKXAvyXPHwTmZFKRmZlVnGKPhnoDuDl5mJlZ\nF1PUGdySPiZpqaQtvkS5mVnXU+ww1C3AJ4Hl3uFsZtb1FHttqOeAJx0UZmZdU7FbFl8B7pK0GHhj\nb2NEeB+GmVkXUGxYfB3YTv5eFj2zK8fMzCpRsWHxvyLinzKtxMzMKlax+yzu8o2IzMy6rmLD4mLg\nHkmv+9BZM7Oup9iT8g6TdDjwHvL7LczMrAsp9hLlXwAuJ3/J8GXAB4H/Bk7PrjQzM6sUxQ5DXQ68\nH1gbEacCY4BXMqvKzMwqSrFh8T8R8T8Akg6OiKeAEdmVZWZmlaTYQ2efl/RO4LfAfZJeJn8fCjMz\n6wKK3cH9iWSyRtIioC9wT2ZVmZlZRSl2y6JJRCzOohAzM6tcxe6zMDOzLsxhYWZmqTINC0k/kbRR\n0hMFbdMlPS/pseRxRsG8aZIaJK305UXMzCpH1lsWPwU+2kz7zRExNnncAyBpJDAJGAmcCcyRpIzr\nMzOzImQaFhHxR+DlZmY1FwITgdsjYndENAINwLgMyzMzsyKVa5/FVEnLJP1YUt+kbRD5O/LttS5p\nMzOzMmvzobMdYA5wbUSEpK8BNwFfaOtKampqmqZzuRy5XK6j6jMzOyDU19dTX1/fIesqeVhExIsF\nT+cCv0um1wFDCuYNTtqaVRgWZma2v31/SM+YMaPd6yrFMJQo2Ech6ciCeZ8Enkyma4HJknpKGg4c\nDSwpQX1mZpYi0y0LSbcBOaCfpGeB6cCpkkYDe4BG4CKAiFghaT6wAtgFXBIRkWV9ZmZWnEzDIiLO\naab5p630nwXMyq4iMzNrD5/BbWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwW\nZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZm\nlsphYWZmqTINC0k/kbRR0hMFbVWSFkp6WtK9kvoWzJsmqUHSSknjs6zNzMyKl/WWxU+Bj+7TVg3c\nHxEjgDpgGoCkUcAkYCRwJjBHkjKuz8zMipBpWETEH4GX92meCMxLpucBH0+mzwZuj4jdEdEINADj\nsqzPzMyKU459FkdExEaAiNgAHJG0DwKeK+i3LmkzM7MyO6jcBQDRnoVqamqapnO5HLlcroPKMTM7\nMNTX11NfX98h6ypHWGyUNCAiNko6EtiUtK8DhhT0G5y0NaswLMzMbH/7/pCeMWNGu9dVimEoJY+9\naoHzk+nzgAUF7ZMl9ZQ0HDgaWFKC+szMLEWmWxaSbgNyQD9JzwLTgdnALyVdAKwlfwQUEbFC0nxg\nBbALuCQi2jVEZWZmHSvTsIiIc1qY9eEW+s8CZmVXkZl1Jv9x3aJyl2AJn8FtZmapHBZmZpbKYWFm\nZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmap\nHBZmZpbKYWFmZqkq4R7c7VJdt6rcJRwwepS7ADOreN6yMDOzVA4LMzNL5bAwM7NUZdtnIakReAXY\nA+yKiHGSqoA7gKFAIzApIl4pV41mZpZXzi2LPUAuIsZExLikrRq4PyJGAHXAtLJVZ2ZmTcoZFmrm\n9ScC85LpecDHS1qRmZk1q5xhEcB9kh6W9IWkbUBEbASIiA3AEWWrzszMmpTzPIsTI2K9pH8AFkp6\nmnyAFNr3eZM/zvtO0/RR7x3HUaM/kE2VZmadVOPflrH2mWUdsq6yhUVErE/+fVHSb4FxwEZJAyJi\no6QjgU0tLX/SeZeVqFIzs85p2LtGM+xdo5ueP1j3s3avqyzDUJJ6Szo0mX4HMB5YDtQC5yfdzgMW\nlKM+MzN7q3JtWQwAfiMpkhpujYiFkh4B5ku6AFgLTCpTfWZmVqAsYRERzwCjm2nfAny49BWZmVlr\nfAa3mZmlcliYmVkqh4WZmaVyWJiZWSqHhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVyWJiZWSqH\nhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVyWJiZWSqHhZmZpXJYmJlZqooMC0lnSHpK0ipJV5W7\nHjOzrq7iwkJSN+C7wEeBY4FPS/rH8lZ1YGv827Jyl3BAeXbZQ+Uu4YDh72blqLiwAMYBDRGxNiJ2\nAbcDE8tc0wFt7TP+D9mRnn18SblLOGD4u1k5KjEsBgHPFTx/PmkzM7MyqcSwMDOzCqOIKHcNbyHp\ng0BNRJyRPK8GIiKuL+hTWUWbmXUSEaH2LFeJYdEdeBo4HVgPLAE+HREry1qYmVkXdlC5C9hXRLwp\naSqwkPww2U8cFGZm5VVxWxZmZlZ5OsUObklVkhZKelrSvZL6ttCvUdLjkpZK8vGL+yjmZEdJ35bU\nIGmZpNGlrrGzSPssJZ0iaaukx5LH/y1HnZ2FpJ9I2ijpiVb6+LtZhLTPsr3fzU4RFkA1cH9EjADq\ngGkt9NsD5CJiTESMK1l1nUAxJztKOhN4d0S8B7gI+EHJC+0E2nDi6B8iYmzy+FpJi+x8fkr+82yW\nv5tt0upnmWjzd7OzhMVEYF4yPQ/4eAv9ROd5T6VWzMmOE4GfAUTEQ0BfSQNKW2anUOyJo+066qQr\niog/Ai+30sXfzSIV8VlCO76bneUP6xERsREgIjYAR7TQL4D7JD0saUrJquscijnZcd8+65rpY8Wf\nOPqhZMjk95JGlaa0A5a/mx2rzd/NijkaStJ9QOEvBZH/49/ceFpLe+VPjIj1kv6BfGisTFLWrNQe\nBY6KiNeSIZTfAseUuSYzaOd3s2LCIiI+0tK8ZGfNgIjYKOlIYFML61if/PuipN+QHy5wWOStA44q\neD44adu3z5CUPlbEZxkR2wum75Y0R9LhEbGlRDUeaPzd7CDt/W52lmGoWuD8ZPo8YMG+HST1lnRo\nMv0OYDzwZKkK7AQeBo6WNFRST2Ay+c+1UC3wWWg6k37r3uE/e4vUz7JwPF3SOPKHqTsoWidaHkv3\nd7NtWvws2/vdrJgtixTXA/MlXQCsBSYBSBoIzI2Ij5EfwvpNcimQg4BbI2JhuQquNC2d7Cjpovzs\n+FFE3CVpgqTVwA7gc+WsuVIV81kC/yrpYmAX8DrwqfJVXPkk3QbkgH6SngWmAz3xd7PN0j5L2vnd\n9El5ZmaWqrMMQ5mZWRk5LMzMLJXDwszMUjkszMwslcPCzMxSOSzMzCyVw8Ksg0k6S9JXOmhdr3bE\neszeLp9nYdYOkrpHxJsleJ1tEdEn69cxS+MtC+vSksvE3JncMOsJSZMkPSPp8GT+8ZIWJdPTJf1M\n0oPAzyX9WdLIgnUtkjRW0nmSviOpj6TGfV7rWUndJb1L0t3JFZIXSzom6TNM0n8rfxOvmaX9NMxa\n5rCwru4MYF1yw6zjgHvY/6rGhc9HAqdHxDnk72PxKYDkApdHRsRje5eJiG3AUkmnJG0fA+5Jtkh+\nBEyNiPcDVwLfT/p8C/heRLwXWN+Rb9Ts7XBYWFe3HPiIpFmSTkr+wLd2Y5jaiNiZTP8S+JdkehLw\nq2b6z+fv196ZDNyRXOjyBOCXkpYCP+Tvl+c/kXwIAfy8PW/ILAud5UKCZpmIiAZJY4EJwExJdeQv\nsLb3h9Qh+yyyo2DZFyS9JOmfyQfCRc28RC3wdUlVwFjytwU+FHg5IsY2VxJ/35LxnfasYnjLwrq0\n5MrFr0fEbcCN5P+gNwLvS7r8SwuL7nUH8BWgT0Tsd0n8iNgBPEJ+eOnOyHsVeEbSvxbUcVwy+Sfg\n08n0ue16U2YZcFhYV/fPwJJkOOgaYCZwLfAtSUuA3SnL/xf5rYo7WulzB/k//LcXtJ0LfD65teWT\nwNlJ+xXApZIeBwa29c2YZcWHzpqZWSpvWZiZWSqHhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVy\nWJiZWSqHhZmZpfr/pEDnUlg85McAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2529,7 +2537,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2554,16 +2562,16 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEPCAYAAABBUX+lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFHFJREFUeJzt3X2QXXWd5/H3NySBRAgE0QwSSDI4KLorEhAcHobrE2LG\nYYd5EJFCYYDSKSOZnS2XVregU9ZaUCUjOrClJA7luuJuyaBkrAwPSq4yKoKQQCCEjDiJIAimAoHE\nGR6/+8c9xKbTndxO+txzm9/7VdXV597ce36fvt359OnfOfecyEwkSa98k5oOIEnqDQtfkgph4UtS\nISx8SSqEhS9JhbDwJakQtRZ+RBwWESsj4q7q8+aIuKDOMSVJI4teHYcfEZOAh4FjM/OhngwqSdqm\nl1M67wYetOwlqRm9LPzTgW/2cDxJ0hA9mdKJiCnAI8CbMvM3tQ8oSdrO5B6N8z7gztHKPiI8oY8k\njVFmxlge36spnTPYyXROZvbVx8UXX9x4home6eMXLum7TP36WpnJTGP92BW1F35ETKezw/a6useS\nJI2u9imdzPwt8Jq6x5Ek7ZjvtB1Fq9VqOsJ2zNSdfswE/ZnLTN3px0y7omdvvNphiIjshxwaXwsH\nlnLFJec1HUN6RYoIcow7bXt1lI6kgs2dO5cNGzY0HWNCmjNnDuvXrx+XdVn4kmq3YcOGXT6ypHQR\nY9qI3yHn8CWpEBa+JBXCwpekQlj4kjQOzjnnHC666KKmY+yQO20lNWLhwNJa1+8hwdtzC1+SCmHh\nSyravHnz+PznP88RRxzBPvvsw/nnn8/jjz/OggULmDFjBieffDKbN28G4AMf+AAHHnggM2fOpNVq\nsWbNmlHX+93vfpcjjzySmTNncsIJJ7B69ept/3bppZcye/ZsZsyYweGHH86KFStq/zrBwpckrrvu\nOr7//e+zbt06li1bxoIFC7jkkkvYuHEjL7zwAl/60pcAWLBgAQ8++CCPP/448+fP58wzzxxxfStX\nruTcc89lyZIlbNq0iY9+9KOceuqpPPfcc6xbt44rr7ySO++8k6eeeoobb7yRuXPn9uTrtPAlFe8T\nn/gEBxxwAAceeCAnnngixx57LG95y1uYOnUqp512GitXrgTg7LPPZvr06UyZMoWLLrqIu+++m6ef\nfnq79S1ZsoSPfexjHH300UQEZ511FnvuuSe33XYbe+yxB88++yz33nsvzz//PIcccgjz5s3ryddp\n4Usq3qxZs7YtT5s2bbvbW7Zs4cUXX2RgYIDXv/717LfffsybN4+IYOPGjdutb8OGDVx22WXsv//+\n7L///sycOZOHH36YRx55hEMPPZTLL7+cwcFBZs2axYc+9CEeffTRnnydFr4kdeGaa65h2bJl3HLL\nLTz55JOsX79+1IuRHHzwwXzmM59h06ZNbNq0iSeeeIItW7Zw+umnA/DBD36QW2+9ddv5hQYGBnry\nNVj4ktSFLVu2sNdeezFz5ky2bt3Kpz71qVHPc3P++efz5S9/mdtvvx2ArVu3snz5crZu3cq6detY\nsWIFzz77LFOnTmXatGlMmtSbKvY4fEmN6Jfj5IeX9mgl/uEPf5gbbriBgw46iFe/+tV89rOf5Stf\n+cqIjz3qqKNYsmQJCxcu5Oc//znTpk3jhBNO4KSTTuKZZ55hYGCAtWvXMmXKFI477jiuuuqqcf+6\nRuL58FUbz4evl1Tnbm86xoQ02mu3K+fDd0pHkgph4UtSISx8SSqEhS9JhbDwJakQtRd+ROwbEd+K\niPsj4r6IOLbuMSVJ2+vFcfhfBJZn5l9GxGRgeg/GlNRH5syZM64X4y7JnDlzxm1dtRZ+RMwATszM\nswEy83ngqTrHlNR/1q9f33QEUf+UzjxgY0RcHRF3RcRVETGt5jElSSOoe0pnMjAf+Hhm/iwiLgcG\ngIuHP3BwcHDbcqvVotVq1RxNkiaOdrtNu93erXXUemqFiJgF/CQzf7+6fQJwYWb+ybDHeWqFVyBP\nrSDVp+9OrZCZjwEPRcRh1V3vAka/JpgkqTa9OErnAuAbETEF+AVwTg/GlCQNU3vhZ+bdwNvqHkeS\ntGO+01aSCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9J\nhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQkyue4CI\nWA9sBl4EnsvMY+oeU5K0vdoLn07RtzLziR6MJUkaRS+mdKJH40iSdqAXRZzAzRFxR0Sc34PxJEkj\n6MWUzvGZ+WhEvIZO8d+fmf8y/EGDg4PbllutFq1WqwfRJGliaLfbtNvt3VpHZOb4pOlmsIiLgacz\n8++G3Z+9zKHeWDiwlCsuOa/pGNIrUkSQmTGW59Q6pRMR0yNi72r5VcDJwL11jilJGlndUzqzgG9H\nRFZjfSMzb6p5TEnSCGot/Mz8N+CtdY4hSeqOh0tKUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4\nklQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9J\nhbDwJakQFr4kFcLCl6RCWPiSVIieFH5ETIqIuyJiWS/GkyRtr1db+IuANT0aS5I0gtoLPyJmAwuA\npXWPJUkaXVeFHxHzurlvFF8APgnkGHJJksbZ5C4f94/A/GH3XQsctaMnRcQfA49l5qqIaAEx2mMH\nBwe3LbdaLVqtVpfRNFYLB5ZyxSXnNR1jhyZCRqmX2u027XZ7t9axw8KPiDcCbwb2jYg/G/JPM4C9\nulj/8cCpEbEAmAbsExH/OzM/PPyBQwtfkvRywzeEFy9ePOZ17GwL/w3A+4H9gD8Zcv/TwPk7W3lm\nfhr4NEBEnAT8t5HKXpJUvx0WfmZeD1wfEX+YmT/pUSZJUg26ncP/eUR8Gpg79DmZ+VfdDpSZPwB+\nMKZ0kqRx023hXw/cCnwPeKG+OJKkunRb+NMz88Jak0iSatXtG6++Wx1pI0maoLot/EV0Sv/fI+Kp\niHg6Ip6qM5gkaXx1NaWTmfvUHUSSVK+uCj8i/mik+zPzh+MbR5JUl2532n5yyPJewDHAncA7xz2R\nJKkW3U7pDH2XLRFxMHB5LYkkSbXY1dMjPwwcPp5BJEn16nYO/+/53emNJwFvBe6qK5Qkafx1O4f/\nsyHLzwPfzMwf1ZBHklSTbufwvxYRU4HDqrseqC+SJKkO3U7ptICvAevpXMTk4Ij4iIdlStLE0e2U\nzmXAyZn5AEBEHAZ8k51c8UqS1D+6PUpnyktlD5CZ64Ap9USSJNWh6522EbEU+D/V7TN5+Y5cSVKf\n67bw/xr4OHBBdftW4H/VkkiSVItuj9J5Bvi76kOSNAF1NYcfEe+PiJURscnTI0vSxNTtlM7lwJ8B\nqzMzd/ZgSVL/6fYonYeAey17SZq4ut3C/+/A8oj4AfDMS3dmpnP6kjRBdFv4/xPYQudc+FPriyNJ\nqku3hf+6zPxPY115ROwJ/JDOL4nJwLWZuXis65Ek7b5u5/CXR8TJY115dTjnOzLzSDqnVH5fRBwz\n1vVIknZft4X/18ANEfHvYz0sMzN/Wy3uSWcr3x2/ktSAbt94tU9E7A/8AZ15/K5FxCQ61789FLgy\nM+8Yc0pJ0m7r9vTI5wGLgNnAKuDtwI+Bd+3suZn5InBkRMwAvhMRb8rMNcMfNzg4uG251WrRarW6\niaYeWziwlCsuOa/pGFJx2u027XZ7t9bR7U7bRcDbgNsy8x0R8Ubgc2MZKDOfiogVwCnADgtfkvRy\nwzeEFy8e+/Ev3c7h/0dm/gd0jrzJzLXAG3b2pIg4ICL2rZanAe8B1o45pSRpt3W7hf9wROwHfAe4\nOSKeADZ08bwDga9V8/iTgP+Xmct3LaokaXd0u9P2tGpxsJqW2Re4oYvnrQbm73o8SdJ46XYLf5vM\n/EEdQSRJ9ep2Dl+SNMFZ+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgL\nX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFqLXw\nI2J2RNwSEfdFxOqIuKDO8SRJo5tc8/qfB/42M1dFxN7AnRFxU2aurXlcSdIwtW7hZ+avM3NVtbwF\nuB84qM4xJUkj69kcfkTMBd4K/LRXY0qSfqfuKR0Aqumca4FF1Zb+dgYHB7ctt1otWq3WTte7cGAp\nV1xy3viElKQ+1m63abfbu7WO2gs/IibTKfuvZ+b1oz1uaOFLkl5u+Ibw4sWLx7yOXkzp/AOwJjO/\n2IOxJEmjqPuwzOOBM4F3RsTKiLgrIk6pc0xJ0shqndLJzB8Be9Q5hiSpO77TVpIKYeFLUiEsfEkq\nhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY\n+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RC1Fr4EfHViHgsIu6pcxxJ0s7VvYV/\nNfDemseQJHWh1sLPzH8BnqhzDElSd5zDl6RC9E3hDw4Obvtot9tNx3mZhQNL+36cXmWcCPrxtejH\nTJpY2u32y3pyV0we30i7ble/AEkqQavVotVqbbu9ePHiMa+jF1v4UX1IkhpU92GZ1wA/Bg6LiF9G\nxDl1jidJGl2tUzqZ+aE61y9J6l7f7LSVJNXLwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAl\nqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IK\nYeFLUiEsfEkqRO2FHxGnRMTaiFgXERfWPZ4kaWS1Fn5ETAKuAN4LvBk4IyLeWOeY46XdbjcdYTtm\n6s6vfvlA0xFG1I+vlZm604+ZdkXdW/jHAP+amRsy8zng/wL/peYxx0U/foPN1B0Lv3tm6k4/ZtoV\ndRf+QcBDQ24/XN0nSeoxd9pKUiEiM+tbecTbgcHMPKW6PQBkZl467HH1hZCkV6jMjLE8vu7C3wN4\nAHgX8ChwO3BGZt5f26CSpBFNrnPlmflCRCwEbqIzffRVy16SmlHrFr4kqX80utO2X96UFRFfjYjH\nIuKeIffNjIibIuKBiLgxIvbtYZ7ZEXFLRNwXEasj4oKmM1Xj7xkRP42IlVWui/sk16SIuCsilvVD\nnirD+oi4u3qtbu+HXBGxb0R8KyLur362jm345/yw6vW5q/q8OSIu6IPX6b9GxL0RcU9EfCMipjad\nqcq1qPp/t8ud0Fjh99mbsq6ucgw1AHwvM98A3AJ8qod5ngf+NjPfDPwh8PHqtWkyE5n5DPCOzDwS\neCvwvog4pulcwCJgzZDbTecBeBFoZeaRmXlMn+T6IrA8Mw8HjgDWNpkpM9dVr8984ChgK/DtJjNF\nxOuATwDzM/MtdKa9z2gyU5XrzcC5wNF0/u+9PyIOHXOuzGzkA3g78M9Dbg8AFzaYZw5wz5Dba4FZ\n1fLvAWsbzPYd4N19lmk68DPgbU3mAmYDNwMtYFm/fO+AfwNePey+Jl+nGcCDI9zf+GtVjX0ycGvT\nmYDXARuAmXTKflk//N8D/gJYMuT2/wA+Cdw/llxNTun0+5uyXpuZjwFk5q+B1zYRIiLm0vmNfhud\nb2yjmarpk5XAr4GbM/OOhnN9gc4P/tCdUY2/TlWemyPijog4rw9yzQM2RsTV1RTKVRExveFMQ50O\nXFMtN5YpMx8BLgN+CfwK2JyZ32syU+Ve4MRqCmc6sAA4eKy5fONV93q+dzsi9gauBRZl5pYRMvQ8\nU2a+mJ0pndnAMdWfmo3kiog/Bh7LzFXAjo5HbuLIhOOzM1WxgM6U3Ikj5OhlrsnAfODKKtdWOn9V\nN/4zFRFTgFOBb42SoWeZImI/Oqd/mUNna/9VEXFmk5kAMnMtcCmdv2aXAyuBF0Z66I7W02Th/wo4\nZMjt2dV9/eKxiJgFEBG/Bzzey8EjYjKdsv96Zl7fD5mGysyngDZwSoO5jgdOjYhfAN8E3hkRXwd+\n3fTrlJmPVp9/Q2dK7hia/f49DDyUmT+rbv8jnV8A/fAz9T7gzszcWN1uMtO7gV9k5qbMfIHOPoXj\nGs4EQGZenZlHZ2YLeJLOe5zGlKvJwr8DeH1EzImIqcAH6cyXNSV4+VbiMuDsavkjwPXDn1CzfwDW\nZOYX+yVTRBzw0lEAETENeA+dOcRGcmXmpzPzkMz8fTo/P7dk5lnAPzWR5yURMb3664yIeBWd+enV\nNPj9q/7sfygiDqvuehdwX5OZhjiDzi/slzSZ6ZfA2yNir4gIOq/TmoYzARARr6k+HwKcRmcKbGy5\nernjYYQdEafQ+S31r8BAgzmuAR4BnqHzDT+Hzk6b71X5bgL262Ge4+n8ubaKzp9ud1Wv1f5NZapy\n/ecqyyrgHuAz1f2N5qoynMTvdto2/TrNG/K9W/3Sz3Yf5DqCzobWKuA6YN8+yDQd+A2wz5D7ms50\nMZ0NmXuArwFTms5U5fohnbn8lXSOABvza+UbrySpEO60laRCWPiSVAgLX5IKYeFLUiEsfEkqhIUv\nSYWw8CWpEBa+JBXCwlfRIuLb1RktV790VsuIOLe6oMRt1Vklv1Tdf0BEXBudi8D8NCKOaza9NDa+\n01ZFi4j9MvPJiNiLzmkH3gv8iM4pqbcAK4BVmXlBRHyDztkmfxwRBwM3ZuabGgsvjVGtFzGXJoC/\niYg/rZZnA2cB7czcDBAR3wL+oPr3dwOHVyfVAtg7IqZn5m97mljaRRa+ihURJwHvBI7NzGciYgWd\nk2YdPtpTqsc+16uM0nhyDl8l2xd4oir7N9K57ObewB9VF/yeDPz5kMffROf6uQBExBE9TSvtJgtf\nJbsBmBIR9wGfA35C50IhnwNuB26lc23azdXjFwFHR8TdEXEv8NHeR5Z2nTttpWEi4lWZuTUi9qBz\nxaOv5u+uOiZNWG7hS9sbrC7UvprO5e4se70iuIUvSYVwC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAW\nviQV4v8D4frhjknO3JMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEPCAYAAABBUX+lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFP5JREFUeJzt3X2wXHWd5/H3NySBRAgE0YgEkiwOiO6KBAwKYWgfBjHj\nssvsjogUDixQOmUku7PlctUtSMpaC2plBx2YUoKyrivulgxI1srwJGlldJCnBAIhZMRJIIJAKhBI\n1PD03T/6EC7JvUnf5J4+HX7vV9Wt29339Pl9uu+9n3vu75w+HZmJJOmNb0zTASRJvWHhS1IhLHxJ\nKoSFL0mFsPAlqRAWviQVotbCj4jDImJpRNxbfd4QEefXOaYkaWjRq+PwI2IMsBY4NjMf68mgkqQt\nejml8xHgEctekprRy8I/DfhBD8eTJA3SkymdiBgHPA68KzOfrn1ASdI2xvZonI8B9wxX9hHhCX0k\naYQyM0ayfK+mdE5nB9M5mdlXHxdddFHjGXbnTJ+7YOGWj37J1PRHP+Yy0+6baWfUXvgRMZHODtvr\n6h5LkjS82qd0MvN3wFvqHkeStH2+0nYYrVar6QjbMFN3+jET9GcuM3WnHzPtjJ698Gq7ISKyH3Jo\n9MwduGrL5csvPrfBJNIbU0SQI9xp26ujdCQVbPr06axZs6bpGLuladOmsXr16lFZl4UvqXZr1qzZ\n6SNLShcxoo347XIOX5IKYeFLUiEsfEkqhIUvSaPg7LPP5sILL2w6xna501ZSIwYfulsHDwfellv4\nklQIC19S0WbMmMHXvvY1jjzySPbZZx/OO+88nnrqKebMmcOkSZM46aST2LBhAwCf+MQnOPDAA5k8\neTKtVosVK1YMu94f//jHHHXUUUyePJnZs2ezfPnyLV+75JJLmDp1KpMmTeKII45gyZIltT9OsPAl\nieuuu46f/OQnrFq1ikWLFjFnzhwuvvhi1q1bx8svv8w3vvENAObMmcMjjzzCU089xcyZMznjjDOG\nXN/SpUs555xzWLhwIevXr+czn/kMp5xyCi+++CKrVq3iiiuu4J577uG5557jpptuYvr06T15nBa+\npOJ9/vOf54ADDuDAAw/khBNO4Nhjj+U973kP48eP59RTT2Xp0qUAnHXWWUycOJFx48Zx4YUXct99\n9/H8889vs76FCxfy2c9+lmOOOYaI4Mwzz2TPPffkjjvuYI899uCFF17ggQce4KWXXuKQQw5hxowZ\nPXmcFr6k4k2ZMmXL5QkTJmxzfePGjbzyyisMDAzwjne8g/32248ZM2YQEaxbt26b9a1Zs4ZLL72U\n/fffn/3335/Jkyezdu1aHn/8cQ499FAuu+wy5s+fz5QpU/jUpz7FE0880ZPHaeFLUheuueYaFi1a\nxG233cazzz7L6tWrh30zkoMPPpgvf/nLrF+/nvXr1/PMM8+wceNGTjvtNAA++clPcvvtt285v9DA\nwEBPHoOFL0ld2LhxI3vttReTJ09m06ZNfPGLXxz2PDfnnXce3/zmN7nzzjsB2LRpE4sXL2bTpk2s\nWrWKJUuW8MILLzB+/HgmTJjAmDG9qWKPw5fUiH45Tn7r0h6uxD/96U9z4403ctBBB/HmN7+Zr3zl\nK3zrW98actmjjz6ahQsXMnfuXH71q18xYcIEZs+ezYknnsjmzZsZGBhg5cqVjBs3juOOO44rr7xy\n1B/XUDwfvmrh+fA1WHXu9qZj7JaGe+525nz4TulIUiEsfEkqhIUvSYWw8CWpEBa+JBWi9sKPiH0j\n4ocR8VBEPBgRx9Y9piRpW704Dv/rwOLM/POIGAtM7MGYkvrItGnTRvXNuEsybdq0UVtXrYUfEZOA\nEzLzLIDMfAl4rs4xJfWf1atXNx1B1D+lMwNYFxFXR8S9EXFlREyoeUxJ0hDqntIZC8wEPpeZd0fE\nZcAAcNHWC86fP3/L5VarRavVqjmahuIrZKX+1G63abfbu7SOugt/LfBYZt5dXb8WuGCoBQcXviTp\n9bbeEF6wYMGI11HrlE5mPgk8FhGHVTd9GBj+PcEkSbXpxVE65wPfj4hxwK+Bs3swpiRpK7UXfmbe\nB7yv7nEkSdvnK20lqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLC\nl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJ\nKsTYugeIiNXABuAV4MXMnFX3mJKkbdVe+HSKvpWZz/RgLEnSMHoxpRM9GkeStB29KOIEbomIuyLi\nvB6MJ0kaQi+mdI7PzCci4i10iv+hzPyHrReaP3/+lsutVotWq9WDaJK0e2i327Tb7V1aR+2Fn5lP\nVJ+fjojrgVnAdgtfkvR6W28IL1iwYMTrqHVKJyImRsTe1eU3AScBD9Q5piRpaHVv4U8Bro+IrMb6\nfmbeXPOYkqQh1Fr4mfnPwHvrHEOS1B0Pl5SkQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAW\nviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFL\nUiEsfEkqhIUvSYWw8CWpED0p/IgYExH3RsSiXownSdpWr7bw5wErejSWJGkItRd+REwF5gBX1T2W\nJGl4XRV+RMzo5rZh/DXwBSBHkEuSNMrGdrnc3wEzt7rtWuDo7d0pIv4UeDIzl0VEC4jhlp0/f/6W\ny61Wi1ar9bqvzx147R+Eyy8+t6vQ2tbu8DzuDhmlXmu327Tb7V1ax3YLPyLeCbwb2Dci/mzQlyYB\ne3Wx/uOBUyJiDjAB2Cci/ldmfnrrBQcXviTp9bbeEF6wYMGI17GjLfzDgY8D+wH/etDtzwPn7Wjl\nmfkl4EsAEXEi8J+HKntJUv22W/iZeQNwQ0R8IDP/sUeZJEk16HYO/1cR8SVg+uD7ZOZ/6HagzPwp\n8NMRpZMkjZpuC/8G4HbgVuDl+uJIkurSbeFPzMwLak0iSapVty+8+nF1pI0kaTfVbeHPo1P6v4+I\n5yLi+Yh4rs5gkqTR1dWUTmbuU3cQSVK9uir8iPjjoW7PzJ+NbhxJUl263Wn7hUGX9wJmAfcAHxr1\nRJKkWnQ7pTP4VbZExMHAZbUkkiTVYmdPj7wWOGI0g0iS6tXtHP7f8NrpjccA7wXurSuUJGn0dTuH\nf/egyy8BP8jMn9eQR5JUk27n8L8bEeOBw6qbHq4vkiSpDt1O6bSA7wKr6byJycER8RcelilJu49u\np3QuBU7KzIcBIuIw4Afs4B2vJEn9o9ujdMa9WvYAmbkKGFdPJElSHbreaRsRVwH/u7p+Bq/fkStJ\n6nPdFv5fAp8Dzq+u3w78bS2JJEm16PYonc3A/6g+JEm7oa7m8CPi4xGxNCLWe3pkSdo9dTulcxnw\nZ8DyzMwdLSxJ6j/dHqXzGPCAZS9Ju69ut/D/C7A4In4KbH71xsx0Tl+SdhPdFv5/AzbSORf++Pri\nSJLq0m3hvz0z/+VIVx4RewI/o/NHYixwbWYuGOl6JEm7rts5/MURcdJIV14dzvnBzDyKzimVPxYR\ns0a6HknSruu28P8SuDEifj/SwzIz83fVxT3pbOW741eSGtDtC6/2iYj9gT+iM4/ftYgYQ+f9bw8F\nrsjMu0acUpK0y7o9PfK5wDxgKrAMeD/wC+DDO7pvZr4CHBURk4AfRcS7MnPF1svNnz+fxbd23kTr\noEMO5/pr/nvXD+KNbu7AVVsuX37xuY2te3vL7krGOh9fr8bp1WNQudrtNu12e5fW0e1O23nA+4A7\nMvODEfFO4KsjGSgzn4uIJcDJwJCFv+4PV217R0kSrVaLVqu15fqCBSM//qXbOfw/ZOYfoHPkTWau\nBA7f0Z0i4oCI2Le6PAH4E2DliFNKknZZt1v4ayNiP+BHwC0R8Qywpov7HQh8t5rHHwP838xcvHNR\nJUm7otudtqdWF+dX0zL7Ajd2cb/lwMydjydJGi3dbuFvkZk/rSOIJKle3c7hS5J2cxa+JBXCwpek\nQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqE\nhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiFqLfyImBoRt0XEgxGxPCLOr3M8SdLwxta8\n/peAv8rMZRGxN3BPRNycmStrHleStJVat/Az87eZuay6vBF4CDiozjElSUPr2Rx+REwH3gv8sldj\nSpJeU/eUDgDVdM61wLxqS38bs2afwqO/eRqAD3xg9g7XOXfgqi2XL7/43F3KN5rrGi2DM/VDhtF+\nXvrh8W3Prjz2fvx50u6v3W7Tbrd3aR21F35EjKVT9t/LzBuGW27W7FN44c6HADjokMPrjiVJu5VW\nq0Wr1dpyfcGCBSNeRy+mdL4DrMjMr/dgLEnSMOo+LPN44AzgQxGxNCLujYiT6xxTkjS0Wqd0MvPn\nwB51jiFJ6o6vtJWkQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtf\nkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWp\nELUWfkR8OyKejIj76xxHkrRjdW/hXw18tOYxJEldqLXwM/MfgGfqHEOS1B3n8CWpEGObDvCq//md\nK9j8wkuMiWDG2zp/h+YOXLVT6xp8v8svPnfEX9/esiO57/bWNdhI17ujTNsbZzTt7PdntMbZ0WMf\nre/PrhrJ92skmUfrse7q78gbXb88F+12m3a7vUvr6JvC3/utM8mNv2fsHntw0CGHNx1HkvpKq9Wi\n1Wptub5gwYIRr6MXUzpRfUiSGlT3YZnXAL8ADouIRyPi7DrHkyQNr9Ypncz8VJ3rlyR1z6N0JKkQ\nFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHh\nS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSIWov/Ig4OSJWRsSqiLig7vEk\nSUOrtfAjYgxwOfBR4N3A6RHxzjrHHC3tdrvpCNv4zaMPNx1hG2bqXj/m6sdM/u7Vp+4t/FnAP2Xm\nmsx8Efg/wL+pecxR4Q9dd8zUvX7M1Y+Z/N2rT92FfxDw2KDra6vbJEk95k5bSSpEZGZ9K494PzA/\nM0+urg8AmZmXbLVcfSEk6Q0qM2Mky9dd+HsADwMfBp4A7gROz8yHahtUkjSksXWuPDNfjoi5wM10\npo++bdlLUjNq3cKXJPWPRnfa9suLsiLi2xHxZETcP+i2yRFxc0Q8HBE3RcS+PcwzNSJui4gHI2J5\nRJzfdKZq/D0j4pcRsbTKdVGf5BoTEfdGxKJ+yFNlWB0R91XP1Z39kCsi9o2IH0bEQ9XP1rEN/5wf\nVj0/91afN0TE+X3wPP2niHggIu6PiO9HxPimM1W55lW/dzvdCY0Vfp+9KOvqKsdgA8CtmXk4cBvw\nxR7meQn4q8x8N/AB4HPVc9NkJjJzM/DBzDwKeC/wsYiY1XQuYB6wYtD1pvMAvAK0MvOozJzVJ7m+\nDizOzCOAI4GVTWbKzFXV8zMTOBrYBFzfZKaIeDvweWBmZr6HzrT36U1mqnK9GzgHOIbO797HI+LQ\nEefKzEY+gPcDfz/o+gBwQYN5pgH3D7q+EphSXX4bsLLBbD8CPtJnmSYCdwPvazIXMBW4BWgBi/rl\newf8M/DmrW5r8nmaBDwyxO2NP1fV2CcBtzedCXg7sAaYTKfsF/XD7x7w74GFg67/V+ALwEMjydXk\nlE6/vyjrrZn5JEBm/hZ4axMhImI6nb/od9D5xjaaqZo+WQr8FrglM+9qONdf0/nBH7wzqvHnqcpz\nS0TcFRHn9kGuGcC6iLi6mkK5MiImNpxpsNOAa6rLjWXKzMeBS4FHgd8AGzLz1iYzVR4ATqimcCYC\nc4CDR5rLF151r+d7tyNib+BaYF5mbhwiQ88zZeYr2ZnSmQrMqv7VbCRXRPwp8GRmLgO2dzxyE0cm\nHJ+dqYo5dKbkThgiRy9zjQVmAldUuTbR+a+68Z+piBgHnAL8cJgMPcsUEfvROf3LNDpb+2+KiDOa\nzASQmSuBS+j8N7sYWAq8PNSi21tPk4X/G+CQQdenVrf1iycjYgpARLwNeKqXg0fEWDpl/73MvKEf\nMg2Wmc8BbeDkBnMdD5wSEb8GfgB8KCK+B/y26ecpM5+oPj9NZ0puFs1+/9YCj2Xm3dX1v6PzB6Af\nfqY+BtyTmeuq601m+gjw68xcn5kv09mncFzDmQDIzKsz85jMbAHP0nmN04hyNVn4dwHviIhpETEe\n+CSd+bKmBK/fSlwEnFVd/gvghq3vULPvACsy8+v9kikiDnj1KICImAD8CZ05xEZyZeaXMvOQzPwX\ndH5+bsvMM4H/10SeV0XExOq/MyLiTXTmp5fT4Pev+rf/sYg4rLrpw8CDTWYa5HQ6f7Bf1WSmR4H3\nR8ReERF0nqcVDWcCICLeUn0+BDiVzhTYyHL1csfDEDsiTqbzV+qfgIEGc1wDPA5spvMNP5vOTptb\nq3w3A/v1MM/xdP5dW0bnX7d7q+dq/6YyVbn+VZVlGXA/8OXq9kZzVRlO5LWdtk0/TzMGfe+Wv/qz\n3Qe5jqSzobUMuA7Ytw8yTQSeBvYZdFvTmS6isyFzP/BdYFzTmapcP6Mzl7+UzhFgI36ufOGVJBXC\nnbaSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4KlpEXF+d0XL5q2e1jIhzqjeU\nuKM6q+Q3qtsPiIhro/MmML+MiOOaTS+NjK+0VdEiYr/MfDYi9qJz2oGPAj+nc0rqjcASYFlmnh8R\n36dztslfRMTBwE2Z+a7GwksjVOubmEu7gf8YEf+2ujwVOBNoZ+YGgIj4IfBH1dc/AhxRnVQLYO+I\nmJiZv+tpYmknWfgqVkScCHwIODYzN0fEEjonzTpiuLtUy77Yq4zSaHIOXyXbF3imKvt30nnbzb2B\nP67e8Hss8O8GLX8znffPBSAijuxpWmkXWfgq2Y3AuIh4EPgq8I903ijkq8CdwO103pt2Q7X8POCY\niLgvIh4APtP7yNLOc6ettJWIeFNmboqIPei849G387V3HZN2W27hS9uaX71R+3I6b3dn2esNwS18\nSSqEW/iSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEP8fHts4oINal+0AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2572,7 +2580,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2581,7 +2589,7 @@ ], "source": [ "hist = thinkstats2.Hist(male_sur.Age)\n", - "thinkplot.Hist(hist, label='males')\n", + "thinkplot.Hist(hist, label='males', width=.8)\n", "thinkplot.Show(xlabel='age', ylabel='amount')" ] }, @@ -2594,7 +2602,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 8, "metadata": { "collapsed": false }, @@ -2603,7 +2611,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFihJREFUeJzt3X2QXXWd5/H3F5JAIgQSKCMSSKJOkGUHJCAwPMgdQGAy\nMzjO1ipCgWSAUosAO7PF0kgVdJe1U3FXVlScUgKmGNe4tSJK1mJ4MrkuyiAPSUggQFQmCQgkk00E\nkhkDId/9457uaTqd9O2He8/p5P2q6sq9554+59O3b+dzz8P9nchMJEl7t33KDiBJKp9lIEmyDCRJ\nloEkCctAkoRlIEmixWUQEXdGxPqIWNFn+tUR8VxErIyIea3MIEka2JgWL38B8A3g77snREQN+HPg\nDzNze0Qc2uIMkqQBtHTLIDN/DmzuM/kLwLzM3F7Ms7GVGSRJAyvjmMFM4GMR8VhELImIE0vIIEnq\npdW7iXa1zkmZeUpEfBT438AHSsghSSqUUQYvAfcAZOYTEbEjIg7JzP/Xd8aIcOAkSRqCzIzBzN+O\n3URRfHX7MXAWQETMBMb2VwTdMrPyXzfffHPpGfp+XXX9/N3mvOr6+f3O0+pMzayzis/naMxozr03\n51C0dMsgIhYCNeCQiFgH3Ax8B1gQESuBbcClrcwgSRpYS8sgMy/axUOXtHK9kqTB8RPII6BWq5Ud\noSnmHDmjISOYc6SNlpxDYRmMgNHyAjHnyBkNGcGcI2205ByKMs4mkiQApk+fztq1a8uOMWpNmzaN\nNWvWjMiyLANJpVm7du2Qz34RRAzq7NHdcjeRJMkykCRZBpIkLANJark5c+Zw0003lR1jtzyALKlS\n5nbc0dLl3zbvipYuf7Ryy0CSZBlI0q7MmDGDr3zlKxx33HEceOCBXHnllWzYsIHZs2czceJEzj33\nXF5//XUAPvWpT3HYYYcxadIkarUaq1at2uVyf/KTn3D88cczadIkTj/9dFauXNnz2Je//GWmTp3K\nxIkTOfroo1myZEnLf06wDCRpt+655x5++tOfsnr1ahYtWsTs2bOZN28eGzdu5J133uHrX/86ALNn\nz+Y3v/kNGzZsYNasWVx88cX9Lm/ZsmVcfvnlzJ8/n02bNvG5z32OCy64gLfffpvVq1fzzW9+k6ee\neoo33niDBx54gOnTp7fl57QMJGk3rr76ag499FAOO+wwzjjjDE4++WSOPfZYxo0bxyc/+UmWLVsG\nwGWXXcaECRMYO3YsN910E08//TRvvvnmTsubP38+n//85znxxBOJCC655BL2228/HnvsMfbdd1/e\neustnnnmGbZv386RRx7JjBkz2vJzWgaStBtTpkzpuT1+/Pid7m/ZsoUdO3bQ0dHBhz70IQ4++GBm\nzJhBRLBx486XeF+7di233HILkydPZvLkyUyaNImXX36ZV155hQ9+8IPceuutdHZ2MmXKFC666CJe\nffXVtvycloEkDdPChQtZtGgRixcv5ne/+x1r1qzZ5YVmjjjiCG688UY2bdrEpk2b2Lx5M1u2bOHT\nn/40ABdeeCGPPPJIz5hNHR0dbfkZLANJGqYtW7aw//77M2nSJLZu3coNN9ywy3GDrrzySr71rW/x\n+OOPA7B161buu+8+tm7dyurVq1myZAlvvfUW48aNY/z48eyzT3v+m/ZzBpIqpUqfA+j7H/qu/oO/\n9NJLuf/++zn88MM55JBD+NKXvsS3v/3tfuc94YQTmD9/PnPnzuXXv/4148eP5/TTT+fMM89k27Zt\ndHR08PzzzzN27FhOPfVUbr/99hH/ufoTVR4xMCKyyvmqbG7HHbv9o+r+YE87//DKWKeqLSIctXQY\ndvX8FdMHNaSpu4kkSa0tg4i4MyLWR8SKfh77zxGxIyImtzKDJGlgrd4yWACc13diREwFPg54iSNJ\nqoCWlkFm/hzY3M9DXwWua+W6JUnNa/sxg4i4AHgpM1cOOLMkqS3aemppRIwHvkhjF1HP5HZmkCTt\nrN2fM/ggMB14Ohon7E4FnoqIkzJzQ3/f0NnZ2XO7VqtRq9Van3IvNJTTPj1VVMM1bdq0Eb2o+95m\n2rRpANTrder1+rCW1Y4yiOKLzHwGeF/PAxH/BMzKzP6OKwDvLgNJe5Y1a9aUHWGP0PeNcldX16CX\n0epTSxcCjwIzI2JdRMzpM0vibiJJKl1Ltwwy86IBHv9AK9cvSWqOn0CWJFkGkiTLQJKEZSBJwjKQ\nJGEZSJKwDCRJWAaSJCwDSRKWgZo0t+OOnoHpWr0eSe1nGUiSLANJkmUgScIykCRhGUiSsAwkSVgG\nkiQsA0kSloEkiRaXQUTcGRHrI2JFr2n/LSKei4jlEfHDiJjYygySpIG1estgAXBen2kPAsdk5keA\nXwE3tDiDJGkALS2DzPw5sLnPtIczc0dx9zFgaiszSJIGVvYxg78C/qHkDJK01xtT1ooj4kbg7cxc\nuLv5Ojs7e27XajVqtVprg41C3SN93jbvipKTSCpDvV6nXq8PaxmllEFEXAbMBs4aaN7eZSBJ2lnf\nN8pdXV2DXkY7yiCKr8adiPOB64CPZea2NqxfkjSAVp9auhB4FJgZEesiYg7wDeAA4KGIWBoRf9fK\nDJKkgbV0yyAzL+pn8oJWrlOSNHhln00kSaoAy0CSZBlIkiwDSRKWgSQJy0CShGUgScIykCRhGUiS\nsAy0F5rbcUfPSK+SGiwDSZJlIEmyDCRJWAaSJCwDSRKWgSQJy0CShGUgScIykCTR4jKIiDsjYn1E\nrOg1bVJEPBgRL0TEAxFxUCszSJIG1uotgwXAeX2mdQAPZ+ZRwGLghhZnkCQNoKVlkJk/Bzb3mfwJ\n4K7i9l3AX7QygyRpYGUcM3hvZq4HyMzXgPeWkEGS1MuYsgMAubsHOzs7e27XajVqtVqL41RP9wib\nt827otRljPQ62pFJ2hvU63Xq9fqwllFGGayPiCmZuT4i3gds2N3MvctAkrSzvm+Uu7q6Br2Mduwm\niuKr2yLgsuL2Z4F725BBkrQbrT61dCHwKDAzItZFxBxgHvDxiHgBOLu4L0kqUUt3E2XmRbt46JxW\nrleSNDh+AlmSZBlIkiwDSRKWgSQJy0CShGUgSaLJMoiIGc1MkySNTs1uGfywn2l3j2QQSVJ5dvuh\ns4j4MHAMcFBE/GWvhyYC+7cymCSpfQb6BPJRwJ8BBwN/3mv6m8CVrQql8o2WEUX75hwtuaWq2W0Z\nZOa9wL0R8UeZ+Y9tyiRJarNmxyb6dUR8EZje+3sy869aEUqS1F7NlsG9wCPAw8A7rYsjSSpDs2Uw\nITOvb2kSSVJpmj219CcRMbulSSRJpWm2DK6lUQj/GhFvRMSbEfFGK4NJktqnqd1EmXlgq4NIksrT\nVBlExMf6m56Z/3dk40iSytDsAeTret3eHzgJeAo4a8QTSZLartndRL0/fUxEHAHcOpwVR8RfA5cD\nO4CVwJzMfGs4y5QkDc1Qh7B+GTh6qCuNiPcDVwOzMvNYGqV04VCXJ0kanmaPGXwDyOLuPsBHgKXD\nXPe+wHsiYgcwAXhlmMuTJA1Rs8cMnux1ezvw/cz8xVBXmpmvRMQtwDrgX4AHM/PhoS5PkjQ8zR4z\nuCsixgEzi0kvDGelEXEw8AlgGvA6cHdEXJSZC/vO29nZ2XO7VqtRq9WGs2qNco5KKu2sXq9Tr9eH\ntYxmdxPVgLuANUAAR0TEZ4dxauk5wIuZualY/j3AqcBuy0CStLO+b5S7uroGvYxmdxPdApybmS8A\nRMRM4PvACYNeY8M64JSI2B/YBpwNPDHEZUmShqnZs4nGdhcBQGauBsYOdaWZ+TiNy2YuA56msbVx\n+1CXJ0kanqYPIEfEHcD/LO5fzLsPKg9aZnYBg9+WkSSNuGbL4AvAVcA1xf1HgL9rSSJJUts1ezbR\nNuB/FF+SpD1MU8cMIuLPImJZRGxyCGtJ2vM0u5voVuAvgZWZmQPNLEkaXZo9m+gl4BmLQJL2TM1u\nGfwX4L6I+BmNzwUAkJkeQ5CkPUCzZfBfgS00rmUwrnVxJEllaLYM3p+Z/76lSSRJpWn2mMF9EXFu\nS5NIkkrTbBl8Abg/Iv7VU0vVTnM77ugZqbSM7x/qMkZive1YptSt2Q+dHRgRk4E/oHHcQJK0B2l2\nCOsrgGuBqcBy4BTgURqjjUqSRrlmdxNdC3wUWJuZfwwcT+OiNJKkPUCzZfD7zPw9QETsl5nPA0e1\nLpYkqZ2aPbX05eJSlT8GHoqIzcDa1sWSJLVTsweQP1nc7IyIJcBBwP0tSyVJaqtmtwx6ZObPWhFE\nklSeZo8ZSJL2YJaBJKm8MoiIgyLiBxHxXEQ8GxEnl5VFkvZ2gz5mMIK+BtyXmf8xIsYAE0rMIkl7\ntVLKICImAmdk5mUAmbkdcKwjSSpJWbuJZgAbI2JBRCyNiNsjYnxJWSRpr1fWbqIxwCzgqsx8MiJu\nBTqAm/vO2NnZ2XO7VqtRq9XaFLG6ukeuvG3eFSUn2b3RknOw9tSfS6NXvV6nXq8PaxlllcHLwEuZ\n+WRx/27g+v5m7F0GkqSd9X2j3NXVNehllLKbKDPXAy9FxMxi0tnAqjKySJLKPZvoGuB7ETEWeBGY\nU2IWSdqrlVYGmfk0jWGxJUkl8xPIkiTLQJJkGUiSsAwkSVgGkiQsA0kSloEkCctAkoRlIEnCMpB2\nMrfjjp6RSUfzOkZinWXkVDksA0mSZSBJsgwkSVgGkiQsA0kSloEkCctAkoRlIEnCMpAkUXIZRMQ+\nEbE0IhaVmUOS9nZlbxlcC6wqOYMk7fVKK4OImArMBhz4RJJKVuaWwVeB64AsMYMkCRhTxkoj4k+B\n9Zm5PCJqQOxq3s7Ozp7btVqNWq3W6njay3SPynnbvCv2qAxV+LnUHvV6nXq9PqxllFIGwGnABREx\nGxgPHBgRf5+Zl/adsXcZSJJ21veNcldX16CXUcpuosz8YmYemZkfAC4EFvdXBJKk9ij7bCJJUgWU\ntZuoR2b+DPhZ2TkkaW/mloEkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnCMpAkYRlIkhjFZTC3446e\nURmHM4/UDkN5LbbjtVvFv5GRyFTFn6vqRm0ZSJJGjmUgSbIMJEmWgSQJy0CShGUgScIykCRhGUiS\nsAwkSZRUBhExNSIWR8SzEbEyIq4pI4ckqWFMSevdDvxNZi6PiAOApyLiwcx8vqQ8krRXK2XLIDNf\ny8zlxe0twHPA4WVkkSRV4JhBREwHPgL8stwkkrT3Kms3EQDFLqK7gWuLLYSddHZ2AnDfw0s5/Mij\n+NHC/96yPN2jHN4274ohz9PMMvr7nsHMP9rtSaNJdv/uRup3OJjXT995h/LaG66h/M0MNvdI/F2O\nhCo837tSr9ep1+vDWkZpZRARY2gUwXcz895dzdddBht/v+f8ByJJI6lWq1Gr1Xrud3V1DXoZZe4m\n+g6wKjO/VmIGSRLlnVp6GnAxcFZELIuIpRFxfhlZJEkl7SbKzF8A+5axbknSzko/m0iSVD7LQJJk\nGUiSLANJEpaBJAnLQJKEZSBJwjKQJGEZSJIoedTSqitrtMRWjoY42BFD+5u/HaOsDpRzuI83O4/e\nrdnntQojefY2kn9Tw3ndVGmk077cMpAkWQaSJMtAkoRlIEnCMpAkYRlIkrAMJElYBpIkSiyDiDg/\nIp6PiNURcX1ZOSRJJZVBROwD3AacBxwDfCYiPlxGlpHw23UvlB2hKaMlZ71eLzvCgEbLc2nOkTVa\ncg5FWVsGJwG/ysy1mfk28L+AT5SUZdhGywtktOS0DEaOOUfWaMk5FGWVweHAS73uv1xMkySVwAPI\nkiQiM9u/0ohTgM7MPL+43wFkZn65z3ztDydJe4DMjMHMX1YZ7Au8AJwNvAo8DnwmM59rexhJUjnX\nM8jMdyJiLvAgjV1Vd1oEklSeUrYMJEnVUskDyFX+QFpE3BkR6yNiRa9pkyLiwYh4ISIeiIiDSs44\nNSIWR8SzEbEyIq6paM79IuKXEbGsyHlzFXMWmfaJiKURsaiqGQEiYk1EPF08p48X0yqVNSIOiogf\nRMRzxWv05ApmnFk8h0uLf1+PiGuqlrPI+tcR8UxErIiI70XEuKHkrFwZjIIPpC2gka23DuDhzDwK\nWAzc0PZU77Yd+JvMPAb4I+Cq4jmsVM7M3Ab8cWYeD3wE+JOIOImK5SxcC6zqdb+KGQF2ALXMPD4z\nTyqmVS3r14D7MvNo4DjgeSqWMTNXF8/hLOAEYCvwIyqWMyLeD1wNzMrMY2ns+v8MQ8mZmZX6Ak4B\n/qHX/Q7g+rJz9ck4DVjR6/7zwJTi9vuA58vO2Cfvj4FzqpwTmAA8CXy0ajmBqcBDQA1YVOXfOfBP\nwCF9plUmKzAR+E0/0yuTsZ9s5wKPVDEn8H5gLTCpKIJFQ/1br9yWAaPzA2nvzcz1AJn5GvDekvP0\niIjpNN51P0bjxVGpnMXul2XAa8BDmfkE1cv5VeA6oPcBtqpl7JbAQxHxRER0X3W9SllnABsjYkGx\nC+b2iJhQsYx9fRpYWNyuVM7MfAW4BVgH/BZ4PTMfZgg5q1gGe4JKHJWPiAOAu4FrM3MLO+cqPWdm\n7sjGbqKpwEkRcQwVyhkRfwqsz8zlwO7O2y79uSyclo1dG7Np7B48gwo9nzTevc4Cvlnk3Epj679K\nGXtExFjgAuAHxaRK5YyIg2kM5TONxlbCeyLi4n5yDZizimXwW+DIXvenFtOqbH1ETAGIiPcBG0rO\nQ0SMoVEE383Me4vJlcvZLTPfAOrA+VQr52nABRHxIvB94KyI+C7wWoUy9sjMV4t//5nG7sGTqNbz\n+TLwUmY+Wdz/IY1yqFLG3v4EeCozNxb3q5bzHODFzNyUme/QOK5xKkPIWcUyeAL4UERMi4hxwIU0\n9oNVSfDud4mLgMuK258F7u37DSX4DrAqM7/Wa1qlckbEod1nOUTEeODjwHNUKGdmfjEzj8zMD9B4\nLS7OzEuA/0NFMnaLiAnF1iAR8R4a+7pXUq3ncz3wUkTMLCadDTxLhTL28RkabwK6VS3nOuCUiNg/\nIoLG87mKoeQs++DMLg6KnE/jE8q/AjrKztMn20LgFWBb8YuYQ+PgzcNF5geBg0vOeBrwDrAcWAYs\nLZ7TyRXL+YdFtuXACuDGYnqlcvbKeyb/dgC5chlp7I/v/p2v7P7bqVpWGmcQPVFkvQc4qGoZi5wT\ngH8GDuw1rYo5b6bxJmoFcBcwdig5/dCZJKmSu4kkSW1mGUiSLANJkmUgScIykCRhGUiSsAwkSVgG\nkiQsA2mXIuJHxeifK7tHAI2Iy4sLhjxWjLj59WL6oRFxd3Gxnl9GxKnlppcGx08gS7sQEQdn5u8i\nYn8awyecB/yCxpDgW4AlwPLMvCYivkdjJM5HI+II4IHM/HelhZcGaUzZAaQK+08R8RfF7anAJUA9\nM18HiIgfAH9QPH4OcHQxWBjAARExITP/pa2JpSGyDKR+RMSZwFnAyZm5LSKW0BgM7OhdfUsx79vt\nyiiNJI8ZSP07CNhcFMGHaVyO9QDgY8UF3ccA/6HX/A/SuE4yABFxXFvTSsNkGUj9ux8YGxHPAn8L\n/CONC7P8LfA48AiN6w2/Xsx/LXBiRDwdEc8An2t/ZGnoPIAsDUJEvCczt0bEvjSuKnVn/tuV5KRR\nyy0DaXA6I6L74jEvWgTaU7hlIElyy0CSZBlIkrAMJElYBpIkLANJEpaBJAn4/85+D7RwYsPwAAAA\nAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2612,7 +2620,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2622,7 +2630,7 @@ "source": [ "male_not = males[males.Survived == 0]\n", "hist = thinkstats2.Hist(male_not.Age)\n", - "thinkplot.Hist(hist, label='males')\n", + "thinkplot.Hist(hist, label='males', width=.8)\n", "thinkplot.Show(xlabel='age', ylabel='amount')" ] }, @@ -2635,16 +2643,16 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFPVJREFUeJzt3X2QXXV9x/H3NwloAiREGFCTELQtCLTVQI0IRa6ggdqK\ntf2jEccqFuhgIqHUNCv9g10cEREEK40zGspYC3RGrE2sogGTGx9AAUkIAoEQJECAQBJ5UgxGvv3j\nnl2XzSa5+3Dv2bP7fs3cyb1nz57f59xs8tnzcM+JzESSNLaNKzuAJKl8loEkyTKQJFkGkiQsA0kS\nloEkiRaXQURcHRGbI2JtP1/754h4OSJe08oMkqQ9a/WWwTXAKX0nRsR04N3AxhaPL0lqQkvLIDN/\nBPyyny9dASxs5diSpOa1/ZhBRJwGPJqZd7d7bElS/ya0c7CImAhcQGMXUc/kdmaQJO2srWUA/AFw\nKHBXRAQwHfhZRMzOzKf6zhwRXjhJkgYhMwf0i3Y7dhNF8SAzf56Zr83MN2bmG4DHgFn9FUG3zKzs\n48ILLyw9w0jIP2/RVyqbvervvfnHZv7BaPWppdcBtwCHRcQjEXFGn1kSdxNJUulaupsoM0/fw9ff\n2MrxJUnN8RPILVSr1cqOMCRVzl/l7GD+slU9/2DEYPcvtUNE5EjOp+bM71jCVZecWXYMacyICHKA\nB5DbfTaRpFHu0EMPZeNGLy7QDjNnzuThhx8elmVZBpKG1caNGwd9RosGpnGG/vDwmIEkyTKQJFkG\nkiQsA0ljyAMPPMCsWbOYMmUKV111VdvGHTduHA899FDbxhsMDyBLaqn5HUtauvyBnLZ86aWXctJJ\nJ7F69eoWJtrZcB7obRW3DCSNGRs3buSoo45q+7hVOLvKMpA0Jpx88smsXLmSefPmMXnyZNavX88n\nPvEJZs6cyete9zo+9rGPsX37dgBWrVrFjBkz+NznPsfBBx/MtGnTWLp0KTfeeCOHH344Bx54IJ/5\nzGd6ln377bdz3HHHMXXqVKZNm8bHP/5xduzY0W+Ol156aZfjbt26lfe+971MnTqVAw44gBNPPLH1\nb0zBMpA0Jnz/+9/nhBNOYPHixTz33HMsXryYBx98kLVr1/Lggw+yadMmLrroop75n3zySV566SUe\nf/xxurq6OOuss7j22mtZvXo1P/jBD/jUpz7V8+G68ePHc+WVV7Jt2zZuvfVWVqxYweLFi/vNsWjR\nol2Oe/nllzNjxgy2bt3KU089xcUXX9z6N6ZgGUgaU7p32XzlK1/hiiuuYMqUKeyzzz50dHRw/fXX\n98y39957c8EFFzB+/Hjmzp3Lli1bOO+885g0aRJHHnkkRx55JHfddRcARx99NLNnzyYiOOSQQzj7\n7LNZtWpVv+Pvbty99tqLJ554gl/84heMHz+e448/vsXvxu95AFnSmPP000/z61//mmOOOaZn2ssv\nv/yKffsHHHBAz4HfiRMnAnDQQQf1fH3ixIm88MILAKxfv57zzz+fO+64gxdffJEdO3a8YtnNjrtw\n4UI6OzuZM2cOEcFZZ53FokWLhnHNd80tA0ljzoEHHsikSZO455572LZtG9u2beOZZ57h2WefHdTy\nzjnnHI444gg2bNjAM888w6c//el+Dxrvadx9992Xyy67jA0bNrBs2TI+//nPs3LlyiGta7MsA0lj\nTvdv3eeddx5PP/00AJs2bWL58uWDWt7zzz/P5MmTmTRpEuvWreNLX/rSoMb99re/zYYNGwDYb7/9\nmDBhAuPGtee/aXcTSWqpkXT58t7n+19yySVcdNFFHHvssWzdupVp06ZxzjnnMGfOnD1+b9/Xl112\nGWeffTaXXnops2bNYu7cuaxYsaLfeT/72c/S1dXV77jr169n/vz5bNmyhalTpzJv3ry2nVHk/QzU\nct7PYGwprqVfdowxYVfv9WDuZ+BuIkmSZSBJsgwkSVgGkiQsA0kSLS6DiLg6IjZHxNpe0y6NiPsi\nYk1EfCMiJrcygyRpz1q9ZXANcEqfacuBozLzLcB64JMtziCpjWbOnElE+GjDY+bMmcP299bSD51l\n5o8iYmafaTf3evkT4G9bmUFSez388MNlR9AglH3M4KPAjSVnkKQxr7TLUUTEvwK/zczrdjdfZ2dn\nz/NarUatVmttMEmqmHq9Tr1eH9IyWn45imI30bcy8097TfsIcBZwUmZu3833ejmKUcDLUUjtNZjL\nUbRjyyCKR+NFxKnAQuAduysCSVL7tPrU0uuAW4DDIuKRiDgD+CKwL3BTRNwZEf3fG06S1DatPpvo\n9H4mX9PKMSVJA1f22USSpBHAMpAkWQaSJMtAkoRlIEnCMpAkYRlIkrAMJElYBpIkLANJEpaBJAnL\nQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGUgScIykCRhGUiSaHEZRMTVEbE5Itb2\nmjY1IpZHxP0R8b2ImNLKDJKkPWv1lsE1wCl9pnUAN2fm4cAK4JMtziBJ2oOWlkFm/gj4ZZ/J7wO+\nWjz/KvDXrcwgSdqzMo4ZHJSZmwEy80ngoBIySJJ6mVB2ACB398XOzs6e57VajVqt1uI4Goj5HUu4\n6pIzy44hjWn1ep16vT6kZZRRBpsj4uDM3BwRrwWe2t3MvctAkrSzvr8od3V1DXgZ7dhNFMWj2zLg\nI8XzDwNL25BBkrQbrT619DrgFuCwiHgkIs4ALgHeHRH3AycXryVJJWrpbqLMPH0XX3pXK8eVJA2M\nn0CWJFkGkiTLQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGWgUWp+x5KyI0iVYhlI\nkiwDSZJlIEnCMpAkYRlIkrAMJElYBpIkLANJEpaBJAnLQJKEZSBJosQyiIh/ioifR8TaiLg2IvYu\nK4skjXWllEFEvB74OHB0Zv4pMAGYW0YWSVLjP+GyjAf2iYiXgUnA4yVmkaQxraktg4h4QzPTmpWZ\njwOXA48Am4BnMvPmwS5PkjQ0zW4ZfAM4us+0G4BjBjNoROwPvA+YCTwL3BARp2fmdX3n7ezs7Hle\nq9Wo1WqDGVK9zO9YwlWXnFl2jErzPdRIUq/XqdfrQ1rGbssgIt4EHAVMiYi/6fWlycCrhzDuu4CH\nMnNbMc7/AMcBuy0DSdLO+v6i3NXVNeBl7GnL4HDgr4D9gff2mv48cNaAR/u9R4BjI+LVwHbgZOD2\nISxPkjQEuy2DzFwKLI2It2fmrcM1aGbeFhE3AKuB3xZ/fnm4li9JGphmjxk8GBEXAIf2/p7M/Ohg\nB87MLmDg2zKSpGHXbBksBX4I3Az8rnVxJEllaLYMJmXmopYmkSSVptlPIP9fRLynpUkkSaVptgwW\n0CiEFyPiuYh4PiKea2UwSVL7NLWbKDP3a3UQSVJ5miqDiHhHf9Mz8wfDG0eSVIZmDyAv7PX81cBs\n4GfAScOeSJLUds3uJur96WMiYgZwZUsSSZLabrD3M3gMOGI4g0iSytPsMYMvAlm8HAe8BbizVaEk\nSe3V7DGDO3o93wFcn5k/bkEeSVIJmtpNlJlfBa6ncdD4LuC2VoZSe83vWFJ2hFHB91FV1uxuohrw\nVeBhIIAZEfFhTy2VpNGh2d1ElwNzMvN+gIg4jMaWwqDudCZJGlmaPZtor+4iAMjMB4C9WhNJktRu\nTR9AjoglwH8Vrz/IKw8qS5IqrNkyOAeYB5xbvP4hsLgliSRJbdfsJ5C3A58vHpKkUaapYwYR8VcR\nsToitnkJa0kafZrdTXQl8DfA3ZmZe5pZklQtzZ5N9Cjwc4tAkkanZrcM/gX4TkSsArZ3T8xMjyFI\n0ijQbBl8GniBxr0M9m5dHElSGZotg9dn5h8P58ARMQVYAvwx8DLw0cz86XCOIUlqTrPHDL4TEXOG\neewvAN/JzCOANwP3DfPyJUlNarYMzgG+GxEvDseppRExGTghM68ByMwdmempqpJUkmY/dLZfRLwG\n+CMaxw2G6g3Aloi4hsZWwR3Agsx8cRiWLUkaoGYvYX0msACYDqwBjgVuAU4ewrhHA/My846IuBLo\nAC7sO2NnZ2fP81qtRq1WG+SQ0p7N71jCVZecWXYMaUDq9Tr1en1Iy2j2APIC4K3ATzLznRHxJuDi\nIYz7GPBoZnZf7O4GYFF/M/YuA0nSzvr+otzV1TXgZTR7zOA3mfkbgIh4VWauAw4f8GiFzNwMPFrc\nFwEaWxj3DnZ5kqShaXbL4LGI2B/4X+CmiPglsHGIY58LXBsRewEPAWcMcXmSpEFq9gDy+4unnRGx\nEpgCfHcoA2fmXTR2PUmSStbslkGPzFzViiCSpPI0e8xAkjSKWQaSJMtAkmQZSJKwDCRJWAaSJCwD\nSRKWgSQJy0CShGUgSWIMlcH8jiVlR2i5/tax6uvdN/9Q1rFK70WVsmp0GDNlIEnaNctAkmQZSJIs\nA0kSloEkCctAkoRlIEnCMpAkYRlIkrAMJElYBpIkSi6DiBgXEXdGxLIyc0jSWFf2lsEC4N6SM0jS\nmFdaGUTEdOA9gJdnlKSSlbllcAWwEMgSM0iSKKkMIuIvgc2ZuQaI4tGvzs7Onke9Xh+2DFW/XnwZ\n+ZsZs+rva3+Gc51G4z0n+jMa12kkq9frr/i/cjAmDG+kph0PnBYR7wEmAvtFxH9m5t/3nXGwKyZJ\nY0WtVqNWq/W87urqGvAyStkyyMwLMvOQzHwjMBdY0V8RSJLao+yziSRJI0BZu4l6ZOYqYFXZOSRp\nLHPLQJJkGUiSLANJEpaBJAnLQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRKWQSWMlWvDj5X1HC5D\neb8G+70j9T4aZSxrtLEMJEmWgSTJMpAkYRlIkrAMJElYBpIkLANJEpaBJAnLQJKEZSBJwjKQJFFS\nGUTE9IhYERH3RMTdEXFuGTkkSQ0TShp3B3B+Zq6JiH2Bn0XE8sxcV1IeSRrTStkyyMwnM3NN8fwF\n4D5gWhlZJEkj4JhBRBwKvAX4ablJJGnsKrUMil1ENwALii2EnXR2dtLZ2cnsPz+N95++cKevj8br\nk4/GdeprJKzj/I4lIyJHs0bqPQhGaq4ylLVO9Xq95//Kzs7OQS2jrGMGRMQEGkXwtcxcuqv5ulds\ny29G3w+OJA2HWq1GrVbred3V1TXgZZS5ZfAfwL2Z+YUSM0iSKO/U0uOBDwInRcTqiLgzIk4tI4sk\nqaTdRJn5Y2B8GWNLknZW+tlEkqTyWQaSJMtAkmQZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGUgScIy\nkCQxSstgOK+v3uw0Vdto+TsdzvUoY1nNzNfffShGatYqGZVlIEkaGMtAkmQZSJIsA0kSloEkCctA\nkoRlIEnCMpAkYRlIkrAMJEmUWAYRcWpErIuIByJiUVk5JEkllUFEjAOuAk4BjgI+EBFvKiNLK9Xr\n9bIjDEmV82965P6yIwyJ+ctV5Z/9wSpry2A2sD4zN2bmb4H/Bt5XUpaWqfoPVJXzV/0/I/OXq8o/\n+4NVVhlMAx7t9fqxYpokqQQeQJYkEZnZ/kEjjgU6M/PU4nUHkJn52T7ztT+cJI0CmRkDmb+sMhgP\n3A+cDDwB3AZ8IDPva3sYSRITyhg0M38XEfOB5TR2VV1tEUhSeUrZMpAkjSwj8gByFT+QFhFXR8Tm\niFjba9rUiFgeEfdHxPciYkqZGXclIqZHxIqIuCci7o6Ic4vpVcn/qoj4aUSsLvJfWEyvRH5ofPYm\nIu6MiGXF68pkB4iIhyPiruLv4LZiWiXWISKmRMTXI+K+4t/A2yqU/bDiPb+z+PPZiDh3MPlHXBlU\n+ANp19DI3FsHcHNmHg6sAD7Z9lTN2QGcn5lHAW8H5hXveSXyZ+Z24J2ZOQt4C/AXETGbiuQvLADu\n7fW6StkBXgZqmTkrM2cX06qyDl8AvpOZRwBvBtZRkeyZ+UDxnh8NHAP8Cvgmg8mfmSPqARwL3Njr\ndQewqOxcTWafCazt9XodcHDx/LXAurIzNrke/wu8q4r5gUnAHcBbq5IfmA7cBNSAZVX82QF+ARzQ\nZ9qIXwdgMrChn+kjPns/mecAPxxs/hG3ZcDo+kDaQZm5GSAznwQOKjnPHkXEoTR+u/4JjR+mSuQv\ndrOsBp4EbsrM26lO/iuAhUDvA3hVyd4tgZsi4vaIOLOYVoV1eAOwJSKuKXa1fDkiJlGN7H39HXBd\n8XzA+UdiGYxmI/pofUTsC9wALMjMF9g574jNn5kvZ2M30XRgdkQcRQXyR8RfApszcw2wu/PCR1z2\nPo7Pxq6K99DYzXgCFXj/aZxReTTw70X+X9HYG1GF7D0iYi/gNODrxaQB5x+JZbAJOKTX6+nFtCra\nHBEHA0TEa4GnSs6zSxExgUYRfC0zlxaTK5O/W2Y+B9SBU6lG/uOB0yLiIeB64KSI+BrwZAWy98jM\nJ4o/n6axm3E21Xj/HwMezcw7itffoFEOVcje218AP8vMLcXrAecfiWVwO/CHETEzIvYG5gLLSs7U\nrOCVv90tAz5SPP8wsLTvN4wg/wHcm5lf6DWtEvkj4sDusyUiYiLwbuA+KpA/My/IzEMy8400ftZX\nZOaHgG8xwrN3i4hJxVYlEbEPjX3Xd1ON938z8GhEHFZMOhm4hwpk7+MDNH6Z6Dbw/GUf9NjFgZBT\naXxCeT3QUXaeJjNfBzwObAceAc4ApgI3F+uyHNi/7Jy7yH488DtgDbAauLP4O3hNRfL/SZF5DbAW\n+NdieiXy91qPE/n9AeTKZKex3737Z+fu7n+zVVkHGmcQ3V6sw/8AU6qSvcg/CXga2K/XtAHn90Nn\nkqQRuZtIktRmloEkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnCMpB2KSK+WVyF8+7uK3FGxD8UNwz5\nSXGFy38rph8YETcUN9n5aUQcV256aWD8BLK0CxGxf2Y+ExGvpnG5glOAH9O4xPcLwEpgTWaeGxHX\n0rjy5S0RMQP4XmYeWVp4aYAmlB1AGsHOi4i/Lp5PBz4E1DPzWYCI+DrwR8XX3wUcERHdFyrcNyIm\nZeav25pYGiTLQOpHRJwInAS8LTO3R8RKGldCPWJX31LM+9t2ZZSGk8cMpP5NAX5ZFMGbaNyOdV/g\nHcUN1CcAf9tr/uU07mMMQES8ua1ppSGyDKT+fRfYKyLuAS4GbqVxI5SLgduAH9K47++zxfwLgD+L\niLsi4ufAP7Y/sjR4HkCWBiAi9snMX0XEeOCbwNX5+zvDSZXlloE0MJ0R0X0Tl4csAo0WbhlIktwy\nkCRZBpIkLANJEpaBJAnLQJKEZSBJAv4fGZv3LvlIvBgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFRpJREFUeJzt3X20VXWdx/H3F9ACESRdWgFizqShTYVOZDrmSQ3tuak/\nhmo1ZaPOMkwcJweyP7zXVmamaZNDa5Xmahp11soeoEkLDQ5lWmqCmIoiJioq8pBPZRj5nT/Ovrfr\n5QLnPpyz7+a+X2vdxdn77rv35xwOfO5+OL8dmYkkaWQbVXYASVL5LANJkmUgSbIMJElYBpIkLANJ\nEi0ug4i4IiLWR8TKPr737xHxYkS8opUZJEk71+o9gyuBE3rPjIgpwDuAtS3eviSpCS0tg8y8Cfh9\nH9+6BDi7lduWJDWv7ecMIuJ9wCOZeVe7ty1J6tuYdm4sIsYC59A4RNQ9u50ZJEnbamsZAH8DHADc\nGREBTAF+ExEzM/PJ3gtHhAMnSdIAZGa/ftFux2GiKL7IzN9m5isz88DMfA3wKDCjryLokpmV/Tr3\n3HNLz1B2/jnzvvmSryplr/prb/6Rm38gWn1p6dXAzcBBEfFwRJzUa5HEw0SSVLqWHibKzI/s5PsH\ntnL7kqTm+AnkFqrVamVHGJQq569ydjB/2aqefyBioMeX2iEicjjn086dPv/yl0xfdsHJJSWRRo6I\nIPt5ArndVxNJ2sUdcMABrF3r4ALtMG3aNB566KEhWZdlIGlIrV27dsBXtKh/GlfoDw3PGUiSLANJ\nkmUgScIykDSC3H///cyYMYOJEydy2WWXtW27o0aN4sEHH2zb9gbCE8iSWqr35cVDrT+XK1944YUc\ne+yxLF++vIWJtjWUJ3pbxT0DSSPG2rVrOfTQQ9u+3SpcXWUZSBoRjjvuOJYuXcqcOXOYMGECq1ev\n5jOf+QzTpk3jVa96FZ/61KfYsmULAMuWLWPq1Kl8+ctfZr/99mPy5MksXLiQ66+/noMPPph99tmH\nL37xi93rvu222zjyyCOZNGkSkydP5tOf/jRbt27tM8cLL7yw3e1u2rSJ9773vUyaNIm9996bY445\npvUvTMEykDQi/OxnP+Poo49mwYIFPPPMMyxYsIAHHniAlStX8sADD7Bu3TrOO++87uWfeOIJXnjh\nBR577DE6Ozs55ZRTuOqqq1i+fDk///nP+fznP9/94brRo0dz6aWXsnnzZm655RaWLFnCggUL+swx\nb9687W734osvZurUqWzatIknn3yS888/v/UvTMEykDSidB2y+eY3v8kll1zCxIkT2WOPPZg/fz7X\nXHNN93K7774755xzDqNHj2b27Nls3LiRM888k3HjxnHIIYdwyCGHcOeddwJw2GGHMXPmTCKC/fff\nn1NPPZVly5b1uf0dbXe33Xbj8ccf53e/+x2jR4/mqKOOavGr8VeeQJY04mzYsIE//vGPHH744d3z\nXnzxxZcc29977727T/yOHTsWgH333bf7+2PHjuW5554DYPXq1Zx11lncfvvtPP/882zduvUl6252\nu2effTYdHR3MmjWLiOCUU05h3rx5Q/jMt889A0kjzj777MO4ceO4++672bx5M5s3b+app57i6aef\nHtD6TjvtNKZPn86aNWt46qmn+MIXvtDnSeOdbXf8+PFcdNFFrFmzhkWLFvGVr3yFpUuXDuq5Nssy\nkDTidP3WfeaZZ7JhwwYA1q1bx+LFiwe0vmeffZYJEyYwbtw4Vq1axde//vUBbffHP/4xa9asAWDP\nPfdkzJgxjBrVnv+mPUwkqaWG07DlPa/3v+CCCzjvvPM44ogj2LRpE5MnT+a0005j1qxZO/3Z3tMX\nXXQRp556KhdeeCEzZsxg9uzZLFmypM9lv/SlL9HZ2dnndlevXs3pp5/Oxo0bmTRpEnPmzGnbFUXe\nz0At5f0MRp5iLP2yY4wI23utB3I/Aw8TSZIsA0mSZSBJwjKQJGEZSJJocRlExBURsT4iVvaYd2FE\n3BsRKyLiexExoZUZJEk71+o9gyuBE3rNWwwcmplvAlYDn21xBkltNG3aNCLCrzZ8TZs2bcj+3lr6\nobPMvCkipvWad2OPyV8BH2plBknt9dBDD5UdQQNQ9jmDTwLXl5xBkka80oajiIjPAX/OzKt3tFxH\nR0f341qtRq1Wa20wSaqYer1OvV4f1DpaPhxFcZjoR5n5hh7zPgGcAhybmVt28LMOR1FxDkchtd9A\nhqNox55BFF+NiYgTgbOBt+2oCCRJ7dPqS0uvBm4GDoqIhyPiJOBrwHjghoi4IyL6vjecJKltWn01\n0Uf6mH1lK7cpSeq/sq8mkiQNA5aBJMkykCRZBpIkLANJEpaBJAnLQJKEZSBJwjKQJGEZSJKwDCRJ\nWAaSJCwDSRKWgSQJy0CShGUgScIykCRhGUiSsAwkSVgGkiQsA0kSloEkCctAkkSLyyAiroiI9RGx\nsse8SRGxOCLui4ifRsTEVmaQJO1cq/cMrgRO6DVvPnBjZh4MLAE+2+IMkqSdaGkZZOZNwO97zX4/\n8O3i8beBD7QygyRp58o4Z7BvZq4HyMwngH1LyCBJ6mFM2QGA3NE3Ozo6uh/XajVqtVqL46gZp8+/\n/CXTl11wcklJJNXrder1+qDWUUYZrI+I/TJzfUS8EnhyRwv3LANJ0rZ6/6Lc2dnZ73W04zBRFF9d\nFgGfKB5/HFjYhgySpB1o9aWlVwM3AwdFxMMRcRJwAfCOiLgPOK6YliSVqKWHiTLzI9v51vGt3K4k\nqX/8BLIkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnCMpAkYRlIkrAMJElYBpIkhsf9DKQh1fNeC95n\nQWqOewaSJMtAkmQZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGUgScIykCRhGUiSKLEMIuLfIuK3EbEy\nIq6KiN3LyiJJI10pZRARrwY+DRyWmW+gMWDe7DKySJLKHbV0NLBHRLwIjAMeKzGLJI1oTe0ZRMRr\nmpnXrMx8DLgYeBhYBzyVmTcOdH2SpMFpds/ge8BhveZdCxw+kI1GxF7A+4FpwNPAtRHxkcy8uvey\nHR0d3Y9rtRq1Wm0gmxQvHecfHOt/IHwNNRzV63Xq9fqg1rHDMoiI1wGHAhMj4oM9vjUBePkgtns8\n8GBmbi62833gSGCHZSBJ2lbvX5Q7Ozv7vY6d7RkcDLwH2At4b4/5zwKn9Htrf/UwcEREvBzYAhwH\n3DaI9UmSBmGHZZCZC4GFEfHWzLxlqDaambdGxLXAcuDPxZ/fGKr1S5L6p9lzBg9ExDnAAT1/JjM/\nOdANZ2Yn0P99GUnSkGu2DBYCvwBuBP7SujiSpDI0WwbjMnNeS5NIkkrT7CeQ/y8i3tXSJJKk0jRb\nBnNpFMLzEfFMRDwbEc+0MpgkqX2aOkyUmXu2OogkqTxNlUFEvK2v+Zn586GNI0kqQ7MnkM/u8fjl\nwEzgN8CxQ55IktR2zR4m6vnpYyJiKnBpSxJJktpuoPczeBSYPpRBJEnlafacwdeALCZHAW8C7mhV\nKElSezV7zuD2Ho+3Atdk5i9bkEeSVIJmzxl8u7hH8UHFrPtaF0nt5Pj8g+drqF1Bs4eJasC3gYeA\nAKZGxMe9tFSSdg3NHia6GJiVmfcBRMRBwDUM8E5nkqThpdmriXbrKgKAzLwf2K01kSRJ7db0CeSI\nuBz4n2L6o7z0pLIkqcKaLYPTgDnAGcX0L4AFLUkkSWq7Zq8m2gJ8pfiSJO1imjpnEBHviYjlEbHZ\nIawladfT7GGiS4EPAndlZu5sYUlStTR7NdEjwG8tAknaNTW7Z/AfwHURsQzY0jUzMz2HIEm7gGbL\n4AvAczTuZbB76+JIksrQbBm8OjNfP5QbjoiJwOXA64EXgU9m5q+HchuSpOY0e87guoiYNcTb/ipw\nXWZOB94I3DvE65ckNanZMjgN+ElEPD8Ul5ZGxATg6My8EiAzt2aml6pKUkma/dDZnhHxCuC1NM4b\nDNZrgI0RcSWNvYLbgbmZ+fwQrFuS1E/NDmF9MjAXmAKsAI4AbgaOG8R2DwPmZObtEXEpMB84t/eC\nHR0d3Y9rtRq1Wm2Am5R2zPsSqKrq9Tr1en1Q62j2BPJc4M3ArzLz7RHxOuD8QWz3UeCRzOwa7O5a\nYF5fC/YsA0nStnr/otzZ2dnvdTR7zuBPmfkngIh4WWauAg7u99YKmbkeeKS4LwI09jDuGej6JEmD\n0+yewaMRsRfwQ+CGiPg9sHaQ2z4DuCoidgMeBE4a5PokSQPU7AnkfywedkTEUmAi8JPBbDgz76Rx\n6EmSVLJm9wy6ZeayVgSRJJWn2XMGkqRdmGUgSbIMJEmWgSQJy0CShGUgScIykCRhGUiSsAwkSVgG\nkiQGMBxF1YyUMep7Ps/LLji58s+7r/zNzmtmXcNVlbJq1+KegSTJMpAkWQaSJCwDSRKWgSQJy0CS\nhGUgScIykCRhGUiSsAwkSVgGkiRKLoOIGBURd0TEojJzSNJIV/aewVzgnpIzSNKIV1oZRMQU4F3A\n5TtbVpLUWmXuGVwCnA1kiRkkSZR0P4OIeDewPjNXREQNiO0t29HR0f24VqtRq9UGvf2qjxnf7vzN\nbq/qr2tfet8nYqjW1bW+oVz/cLArvgeqoF6vU6/XB7WOsm5ucxTwvoh4FzAW2DMi/jsz/7n3gj3L\nQJK0rd6/KHd2dvZ7HaUcJsrMczJz/8w8EJgNLOmrCCRJ7VH21USSpGGg9HsgZ+YyYFnZOSRpJHPP\nQJJkGUiSLANJEpaBJAnLQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRLDYGwi7dhIGB9+JDzHoTbQ\n12wwr3W7770wlO8L32M7556BJMkykCRZBpIkLANJEpaBJAnLQJKEZSBJwjKQJGEZSJKwDCRJWAaS\nJEoqg4iYEhFLIuLuiLgrIs4oI4ckqaGsgeq2Amdl5oqIGA/8JiIWZ+aqkvJI0ohWyp5BZj6RmSuK\nx88B9wKTy8giSRoG5wwi4gDgTcCvy00iSSNXqfczKA4RXQvMLfYQttHR0cF1N97Bw+s2MH6vqZx4\nwiygMR55u8dXb7WRMub6cPh7q9JrXca9C1q9/iq9/s0o+/nU63Xq9fqg1lFaGUTEGBpF8J3MXLi9\n5To6Otj4p8t54dZ72xdOkiqkVqtRq9W6pzs7O/u9jjIPE30LuCczv1piBkkS5V1aehTwUeDYiFge\nEXdExIllZJEklXSYKDN/CYwuY9uSpG2VfjWRJKl8loEkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnC\nMpAkYRlIkrAMJEmUfD+DoTbU46v3Hne/7DHLNfRuKoZGP33+5dx06738w8zpJScauN7vz6Fc12De\n682uq5n7XOzs3+mOfrYZQ5m1atwzkCRZBpIky0CShGUgScIykCRhGUiSsAwkSVgGkiQsA0kSloEk\niRLLICJOjIhVEXF/RMwrK4ckqaQyiIhRwGXACcChwIcj4nVlZGmler1edoRBqXL+dQ/fV3aEQTF/\nuaqefyDK2jOYCazOzLWZ+Wfgf4H3l5SlZar8nylUO3/V/zGbv1xVzz8QZZXBZOCRHtOPFvMkSSXw\nBLIkicjM9m804gigIzNPLKbnA5mZX+q1XPvDSdIuIDOjP8uXVQajgfuA44DHgVuBD2fmvW0PI0kq\n505nmfmXiDgdWEzjUNUVFoEklaeUPQNJ0vAyLE8gV/EDaRFxRUSsj4iVPeZNiojFEXFfRPw0IiaW\nmXF7ImJKRCyJiLsj4q6IOKOYX5X8L4uIX0fE8iL/ucX8SuSHxmdvIuKOiFhUTFcmO0BEPBQRdxZ/\nB7cW8yrxHCJiYkR8NyLuLf4NvKVC2Q8qXvM7ij+fjogzBpJ/2JVBhT+QdiWNzD3NB27MzIOBJcBn\n256qOVuBszLzUOCtwJziNa9E/szcArw9M2cAbwLeGREzqUj+wlzgnh7TVcoO8CJQy8wZmTmzmFeV\n5/BV4LrMnA68EVhFRbJn5v3Fa34YcDjwB+AHDCR/Zg6rL+AI4Poe0/OBeWXnajL7NGBlj+lVwH7F\n41cCq8rO2OTz+CFwfBXzA+OA24E3VyU/MAW4AagBi6r43gF+B+zda96wfw7ABGBNH/OHffY+Ms8C\nfjHQ/MNuz4Bd6wNp+2bmeoDMfALYt+Q8OxURB9D47fpXNN5MlchfHGZZDjwB3JCZt1Gd/JcAZwM9\nT+BVJXuXBG6IiNsi4uRiXhWew2uAjRFxZXGo5RsRMY5qZO/tn4Cri8f9zj8cy2BXNqzP1kfEeOBa\nYG5mPse2eYdt/sx8MRuHiaYAMyPiUCqQPyLeDazPzBXAjq4LH3bZezkqG4cq3kXjMOPRVOD1p3FF\n5WHAfxX5/0DjaEQVsneLiN2A9wHfLWb1O/9wLIN1wP49pqcU86pofUTsBxARrwSeLDnPdkXEGBpF\n8J3MXFjMrkz+Lpn5DFAHTqQa+Y8C3hcRDwLXAMdGxHeAJyqQvVtmPl78uYHGYcaZVOP1fxR4JDNv\nL6a/R6McqpC9p3cCv8nMjcV0v/MPxzK4DfjbiJgWEbsDs4FFJWdqVvDS3+4WAZ8oHn8cWNj7B4aR\nbwH3ZOZXe8yrRP6I2KfraomIGAu8A7iXCuTPzHMyc//MPJDGe31JZn4M+BHDPHuXiBhX7FUSEXvQ\nOHZ9F9V4/dcDj0TEQcWs44C7qUD2Xj5M45eJLv3PX/ZJj+2cCDmRxieUVwPzy87TZOargceALcDD\nwEnAJODG4rksBvYqO+d2sh8F/AVYASwH7ij+Dl5Rkfx/V2ReAawEPlfMr0T+Hs/jGP56Arky2Wkc\nd+9679zV9W+2Ks+BxhVEtxXP4fvAxKpkL/KPAzYAe/aY1+/8fuhMkjQsDxNJktrMMpAkWQaSJMtA\nkoRlIEnCMpAkYRlIkrAMJElYBtJ2RcQPilE47+oaiTMi/qW4YcivihEu/7OYv09EXFvcZOfXEXFk\nueml/vETyNJ2RMRemflURLycxnAFJwC/pDHE93PAUmBFZp4REVfRGPny5oiYCvw0Mw8pLbzUT2PK\nDiANY2dGxAeKx1OAjwH1zHwaICK+C7y2+P7xwPSI6BqocHxEjMvMP7Y1sTRAloHUh4g4BjgWeEtm\nbomIpTRGQp2+vR8plv1zuzJKQ8lzBlLfJgK/L4rgdTRuxzoeeFtxA/UxwId6LL+Yxn2MAYiIN7Y1\nrTRIloHUt58Au0XE3cD5wC00boRyPnAr8Asa9/19ulh+LvD3EXFnRPwW+Nf2R5YGzhPIUj9ExB6Z\n+YeIGA38ALgi/3pnOKmy3DOQ+qcjIrpu4vKgRaBdhXsGkiT3DCRJloEkCctAkoRlIEnCMpAkYRlI\nkoD/Bxt6N6bAABY5AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2653,7 +2661,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2662,7 +2670,7 @@ ], "source": [ "hist = thinkstats2.Hist(female_sur.Age)\n", - "thinkplot.Hist(hist, label='females')\n", + "thinkplot.Hist(hist, label='females', width=.8)\n", "thinkplot.Show(xlabel='age', ylabel='amount')" ] }, @@ -2675,7 +2683,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 10, "metadata": { "collapsed": false }, @@ -2684,7 +2692,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEPCAYAAABBUX+lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEvFJREFUeJzt3X+wVOV9x/H3F1ADIoRANRYQk2k0YjsRbYiRMd5oQqyJ\naZvOdEg7aZpW7BCIODYW6j/ea0aDxl9pKZmpmoxNjU1jxmAbTTSBi4kxCUb8ERVFFKJGUEFRokGJ\n3/6xC73ABfZe9uzl7vN+zdzh7Llnz/N9dpcPD885e05kJpKk9jdkoAuQJLWGgS9JhTDwJakQBr4k\nFcLAl6RCGPiSVIhhVTcQEWuATcCbwBuZObXqNiVJu6o88KkFfUdmvtiCtiRJu9GKKZ1oUTuSpD1o\nRRAncEdELI+ImS1oT5LUi1ZM6UzLzGcj4veoBf8jmfnjFrQrSeqh8sDPzGfrfz4fETcDU4EdAj8i\nvKCPJPVRZkZftq90SiciRkTEyPrywcB04Je9bZuZbflz4YUXDngNffmZPe8aZs+7pm371+7vn/0r\np3/9UfUI/zDg5voIfhhwQ2beXnGbkqReVBr4mfkkcFyVbUiSGuPpkhXr6OgY6BIqZf8GN/tXlujv\nXFBTi4jI/aEOwZz51wKwcMFZA1yJpD2JCLKPB21bcVqmpDZz5JFHsnbt2oEuowiTJk1izZo1TdmX\ngS+pz9auXdvvM0XUNxF9GsTvkXP4klQIA1+SCmHgS1IhDHxJbeexxx5jypQpjB49moULF7as3SFD\nhvDEE0+0rL2+8qCtpKbYdkpvVfpyqvBll13GqaeeyooVKyqsaFfNPMBaBUf4ktrO2rVrOfbYY1ve\n7v5+5pKBL6mtnHbaaSxdupTZs2czatQoVq1axec//3kmTZrE4Ycfzmc/+1m2bNkCwLJly5g4cSJf\n+tKXOOywwxg/fjyLFy/mtttu4+ijj2bcuHF88Ytf3L7v5cuXc9JJJzFmzBjGjx/P5z73ObZu3dpr\nHa+//vpu292wYQNnnnkmY8aMYezYsZxyyinVvzAY+JLazA9/+ENOPvlkFi1axMsvv8yiRYt4/PHH\neeCBB3j88cd55plnuOiii7Zvv27dOl5//XV+/etf09XVxcyZM7nhhhtYsWIFd955J1/4whe2f8ls\n6NChXH311WzcuJG7776bJUuWsGjRol7rmDdv3m7bveKKK5g4cSIbNmzgueee45JLLqn+hcHAl9Sm\ntk2vXHPNNVx11VWMHj2agw8+mPnz53PjjTdu3+7AAw/kggsuYOjQocyYMYMXXniBc889lxEjRjB5\n8mQmT57M/fffD8Dxxx/P1KlTiQiOOOIIzj77bJYtW9Zr+3tq94ADDuDZZ5/lySefZOjQoUybNq3i\nV6PGg7aS2tbzzz/Pq6++ygknnLB93ZtvvrnDXPvYsWO3H2wdPnw4AIceeuj23w8fPpzNmzcDsGrV\nKs477zzuueceXnvtNbZu3brDvhtt9/zzz6ezs5Pp06cTEcycOZN58+Y1see9c4QvqW2NGzeOESNG\n8NBDD7Fx40Y2btzISy+9xKZNm/q1v1mzZnHMMcewevVqXnrpJS6++OJeD9Turd2RI0dy+eWXs3r1\nam655RauvPJKli5duk99bYSBL6ltbRs9n3vuuTz//PMAPPPMM9x+e//uw/TKK68watQoRowYwcqV\nK/nKV77Sr3a/+93vsnr1agAOOeQQhg0bxpAh1cexUzqSmmJ/uqR2z/PhFyxYwEUXXcSJJ57Ihg0b\nGD9+PLNmzWL69Ol7fe7Ojy+//HLOPvtsLrvsMqZMmcKMGTNYsmRJr9teeumldHV19druqlWrmDNn\nDi+88AJjxoxh9uzZLTlTx+vhawdeD1+NqF+LfaDLKMLuXuv+XA/fKR1JKoSBL0mFMPAlqRAGviQV\nwsCXpEIY+JJUCM/Dl9RnkyZN2u+v/d4uJk2a1LR9GfiS+mzNmjUDXYL6wSkdSSqEgS9JhTDwJakQ\nBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYVoSeBHxJCIuDcibmlFe5KkXbVqhD8XeLhF\nbUmSelF54EfEBOAM4Nqq25Ik7V4rRvhXAecD3uJekgZQpZdHjoiPAusz876I6AB2ewHtzs7O7csd\nHR10dHTs8Ps58///PwgLF5zV3EKbYFt9+2Ntkga/7u5uuru792kfVV8Pfxrw8Yg4AxgOHBIR/5GZ\nf7Pzhj0DX5K0o50Hwl1dXX3eR6VTOpl5QWYekZnvBGYAS3oLe0lS9TwPX5IK0bJbHGbmMmBZq9qT\nJO3IEb4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+S\nCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqEgS9JhTDwJakQ\nBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klSIYVXuPCIO\nAu4EDqy3dVNmdlXZpiSpd5UGfmZuiYgPZuarETEUuCsibsvMn1fZriRpV5VP6WTmq/XFg6j9A5NV\ntylJ2lXlgR8RQyJiBbAOuCMzl1fdpiRpV60Y4b+ZmVOACcD7ImJy1W1KknZV6Rx+T5n5ckQsBU4H\nHt75952dnduXOzo66OjoaFVpaqI586/dvrxwwVmV7LvZ+1X1qvxclKK7u5vu7u592kfVZ+mMA97I\nzE0RMRz4MLCgt217Br4kaUc7D4S7uvp+wmPVI/zDgesjYgi16aNvZuatFbcpSepF1adlPggcX2Ub\nkqTG+E1bSSpEQ4EfEe9oZJ0kaf/V6Aj/272su6mZhUiSqrXHOfyIeDdwLDA6Ij7R41ejgLdUWZgk\nqbn2dtD2aOBjwFuBM3usfwWYWVVRkqTm22PgZ+ZiYHFEvD8z725RTZKkCjR6WubjEXEBcGTP52Tm\n31VRlCSp+RoN/MXAj4AfAL+rrhxJUlUaDfwRmTmv0kokSZVq9LTM/42IMyqtRJJUqUYDfy610H8t\nIl6OiFci4uUqC5MkNVdDUzqZeUjVhUiSqtVQ4EfEB3pbn5l3NrccSVJVGj1oe36P5bcAU4FfAKc2\nvSJJUiUandLp+S1bImIicHUlFUmSKtHfyyM/DRzTzEIkSdVqdA7/X4GsPxwCHAfcW1VRkqTma3QO\n/54ey1uBGzPzrgrqkSRVpNE5/Osj4kDgqPqqR6srSZJUhUandDqA64E1QAATI+LTnpYpSYNHo1M6\nVwDTM/NRgIg4CrgROKGqwiRJzdXoWToHbAt7gMx8DDigmpIkSVVo+KBtRFwL/Gf98V+z44FcSdJ+\nrtHAnwXMBs6pP/4RsKiSiiRJlWj0LJ0twJX1H0nSINTQHH5EfCwiVkTERi+PLEmDU6NTOlcDnwAe\nzMzc28aSpP1Po2fpPAX80rCXpMGr0RH+PwG3RsQyYMu2lZnpnL4kDRKNBv7FwGZq18I/sLpyJElV\naTTwfz8z/7DSSiRJlWp0Dv/WiJheaSWSpEo1GvizgO9FxGuelilJg1OjX7w6JCLeBryL2jy+JGmQ\nafTyyGcBc4EJwH3AicBPgNOqK02S1EyNTunMBd4LrM3MDwJTgE2VVSVJarpGA/+3mflbgIg4KDNX\nAkfv7UkRMSEilkTEQxHxYEScs7fnSJKq0ehpmU9HxFuB7wB3RMSLwNoGnrcVOC8z74uIkcAvIuL2\n+j8YkqQWavSg7Z/XFzsjYikwGvheA89bB6yrL2+OiEeA8YCBL0kt1ugIf7vMXNafhiLiSOA44Gf9\neb4kad80Ooe/T+rTOTcBczNzcyvalCTtqM8j/L6KiGHUwv7rmbl4d9t1dnZuX+7o6KCjo6Pq0rSP\n5sy/FoCFC85qeNtGtq9q257b99x2d/voy7b7s6reJ7VWd3c33d3d+7SPygMf+CrwcGZ+eU8b9Qx8\nSdKOdh4Id3V19XkflU7pRMQ0ajc8P7V+x6x7I+L0KtuUJPWu0hF+Zt4FDK2yDUlSY1py0FaSNPAM\nfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCX\npEIY+JJUCANfkgph4EtSIQx8SSqEgS9JhTDwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkq\nhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRCVBn5EXBcR6yPi\ngSrbkSTtXdUj/K8BH6m4DUlSAyoN/Mz8MfBilW1IkhrjHL4kFWLYQBewTWdn5/bljo4OOjo6Gnre\nnPnXbl9euOCsfrW9bR+NPL8/2+68fV/2sbf99rS7/fXWXjNet2bY19eiVfvd3WteVXt704z3tJmf\nw2Z+vne3j770b3/5fPemv7V1d3fT3d29T23vl4EvSdrRzgPhrq6uPu+jFVM6Uf+RJA2gqk/L/Abw\nE+CoiPhVRHymyvYkSbtX6ZROZv5VlfuXJDXOs3QkqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8\nSSqEgS9JhTDwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJek\nQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqE\ngS9JhTDwJakQBr4kFcLAl6RCVB74EXF6RKyMiMciYl7V7UmSeldp4EfEEGAh8BHgWOCTEfHuKtvc\n3zzzq0cHuoRK2b/Bzf6VpeoR/lRgVWauzcw3gP8C/rTiNvcr7f6Bs3+Dm/0rS9WBPx54qsfjp+vr\nJEkt5kFbSSpEZGZ1O484EejMzNPrj+cDmZmX7rRddUVIUpvKzOjL9lUH/lDgUeA04Fng58AnM/OR\nyhqVJPVqWJU7z8zfRcQc4HZq00fXGfaSNDAqHeFLkvYfA3rQtt2+lBUR10XE+oh4oMe6MRFxe0Q8\nGhHfj4jRA1njvoiICRGxJCIeiogHI+Kc+vpB38eIOCgifhYRK+p9u7C+ftD3raeIGBIR90bELfXH\nbdO/iFgTEffX38Of19e1U/9GR8S3IuKR+t/B9/W1fwMW+G36payvUetPT/OBH2Tm0cAS4J9bXlXz\nbAXOy8xjgfcDs+vv2aDvY2ZuAT6YmVOA44A/iYiptEHfdjIXeLjH43bq35tAR2ZOycyp9XXt1L8v\nA7dm5jHAe4CV9LV/mTkgP8CJwG09Hs8H5g1UPU3s1yTggR6PVwKH1ZffDqwc6Bqb2NfvAB9qtz4C\nI4B7gPe2U9+ACcAdQAdwS31dO/XvSWDsTuvaon/AKGB1L+v71L+BnNIp5UtZh2bmeoDMXAccOsD1\nNEVEHEltJPxTah+4Qd/H+nTHCmAdcEdmLqdN+lZ3FXA+0PPAXTv1L4E7ImJ5RJxVX9cu/XsH8EJE\nfK0+JffvETGCPvbPL1613qA/Sh4RI4GbgLmZuZld+zQo+5iZb2ZtSmcCMDUijqVN+hYRHwXWZ+Z9\nwJ7O3R6U/aublpnHA2dQm248mTZ5/6idUXk88G/1Pv6G2qxIn/o3kIH/DHBEj8cT6uvazfqIOAwg\nIt4OPDfA9eyTiBhGLey/npmL66vbqo+Z+TLQDZxO+/RtGvDxiHgCuBE4NSK+Dqxrk/6Rmc/W/3ye\n2nTjVNrn/XsaeCoz76k//ja1fwD61L+BDPzlwB9ExKSIOBCYAdwygPU0S7DjCOoW4G/ry58GFu/8\nhEHmq8DDmfnlHusGfR8jYty2MxwiYjjwYeAR2qBvAJl5QWYekZnvpPZ3bUlmfgr4H9qgfxExov4/\nTyLiYGA68CDt8/6tB56KiKPqq04DHqKP/RvQ8/Aj4nRqR563fSlrwYAV0wQR8Q1qB8TGAuuBC6mN\nNL4FTATWAn+ZmS8NVI37IiKmAXdS+4uU9Z8LqH2D+r8ZxH2MiD8Crqf2WRwCfDMzL46ItzHI+7az\niDgF+MfM/Hi79C8i3gHcTO0zOQy4ITMXtEv/ACLiPcC1wAHAE8BngKH0oX9+8UqSCuFBW0kqhIEv\nSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHwVLSJurl9d8cFtV1iMiL+v31Dip/WrEv5L\nff24iLipfqOUn0XESQNbvdQ3ftNWRYuIt2bmSxHxFmrXd/oIcBe1Sz9vBpYC92XmORFxA7WrFf4k\nIiYC38/MyQNWvNRHld7EXBoEzo2IP6svTwA+BXRn5iaAiPgW8K767z8EHBMR2y6ONzIiRmTmqy2t\nWOonA1/Fql9E7FTgfZm5JSKWUrtC5jG7e0p92zdaVaPUTM7hq2SjgRfrYf9uarfdHAl8oH7D6GHA\nX/TY/nZq94QFtl+9UBo0DHyV7HvAARHxEHAJcDe1G01cQu2Szz+idp/UTfXt5wJ/HBH3R8QvgX9o\nfclS/3nQVtpJRBycmb+JiKHUrrF+XY+7e0mDliN8aVed9ZuZPwg8YdirXTjCl6RCOMKXpEIY+JJU\nCANfkgph4EtSIQx8SSqEgS9Jhfg/ZmaGjfWlz/oAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2693,7 +2701,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2723,7 +2731,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 11, "metadata": { "collapsed": false }, @@ -2732,7 +2740,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHFtJREFUeJzt3X+cVXW97/HXe0Al5DcdBgMO1MUfhKVwr6SVuTFT6FZ6\nTD1pmmne9MAYUpcAuzV4qgdyudkv5ZinJLRS0R4FJ03Qi2OKPwaukOAQB1QQpxgz+aFlysjn/rEX\nuJ0ZZm2GWXtvnPfz8dgP1qz9XWt99sxi3rPWd631VURgZmbWnqpyF2BmZpXPYWFmZqkcFmZmlsph\nYWZmqRwWZmaWymFhZmapMg0LSYdJelzSKklrJNUm8/tLWippvaQlkvoWLDNT0gZJ6ySdnmV9ZmZW\nHGV9n4WknhHxN0ndgOXAl4BPA3+JiP8taTrQPyJmSHov8HPgBGAocD9wZPhmEDOzssr8NFRE/C2Z\nPAzoDgRwJrAgmb8AOCuZ/hRwe0Q0R8QmYAMwLusazcysfZmHhaQqSauArcB9EbECqI6IJoCI2AoM\nSpoPAbYULN6YzDMzszIqxZHF7ogYQ/600jhJo8kfXbylWdZ1mJlZx3Uv1YYiYqekOmAC0CSpOiKa\nJA0GXkiaNQLDChYbmsx7C0kOFzOzDogIdWS5rK+GeueeK50kvQP4GLAOWAx8Pml2MbAomV4MfEbS\noZLeDYwE6ttad0RU3Ku2trbsNbgm19QV63JNxb0ORNZHFkcACyRVkQ+mOyLiHkmPAQslXQpsBs4D\niIgGSQuBBmAXMCkO9BOamdkByzQsImINMLaN+S8Bp+1jmdnA7CzrMjOz/eM7uDtRLpcrdwmtuKbi\nuKbiVWJdril7md+UlwVJPjtlZrafJBEd7OAu2dVQZtZ1jRgxgs2bN5e7jC5j+PDhbNq0qVPX6SML\nM8tc8hdtucvoMvb1/T6QIwv3WZiZWSqHhZmZpXJYmJlZKoeFmVkHPPjggwwbNiy94duEr4Yys7Ko\nmfHjTNd//bWXFd12xIgRvPDCC3Tv3p3DDz+cCRMmcMMNN9CzZ892l5M61FfcIXfeeSff+973WL16\nNR/4wAdYtmxZybYNPrIwM0MSd999Nzt37uSJJ55g5cqVfOtb3yp3WW8xcOBApk6dysyZM8uyfYeF\nmRnsvdT0iCOOYOLEiaxduxaAbdu2cemllzJkyBAGDhzI2Wef3ebyc+bMYeTIkfTp04djjz2WX//6\n13vfe/rpp8nlcvTr149BgwZx/vnn731v6tSpVFdX07dvX4477jgaGhraXP+pp57KOeecwxFHHNFZ\nH3m/+DSUmVmBLVu2cM8993DOOecAcOGFF9KnTx/WrVvH4YcfziOPPNLmciNHjmT58uVUV1dz5513\ncuGFF/L0009TXV3N17/+dc444wzq6up4/fXXWblyJQBLly7l4YcfZuPGjfTu3Zv169fTr1+/kn3W\n/eEjCzMz4KyzzmLAgAF85CMfYfz48cycOZOtW7eyZMkSfvSjH9GnTx+6devGySef3Obyn/70p6mu\nrgbg3HPP5cgjj6S+Pj/CwiGHHMLmzZtpbGzk0EMP5YMf/ODe+S+//DINDQ1EBEcfffTedVQah4WZ\nGbBo0SJeeuklnn32WX74wx9y2GGHsWXLFgYMGECfPn1Sl7/lllsYM2YM/fv3p3///jz11FO8+OKL\nAMydO5fdu3czbtw43ve+9zF//nwAxo8fT01NDZMnT6a6uporrriCV155JdPP2VEOCzMzaPPxGMOG\nDeOll15i586d7S773HPP8cUvfpF58+axbds2tm3bxujRo/euc9CgQdx00000NjZy4403MmnSJJ55\n5hkAampqWLlyJQ0NDaxfv565c+d2/ofrBA4LM7N9GDx4MBMnTmTSpEls376d5uZmHnrooVbt/vrX\nv1JVVcU73/lOdu/ezfz58/d2kAPcddddNDbmR4ju168fVVVVVFVVsXLlSurr62lubuYd73gHPXr0\noKqq7V/Lu3fv5rXXXmPXrl288cYbvPbaazQ3N2fzwdvgDm4zK4v9uQ8ia+3dL3Hrrbdy1VVXccwx\nx7Br1y7Gjx/fqt9i1KhRfOUrX+HEE0+kW7dufO5zn+PDH/7w3vdXrFjBVVddxc6dO6muruYHP/gB\nI0aM4JlnnmHq1Kk8++yz9OjRgzPOOINp06bts45LLrlkb609e/bk4osv5uabb+6E70A6P3XWzDLn\np86WVhZPne3yRxbXrd1Y7hIy9eVjR5a7BDN7G3CfhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVy\nWJiZWSqHhZmZpXJYmJl1gIdVNTMrga/NX5Hp+r99yQlFtz0YhlWdNm0aixYtoqmpiSFDhjBz5kwu\nuuiikm0/0yMLSUMlLZP0lKQ1kq5M5tdKel7SE8lrQsEyMyVtkLRO0ulZ1mdmBgfHsKq9evXi7rvv\nZseOHfz0pz9lypQpPPbYYyXbftanoZqBL0fEaOAkoEbSMcl710XE2OR1L4CkUcB5wChgIjBPpYxu\nM+uyKn1Y1draWo488kgAxo0bx8knn8yjjz7aKZ+9GJmehoqIrcDWZPoVSeuAIcnbbYXAmcDtEdEM\nbJK0ARgHPJ5lnWZmexwMw6q++uqrrFixgsmTJ3feB09Rsg5uSSOA43nzF3+NpNWSfiypbzJvCLCl\nYLFG3gwXM7PMHEzDql5xxRWMGTOG008v3Zn6koSFpF7AXcCUiHgFmAe8JyKOJ3/k8Z1S1GFmti8H\ny7Cq06ZNo6GhgTvuuOPAP/R+yPxqKEndyQfFrRGxCCAi/lzQ5N+B/0imG4HCa9GGJvNamTVr1t7p\nXC5HLpfrtJrNrOtJG1a1vcDYM6zqAw88wEknnQTAmDFjWg2rCrB8+XJOO+00TjnlFN7znvdQU1ND\nTU0NL774Iueeey5z587lmmuuaXM7tbW1LFmyhN/97nf06tUr9TPV1dVRV1eX2q4Ypbh09magISK+\nv2eGpMFJfwbA2cCe8QcXAz+X9F3yp59GAvVtrbQwLMzMslA4rOr1119Pr169ePTRR1udimo5rOqC\nBQtaDat60kknMWTIkFbDqu7evZuxY8emDqs6e/ZsbrvtNh5++OGi+jWg9R/S+wqhYmQaFpI+BHwW\nWCNpFRDA1cAFko4HdgObgMsBIqJB0kKgAdgFTPKQeGZvT/tzH0TWDoZhVb/2ta9x2GGHMXLkSCIC\nSVx99dXMmDGjc74JKbr8sKoeKc8sex5WtbSyGFbVj/swM7NUDgszM0vlsDAzs1QOCzMzS+WwMDOz\nVA4LMzNL5bAwM7NUDgszM0vlsDAz6wAPq2pmVgJZPz1hf55ecDAMqzp9+nRuu+02duzYwYABA7j8\n8stL9qgP8JGFmdlBMazqF77wBRoaGtixYwePPPIIP/vZz94yGl/WHBZmZlT+sKpHHXXU3seS7969\nm6qqKjZuLN2z7RwWZmYF9gyrOnbsWCA/rOqrr77KunXreOGFF5g6dWqby+0ZVnXnzp3U1tZy4YUX\n0tTUBLB3WNXt27fz/PPPc+WVVwJvHVZ1x44dLFy4kIEDB+6ztjlz5tC7d2+GDRvG3/72Ny644IJO\n/vT75rAwM+PgGFZ1+vTpvPzyy6xatYqLLrqIvn377rNtZ3NYmJlx8AyrCnDcccfRo0cPvvGNbxzY\nh94PDgszM9KHVW3PnmFV582bx7Zt29i2bRujR49uNaxqY2MjN954I5MmTeKZZ54BoKamhpUrV9LQ\n0MD69euZO3duUfU2NzfvXUcpOCzMzPahcFjV7du309zczEMPPdSqXcthVefPn99qWNXGxkaAVsOq\n1tfX09zc3O6wqhHBTTfdxPbt2wGor6/nhhtu4LTTTsvok7fm+yzMrCwqaRTHg2FY1V/96ldcffXV\nvP7667zrXe9iypQpTJ48uXO+AUXwsKoeVtUscx5WtbQ8rKqZmZWFw8LMzFI5LMzMLJXDwszMUjks\nzMwslcPCzMxS+T4LM8vc8OHDSzr2Q1c3fPjwTl+nw8LMMrdp06Zyl2AHyKehzMwslcPCzMxSZRoW\nkoZKWibpKUlrJH0pmd9f0lJJ6yUtkdS3YJmZkjZIWifp9CzrMzOz4mR9ZNEMfDkiRgMnAZMlHQPM\nAO6PiKOBZcBMAEnvBc4DRgETgXlyr5iZWdllGhYRsTUiVifTrwDrgKHAmcCCpNkC4Kxk+lPA7RHR\nHBGbgA3AuCxrNDOzdCXrs5A0AjgeeAyojogmyAcKMChpNgTYUrBYYzLPzMzKqCSXzkrqBdwFTImI\nVyS1fHbufj+7eNasWXunc7kcuVzuQEo0M3vbqauro66urlPWlfl4FpK6A78BfhsR30/mrQNyEdEk\naTDwQESMkjQDiIiYk7S7F6iNiMdbrNPjWRTJ41mY2R6VPp7FzUDDnqBILAY+n0xfDCwqmP8ZSYdK\nejcwEqgvQY1mZtaOTE9DSfoQ8FlgjaRV5E83XQ3MARZKuhTYTP4KKCKiQdJCoAHYBUzqtEMIMzPr\nsEzDIiKWA9328XabI41HxGxgdmZFmZnZfvMd3GZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFm\nZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWqqiwSEat\nS51nZmZvT8UeWfyyjXl3dWYhZmZWudodKU/SMcBooK+kswve6gP0yLIwMzOrHGnDqh4NfALoB3yy\nYP7LwP/IqigzM6ss7YZFRCwCFkk6KSIeLVFNZmZWYdKOLPbYKOlqYEThMhFxaRZFmZlZZSk2LBYB\nDwH3A29kV46ZmVWiYsOiZ0RMz7QSMzOrWMVeOvsbSR/PtBIzM6tYxYbFFPKB8aqknZJelrQzy8LM\nzKxyFHUaKiJ6Z12ImZlVrqLCQtJH2pofEb/r3HLMzKwSFdvBPa1gugcwDvh/wKmdXpGZmVWcovos\nIuKTBa+PAccC29KWk/QTSU2SniyYVyvpeUlPJK8JBe/NlLRB0jpJp3fkA5mZWefr6CPKnwdGFdFu\nPnBGG/Ovi4ixyeteAEmjgPOS9U4E5klSB+szM7NOVGyfxQ+BSL6sAo4HnkhbLiIeljS8rVW2Me9M\n4PaIaAY2SdpA/nTX48XUaGZm2Sm2z2JlwXQzcFtELD+A7dZIuihZ71ciYgcwBCh8/lRjMs/MzMqs\n2EtnF0g6FDgqmbX+ALY5D/jXiAhJ3wK+A1y2vyuZNWvW3ulcLkculzuAkszM3n7q6uqoq6vrlHUp\nItIbSTlgAbCJ/CmkYcDFxVw6m5yG+o+IeH9770maAUREzEneuxeojYhWp6EkRTF1F+O6tRs7ZT2V\n6svHjix3CWZWISQRER3qCy62g/s7wOkRcUpEfIR8p/V3i62Pgj4KSYML3jsbWJtMLwY+I+nQZMjW\nkUB9kdswM7MMFdtncUhE7D31FBH/KemQtIUk/QLIAQMlPQfUAuMlHQ/sJn+kcnmyzgZJC4EGYBcw\nqdMOH8zM7IAUexrqZvK/3H+WzPos0K1c41n4NFTxfBrKzPY4kNNQxR5Z/AswGfhS8vVD5Duqzcys\nCyj2aqjXgOuSl5mZdTFFdXBL+oSkVZJe8iPKzcy6nmJPQ32P/JVLa9zpbGbW9RR76ewWYK2Dwsys\nayr2yOKrwD2SHgRe2zMzItyHYWbWBRQbFt8GXiE/lsWh2ZVjZmaVqNiweFdEHJtpJWZmVrGK7bO4\nx4MRmZl1XcWGxb8A90p61ZfOmpl1PcXelNdb0gDgSPL9FmZm1oUUO1LeZcAUYCiwGjgReAT4aHal\nmZlZpSj2NNQU4ARgc0SMB8YAOzKryszMKkqxYfH3iPg7gKTDIuIPwNHZlWVmZpWk2Etnn5fUD/g1\ncJ+kbcDm7MoyM7NKUmwH9z8lk7MkPQD0Be7NrCozM6soxR5Z7BURD2ZRiJlZR9XM+HG5S8jU9dde\nVu4Siu6zMDOzLsxhYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFh\nZmapHBZmZpYq07CQ9BNJTZKeLJjXX9JSSeslLZHUt+C9mZI2SFrnMb/NzCpH1kcW84EzWsybAdwf\nEUcDy4CZAJLeC5wHjAImAvMkKeP6zMysCJmGRUQ8DGxrMftMYEEyvQA4K5n+FHB7RDRHxCZgAzAu\ny/rMzKw45eizGBQRTQARsRUYlMwfAmwpaNeYzDMzszLb7/EsMhAdWWjWrFl7p3O5HLlcrpPKMTN7\ne6irq6Ourq5T1lWOsGiSVB0RTZIGAy8k8xuBYQXthibz2lQYFmZm1lrLP6SvueaaDq+rFKehlLz2\nWAx8Ppm+GFhUMP8zkg6V9G5gJFBfgvrMzCxFpkcWkn4B5ICBkp4DaoFrgTslXQpsJn8FFBHRIGkh\n0ADsAiZFRIdOUZmZWefKNCwi4oJ9vHXaPtrPBmZnV5GZmXWE7+A2M7NUDgszM0vlsDAzs1SVcJ9F\nl1K//s8l3d7XVrS8gT5b377khJJuz8xKw0cWZmaWymFhZmapHBZmZpbKfRZmXcB1azeWuwQ7yDks\nzKzTlfpCjq07Divp9o7t+1pJt1cJfBrKzMxSOSzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwslcPC\nzMxSOSzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwslcPCzMxS+amzb3PL6/9Q0u3VrP99Sbd3/bWX\nlXR7Zl2VjyzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwsVdmuhpK0CdgB7AZ2RcQ4Sf2BO4DhwCbg\nvIjYUa4azcwsr5xHFruBXESMiYhxybwZwP0RcTSwDJhZturMzGyvcoaF2tj+mcCCZHoBcFZJKzIz\nszaVMywCuE/SCkl77qyqjogmgIjYCgwqW3VmZrZXOe/g/lBE/EnSPwBLJa0nHyCFWn5tZmZlULaw\niIg/Jf/+WdKvgXFAk6TqiGiSNBh4YV/Lz5o1a+90Lpcjl8tlW7CZ2UGmrq6Ourq6TllXWcJCUk+g\nKiJekXQ4cDpwDbAY+DwwB7gYWLSvdRSGhZmZtdbyD+lrrrmmw+sq15FFNfArSZHU8POIWCppJbBQ\n0qXAZuC8MtVnZmYFyhIWEfEscHwb818CTit9RWZm1h7fwW1mZqkcFmZmlsphYWZmqRwWZmaWymFh\nZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZm\nqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkc\nFmZmlsphYWZmqRwWZmaWqiLDQtIESX+Q9J+Sppe7HjOzrq7iwkJSFXA9cAYwGjhf0jHlrao4G1c8\nXu4SWtneuK7cJbTS+Nz6cpfQSl1dXblLaKUSawLv58WqxP38QFRcWADjgA0RsTkidgG3A2eWuaai\nPF2J/4n+6P9ExajEX8yVWBN4Py9WJe7nB6ISw2IIsKXg6+eTeWZmViaVGBZmZlZhFBHlruEtJJ0I\nzIqICcnXM4CIiDkFbSqraDOzg0REqCPLVWJYdAPWAx8F/gTUA+dHROWdlDQz6yK6l7uAliLiDUk1\nwFLyp8l+4qAwMyuvijuyMDOzynNQdHBL6i9pqaT1kpZI6ttO2ypJT0haXO6aJA2VtEzSU5LWSPpS\nRrWk3sQo6QeSNkhaLen4LOrY37okXSDp98nrYUnvK3dNBe1OkLRL0tmVUJOknKRVktZKeqDcNUnq\nI2lxsj+tkfT5EtT0E0lNkp5sp01J9/O0msq0j6d+n5J2+7ePR0TFv4A5wFeT6enAte20nQr8DFhc\n7pqAwcDxyXQv8n0xx3RyHVXARmA4cAiwuuU2gInA3cn0B4DHSvAzK6auE4G+yfSErOsqpqaCdv8X\n+A1wdrlrAvoCTwFDkq/fWQE1zQRm76kH+AvQPeO6PgwcDzy5j/fLsZ+n1VTSfbyYmgp+xvu1jx8U\nRxbkb8pbkEwvAM5qq5GkocDHgR9XQk0RsTUiVifTrwDr6Px7Roq5ifFM4JakjseBvpKqO7mO/a4r\nIh6LiB3Jl4+R/f00xd7weSVwF/BCxvUUW9MFwC8johEgIl6sgJoC6J1M9wb+EhHNWRYVEQ8D29pp\nUvL9PK2mMuzjxXyfoAP7+MESFoMiognyv4CBQfto911gGvkduVJqAkDSCPJp39m3vxZzE2PLNo1t\ntOls+3tz5WXAbzOtqIiaJL0LOCsi/g3o0CWGnV0TcBQwQNIDklZIuqgCaroeeK+kPwK/B6ZkXFMx\nyrGf749S7OOpOrqPV8zVUJLuAwr/ChD5X/r/q43mrcJA0n8HmiJitaQcnfAf/UBrKlhPL/IpPiU5\nwrACksYDl5A/fC6375E/rbhHKQIjTXdgLHAqcDjwqKRHI2JjGWs6A1gVEadK+i/AfZLe7/27bW+H\nfbxiwiIiPrav95LOmuqIaJI0mLYPnT4EfErSx4F3AL0l3RIRnytjTUjqTj4obo2IRR2tpR2NwD8W\nfD00mdeyzbCUNuWoC0nvB24CJkRE2qFzKWr6b8DtkkT+XPxESbsiIqsLJoqp6XngxYj4O/B3Sb8D\njiPfr1Cumi4BZgNExNOSngWOAVZmVFMxyrGfpyrxPl6Mju3jWXe2dFKHzRxgejLdbgd30uYUStPB\nnVoT+XOo12VYRzfe7Iw8lHxn5KgWbT7Omx1/J1KaTrZi6vpHYANwYon2o9SaWrSfT/Yd3MV8n44B\n7kva9gTWAO8tc003ALXJdDX50z8DSvAzHAGs2cd7Jd/Pi6ippPt4MTW1aFf0Pl6y4g/wgw8A7id/\nNdFSoF8y/wjgN220L0VYpNZE/mjnjeQ/2yrgCfJ/XXR2LROSOjYAM5J5lwNfLGhzffIL4PfA2BL9\n3NqtC/h38lfRPJF8f+rLXVOLtjdnHRb78fP7n+SviHoSuLLcNSX7+ZKknifJP2Uh65p+AfwReA14\njvzRTVn387SayrSPp36fCtoWvY/7pjwzM0t1sFwNZWZmZeSwMDOzVA4LMzNL5bAwM7NUDgszM0vl\nsDAzs1QOC7NOJumTkr7aSet6uTPWY3agfJ+FWQdI6hYRb5RgOzsjok/W2zFL4yML69Ik9ZT0m2Rg\noSclnSfpWUkDkvf/657BhiTVSrpF0kPArZIelTSqYF0PSBor6WJJP0wGCNrUYlvPSeom6T2Sfps8\nRfZBSUclbUZIeiQZLOebpf1umO2bw8K6uglAY0SMiYj3A/fS+gnChV+PAj4aEReQH+fhnwGSh0kO\njogn9iwTETuBVZJOSeZ9Arg3OSK5CaiJiBPIP1b/35I23wduiIjjgD915gc1OxAOC+vq1gAfkzRb\n0oeTX/DtPbJ5cUS8nkzfCXw6mT6P/NOFW1pIEijAZ4A7JB0OfBC4U9Iq4Ee8+Sj8D5EPIYBbO/KB\nzLJQMY8oNyuHiNggaSz5J5Z+U9IyYBdv/iHVo8Uify1Y9o+S/pKMq/zP5B/W1tJi4NuS+pMfk2IZ\n+SF2t0XE2LZK4s0jmUoYS8MM8JGFdXGSjgBejYhfAP+H/C/0TeSf+Q9vHjnsyx3AV4E+EbG25ZsR\n8VfyYzx8n/zTiCMiXgaelXROQR3vTyaXA+cn05/t0Icyy4DDwrq69wH1yemgbwDfBP4V+L6keiBt\nXOlfkj+quKOdNneQ/8V/e8G8zwJfkLRa0lrgU8n8q4DJkn5P/jHgZhXBl86amVkqH1mYmVkqh4WZ\nmaVyWJiZWSqHhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaX6/4zO+YAcs2bUAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2741,7 +2749,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2768,7 +2776,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 12, "metadata": { "collapsed": false }, @@ -2791,7 +2799,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtwXOd5HvDnXSwuiwtxIUDwTvAGXgECoAxKoWzBjlVL\ndh25tieO67itOx6rHnms1J3YqWLXnCZ21CadWoqTyG6cjOzaEm2lkmU7bmNHQiQ7I5AUCF7AG3i/\nASRBAARxIa5v/9izu2eXC+4usLtnz/me3wxGu4uDxacz4IuD7zzf+4mqgoiIvMXn9ACIiCj9WNyJ\niDyIxZ2IyINY3ImIPIjFnYjIg1jciYg8KGFxF5FCEekQkYMickREvjrHcc+KSI+IdIlIU/qHSkRE\nyfInOkBVJ0Tk3ao6JiJ5AH4tIj9X1X2hY0TkUQDrVXWjiOwC8ByA+zM3bCIiupekpmVUdcx6WIjg\nL4TYlU+PAfiudWwHgHIRqU3XIImIKDVJFXcR8YnIQQB9AH6hqvtjDlkB4JLt+RXrNSIickCyV+6z\nqtoMYCWAXSKyNbPDIiKihUg4526nqsMi8jqARwAcs33qCoBVtucrrdeiiAgb2RARzYOqSirHJyzu\nIlINYEpVb4lIAMDDAJ6OOexVAE8A2Csi9wMYUtVrcwwwlfFhanoG7/pg3IBOVk0UlGK0JHIbQXQW\nFUPnkNLZtrnU8wZWbXxXegbncm49FyMj5ZiZDv4TKikZRkHhxILf8+KpN7G6/p0Lfh8vcNO5+PXP\nvp7R9xdJvdJIomIrIg0AnkdwCscHYK+qfk1EHgegqvpt67hvInhFPwrgU6raGee91K1dKP/0h4fx\nq+6+qNf2fLIFzRuq5/V+e/bswZ49e9IwMvdz67nY+3I39r7cDQB4aPcaPPn4rgW/p1vPRSbwXESI\nSPqv3FX1CICWOK9/K+b551L5xm4yOT2Dt3v673p938kb8y7u5H47dywLF/euI9cwO6vw+eb7txxR\nenGFahKOnh/E+OQ0ACA/L3LK9p28kfI0U0hbW1s6huYJbj0X6+oqUVZaCAC4NXwH5y4OLfg93Xou\nMoHnYmFY3JOw78SN8OOHd65AaSAfANB/6w7O9t6e13vyBzfCrefC5xM0NywNPz94uHfB7+nWc5EJ\nPBcLw+KewOysouPE9fDz39hai50bI1Mx+07eiPdlZIjmxkhx7zzUd48jibKLxT2BM73DGLgdTEGU\nBvKxdU0Fdm2uCX/eXvjJPE0NtYCVmTp5+iZGRiadHRCRhcU9AXvxfkd9DfJ8PrRsqA7PvZ/ru43r\nQ+NODY8cVr6oCOvXVgIIxnwPdcdNABNlHYt7Ah22+fZW64o9UOjHdusfNADs59SM0XbusM+7c2qG\ncgOL+z30DYzh4vURAEC+34fm9YvDn9u1eUn4MadmzNbcuCz8+ODhvnknqIjSicX9Huw3S3esq0Kg\nMLIs4B2bIvPuR88PYmR8Kqtjo9yxcV0VSksKAACDt8Zx/uIth0dExOJ+T28dj1yRt25aEvW56kVF\n2LB8EQBgZlZx8PTNrI6NcofPJ9ixPdKaIh2RSKKFYnGfw/DoJI5bi1JEIvPtdq2bmJqhoJYdkamZ\nTs67Uw5gcZ/DgZ5+zFpzp5tWVqDSWolo12qbd3+7px9T07NZGx/lFvtipuOn+jE6xkgkOYvFfQ72\nK/F4V+0AUFdbitqKAABgbGIaxy4MZmVslHsqyouwri4SiTzczb/kyFks7nFMTM1EzaHviplvDxGR\nqBurb3FqxmjRrQg4NUPOYnGP49CZm5iYmgEALF9cjJU1JXMea1+tupBGYuR+0fPuvfxZIEexuMfR\nYYtA2vPs8WxdU4mSokgjsfPXRjI6Nspd9eurUFIcjEQODI7j4mVGIsk5LO4xZmcVB2zF/f4Exd2f\n54tqJGaPT5JZ8vJ8UZFIpmbISSzuMU5dvoWh0WDSoaKkAPUryxN+TfTUDIu7yTjvTrmCxT2G/abo\nfZtqktpZp2VjNfx5wePO9t5G/607GRsf5bbmHdGRyPE7XLlMzmBxj2FvObBrU/wIZKziQj8a6qrC\nz7mgyVxVFQHUra4AAMzMzDISSY5hcbe5fGMUV/pHAQCF+XnYYWsUloh9QRM38DBbS2N0aobICSzu\nNh22+fLmDYtRmJ+X9NfaFzodPT+AUf45biz77kzsEklOYXG3se+VmigCGat6URHWLws2EpueUXT2\nsJGYqTZtWIxAKB57cwyXrgw7PCIyEYu7ZWhkAicvBxuF+URwny3emCz71XsHUzPG8vt9MV0imZqh\n7GNxtwRXlwYfb1ldgUVWf+5U2K/2O3v6MT3DRmKmauHuTOQwFndL9JRMcimZWHW1pVhiNRIbvTON\n7vNsJGYqe9792KkbjERS1rG4AxifmEbX2cgceWuK8+0hsY3EOpiaMdbiqmKsthbATU/P4ugx/ixQ\ndrG4Azh45ma4F/vqJaVYVlU87/eyZ+P3nbjOpITBWmypGUYiKdtY3JGeKZmQbXWVKCkK7rV6g43E\njMaNs8lJxhf3mdlZ7D81/whkLH+eDy22pA1Xq5prc/1iFFm/6K/3j+Jq322HR0QmMb64H784hJHx\n4M2uqrLCcFZ9Ieybe9j/KiCz5Pvz0LjV1iXyEFMzlD3GF/cOW/FtTbJRWCItGxeHG4md6R1G/zAb\niZmqOWrencWdssfo4q6q6Dhu3yt1YVMyISVF+dhuayTGq3dz2W+qHjtxAxMT0w6OhkxidHG/cH0E\n14bGAQCBAj8a1lam7b1bY1IzZKaa6hKsWhGc6puansFR/qKnLDG6uNuvqHdurEaBP/lGYYnYi/uR\n8wMY4xWbsZobbF0iDzESSdlhdHG3J1laFxiBjFVTEcC6ZWUAQo3E+tP6/uQe9g08OO9O2WJsce8f\nvoPTV4Pd+vJ8ErUParq02lIzHfxz3Fhb6qtRWBiMRF67PoJeRiIpC4wt7vYpme11lSgN5Kf9e9gX\nRL3NRmLGKsjPQ8NWW1M5Xr1TFhhc3CNTMgtduDSXtUvLUFNeBAAYvTOFYxfYSMxUbEVA2WZkcR+9\nM4Uj5wfCz1uT3Cs1VXc1EuPUjLHsrQiOHruByckZB0dDJjCyuHf23MT0TLDPx7plZaix2vRmgv2v\ngv0nb7C/iKFqa0qwfGnwBvvU9Ay6+YueMszI4m7fJcl+0zMTtq2pRHHoZtrQOBuJGaxlBzfOpuwx\nrrhPTc9GxRLv35LZ4p7v90UlcbigyVxR8+7sM0MZZlxx774wiNE7wQVFSyoCqKstzfj3tGfo93ED\nD2Nt3VyDgvzgQrnea7fRd51/xVHmGFfcoxYubaqByMIbhSXSsqEaeVZDstNX2UjMVAX5edhu+0uR\ne6tSJhlV3FU16sp5oRtzJKs0kI/tdZG+Nft59W4sbpxN2WJUcT/bexv9t4JXzSVF+di6Jn2NwhKx\nd5zk1Iy5WmyRyMPHrmNyipFIygyjirs9JXNffTX8edn7349qJHZ2AONsJGakpbWlWFYbjEROTk7j\n+Cn2HKLMSFjdRGSliLwmIt0ickREPh/nmIdEZEhEOq2PL2dmuAvTcTz7UzIhSyoCWBvKOc/MovM0\n/1GbqrnRvjsTI5GUGclcuk4D+IKqbgPwAIAnRGRznOPeUNUW6+OP0zrKNLg2OI7z14INm/LzfGjZ\nkP5GYYkwNUNA9NQM590pUxIWd1XtU9Uu6/EIgOMAVsQ5NPOxkwWwp2Qa1lUhYC0syib73qoHTrGR\nmKm2b1mCfGvvgMtXh3G9f9ThEZEXpTTpLCJ1AJoAdMT59AMi0iUiPxORrWkYW1rZr5Tvz1CjsETW\nLSvD4kXBRmIj41M4dnHIkXGQswoK8rB9a+SvOF69UyYkffkqIqUAXgLwpHUFb/c2gNWqOiYijwJ4\nBUB9vPfZs2dP+HFbWxva2tpSHHLqbo9Poft8pCPjffXZn5IBgo3Edm2uwd/vuwQguFq1cW1Vgq8i\nL2puWBou6p2HevG+96x3eESUS9rb29He3r6g95BkGlmJiB/ATwH8XFWfSeL4cwB2qupAzOvqROOs\n1w9dxTf+z1EAwMYV5fizz+zK+hhCDp7ux57vdQIAaisC+NbvPZiVhVSUW6723cbnvvhzAEBRkR/P\n/+Vj4akaolgiAlVNqVAkOy3zNwCOzVXYRaTW9rgVwV8aA/GOdYK91W62UzKxttdVIVAQaSR2gUvQ\njbSsthS1NSUAgDt3pnH8JNNTlF7JRCF3A/gEgPeIyEEr6viIiDwuIp+xDvuoiBwVkYMAvgHgYxkc\nc0omp2dw0BY7zNTGHMm6u5EYUzMmEpGoLpFdRzjvTumVTFrm16qap6pNqtpsRR3/r6p+S1W/bR3z\nF6q63fr8b6hqvBuujjh8dgB3rI0RllUVY5V1teQkeySyg10ijdXUEGlF8Da7RFKaeX6FamwvmVyY\n327ZGN1I7CYbiRmpYcsS+P3Bf4KXrtxC/80xh0dEXuLp4j47q1HTHq0OT8mElAXysW0NG4mZrqjI\nj622thTcOJvSydPFvefqLQyOTAAAFhUXYMuqCodHFGH/RdPB4m6snZx3pwzxdHG395Jp3VQDn8/5\nKZkQNhIjIHre/dDRa5ie5qplSg9PF/d99r1SHY5AxqqtDKCu1t5I7KbDIyInrFxehprFwZv843em\ncJI/B5Qmni3uV2+O4tKNYM+OAr8PTesWOzyiu+2KaiTG1IyJRATNjfbUDLtEUnp4trjbFy41rV+M\nwoLcW/1nn3c/cKofM7P8k9xEnHenTPBscd9ny487vXBpLutjG4ldYCMxE23fWoM8a+OY8xeHMDA4\n7vCIyAs8WdyHRiZw/FKwUIo41ygsERGJurHKHu9mChTlY+umyM8ou0RSOniyuB841Y9Qf7ItqypQ\nUVro7IDuIWoDjxPX4URjNXJes20Dj87DnHenhfNkcbcv6c+VhUtz2V5XGW4k1jc4jovXuXGDiVoa\noyORM9zIhRbIc8V9YnIGXWcicTKnu0AmUuDPQ8vGSJKHqRkzrVqxCFWVAQDA2DgjkbRwnivuXWdv\nYtJaCLKqpgTLFzvfKCyRVtv2ex3sEmkkEYlKzXDenRbKc8U9qpfMptyekgnZWV8Nn9XQrOfKLTYS\nM5Q9797JvDstkKeK++ys3tUF0g3KAvnYVhdpJHbgFDduMFHjttpwi4xzF4cwOMRf8jR/niruxy8N\nYXhsEgBQWVqIjSvKHR5R8uyRSPZ4N1NxIB+bbRu5cEETLYSnivu+E9G9ZHKpUVgi9oVWh8+xkZip\n7LszMRJJC+GZ4q6qUTcj7VfCblBbGcCa2lIAwNT0LA6eYVrCRIxEUrp4prhfujGK3oHgTjZFBXlo\nXFfl8IhSt8t2A5h7q5ppzapyVFYEI5Ejo5PoOZsz+8yTy3imuNunZJo3VKPAn3uNwhKxr1bdf+oG\nG4kZSETQbOvxzkgkzZdnivtbJ9yXkom1ftkiVJUFWyWMjE/h+EU2EjNRyw5bJJLFnebJE8X95vAd\n9Fy5BQDwieC+encWd58vppEYp2aM1LitNryR+5lzAxi6xUgkpc4Txd2eC99WV4myQL6Do1mY2L1V\n2UjMPKUlBdGRyKO8eqfUeaK4v2WPQLosJROrYa2tkdjAWHg3KTJLc2Nt+DHn3Wk+XF/cxyemccSW\nKMjVjTmSVeDPQ/MGWyMxLmgyUktjdJ+Z2Vn+BUepcX1x7zzdjykrC1xXW4Zaq7Oem9lTMx3cwMNI\na9dUoKLc2qVrdBKnGYmkFLm+uNsXLu3a4u4pmZD76mvCjcROXb6FgdsTDo+Isi1242ymZihVri7u\n0zOzUTdTd7mkC2QiZYF8bF1TEX6+n1fvRmLenRbC1cX92IVBjN6ZAgBUlxdh3bIyh0eUPvZ7B9zA\nw0xN25eGI5E9ZwcwzL/gKAWuLu6xvWRC/xC8wJ76OXSWjcRMVFpagPr1oTYaikNHrzk6HnIX1xZ3\n1dje7d6YkglZWlWM1UsijcS6zrKRmImiukRyAw9KgWuL+/lrI7g+NA4AKCnyY9uaygRf4T72Ngpc\nrWqmqHn3I4xEUvJcW9zfOh6Zh27ZWI18v2v/V+Zk3yaQjcTMtK6uEuWLgpHI4dsTOHt+0OERkVu4\ntiLabzJ6JSUTa8PyRai0GondHpvCiUu3HB4RZZvPJ2jablutyt2ZKEmuLO43hsZxtvc2AMCfJ9hZ\nX53gK9zp7kZiTM2YiBtn03y4srjbb6Q21FWhuNDv4GgyK3pvVTYSM1FTw1IA1qK2MwMYGZl0dkDk\nCq4s7h1Re6V6c0ompHFdFYoKghuP9A6M4XI/G4mZZlFZITZaO4upKrtEUlJcV9xHxqdw1HZTqdWl\nG3MkK9hILDLt1MHUjJHsUzOcd6dkuK64v93TjxkrDrZh+SJUW0kCL9vFeXfj2TfOZpdISobrivu+\nE95duDSX++qrI43ErtzC4AiXoZtmw7oqlJYUAACGbt3BeW7BSAm4qrhPTs/g7Z5IozCvT8mElBUX\nYMvqYCMxVTYSM5HPF9slkqkZujdXFfej5wcxPhnssVJbEcAaa3m+CbhalaLm3Q+zzwzdm6uKe4dt\nVequLUs81SgsEXsqqOvsTdyZZCMx0zRtjxT3Ez39GBllJJLm5priPjsb2yjMjCmZkGVVxVhdY2sk\ndoY785imorwI69dGIpGHu3n1TnNzTXE/0zsc3pGoNJAfnoM2SetmpmZM1xK1WpWRSJqba4q7feHS\nO+prkOdzzdDTxl7c95/qZxzOQLF5d65Yprm4pkJGbcxh2JRMyMbl5agsDTYSGx6bxIlLjMOZpn79\n4nAkcnBoHBfYTI7mkLC4i8hKEXlNRLpF5IiIfH6O454VkR4R6RKRpnQOsndgDBevjwAA8v0+NK9f\nnM63dw2fT/AOe68ZRiKN4/MJdti6RHLjbJpLMlfu0wC+oKrbADwA4AkR2Ww/QEQeBbBeVTcCeBzA\nc+kcpH1+uWndYgQ83CgskV2cdzdeSyN3Z6LEElZJVe0D0Gc9HhGR4wBWADhhO+wxAN+1jukQkXIR\nqVXVtNzO55RMROO6KhTm52FiagZXb47hl51XsKg43+lhURbNBvwYQXCu/fCpG3jrwGUj70HlisZt\nS1CYgxecKY1IROoANAHoiPnUCgCXbM+vWK8tuLgPj07iuLXUWiS6Ba6Jgo3EFod3ovrzH3c7PCJy\nws2CPExMzgCq+Mqzv0YZzFnzkWv+6n98ALU1Li7uIlIK4CUAT6rqyHy/4Z49e8KP29ra0NbWds/j\nD/T0Y9ZKBGxaWYEK64aiyR7ctjRqm0EyT0lJASYmg3sI9wHwQxFggfeM9vZ2tLe3L+g9JJkolYj4\nAfwUwM9V9Zk4n38OwOuqutd6fgLAQ7HTMiKiqUa3Lt0Ywetdvdh38jre3bQcH3lwbUpf70Wqir97\n8xy33TPYzMws/vlQL4asVaoFeT68a3UlSvLzHB6ZeT777+9DZUVmu9OKCFQ1pd/eyRb37wLoV9Uv\nzPH59wN4QlU/ICL3A/iGqt4f57iUi7vd7KzC5+PVCREA9A2M4ff/1z4MjwUL/MrqEjz96VaUBXgP\nxmsyUtxFZDeANwAcAaDWx1MA1gBQVf22ddw3ATwCYBTAp1S1M857Lai4E1G0ExeH8OXnD2BqehYA\n0LC2Cl/93Rbk+3mD1UsyduWeLizuROn35pE+/NlLh8PP39u8Ap97bKtRjfW8bj7Fnb/eiVzunQ1L\n8bu/uSH8/JcHr+Dv3jzn4IgoF7C4E3nAR9+5Fr/ZtDz8/Hv/eBpvcq9Vo7G4E3mAiOCzH9yKBqsl\nMAA888pRnOB2fMZicSfyiHy/D1/62A6sqC4BEOz7/7UXutA3MObwyMgJLO5EHlIWyMd/+UQzFhUH\nO0cOj03ij75/ELfHpxweGWUbizuRxyytKsYffrwpHIe83D+K/7b3UDguSWZgcSfyoM2rK/Dkh7aH\nnx85N4Dnfnqcm3sYhMWdyKPiRSRfYkTSGCzuRB4WG5H834xIGoPFncjDGJE0F4s7kceFIpIrGZE0\nCos7kQHKAvn4SkxE8r8yIulpLO5EhoiNSF5hRNLTWNyJDBIvIvlXPznGiKQHsbgTGSY2IvmPXVcZ\nkfQgFnciAzEi6X0s7kQGYkTS+1jciQw1V0SylxFJT2BxJzJYKCJZXsIukl7D4k5kuKVVxXjqdxiR\n9BoWdyJiRNKDWNyJCAAjkl7D4k5EYR9951q8t3lF+Dkjku7F4k5EYSKC//AvtzAi6QEs7kQUhRFJ\nb2BxJ6K7MCLpfizuRBRXvIjk0y92MSLpEizuRDSn2Ijk0fODjEi6BIs7Ed0TI5LuxOJORAkxIuk+\nLO5ElBAjku7D4k5ESWFE0l1Y3IkoaYxIugeLOxGlhBFJd2BxJ6KUbV5dgd/7V9ERyb9kRDKnsLgT\n0bw8uH0pPmmLSL7GiGROYXEnonn7CCOSOYvFnYjmLRSRbGREMuewuBPRguT7ffgiI5I5h8WdiBaM\nEcncw+JORGnBiGRuYXEnorRhRDJ3sLgTUVoxIpkbWNyJKO3iRSTfONLr4IjMw+JORGkXLyL57Cvd\nOH5x0MFRmYXFnYgyIl5E8usvHGJEMktY3IkoYxiRdE7C4i4i3xGRayJyeI7PPyQiQyLSaX18Of3D\nJCK3YkTSGclcuf8tgPclOOYNVW2xPv44DeMiIg9hRDL7EhZ3Vf0VgER3QSQ9wyEir4oXkfzRG4xI\nZkq65twfEJEuEfmZiGxN03sSkcfERiS//xojkpniT8N7vA1gtaqOicijAF4BUD/XwXv27Ak/bmtr\nQ1tbWxqGQERuICL47Ae34PrQOA6fGwAAPPtyN2rKi7BldaXDo8sd7e3taG9vX9B7SDJzXiKyBsBP\nVLUxiWPPAdipqgNxPqecYyOi2+NT+IO/3ofL/aMAgLLifPz3T+/C8sXFDo8sN4kIVDWl6e9kp2UE\nc8yri0it7XErgr8w7irsREQhsRHJ22NT+KPvdzIimUbJRCF/AOCfAdSLyEUR+ZSIPC4in7EO+aiI\nHBWRgwC+AeBjGRwvEXlEbETy6s0xRiTTKKlpmbR9M07LEFGMXx3tw5/+KLKM5j1Ny/H5D22DCEN4\nIZmcliEiyghGJDODxZ2IHMeIZPqxuBOR40IRyaguki+zi+RCsLgTUU7w5/nwpY/twKoaq4vkTHCj\n7as32UVyPljciShnlAby8ZVPtDAimQYs7kSUU2orA/jDj0dHJP/kBUYkU8XiTkQ5Z9OqCvzHD0e6\nSHZfGMRfvMoukqlgcSeinLR721J88r0bw89fP8SIZCpY3IkoZ33kwTq8t4URyflgcSeinCUi+Gzs\nRtsvd+PYBUYkE2FxJ6KcFi8i+fUXGZFMhMWdiHIeI5KpY3EnIldgRDI1LO5E5BqMSCaPxZ2IXCVe\nRPKH/3TWwRHlJhZ3InKd2IjkD14/g386zIikHYs7EblOKCK5Y10kIvnnrzAiacfiTkSu5M/z4Yu/\nzYjkXFjcici1GJGcG4s7EbkaI5LxsbgTkesxInk3Fnci8gRGJKOxuBORZzAiGcHiTkSewYhkBIs7\nEXkKI5JBLO5E5DmMSLK4E5FHzRWRnJyecXhk2cHiTkSeZXJEksWdiDwtNiLZfqjXiIgkizsReZ6J\nEUkWdyLyPBMjkizuRGQE0yKSLO5EZIw5I5Jjkw6PLP1Y3InIKHEjki8e8lxEksWdiIwTjEg2hJ97\nMSLJ4k5ERtq9rRb/5uHoiOReD0UkWdyJyFgf3h0dkXzBQxFJFnciMpaXI5Is7kRkNK9GJFncich4\nXoxIsrgTEcF7EUkWdyIii5cikizuREQ2XolIsrgTEcWIF5FsP+SuiCSLOxFRjHgRyW/+uBvdLopI\nsrgTEcURikiurikFEIxI/smLXbh6c9ThkSUnYXEXke+IyDUROXyPY54VkR4R6RKRpvQOkYjIGaWB\nfHz5E82oiIpIHnRFRDKZK/e/BfC+uT4pIo8CWK+qGwE8DuC5NI3N09rb250eQs7guYjguYjIlXNR\nWxnAU//afRHJhMVdVX8F4F4TTY8B+K51bAeAchGpTc/wvCtXfnBzAc9FBM9FRC6di00r3ReRTMec\n+woAl2zPr1ivERF5htsikryhSkSUpA/vrsPDLolISjJ/VojIGgA/UdXGOJ97DsDrqrrXen4CwEOq\nei3Osbn7NwwRUQ5TVUnleH+Sx4n1Ec+rAJ4AsFdE7gcwFK+wz2dwREQ0PwmLu4j8AEAbgMUichHA\nVwEUAFBV/baq/r2IvF9ETgMYBfCpTA6YiIgSS2pahoiI3CVrN1RF5BEROSEip0TkS9n6vrkg3kIw\nEakUkX8QkZMi8v9EpNzJMWaDiKwUkddEpFtEjojI563XTTwXhSLSISIHrXPxVet1485FiIj4RKRT\nRF61nht5LkTkvIgcsn429lmvpXwuslLcRcQH4JsILobaBuDjIrI5G987R8RbCPYHAH6pqpsAvAbg\nP2d9VNk3DeALqroNwAMAnrB+Dow7F6o6AeDdqtoMoAnAoyLSCgPPhc2TAI7Znpt6LmYBtKlqs6q2\nWq+lfC6ydeXeCqBHVS+o6hSAFxFc/GSEORaCPQbgeevx8wA+lNVBOUBV+1S1y3o8AuA4gJUw8FwA\ngKqG9nErRPD+l8LQcyEiKwG8H8Bf21428lwgGF6Jrc0pn4tsFffYhU6XwYVOS0KpIlXtA7DE4fFk\nlYjUIXjF+haAWhPPhTUNcRBAH4BfqOp+GHouAPxPAL+P4C+4EFPPhQL4hYjsF5FPW6+lfC6SjUJS\n5hlzZ1tESgG8BOBJVR2Js/7BiHOhqrMAmkVkEYCXRWQb7v5/9/y5EJEPALimql0i0naPQz1/Liy7\nVbVXRGoA/IOInMQ8fi6ydeV+BcBq2/OV1msmuxbqwSMiSwFcd3g8WSEifgQL+/dU9cfWy0aeixBV\nHQbQDuARmHkudgP4LRE5C+AFAO8Rke8B6DPwXEBVe63/3gDwCoLT2in/XGSruO8HsEFE1ohIAYDf\nQXDxk0liF4K9CuDfWY//LYAfx36BR/0NgGOq+oztNePOhYhUhxIPIhIA8DCC9yCMOxeq+pSqrlbV\ndQjWhtf57mugAAAAw0lEQVRU9ZMAfgLDzoWIFFt/2UJESgD8CwBHMI+fi6zl3EXkEQDPIPgL5Tuq\n+nRWvnEOsC8EA3ANwYVgrwD4EYBVAC4A+G1VHXJqjNkgIrsBvIHgD6taH08B2AfghzDrXDQgeGPM\nZ33sVdWviUgVDDsXdiLyEID/pKq/ZeK5EJG1AF5G8N+GH8D3VfXp+ZwLLmIiIvIgdoUkIvIgFnci\nIg9icSci8iAWdyIiD2JxJyLyIBZ3IiIPYnEnIvIgFnciIg/6/9ntD8Xxb3j7AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2823,7 +2831,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 13, "metadata": { "collapsed": false }, @@ -2844,9 +2852,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcW+f1P/DPkYTYGwzGGGNsPBg2xnthkrYZTZukSZNm\nOOvbkXzrtNmzduI4oxlOs/tN06b5Jc4erZNmtUkdG9vxBgw23sZ4gtl7SOj5/SFxucJgJJB0h877\n9fIrPOICJxdxdPXc5zyHhBBgjDGmLwalA2CMMeZ5nNwZY0yHOLkzxpgOcXJnjDEd4uTOGGM6xMmd\nMcZ0aNDkTkSBRLSFiIqIqJSIHh7guBeJ6AARFRNRjudDZYwx5irTYAcIITqJ6BwhRBsRGQFsJKKv\nhBBbe44hogsBjBNCpBPRbACvApjjvbAZY4ydjUvTMkKINseHgbC/IPStfLoEwFuOY7cAiCSiBE8F\nyRhjzD0uJXciMhBREYBKAN8IIbb1OWQUgGOy8QnHY4wxxhTg6pW7TQgxDUAygNlElOHdsBhjjA3H\noHPuckKIJiL6DsAFAMpknzoBYLRsnOx4zAkR8UY2jDE2BEIIcuf4QZM7EcUBsAghGokoGMCPADzZ\n57DPACwB8AERzQHQIISoGiBAl4Pr7rZhwU8ecvl4X2oPikZ7cAwAIMDShtDW0259/fEDa5Gcnu/S\nsZaAELSGjgAAGGwWRDYehVu/ZZU7dqAAo9PzXDq2KXwUrKYgaRzSVo2gziZvheZz7pwLAOjqCkR7\nW5g0Nge2IySkBaSDJ8jR/euRMmGh0mEM2cYvnvDY96Ih/EJpsGRLRNkA3oR9CscA4AMhxONEdDMA\nIYR4zXHcy7Bf0bcCuEkIUdjP9xJ62IVSCIHfvrQRJ2vt95nvvXIK5mcmuvU9li9fjuXLl7t0bKel\nGzc8vQ7tXVYAwMrfzEb6qEi3fp6auXouOru6cc2Ta2Dt7n0O5abH4eHFuV6MzrfceV70eOv9nVj9\n5T5pfOWlmbjqskwPR+Z7QzkXekVEnr9yF0KUAjjjr0cI8Zc+41vd+cFadvBkk5TYg80mzJgQ79Wf\nFxhgxJzJI/DdzpMAgILSSl0ld1ftPdbglNgBoPRwHdo7rQgOdGuGUVcWXzkF9Q0dWPd9BQDgw9W7\nER0VhPPPHadwZExJXKE6BAWlldLHcyaPQGCA0e3vkZ+f79bxi6b0vjNYX1oJm03774B6uHouSo/U\nnfGYpduG4sO1Ho5IOe4+LwDAYCAs+dVM5GT3Pkdee7MQW3eccdtLU4ZyLlgvTu5ustkE1u/qTe7y\npOsOd5+4U9JiEBVqBgDUt3SitPzMRKdVrp6LksO9/88p8b3zzNv31Xg6JMUMNaGZTAbc87u5GDfW\nfh9ICIFnX9mMPfu1e244uQ8PJ3c3lZbXob65EwAQFWrGlLQYn/xco8GA+Vm9LyTydw/+oL3TigMn\nem+c3nBeuvTx9v3VunonM1TBQQH4w50LkDDC/sJnsXbjj89twNHjjQpHxpTAyd1N8qS6ICsRRoPv\nTuEi2dvuTXuq0GXt9tnPVlrZ0QbYHDfjxyaGI3d8nPROpqG1CwdOcAIDgKjIIDx8Tx4iI+wrilpa\nu/DoyvWorWsb5CuZ3nByd0OXtRvfl/Wu8Mwb4pTMUE1IjkRCVDAAoLXDih0HtPuW213yaajssTEw\nGMjpRva2/dVKhKVKiQlh+MNdCxAUZL/JXFvXhhXPrEdLS5fCkTFf4uTuhu37a9DWaV+OmBgTggk+\nXrFCRE4vKAUl/jM145TcU6MBADMmxkmPbd3HyV1u/NgY3Pu7eTAY7Kvnjp1oxB+f34gui/+82/N3\nnNzdIJ+SWZSdOKTCguHKyx4pfbxtf7X0YqNnLe0WHD7VDAAwECFjjD2556TFIsBofwpXVLXgdEO7\nYjGqUU52Im799UxpvGd/NZ7/vy18f8JPcHJ3UUu7Bdtlb/0XZvt2SqZHyogwjE0MBwBYrDZs3uNe\nZawWlVXUS/PtaSPDERYcAAAIDjQhW3ZDextfvZ8hf34qrr9qqjTevP04/raqyK1KcaZNnNxdtHnP\naVisNgD2BDNathTP1/Ky5VMzpxSLw1dKj9RLH2ePdV6dNFM+787JvV+XXDgBPzl/gjT++r8H8cm/\n9igYEfMFTu4uKijtTaKLZFMjSlgoWxK583AdGlo6FYzG+/reTJWbOaF33n3XkXq0+8E0lbuICDde\nPRXzZ/fu7ffux7vw33XlCkbFvI2TuwvqmjtR4kgwRMAChaZkesRHBUvzzjYhsGF3v3u06UJzWxfK\nK2Xz7SlRTp+PjwrunabqtqHokH6qVT3JYCD87jezMCWjt4fOn/++HduLTyoYFfMmTu4u2LCrEj1T\nlFmpMYiLCDr7F/jAIj+ZmpFPyaSPiuh3Dxn51Mx2npoZkDnAiHtvm4dUxwukEAIrX9qE/Qf5BVGP\nOLm7YJ0seeYpfNXeY15GAoyOZW77jjeiUqdFKmebkukxc6IsuR+o4dUgZxESHIBld+dhRFwoAKDL\n0o3Hnl2PE6f0s20ys+PkPoiTta04eNL+xA8wGjA3Qx2tYSNCzZg2PlYay/e70ZNd5b1X7lMGSO7j\nkyIQHRYIAGhs7cJ+Lrc/q+ioIDx0bx7CHeespbULK55ej7p6XkqqJ5zcB7FOViiUmx6HcMcyPDWQ\nr3lfV3JKd8vbGlo6cbS6BQBgMhImjY7q9ziDgTBddmOVq1UHl5QYjqV3LYDZbJ/mqq5txWPPrkdr\nG1ex6gUn97MQQjivkvHxdgODmTUxXtpu+Fh1K45UtSgckWeVyq7aJyRHIdA88NbKs2RTM1yt6pr0\ncbG493dzpWK8I0cb8NQL33MVq05wcj8LXzflcFdwoAmzJvXGtE5nN1bl+7dnj40+67FT02IQYLI/\nnY+ebkEVTzG4JHfqSCz55QxpvGvPabz4l61830IHOLmfhXy7gbkZQ2vK4W3yNfcFOmvi4byfzNm3\nVg4ym5xuuPLUjOvOzRuLa3+eLY2/33oMb7xTrLtpPn/DyX0ANpvAellyV8sqmb6mjY9FeIj9PkBt\nUwfKjtYP8hXaUNPUIb1rCjAZMHH04Ju0yadmuFrVPZf9dBIu/OF4afzFNwec+rIy7eHkPoDS8jrU\nt/i+KYe7TEYD5stW8OiliYf8qn3y6CiYTYO/a5Kvd991pM4vNlXzFCLCLxdPw9yZydJjqz4owXcb\njigXFBsWTu4DULIph7vypvROzWzcXSXtgaNl8iWQA61v7ysuMkiqVrV2CxRxcY5bDAbCbbfMRobs\nHdArf9uGwp36upfjL9SbsRSkdFMOd00eHYW4SEfnnXYLinVQgu9cvHT2m6lyPDUzPOYAI+6/fT5S\nku3TYDabwDMvb8LBw/rp2esvOLn3Q+mmHO4yGMhpM7F1pdq+0qqqb0eVY2/2wAAjxie5fv7l1ao7\nuFp1SMJCzVh290LExYYAADo7rXjs2fU45djjh2kDJ/d+qKEph7sWyaZmtu6t1vTuiPKr9owxUdIS\nR1eMG9lbrdrUxtWqQxUbE4Jld+chzNGntqm5EyueKUBDY4fCkTFXcXLvo29TjjyFt/d1VWpCGFIc\ne8x3Wro1XcjjvL7dvRvZ9t6q3H7PE0aPisCDdy6A2bEEuKq6FY+tXI/2DovCkTFXcHLvQ96UY9zI\nCCTHhyockWvO6K+q0akZIYRTZepg69v7w/PunjMpPQ53LemtYj1cUY+nXvgeFitXsaodJ/c+5ElR\nrWvbByKfdy86WIumVu3tE3Kqrg21Tfa3/sFmE8Ylhbv9PaamxfZWq1ZztepwzcxNwi03TZfGJbur\n8Mpft/P9DJXj5C6jtqYc7kqMCcFExyqHbptwWvGjFfKr9szUqCEtQQ00GzFVVpfAUzPD96P8NFx1\nWZY0LthUgVUflCgYERsMJ3cZNTblcJd8zfs6DRY0yW+mDrTFrytmTRwhfbxtn/6biPvCFZdMxo/O\nSZPGn361D599xVWsasXJXUaNTTnctSAzAQbH/GhZRT2qG7QzJWGfbx/6zVQ5+RbAuyvquVrVA4gI\nN98wHbNyR0mP/b/3dmL9pqMKRsUGwsndQa1NOdwVFRboNCWhpSYex2ta0eC4TxAWHIDUBPfn23vE\nRQQhbaS8WrXGIzH6O4OBcOdv52BSeu+L54uvbcVOHffx1SpO7g5qbsrhLvnUjJb2mimRVUFmjomG\nwTC8+oKZvMe7V5jNRjx4xwKMHhUBAOjutuGpFzbi8BF9bFqnF5zcof6mHO6aM3mEtFqkvLIZR09r\no4mHvBn2cKZkesg3EuNqVc8KCzNj2d15iIkOBgB0dFjx6Mr1qNTIc80fcHKH+ptyuCsk0OSU2LSw\n5t1mE9h1xDM3U3uMGxmB6HB7tWpzmwV7jzUM+3uyXnGxIXjonjyEhtirWBubOrDimQI0NnEVqxpw\ncoc2mnK4y6mgqaRS9Y0XKk63oLnNXvkYGWpGyojhF48ZDOT0IsdTM56XkhyJB+6YjwDHlsyVVS14\n7NkNXMWqAn6f3Ps25ZDv0aJl09PjEBpkb35c1dCOfcfUvceKfJVMVmq0x/bzmSlbNbOduzN5RcbE\neNzx29nS7+xQeR1WvrwJVh1sPa1lfp/c+zblcGd7WTUzm4xOK37UvlOkp5ZA9iWvVj1W3YpTdW0e\n+96s15wZyfjNDbnSuKikEn/++3bVv2PUM79P7lpqyuGuRbK1+ht3V6Hbps4rKZtNYHfF8PaTGUig\n2YictFhpzHvNeM/5547DFZdkSOO1G47gnY92KRiRf9NPJhuCvk059DIl0yMrNUa6odjY2oWdKm24\ncLiyGa0d9iKj6PBAjIoL8ej3ly+J5KkZ77rqskz8IG+sNP7H53vwxX8OKBiR//Lr5N63KUe6Y92u\nXvRt4lFQos41705TMqkxHt8/X74F8K4j9Wjlm31eQ0S45abpmJGTJD32+tvF2LjlmIJR+Se/Tu5a\nbMrhLvk2Cpv3nEanRX1btQ61pZ6rYiOCMD7JUXBj496q3mY0GnDXkjmYMK5nOkzghb9swa49vMeP\nL/ltcm9pt2D7Pu015XDX+KQIJDnapbV3WVU3LWHttqGsonf9uSdvpsrJaxe2qewc6FFgoAkP3rkA\nST0Ny602/PG5jThylGsNfMVvk/vmPadh6dZeUw53EZHTC9c6lU3NHDrZhPYu+9RYXGQQEh0Vj542\ny2nevUa1N5f1JCI8EMvuyUN0pP132t5hwaPPrMfpmlaFI/MPfpvc9bTdwGDkUzOFB2rQ3K6eOee+\nW/x6a2osbWQ4Yhw3l1vaLdir8nX/epEQH4qldy9EcJB9r6b6xnaseLoAzY7lx8x7/DK51zZ1ODXl\nmJ+l7+Q+Ki5UmnO2dNuwWUVzn57eT2YgROS0aoaXRPrO2DFRuP/2+TA56g1OVjbj8Wc3oJO3YfYq\nv0zuG3dXab4ph7vkV+8FJeooaLJYbShzWt/u3QIy+VYEnNx9KztjBG67eTYA+zuz/Ydq8ewrm9Hd\nzdNj3uKXyV3elENva9sHMj8rET0zHqVH6qQ+pUraf6IRXY4S9cToYMRHeWe+vceUtBiYHVePx2ta\npc3imG/Mnz0av1ycI423F5/Eq2/s4CpWLxk0uRNRMhGtIaLdRFRKRL/v55hFRNRARIWOf0u9E+7w\nnahxbsoxZ/KIQb5CH+IigpDlqPwUwv7uRWlO+8l4cUqmR2CAETnjeqtV1bZyyB9cdF46fvaTSdL4\nvwXl+OCfuxWMSL9cuXK3ArhTCJEJYC6AJUQ0qZ/jCoQQuY5/j3k0Sg+Sr23XelMOd8mnZtapYGrG\nU/1S3TGDd4lU3OIrsrFo/hhp/OHqMvx7zSEFI9KnQZO7EKJSCFHs+LgFwB4Ao/o5VPUVQEIIv5yS\n6TE3IwEmo/3XZN/DXrklaV3Wbuw73rtixZs3U+XkN1XLKurRoqKVQ/6CiLDklzMxTbZK7bU3C7F5\n+3EFo9Ift+bciSgVQA6ALf18ei4RFRPRF0SU0c/nFXfwZJO0K6C9KUfcIF+hL+HBAZgu632p5Jr3\nvccaYXHMt4+KC5WWKXpbTHggV6uqgMlkwN23zsW4sT1ThQLP/XkLyvjdlMeYXD2QiMIAfAzgNscV\nvNwOAClCiDYiuhDAagAT+vs+y5cvlz7Oz89Hfn6+myEPnXxKZp5OmnK4Ky97JLbstf8BFZSewlX5\naYpsu1B6WL6fjG+3WZ45MV6677JtfzUWZut7KaxaBQcFYOldC/DAo2tQWdUCi7Ubf3xuIx5feg5S\nkiOVDk9Ra9euxdq1a4f1PciVO9VEZALwOYCvhBAvuHB8OYDpQoi6Po8Lpe6M22wC//NsgbR3+yPX\nT3e6ueYvOru6ccMz66Sq0GdvniNdyfrS/a9vxR5HKfo9V0zBAh/WGhw+1YQ7Xt0MAAgLDsBb9y7S\n1VbPWlN5ugUPrFgjteeLiQ7Gkw/9AHGxnt0dVMuICEIIt67CXH1G/x1A2UCJnYgSZB/Pgv1FQ1X7\ny+q1KYe7As1GzJ7cO++sxI3Vji4rDpzonW/P8vGV+9jEcMQ6ahta2i3SiwxTRuKIMCy9eyGCHJ3D\n6urb8ejKArS0dCkcmba5shRyPoBrAZxLREWOpY4XENHNRPQbx2E/J6JdRFQE4HkAv/BizEMin5JZ\nmK2vphzukt9IXr+rEjabb99N7TnaAGu3/WemjAhDVJhv5tt7EJFT+71t+2t8+vPZmcalRuO+38+D\n0ejomnWiCU88vwFdXerbxVQrXFkts1EIYRRC5AghpjmWOn4thPiLEOI1xzGvCCGyHJ+fJ4To74ar\nYvo25dDrDpCumpoWg8hQe8f6+uZO7Dri2zdZpeW+2XLgbHgrAvWZmpWI3/16pjTeu78Gf/rzZp9f\nfOiFX1y+6r0ph7uMBgPmZ8r7q/p21UyJl/dvd8WUtBjphvqJmlZFl4WyXnnzxuDGq6dK462FJ/CX\nN7mKdSj8Irk7r23XZ1MOdy2SvXvZVFaFLqtv3v62dVpxyLFShQhS1ayvmU1GTE3r/dl89a4eF184\nERdfMFEaf/PdYXz06R4FI9Im3Sf3lnYLdsjmVBf5+ZRMj4mjI5Hg2MultcOKwgO+We9dVlEPm+Mq\nbGxiuKIVwvKpGa5WVZfrr5qChXNTpPH7/9iFb9YeVjAi7dF9cpc35RifFIFRcfpsyuEuIkKerEJQ\nvr+9N/Xtl6ok+VYEZRUNqtrn3t8ZDIRbfz0TUzJ6pw9ffWMHthWeVDAqbdF9cpdPyeRxsYoT+Y3l\nrfuqpfsS3qSGm6k95NWqNiFQdJBXzahJgMmI+26fh7Qx9vsyQgg8+8om7D3AvydX6Dq51zZ1oPSI\n/zTlcFfKiDCkJth7XFqsNmzxchOP5nYLDlfa59sNRMgYE+XVn+eKWTw1o2rBQQFYevdCJDjaYHZZ\nuvHEnzbguOO+DRuYrpO7vClHtp805XCXfGpmnZenZnYfqZd+H2kjwxEapPyOnLMm9W75XHigFlZu\nHqE6UZFBWHZPHiJ62iS2dmHFMwWoq29XODJ103Vyd5qS8bMdIF21UPZuZuehOjR4sbel0xa/acpO\nyfRITQhDXKT9Rb+1g6tV1SopMRxL71qIwEB7FWtNbRtWPFOAllauYh2IbpN736Ycc/2kKYe7RkQF\nIyPFPj1iE8KrTTxKj8jXt6sjudurVbmgSQvGp8XgnlvnwmCwL2U+erwRTz6/EV0WrmLtj26Tu3yK\nYfqEOIT5UVMOd8nf1RR4qaCpsbULFVX2zUSNBsLk0crPt/dwqlbl7kyqljt1JJb8qreKtWxfNV54\ndQtXsfZDl8ldCIEC2V7l/r7dwGDmZyTA6Lga2nusAZV1nu8tKt/iIH1UJIIDXd5t2uuyx0YjyGyv\nVj1Z28bVqip3zoJULL5yijTetO04Xn+7iKtY+9Blcpc35QgJ9L+mHO6KCDU7bX+8fpfnr96dl0Cq\na0dOe7Vq7///1r189a52P7toIi76Ubo0/urbg/jn53sVjEh9dJnc5TdS5072z6Yc7pK/uykoqfT4\nVZAS/VLdwUsitYWIcNO1OZg3a7T02NsflWJNQbmCUamL7pK7zSawXjZvzKtkXDN7UjzMJvvT4Wh1\nC45U9W22NXR1zZ04XmOf6ggwGjBRRfPtPWZMiEPPlkN7jnK1qhYYDITf3zwLmZN6X5hfeX07Cncq\n3/xdDXSX3EvL69DgWB4VFWpW5VWiGgUHmjBbtubbk9sRyOfbJyRHqvKdVFRYINJH2Vu72YRAIVdB\naoI5wIj7b5+PMY4LBiEEnn5pEw4c4t64ukvu8imZhdmJ0rIpNjinJh6lnmviUXJYfUsg+8NLIrUp\nNMSMZXcvRHyso4q1y4rHnt2Ak5XNCkemLF0l905LN74v6y2h51Uy7skZFystGa1u7MCeY54p6Ck9\not6bqXLyJZGFB2u4WlVDYqKD8dC9CxHmaELT3NKJFU8XoL6hQ+HIlKOr5L59f43U+HkkN+VwW4DJ\nuYlHgQf6q9Y0dkhLK80mAyaouKu9c7WqFWVcraopo0ZG4A93LYTZMe13uqYVj60sQJuf3j/RVXKX\nzxPncVOOIZHvnLlhdxUs1uFdvcpXyUxOiYLZpL759h5E5LRqhqdmtGfi+Fjcdetc6W+//GgDnn7h\ne1h81IxGTXST3Lkph2dkpEQj1rHBWku7BTsPD+/GlNP+7Sqeb+8xo8+8OxfGaM/MaUn47f/MkMYl\nZVV46bVtflfFqpvkvombcniEwUBOV+/rSoZe0CSEcO6XqnBzDlfIq1VP1bXhRI3nq3WZ9/1g0Vhc\nfXmWNN6w+SjefH+nghH5nm6SewE35fAY+aqZLXtPo6NraE08qurbUd1ov6EVZDZivAbugZhNRqdq\n3a37vLvHPfOen188GeefO04a/+vr/fj0y30KRuRbukjufZtyLOCmHMOSmhCG0Y7mCJ2W7iFXbMpX\nyWSMiYbJqI2nm9OSyP283l2riAi/vj4Xc2YkS4+9+f5OrNtYoWBUvqONv7ZBbNhV6dSUI5abcgwL\nEZ2xHcFQOPdLVe8SyL7k1ap7uVpV0wwGwu3/OxuTZS/YL/11K4q9tPupmugiuRfwdgMet1A2tVV4\nsAbNbe41RRBCaO5mao+osEBMkFWr7uCrd00zBxjxwO3zMdoxLWizCTz90vc4KHt+6pHmkzs35fCO\nkTEh0pr0bptwKg5zxcnaNtQ127s6hQaZMG6k+ufb5eQFTdt5j3fNCwsz46F78hATHQwA6Oiw4vFn\nN6DSg3soqY3mkzs35fAe+dTMOjcLmuRX7ZljojW3DQRXq+pPbEwIHronT6pibWzqwCPPFKChUZ9V\nrJpO7n2bciziKRmPWpCVAINj8nl3RT1q3PgjcN6/XTtTMj3GjAjDiCj7VV5rhxVlFfWDfAXTgpTk\nSDxwxwIEOIrpqk634PE/bUB7h/7uq2g6uR844dyUY3o6N+XwpOiwQKdG1q7uFCmEcNoJUovJnYic\nmrzwqhn9mDwhDncumSNVsR4qr8MzL22CdZjV2Gqj6eQuTzbclMM75DUDrvZXPVbdKm27HB4SgDEj\nwrwSm7fN7NPAg6tV9WP29FH4zQ250ri4tBKv/G2brn7Hmk3ufZty8JSMd8yZPAIBjiYe5ZXNOHp6\n8BtQ8qrUrNQYzc2398hKjUaw2d7rtbKuTWo4wvTh/HPH4cpLM6Xxuu8rsOrDUgUj8izNJveSPk05\ntPjWXwtCgwKc9ltZ78LVu1bXt/dlNhmRM763WpU3EtOfX/wsAz/KT5PGq7/Yi8//vV/BiDxHs8m9\ngJty+Izz1Myps751tdkEdh3R9s1UuZnyeXdO7rpDRPjNDbmYMS1Jeuzv7+zEhs1HFYzKMzSZ3Ps2\n5eApGe+aMSEOoUGO6Yn6duw/0TjgsRWnW9DiqOiMCjVL2xho1fR0WbXqsUa3i7mY+hmNBtz12zmY\nKL1LE3jxta0o2V2laFzDpcnk3rcpx/gkbRXIaI3ZZMTcyfImHgNPzfStStX6nvpRYYGYmGzvz2kT\nAtu5t6ouBQaa8OCdCzDKUWxntdrw5AsbUV6h3YYtmkzu8lUyi6aM1HwC0QKnJh67KtFt63/ZmFb6\npbqDp2b8Q3hYIJbdsxDRUb1VrI+uLEBVtTZvpGsuuTf3acrB2/v6RvbYGESHBQIAGlq7nJJ4j26b\nDbsrtNEv1R0zJ/ZuaVF4oHbY3amYeo2IC8VD9yxEiKPSvaGxAyueLkCTYysNLdFcct/MTTkUYTCQ\n02Zi/a15P3yqGW2d9umy2IggjIwJ8Vl83pQyIhQJjqu59i6uVtW7MaOj8MAdC2ByLAE+VdWMx5/d\ngI6OofU1UIrmkrt8lQzfSPUt+bukTWWn0Wlx7kvpPN8erZvpMiLCDHlvVd5ITPcyJ8Xj9ltmA7A/\nhw8crsXKl7VVxaqp5F7TpynH/MyEQb6CedL4pAjpary9y4rtfUry5c05tNBSzx19G2frqZKR9W/e\nrNH41XU50riw5BRefWOHZn73mkruG7kph6KICHlTnNe897B225ymK/RyM7VH5hhZtWp9O45p9CYb\nc8+Pf5SOy386WRqvWV+Odz/epWBErtNUcl/HO0AqLi+r97zv2F8jrWk/eKIJHV32aZqEqGAkOPbN\n1osAkwHT5NWqPDXjN675eRbOWZgqjT/51x589e1B5QJykWaS+/HqVhw61duUYw435VBEcnyo1HjD\n0m3D5j32YrJSje8C6YqZfaZmmH8gIvzvTTOQK7ug/OtbRdi07biCUQ1OM8m9YFfvFMCMifHclENB\nfbcjAJxvpmbpZAlkX/Jq1X3HGtHUytWq/sJkMuDuW+divLQFtsDz/7cFu/eq90VeE8ldCOE0JcNr\n25W1IDtRSnIl5XWoqm9H2dHeSj69XrlHhpqdqlV3cLWqXwkKMuEPdy7AyIRwAIDF2o0/PrcBFcfU\nWcWqieR+4EQTKmVNOeRNFJjvxUUEIXOM/epcCOD1r/dJhT0jY0IQp+Mb3X33eGf+JTIiCA/dm4eo\nSPtzvK3dgkdXrke1CreD1kRyl6/KmJeRALOJm3IoTd5fdcve3k3c5J2b9Ei+JLLoIFer+qOE+FAs\nvWshghzQFqSzAAAUIElEQVSb6dXVt+PRlevR0qKuabpBkzsRJRPRGiLaTUSlRPT7AY57kYgOEFEx\nEeX0d8xQdNtsTnuI85SMOszLTIDJeGaRkt7Wt/c1Ot65WnU3V6v6pbTUaNx323wYjfYUevxkEx7/\n03p0dXUP8pW+48qVuxXAnUKITABzASwhoknyA4joQgDjhBDpAG4G8KqnAiwtr5eackSHBep2Pldr\nwoMDkDv+zOkxvd5M7UFEPDXDAABTMxNw282zpPG+g7VY+comdHer492cabADhBCVACodH7cQ0R4A\nowDslR12CYC3HMdsIaJIIkoQQgx7Q+R13JRDtfKyRzolt9HxodLmYno2a2I8Pt9ib+awde9p5Cg8\nFZUyIgyJOtnHR2sWzElBfUMH3ni3GACwvegkXnurELfcOF3x7TcGTe5yRJQKIAfAlj6fGgXgmGx8\nwvHYsJJ7p6Ubm2RNOXhKRl1mTYxHsNkk7a3vL++qMsZEIyTQhLZOK6obO/D4e8WKxhNgNOCBq3Mw\nPZ0XGijhpxdMQH1DO1Z/uQ8A8M13hxEdGYyrLssc5Cu9y+XkTkRhAD4GcJsQYvAuyQNYvny59HF+\nfj7y8/MHPFbelCMplptyqE2g2Yj5mQn4tugEAPhNcgkwGTBrUjzW7jw1+ME+YOm24akPduKxG2dg\nQnKk0uH4pcVXTkF9QwfWfV8BAFi74QguvnCCtHWwu9auXYu1a9cOKyZyZRMcIjIB+BzAV0KIF/r5\n/KsAvhNCfOAY7wWwqO+0DBEJdzbdqWnswHc7T2JdySnMz0zE1eeMc/lrmW80t3Xh3e8OIT4yCD+b\nn6r4W1FfaWjpxHvfHUJtk7L7fB881YR6x17jESFmPPWrmUiK5W2wlWCxduOJP21EY1MHlt2dh+go\nzy0JJiIIIdz643I1ub8FoEYIcecAn/8xgCVCiIuIaA6A54UQc/o5zq3k3kMIAWu3QIBJEys3GfOZ\nEzWtuO/1rWhus+/xkxAVjKd+Pcsv7n2oUXuHBUJgyFfsA/FKciei+QAKAJQCEI5/DwIYA0AIIV5z\nHPcygAsAtAK4SQhR2M/3GlJyZ4wNbN/xBix9Yzu6HGvu00aG44mbZiI40K1bakzFvHbl7imc3Bnz\njm37qvHEe8WwOf6+pqbFYNm1ufxuVyeGktz5N8+YDsycGI8lF2dI452H6/Di6t2w2fhiyl9xcmdM\nJ36YOwqLfzBeGheUnsKb3+xXMCKmJE7ujOnIzxeOxY9njZbGq7+vwOqNR5QLiCmGkztjOkJE+PWF\nkzA3o7e/8Bv/2e9U6c38Ayd3xnTGYCDceXmWtC0zALy4eheKD9UqGBXzNU7ujOmQ2WTEg1fnIGVE\nGADA2i3w5Ps7cehkk8KRMV/h5M6YToUFB+Dh63IR52gs0d5lxYq3C3HK0fiG6Rsnd8Z0LC4iCA8v\nzpV6Dje0duGRVYVoaFF22wTmfZzcGdO5lBFhWHpNjlTQdKquDY++U4T2TqvCkTFv4uTOmB+YnBKN\ne66YAoNjY7eDJ5vw1Ic7YVVJYwnmeZzcGfMTsyeNwC0/mSyNiw7W4uVPy8BbgugTJ3fG/Mj5M5Jx\nVX7v1tnf7TyJVd8eVDAi5i2c3BnzM1flp+G86cnS+JMN5fjX5qMKRsS8gZM7Y36GiHDLTyZhlqzR\n9+tf78WGXZUKRsU8jZM7Y37IaDDg7p9PwaTRUQAAIYDn/7ELJeV1CkfGPIWTO2N+KtBsxNJrp2F0\nvL0tn6Xbhj++V4zyymaFI2OewMmdMT8WHhyAhxfnIibc3pavrdOKR94uRFV9u8KRseHi5M6Yn4uP\nCsbD1+UiNMjelq++uROPvF2IptYuhSNjw8HJnTGG1IRwPHh1bxXriZpWPPpuETq6uIpVqzi5M8YA\nAFmpMbjz8mw4ilix/3gjnvmoBN02rmLVIk7ujDHJvIwE/PrCSdJ4+/4a/PmzPVzFqkGc3BljTi6a\nnYIr8sZK42+LTuDdNYcUjIgNBSd3xtgZrj13PH6QkySNPyw4jC+3HlMwIuYuTu6MsTMQEX57cQam\np8dJj7325R58X1alYFTMHZzcGWP9MhkNuPfKKUgfFQnAXsX6p09KsbuiXuHImCs4uTPGBhRkNuGh\na6chKTYEAGCx2vD4u8WoqGpRODI2GE7ujLGzigg1Y/l10xEdZq9ibe2w4JG3C1HT2KFwZOxsOLkz\nxgaVEG2vYg0226tYa5s6sHzVDjS3WxSOjA2EkztjzCVjE8Px4NVTYTLaq5yOVbfi8XeL0GnpVjgy\n1h9O7owxl01Ji8XtP8uWxnuONuDZj7mKVY04uTPG3LIwOxG/vGCiNN6ytxp/+WIvV7GqDCd3xpjb\nLp47Bj+bnyqN/739OD5Yd1i5gNgZOLkzxobk+h+mI3/qSGn83neH8O/txxWMiMlxcmeMDYnBQLj1\n4kxMGxcrPfbq53uwde9pBaNiPTi5M8aGLMBkwH2/mIrxSREAAJsQePqjEuw92qBwZIyTO2NsWIID\nTVh27TQkxvRWsT76bhGOVXMVq5I4uTPGhi0qLBDLr8tFVKgZANDSbsHyVYWoaeIqVqVwcmeMecTI\nmBAsW5yLILMRAFDT2IEVbxeihatYFcHJnTHmMeOTInD/L6bCaLBXsVZUteCJ94rRZeUqVl/j5M4Y\n86hp4+Pwu0szpfHuino898ku2Gxc5ORLnNwZYx53ztQk3HjeBGn8fVkV/voVV7H6Eid3xphXXDpv\nDC6eO0Yaf7n1GD5ZX65gRP6FkztjzCuICDedNwELsxKlx1b99yD+W3RCwaj8Byd3xpjXGAyE3/8s\nE1PGxkiPvfxpGbbvr1YwKv/AyZ0x5lVmkxEPXJ2DsYnhABxVrB+WYN9xrmL1Jk7ujDGvCwk04aHF\nuUiICgYAdFq68eg7RThZ26pwZPrFyZ0x5hMx4YFYfn0uIkLsVazNbRYsf6sQdc2dCkemT4MmdyJ6\nnYiqiKhkgM8vIqIGIip0/Fvq+TAZY3qQFBuKpdfmIDDAXsVa1dCOFW8XorWDq1g9zZUr9zcAnD/I\nMQVCiFzHv8c8EBdjTKcmJkfh3iunwED2KtbyymY8+f5OrmL1sEGTuxBiA4D6QQ4jz4TDGPMHMybE\n49ZLMqRxSXkdXvznbq5i9SBPzbnPJaJiIvqCiDIGP5wx5u9+MG0UrvvBeGm8flcl3vjPfq5i9RCT\nB77HDgApQog2IroQwGoAEwY6ePny5dLH+fn5yM/P90AIjDEtunzhWNQ2d+LLrccAAJ9tqkBMeKBT\nf1Z/tHbtWqxdu3ZY34NceZUkojEA/iWEmOLCseUApgsh6vr5nOBXZcaYnM0m8MxHJfi+rEp67PbL\nsnDO1CQFo1IXIoIQwq3pb1enZQgDzKsTUYLs41mwv2CckdgZY6w/BgPhjsuzkDkmWnrspdW7UXSw\nRsGotG/QK3ciehdAPoBYAFUAHgZgBiCEEK8R0RIA/wvAAqAdwB1CiC0DfC++cmeM9aul3YIH/r4N\nR0/b2/MFmY147MYZSB8VqXBkyhvKlbtL0zKewsmdMXY2NU0duO9vW1HTaG/PFxlqxpO/nIWk2BCF\nI1OWN6dlGGPM6+IigrD8ulyEBQcAABpbu/DI24VoaOEqVndxcmeMqcro+DAsu2YaAkz29FRZ14ZH\n3ylCe6dV4ci0hZM7Y0x1JqVE4d4reqtYD55swlMf7ITFalM4Mu3g5M4YU6VZk0bglp9MlsZFh2rx\n0qdcxeoqTu6MMdU6f0Yyrj5nnDReV3IKb317QMGItIOTO2NM1X6xKA3nz0iWxv/ceASfbapQMCJt\n4OTOGFM1IsItF03G7EkjpMde/3of1pdWKhiV+nFyZ4ypnsFAuOvn2ZicEiU99vw/S7HzUK2CUakb\nJ3fGmCYEBhjxh2umYXR8KADA2i3wx/d3oryyWeHI1ImTO2NMM8KDA/Dw4lzERgQBANq7rHhkVSGq\n6tsVjkx9OLkzxjQlPioYDy/ORWiQfcfy+pZOLF+1A42tXQpHpi6c3BljmjMmIQwPXp0jVbGerLVX\nsXZ0cRVrD07ujDFNykqNwZ2XZ8NRxIoDJxrx9IclsHZzFSvAyZ0xpmHzMhJw80W9Vaw7DtTgz5+V\ncas+cHJnjGnchTNH48q8NGn83+KTeGfNQQUjUgdO7owxzbvm3HH44bRR0vijgnJ8seWoghEpj5M7\nY0zziAi/vXgyZk6Ilx7761d7sXF31Vm+St84uTPGdMFoMOCeK6ZgYrK9LZ8QwHOflKK03D9bOnNy\nZ4zpRqDZiKXXTJPa8lm6bXjivWK/rGLl5M4Y05WIUDOWXzcd0WGBAIC2TitWvF2I0w3+VcXKyZ0x\npjsJ0cF4+LpchATaq1jrmjvxyKpCNLf5TxUrJ3fGmC6NTQzHA1fnIMBoT3PHa1rx2LvF6OzqVjgy\n3+DkzhjTrSljY3D7ZVlSFeveYw1Y+XEJum36r2Ll5M4Y07UFWYn45QWTpPHWfdV49fO9uq9i5eTO\nGNO9n85JwWULUqXxf3Ycx/trDysXkA9wcmeM+YXrf5iOc6YmSeP31x7Cv7cfVzAi7+LkzhjzC0SE\nWy/JwLTxsdJjr36+B5v3nFYwKu/h5M4Y8xsmowH3XTkV45MiAAA2IbDy4xKUVdQrHJnncXJnjPmV\n4EATll07DSNjHFWsVhsee7cYR0+3KByZZ3FyZ4z5naiwQCy/LhdRoWYAQGuHBctXFaKmqUPhyDyH\nkztjzC8lxoRg2eJcBJvtVay1TR145K1CNLdbFI7MMzi5M8b81vikCNx/1VQYDfYqp6PVLXjivWJ0\nWrRfxcrJnTHm13LGxeL3l2ZJ47KKevzpk1LYbNoucuLkzhjze/lTR+Km8yZI4817TuMvX+zRdBUr\nJ3fGGANw6fxUXDJ3jDT+evtxfFRQrmBEw8PJnTHGHG48bwIWZidK43fWHMS3hScUjGjoOLkzxpiD\nwUC47dIsTE2LkR575bMybNtXrWBUQ8PJnTHGZAJMBtx/VQ7SRoYDsFexPv3hTuw71qBwZO7h5M4Y\nY32EBJrw0OJcJEQFAwC6rDaseKcIx6tbFY7MdZzcGWOsH9FhgVh+fS4iQuxVrC3tFjzydiFqNVLF\nysmdMcYGkBQbimXXTkNggBEAcLqhHSveLkJrh/qrWDm5M8bYWUxIjsR9v5gKg6NX35GqZjzxXjG6\nrOquYuXkzhhjg5ieHoffXZopjXcdqcfz/9il6ipWTu6MMeaCc3OScN0P06Xxxt1V+NvX+1RbxcrJ\nnTHGXHT5glRcNDtFGn+x5Sj+sfGIcgGdBSd3xhhzERHhVxdMxPzMBOmxt745gDXFJxWMqn+DJnci\nep2Iqoio5CzHvEhEB4iomIhyPBsiY4yph8FAuP2yLGSlRkuPvbR6N3YcqFEwqjO5cuX+BoDzB/ok\nEV0IYJwQIh3AzQBe9VBsurZ27VqlQ1ANPhe9+Fz0UvO5MJuMePDqHKQm9FaxPvXBThw40ahwZL0G\nTe5CiA0AztY99hIAbzmO3QIgkogSznI8g7qfuL7G56IXn4teaj8XoUEBeGjxNMRHBgEAOi3dePSd\nIpysVUcVqyfm3EcBOCYbn3A8xhhjuhYbEYTl101HWHAAAKCxtQvL3ypEfUunwpHxDVXGGBuW5PhQ\nLLtmGswmezqtamjHircL0d5pVTQucmWNJhGNAfAvIcSUfj73KoDvhBAfOMZ7ASwSQlT1c6w6F4Qy\nxpjKCSHIneNNLh5Hjn/9+QzAEgAfENEcAA39JfahBMcYY2xoBk3uRPQugHwAsUR0FMDDAMwAhBDi\nNSHEl0T0YyI6CKAVwE3eDJgxxtjgXJqWYYwxpi0+u6FKRBcQ0V4i2k9E9/nq56pBf4VgRBRNRP8h\non1E9G8iilQyRl8gomQiWkNEu4molIh+73jcH89FIBFtIaIix7l42PG4352LHkRkIKJCIvrMMfbL\nc0FER4hop+O5sdXxmNvnwifJnYgMAF6GvRgqE8DVRDTJFz9bJforBLsfwLdCiIkA1gB4wOdR+Z4V\nwJ1CiEwAcwEscTwP/O5cCCE6AZwjhJgGIAfAhUQ0C354LmRuA1AmG/vrubAByBdCTBNCzHI85va5\n8NWV+ywAB4QQFUIIC4D3YS9+8gsDFIJdAuBNx8dvArjUp0EpQAhRKYQodnzcAmAPgGT44bkAACFE\nm+PDQNjvfwn46bkgomQAPwbwN9nDfnkuYF+80jc3u30ufJXc+xY6HQcXOo3oWVUkhKgEMELheHyK\niFJhv2LdDCDBH8+FYxqiCEAlgG+EENvgp+cCwHMA7oH9Ba6Hv54LAeAbItpGRL9yPOb2uXB1KSTz\nPr+5s01EYQA+BnCbEKKln/oHvzgXQggbgGlEFAHgn0SUiTP/33V/LojoIgBVQohiIso/y6G6PxcO\n84UQp4goHsB/iGgfhvC88NWV+wkAKbJxsuMxf1bVswcPESUCOK1wPD5BRCbYE/sqIcSnjof98lz0\nEEI0AVgL4AL457mYD+BiIjoM4D0A5xLRKgCVfnguIIQ45fhvNYDVsE9ru/288FVy3wZgPBGNISIz\ngKtgL37yJ30LwT4DcKPj4xsAfNr3C3Tq7wDKhBAvyB7zu3NBRHE9Kx6IKBjAj2C/B+F350II8aAQ\nIkUIkQZ7blgjhLgOwL/gZ+eCiEIc72xBRKEAzgNQiiE8L3y2zp2ILgDwAuwvKK8LIZ70yQ9WAXkh\nGIAq2AvBVgP4CMBoABUArhRCNCgVoy8Q0XwABbA/WYXj34MAtgL4EP51LrJhvzFmcPz7QAjxOBHF\nwM/OhRwRLQJwlxDiYn88F0Q0FsA/Yf/bMAF4Rwjx5FDOBRcxMcaYDvGukIwxpkOc3BljTIc4uTPG\nmA5xcmeMMR3i5M4YYzrEyZ0xxnSIkztjjOkQJ3fGGNOh/w+U1us/zrPSmQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3WeUZFd1L/D/rhy6OuccpqdnRhIogJAQRi1QmiGI54ex\ncSDYgIwVWI+XvbwW88FvLS9/sVF4CGHAiIexABtE0CghDSKOZGVpZno65zSdqiun8z7U7Vu3ajpU\ndVfVTfu31izVqb7dfXS7evetfc8+m4QQYIwxZiwWtSfAGGOs+Di4M8aYAXFwZ4wxA+LgzhhjBsTB\nnTHGDIiDO2OMGdCewZ2InER0hoheIaI3iOhLOxx3HxENE9GrRHRl8afKGGMsX7a9DhBCRInoJiFE\niIisAH5NRKeEEC9sHUNExwH0CSH6iehdAB4CcF3pps0YY2w3eaVlhBAh6aET6T8IuZVPdwB4RDr2\nDIAqImoq1iQZY4wVJq/gTkQWInoFwAKAp4UQL+Yc0gZgWjGelZ5jjDGmgnyv3FNCiKsAtAN4FxEd\nK+20GGOMHcSeOXclIYSfiJ4DcDuAs4oPzQLoUIzbpeeyEBFvZMMYY/sghKBCjt8zuBNRPYC4EGKD\niNwAbgHwdzmH/RjAXQAeJaLrAKwLIRZ3mGDek0sKgQ9976W8jy+nhsooGqtiAIDNsBVza66CPn/o\ne1/DwMc+m9exFa4k2mojAIBowoKReQ+Agn7Omjb8/YfR/wefy+vY7sYQvM6kPJ5bc2It4CjV1Mqu\nkHMBAElbCglHQh5bE1bYolaQAV4fF37wVRz+6J1qT2PffvZH1xTtaxEV/vPM58q9BcC3iMiCdBrn\nUSHE40R0JwAhhHhYGp8gohEAQQCfLngm27AS4fE/fEcxvlRRCSHw6Njr2IinA+7NrYfQV1lX0Nc4\n+ebjOPnRa/M6NpFK4ZGRlxFPpYPa37zzKBrdFYVNWsNOnvspTubxc46nkvjnCy8hpbiff1NHNU50\nDJRyemWV77lQ+veJOTw1uySPP9jRjA92Nhd7amV38nwrThYxQJpNPksh3wBw9TbPfzVnfHcR56Vp\ny5GgHNjtFiu6KmpK+v1sFgt6KmpwwX8RADDiXzFUcM/XYjiQFdgBYC7kRyyVhMNiVWlW6vtIVws2\nYnGcWV4DAPx0egGVDjve21zYBQczFq5Q3YcR/4r8uKeiBjZL4adxcHCwoOMPVdXLj0f9K0gZaB/+\nfM/FXMh/yXNJkcJscKPIM1JPoa8LALAQ4ROHOnGsplJ+7rtjM3htRd/nZT/ngmVwcC9QSgiMbq7K\nY2XQLUShL9w2TyXcVjsAIJSMbxvo9Crv4B7M/D/XONzy48nAerGnpJr9BjSrhfC5gS50VXgApFOH\nX7swiVF/sIizKy8O7gfDwb1AcyE/Qon0jVS31Y42T+Uen1EcFiL0VdbKY+W7BzOIpZJYimQC1bsa\nO+XHU4F1Q72T2S+X1Yq7jvagweUEkL5X8+C5ccyFIirPjKmBg3uBlEG1r7IOln3cxd6vQ5WZdwnj\nm6tIpFJl+95qWwhtQkj59jqnBx3eKvmdTDgZx3JEv1eoxVTpsOPeY73w2aV3eYkE7j87hrVoTOWZ\nsXLj4F6ARCqFcWVKpsAVMgfV6PLCZ09flcVSSUwHjZOO2IsyDdXqqYSFCJ0V1fJzk4E1NaalSQ1u\nJ+4+1gOnNX2TeS0aw/1nxxCMJ/b4TGYkHNwLMBVcR0xajlhpd6HR5S3r9yeirD8oZkrN5AZ3AOjK\nCu7m+UOXj64KD+4c6JbfWc6FIvjK+QnETfRuz+w4uBdgZCMTTA9V1u2rsOCglMF9MrCOWDK5y9HG\nEE0mcDGS3ruOQGjx+AAAbd4qWCn9El6NhrAZj6o2Ry06VuPDJw5lCsdH/AF848IU358wCQ7ueYom\nE5hSpEHKnZLZUuv0oM6ZXhGRFCmMB1b3+Az9m1fk2+tdHjit6fIMh8UqX8UDfPW+nesaa/H73a3y\n+JWVdTw6NltQpTjTJw7ueRrfXENSpN/S1ju9qHG69/iM0jFbama7lMyWLs677+mW1ga8v7VBHv9i\n4SKemFna5TOYEXBwz5MyiKp11b5FudXBbNCPUCKu4mxKb7fgrrypOh/alO+JsAwiwn/ubsU76jOV\n1I9NzePXi8a/MDAzDu55CCZicoAhUMH7yBSbz+5EizuddxYQGDPw1XskmcBKNJNvb5by7Vt8dmdW\nmmrGQNWqxWQhwif7O3CkOnP+/t/oDN5YNU4xHMvGwT0Po/5VOefb4vGhwq7+LoRmSc0or9obXd5t\n95BR7u0zxXn3HdktFtw50I12bzqlKITAw0MTGN/kGgEj4uCehxFpwy5A/ZTMlh5fLSzStq6LkQD8\nMWNWISq3HGj1bl8NrMy7c7Xq7tw2K+451os6V/oCJZ5K4YFz41gIG/P1Y2Yc3PewHovI1Y9WsqDH\nV7vHZ5SH22ZHu7dKHhv16n23fPuWepcXHkW16lI4UJa56VWVw457j/Whwp5edRSMJ3DfW2NYjxr7\n3o3ZcHDfg/KqvcNbBZe1oOZVJZWbmjHa8rZQIo61WBgAYAGhaYdtjnOrVadMVLm7X01uJ+462guH\ndatOIIYHzo0hnOAb0kbBwX0XQohLCpe0pMtXA5tUxLMWC8s3Ho1CedXe5K6AfZc925V598lNDu75\n6PF58LmBbrkYbyYYxkPnx7mK1SA4uO+i3E05CuWwWNGtmJPRUjP5pGS2tHkrM9WqsRD8Ma5Wzcfl\nNZX4s75MFevQRgD/PMxVrEbAwX0XxWjKUWqHqrJTM0b6pcznZuoWe0616hQXNOXt3U21uKOrRR6/\ndHEd3x+fM1yaz2y0F600IiUERpWFS/tsylFq7Yr7AMFEDAvhTZVnVByBeEx+12QlCxpde7cV5I3E\n9u/2tkYMtmRe48/NL+PpuWUVZ8QOioP7DuZCfoSS6dUD5WzKUSgrWdDrM14TD2VKptldkde7JmVw\nnwv5TbGpWrEQET7W04ar6zLn8N8n5vC7JePvXWRUHNx3oGZTjkIpb/SO+VflPXD0rJB8+5YKRbVq\nCoKrVQtkIcKnD3eivyrzLumRkWm8ucZVrHrEwX0bajflKFST24cKW7ooJZpKGCKo7Se4AzmrZjjv\nXjC7xYLPH+lGm1TFmhICXxuaxMSmsVZimQEH922o3ZSjUOn+qoobqxv6Ts34Y1F5b3YbWdDgzv/8\nZ1WrBjcMdYO5XDw2G+4+2oNap3TBkEziwXNjWArzCiQ94eC+DS005SiU8t3FRGBN17sjKq/aWzw+\neYljPpTVqhGuVt23GqcD9xzrhceWvlm/GU/gvrNj8Me4ilUvOLjn0EpTjkLVOT2ocaTfSidECpOb\n+k1J7DclA1xarcqrZvavxePCXUd7YJduZl+MRPHAuXFE+Ea1LnBwz6GlphyFMEp/VSHEgYI7wHn3\nYuqr9OIzA13yu9epQAhfPT+BBFexah4H9xxaaspRKOV8Z4IbCOuwicdGPIpgIgYgXZhUv4/7Hcpq\n1bVYmKtVD+jttVX4k752eXxufROPjEzz/QyN4+CuoLWmHIWqdLjQJBX7pCCyVvzohbIqtcXt29cS\nVLvFmlWXwFfvB/eepjp8qLNZHr+wvIYfTs6rOCO2Fw7uClpsylEovadmlCmZtj22HNhNdmqG8+7F\ncKK9Cb/XnHl9PT27hGdmuRerVnFwV9BiU45C9VbWgaQmHvPhTXlJoR4UI9++Jbu3KlerFgMR4eO9\n7Xh7XaaPwA8m5vDiMr8z0iIO7hKtNuUolMdmz7riHdXR1ft6LIKwtOWD02JDrVRtuh8Vdgfqnel8\nfQoC07zHe1FYiPAX/V3oq8zcC/nn4SmcWzfGnkZGwsFdouWmHIXSa2pmNmd9+0G3fOCNxErDYbXg\nr470oMXjAgAkhcBD5ycwFeAqVi3h4A7tN+UoVE9FrbxaZCUawqpOmnhkbfFbhI3alKmZ6SD3Vi0m\nr92Ge471olpRxXr/2XEsR/STBjQ6Du7QflOOQjms1qyrVj1cvaeEwHy4ODdTt9S7vPBIe+5Ekgks\ncrVqUdU6Hbj3WC88tnSHrM14HPedHcNmPKHyzBjAwR2APppyFEpv/VXXomFEkumg4Lba5Wrbg7AQ\nocurTM3wjb9ia/W48PkjPfLvzHI4igfOjnEVqwboP4odUG5Tjn6NNuUoVIe3Gg7L1hVVVPNXrbn7\nyRRrP5+sxtmcdy+J/qoK/MXhTvlnNhkI4WtDk0imtH1BYXSmD+65TTmKkevVAptFX008Zou0BDJX\nbrXqRixStK/NMq6qq8bHe9vk8Vtrfnx7dFrz7xiNzPTBXU9NOQqV1cRjc1WzNxRTQmC+RMHdbrGi\n3avsrcpX76Xy3uZ6nOhokse/W1rFY1MLKs7I3Ewd3HObcvTrfJVMrhZPpXxDMZyMY1ajTTxWIiF5\ni2KPzYFqh6uoX7/Ty9Wq5fKhjmbc0JT5PXpiZhHPzXMvVjWYOrjnNuVo0HhTjkJZiNCng9RMdlVq\n8fLtW7pyqlWjSV7NUSpEhD/ua8cVtZl3S98bn8NLF/mParmZOrjrsSlHoZSpmfHAmia3ai3WlgM7\n8dod8h9u7q1aelYifPZwN3p86XMuhMA3h6dwYUPbN/WNxrTBXa9NOQrV4PKiyp5Oc8RTSc0tB0yK\nFObDmdL1Ut3Q5gYe5eWwWnDX0R40udOvvUQqhf97bhwzwbDKMzMP0wZ3vTblKBQR4VCVdrcjuBgJ\nIS6lxipsDlTanSX5PsrCtKkAV6uWQ4XdhnuO9aDKsdX2MIn7z45hJRJTeWbmYNrgPpK1tt2YV+1b\nDvky/3/TwQ25WEgLclMypUqN1Ts98Eo3l6OpBBbDvNFVOdS7nLj7WC9c1nTNxUYsXcUa4CrWkjNl\ncA/Gs5ty9PqMHdyrnW4555wUKUxoqIlH1n4yRdhyYCfEvVVV0+F14/NHu+Uq1sVwBA+eG0csqb37\nP0ZiyuA+uqn/phyF0uJOkUmRwkIZ8u1beJdI9QxU+fCp/kwV6/hmEF+7MIEkp8dKxpTBXbm9r9HW\ntu+k15dp4jEX2kQwrn7ecykcQEK671Fpd8JXonz7ljZPFWxSteo6V6uW3Tvqq/GxnlZ5/MaqH/8y\nOsNVrCWyZ3AnonYiepaI3iKiN4jo3m2OuZGI1onoZenf35Rmuge3Hg1nNeXo1mlTjkJV2B1o8fgA\nAAICoxpIzcyFynfVDqS3ZGjzZroI8dV7+d3U0oDb2jNVrL9eXMFPpxdVnJFx5XPlngDwRSHEZQCu\nB3AXER3Z5rjnhRBXS//+tqizLKKRzUxKQu9NOQqVnZq5uMuR5VHq9e3byU7NaGtZqFl8pLMZ1zVm\nLqp+Nr2A5xfUfz0azZ7BXQixIIR4VXocAHAOQNs2h2q+Aii3KUd/pTF2gMxXj68WFunHtBwJYl3F\ntEQilcraqbKUN1OVlDdVF0KbXK2qAiLCn/V14LKazM/8u2OzeGWF30kVU0E5dyLqBnAlgDPbfPh6\nInqViH5GRMeKMLeiy23KofxFNwOX1Zb1/6zm1ftiOCDXGVQ7XPIyxVLz2rKrVae5WlUVVgvhswNd\n6KpI98kVQuDrF6Yw4ucq1mLJOydBRBUAfgDgC9IVvNJLADqFECEiOg7gRwAOb/d1Tp48KT8eHBzE\n4OBggVPeP+UqkV5frSGachTqUGUdJqR0xMjGCq6pa1Nl2wU1UjJbuipq5PsuU4F1w1Yna53LasXd\nx3rx928MYzkclatY/9sV/Wj1FHfzOL05ffo0Tp8+faCvQfncqSYiG4CfAjglhPhyHsePA7hGCLGa\n87xQ6854Sgh8Z+QVee/2D3QcQbvi5ppZxFNJfHvkFbkq9Pe7LkeDu/wbpj02eVZeBnlz6yH0lTHA\nXowE8W8TbwIAnBYbPtF/taG2etab5UgUf//6CDbj6d/NaqcD/+OKQ6h1Gn+Jcr6ICEKIgl6k+V66\nfgPA2Z0COxE1KR5fi/QfDfWXYygYtSlHoewWK7oVpfjDKqRm4qkklhT59pYy/yzqcqpVF7haVVUN\nLifuOdYDp1TFuh6N4f6zYwhyFeuB5LMU8gYAfwLgfUT0irTU8XYiupOIPicd9lEiepOIXgHwjwD+\nsIRz3hdlSuaQwZpyFEq5tn9UhSYeC+EAUlIRWa3DA4/NXtbvT0RZq2a4gYf6Ois8+Msj3bBKv5fz\noQi+cp6rWA8in9UyvxZCWIUQVwohrpKWOj4hhPiqEOJh6ZgHhRCXSx9/txBiuxuuqsltymH2HGub\ntwpuazqghhKxrC5I5ZC95YCvrN97i3IjMV4SqQ1Hq334ZH+nPB7xB/H14Une5G2fTHFH0ehNOQpl\nIVK1v6qaN1OV3zdTrRpRdVkoy7i2oQYf7c5Usb62soHvjnEV636YIrhnr203ZlOOQuX2Vy1XE49Y\nMimvVCFQ2fPtW3KrVaf46l0zbm5rxM2tjfL4lwsreHyGq1gLZfjgbpamHIVqclfIe7nEUklMB8uT\nd54Pb8qbttU5PapWCPNGYtr1+90teGdDJnX2k6kF/GpRGxve6YXhg7uyKUeDy4tqgzblKBQRqbJT\nZG6/VDV1ZvVW3dTUPvdmZyHCJw914Eh15jXyndEZvLbKRWf5MnxwV1Zh8lV7NuX5mAysI5ZMlvx7\nlmv/9nwoq1UF91bVHJvFgr880o1ORRXrPw1NYtQfVHlm+mDo4J5uypFew2yGphyFqnV6UOdM/+Ik\nRUquXC2VSDKBlWgIQPrn0exW98odyFk1s8l5d61xWa24+2gP6l3pFGI8lcKD58axEOIb4HsxdHBX\nNuVoNUlTjkKVc6fI+ZBf/nnUuzxwamBHTmXefTq4IafwmHZUOuy451gvfPb06yWUSOC+s2NYj8ZV\nnpm2GTq4c0pmb8qy/5mgH6FE6X5hlPu3t2mkQrjO6UFFVm9V3rhKi5rcTtx1tFeuYl2NxnD/uTGE\nEnyfZCeGDe65TTl6TNKUo1A+u1NOjwgIjJWwiYcW1rfnSvdW5dSMHnT7PPjsQJdcXT4bDOMr5ycQ\nL9MyXr0xbHBXrv7o9FZrIgWgVeVIzYQTcaxK+XYLCE0qr5RR4iWR+nF5TSU+cahDHg9vBPDNC1Nc\nxboNQwZ3IcQle8mwnfUqmngshgPwl6BaU3nV3uD2wmGxFv177FerpxJ2Ss9nI87Vqlp3XWMt/lNX\npor15ZV1fG98lqtYcxgyuCubcjhM2JSjUG6bPWv741KseS93v9RCpKtVM3Pi1Iz23drWgJtaGuTx\n6fmLeHJ2ScUZaY8hg7syOPWYtClHoXILmop9FaS8ctfKzVSl7I3EODWjdUSEP+hpxTX1mQu3H03O\n4zeLmtppXFWGi3opTsnsS5evRt5Iay0Wxmo0XLSvHUzEsB5Lfz0rWdCkgfXtuTorqkFSamohzNWq\nemAhwqf6O3G4qkJ+7tuj03hzrby7nGqV4YL7XMiPMDflKJjDYs26ei3mjdV5RUqm0VWhyXdSHps9\nq1p1mq/edcFuseDzR3rQ5k1vKyKEwMNDExjfDKk8M/Vp77fsgLgpx/71VylTM8Vr4jGrKOtXa//2\nfPCqGX1y26y452iv3JYvlkzhwXNjWAxHVZ6ZugwV3BOpVNY6bU7JFKbdWwWnJb1kNJCIYrFI7ee0\nfDNVqTOrWnWdq1V1pNppx72X9cIrVbEG4gncd3YUGzHzVrEaKrhPBdblxs9V3JSjYFayoLeyuE08\nAvEo/NLKJRtZ0Oiq2OMz1KOsVo2lklgIcbWqnjS7XbjraA/sUtpvJRLDA2fHEE6UfkM8LTJUcM9N\nyXBTjsIp3+2M+lcPfPWqvGpvcvs0mW/fku6tyu339KzX58VnB7rk3/3pYBhfHZooWzMaLdHub1qB\nuClHcTS7ffAq9lqZCR5s5YGW9m/PR2dO42wujNGft9VW4U/72uXx+fVNfGtk2nRVrIYJ7uObq9yU\nowgslzTx2P+qGSEEZoPa209mN1ytagw3NNXhw50t8vjF5TX828ScijMqP8MEd17bXjzK8zexuSbf\nxyjUZjyKQCK9YsFOVjS4tX8PxGaxZFXrcmpGv463N+K9zfXy+Odzy3jaRFWshgjuuU05+rgpx4HU\nOT2ocaTf+SREat/LApUpmWaPD1bSx8stNzXD9ImI8Ee9bbiqLvPz/LeJOZxZNscfbH38tu1hdHMl\nqymHl5tyHMil/VX3l5rJXgKp/Xz7luxq1QBXq+qYhQh/frgThyozq7S+NTyFs2vFWearZYYI7pyS\nKT5lE4/pwEbBAU4Iocn92/PhsdnRyNWqhpGuYu1Gi8cFIL1FyVeHJjAZMHYVq+6DOzflKI0qh0te\nk56CwJi/sA2ZNmIRBBMxAOmtDep1VnPQydWqhuK123DvsV5US1Ws0WQSD5wdx7KBq1h1H9y5KUfp\n5O4UWQjlVXuLp1J320Ao17tztaox1DgduPdYLzy2dIzYjMdx39kx+A1axarr4H5JU44qTskUU19l\nrZx7ng/7EYjnf5Wjly0HdlLrdMNncwLYqlY1fo7WDFo96SrWrWK65UgUD54bRyRpvCpWXQf3S5py\neLkpRzF5bI6svdfzvXq/NN+un5upW9K9VTk1Y0R9lV585nCminUyEMLDQ5NIpoxV5KTr4M5NOUpv\nP6mZtVhY3nbZZbWh1ukpydxKLXeXSK5WNY4r66rw8d5MFevZNT8eGZky1M9Yt9GQm3KUR7evRl6f\nvhINyU2udzOnqEptcesv376lxVMJu9Tr1c/Vqobz3uY6fLCjWR6fWV7DDyfnVZxRcek2uHNTjvJw\nWm1Z6a7RPFbNZOXbvfr9udgsFrR7uFrVyD7Q0YT3NGUuDJ+aXcLP55ZVnFHx6Da4c1OO8jlUlV3Q\ntNtb15QB8u1K3MDD2IgIH+9rx9tqM3/EfzAxhxcNUMWqy+DOTTnKq9NbDYecnohiSaor2M5qNIRo\nKl3w5Lba5W0M9KpDUa26yNWqhmQlwmcOd6HXJxWuCYFvjUzj/Lq+V0jpMrhzU47yslmyi8N2u7Ga\nuwRS73vqe2x2NLoz1aq814wxOawW/NXRHjS701WsiVQKXzk/gelg8RrFl5sug3vu2na9BxA9yG7i\nsbLj3thzIUW/VIPcB+EGHuZQYbfhnmO9qHbYAaSrWO8/O4aLEX1WseouuEdym3LwDpBl0eqphMea\nftGHk3HMhi5t4pESAvMGuZmq1JXVW3WDq1UNrM7lwD3HeuG2SWnIWLqKNRDXXzpOd8F9gptyqMJC\nlLWZ2MjGpTtFXowEEZPSZV6bA1V2Z9nmV0o1Djd80v9LPJXM+gPGjKfN68bnj2SqWJfC6SrWqM6q\nWHUX3LNXydTvciQrNmVqZjywdklfytxdII2SLkv3VuU93s3kcFUF/ry/U34Nj28G8TWdVbHqKrgH\nLmnKwTtAllODy4sqe/qGUzyVvCTI6X0/md3k5t2NVMnItnd1fTX+sKdNHr+55sd3Rqd187PXVXAf\n46Ycqrq0iUfmXVRSpLI21zJacG/x+BTVqlGsxfS7ioLlb7ClHsfbm+Txb5ZW8eOpBRVnlD9dBffh\nDU7JqE2Zd58KriMqrfteDgcRF+mcpM/uRKXDGPn2LVayoEPRW5VTM+bx4c5mXN+YyRKcmlnE6fn9\nN44vF90E97VoGBejyqYcNXt8BiuFGqcb9c70uu+kSGF8M700UK9dlwrBu0SaExHhT/s6cHlN5nX9\n6PgsXl7R9mtAN8F9lJtyaMZ2qRkj59u3dHqzq1XDCWM2eWCXsloInx3oQrcvvcOpEALfuDCFCxsB\nlWe2M10EdyEEhrkph2b0VdbJQW4u5Ic/FsVC2PjB3Z1TrTod3NjjM5iROK1W3HW0F43udMoxXcU6\njlmNVrHqIrgvR4Lwc1MOzaiwO9AibQgmIPDbpUm59qDK7kKFgW90c7WqufmkXqyVUhVrOJHE/efG\nsRqNqTyzS+kiuHNTDu1RpmYmFEHOKFWpO+FqVVbvcuLuoz1wWtOrp9ajMdx3dgxBjVWx7hkliaid\niJ4loreI6A0iuneH4+4jomEiepWIrizWBLkphzb1+GphwaVFSkZNyWzhalUGAJ0VHvzlkW5YpSKn\nhVAED54bRyypnT/2+VwCJwB8UQhxGYDrAdxFREeUBxDRcQB9Qoh+AHcCeKhYE1Q25fBwUw7NcFlt\n6Ki4ND2m9/3b95KuVuXUDAOOVvvwqf5OeTy2GcQ/XZhEUiNFTnsuORFCLABYkB4HiOgcgDYA5xWH\n3QHgEemYM0RURURNQojFg05wWLGHSR835dCUQ5V1WcGtxuGGx2bcfPuWropqvLmWLmSZ2FxHm0fd\nAF/rdKPS4VJ1Dmb1zoYa+OMJfH98FgDw+uoG/nVsBn/c26769hsFrSckom4AVwI4k/OhNgDTivGs\n9NyBgnsilcK4InhwSkZbuiqqYbdY5b31zfKuqsXjg8NiRSyVRCARxZOzF1Sdj5UsuLWtP2sdPiuf\n97c2YCMWx1OzSwCAXy6soMpuxwc7m/f4zNLKO7gTUQWAHwD4ghBi34s7T548KT8eHBzE4ODgjsdy\nUw5ts1us6PXVYmgj3XNyuzSNEVnJgq6KGgz7tVGlmBQpPD07jA91HkWju0Lt6ZjSR7pasBGL44zU\nnu+3y6t4f2uDvHVwoU6fPo3Tp08faE6UzyY4RGQD8FMAp4QQX97m4w8BeE4I8ag0Pg/gxty0DBGJ\nQjbdCcSjuLBxESP+FfRW1uId9e15fy4rj0gygf9YnkGF3YG317ao/la0XEKJOF66OINgQt0lcMuR\nEELSHFxWO+7oOoZqTtGoIpFK4cFz49iMJ3DPsV5UScsli4GIIIQo6Jcr3+D+CICLQogv7vDxEwDu\nEkJ8gIiuA/CPQojrtjmuoOC+RQiBFASsxEsgGVNaj4bx2NRZuberz+7ER7qOmeLehxZFkkkIgX1f\nse+kJMGdiG4A8DyANwAI6d9fA+gCIIQQD0vHPQDgdgBBAJ8WQry8zdfaV3BnjO1sMRzAT6fOISGt\nua93evGhrqNyU3OmfyW7ci8WDu6MlcZkYA1PzgzLW2K3eapwvOMwv9s1iP0Ed/7JM2YAXRU1eG9z\njzyeDW2AzpaZAAAPqElEQVTg9PzYjo3MmfFxcGfMII5UN+CdikUHI/4VnFme3uUzmJFxcGfMQK6q\na8Vl1ZnOQa+vzuO1lXkVZ8TUwsGdMQMhIry7qQs9FZnOQb9bnsqq9GbmwMGdMYOxEOF9rX1ocWcq\nhk/Pj2GG9583FQ7ujBmQzWLBbe39qHWkOwelIPDU7DCWI0GVZ8bKhYM7YwbltNpwvGMAFVJBUzyV\nxKnpIWzEIirPjJUDB3fGDKzC7sDxjgE4LeltpMLJOE5NDyHE/V8Nj4M7YwZX6/Tg9vZMQdNGPIIn\nZoYQkzblY8bEwZ0xE2j2+HBz6yG5sflyJIhnZoe5TaCBcXBnzCS6fTV4T1O3PJ4ObuD5+XHwliDG\nxMGdMRM5VtOIa+rb5PEF/0W8sDyj4oxYqXBwZ8xkrqlrw9GqRnn86uoc3lhdUHFGrBQ4uDNmMkSE\n9zR3ZzX6/u3SFEb9KyrOihUbB3fGTMhChPe39qFJassnIPDc/Bhmg36VZ8aKhYM7YyZlt1hxe/sA\nahxuAOlerE/NXsBFrmI1BA7ujJmYS6pi9UpVrLFUEqdmLsAfi6o8M3ZQHNwZMzmf3Ynj7QNyW75Q\nIoZTM+cR5ipWXePgzhhDncuD2xRVrOuxCJ6YuYA4V7HqFgd3xhgAoNVTife19slVrEuRAJ6ZHeFW\nfTrFwZ0xJuv11eLdTV3yeCq4jucXuIpVjzi4M8ayXF7ThKvqWuXx0MYy/uPirIozYvvBwZ0xdol3\n1rdjoKpBHr+8Mou31hZVnBErFAd3xtgliAi/19yNTm+1/NyvFycxtrmq4qxYITi4M8a2ZSULbm47\nhEZXpor12blRzIe4ilUPOLgzxnaUrmI9jCq7C0C6ivXJmWGsRkMqz4zthYM7Y2xXbpsdJzqOwGO1\nAwCiqQQenx5CIM5VrFrGwZ0xtqdKhxPHOwZgl6pYg4kYHp8eQiSZUHlmbCcc3Bljeal3eXFbWz8s\nUpHTWiyMJ2cuIJHiVn1axMGdMZa3Nm8Vbmrtk8cL4U38fI6rWLWIgztjrCCHKuvw7sZMFetEYA2/\nWpzgKlaN4eDOGCvYFbXNeHttizw+t76El1fmVJwRy8XBnTG2L9c2dKC/sl4e/8fFGZxbX1JxRkyJ\ngztjbF8sRLixpQft3ir5uV8uTGBic03FWbEtHNwZY/tmJQtuaetHg8sLIF3F+szcCBZCmyrPjHFw\nZ4wdiEPqxVqpqGJ9YuYC1qJhlWdmbhzcGWMH5rHZcaJjAO6sKtbzCMRjKs/MvDi4M8aKosrhwvH2\nAdgpXcUaSMRwamYIUa5iVQUHd8ZY0TS4vbilPVPFuhoN4cmZYa5iVQEHd8ZYUXV4q3BjS688ng/7\n8dz8KFexlhkHd8ZY0R2uqsd1DZ3yeGxzFb9ZnOQq1jLi4M4YK4m31TbjippmefzW+iJeXZ1XcUbm\nwsGdMVYSRITrGjvR56uTn3theRpD68sqzso8OLgzxkrGQoTBll60eSrl536xMI6pwLqKszIHDu6M\nsZKyWSy4te0w6pweAOkq1qdnh7EYDqg8M2Pj4M4YKzmH1YrjHQPw2Z0AgIRI4YmZIazHIirPzLg4\nuDPGysJrc+BExxG4pCrWSDJdxRpMcBVrKewZ3Ino60S0SESv7/DxG4lonYhelv79TfGnyRgzgmqH\nC7e3H4aN0qFnMx7FqWmuYi2FfK7cvwngtj2OeV4IcbX072+LMC/GmEE1uStwS1s/SKpiXYmG8PQs\nV7EW257BXQjxKwB7bdBMxZkOY8wMOiuqcWNzjzyeDflxen6Mq1iLqFg59+uJ6FUi+hkRHSvS12SM\nGdhAdQOubeiQx6ObK/jd0hRXsRaJrQhf4yUAnUKIEBEdB/AjAId3OvjkyZPy48HBQQwODhZhCowx\nPbqytgXBeAxvrS8CAN5YW4DX5sDb61r2+ExjO336NE6fPn2gr0H5/JUkoi4APxFCvC2PY8cBXCOE\nWN3mY4L/KjPGlFJC4OdzIxjbzISMm1r6cLiqfpfPMhcighCioPR3vmkZwg55dSJqUjy+Fuk/GJcE\ndsYY246FCDe19KHFrahinR/DdHBDxVnp355X7kT0LwAGAdQBWATwJQAOAEII8TAR3QXg8wDiAMIA\n/osQ4swOX4uv3Blj24omE/jx5DmsxkIAADtZ8cHOI2h0V6g8M/Xt58o9r7RMsXBwZ4ztJhCP4bHJ\ntxCQCpvcVjvu6DqGKodL5Zmpq5RpGcYYK7kKe7qK1WlJr/UIJ+N4fHoIoURc5ZnpDwd3xpim1Djd\nuL39MKxSFas/HsETM0OIpZIqz0xfOLgzxjSn2ePDza2H5CrW5UgQT88OIym4ijVfHNwZY5rU7avB\n7zV3y+OZ4AZ+MT/OVax54uDOGNOso9WNeEd9uzwe9l/EC8vTKs5IPzi4M8Y07eq6VhytbpTHr63O\n4/XVBRVnpA8c3BljmkZEeE9TN7orauTnfrs0iRH/ioqz0j4O7owxzbMQ4f2th9Ds9snPPTc3ihmu\nYt0RB3fGmC7YLBbc1n4YNQ43ACAFgadmh3ExElR5ZtrEwZ0xphsuqw3HOwbgtTkAAPFUEqemh+CP\nRVWemfZwcGeM6YrP7sSJjgE4LFYAQCgZx+PT5xHmKtYsHNwZY7pT6/TgNkUV60Y8gidmLiDOVawy\nDu6MMV1q9VTifa19chXrUiSAZ2ZHuIpVwsGdMaZbvb5a3NDUJY+nguv45cIEt+oDB3fGmM5dVtOE\nq+va5PHQxjJevDij4oy0gYM7Y0z33lHfhoGqBnn8ysoc3lxbVHFG6uPgzhjTPSLCe5t70FVRLT/3\nm8VJjPnN2/GTgztjzBC2qlibXOm2fAICz86PYi7kV3lm6uDgzhgzDLvFitvaD6PKnm7LlxQpPDlz\nASuRkMozKz8O7owxQ3Hb7DjRcQQeqx0AEEslcWpmCJtxc1WxcnBnjBlOpcOJ44oq1mAihsenhxBJ\nJlSeWflwcGeMGVK9y4tb2zJVrOuxMJ6YGTJNFSsHd8aYYbV5K3FTS69cxboYDuDnc6OmaNXHwZ0x\nZmh9lXW4vrFTHk8G1vArE1SxcnBnjBneFbXNuLK2RR6f21jCSyuzKs6o9Di4M8ZM4dqGDhyurJfH\nL12cxdm1JRVnVFoc3BljpkBEeG9LDzq8VfJzv1qcwPimMatYObgzxkzDShbc3NaPBpcXQLqK9edz\no5gPbao8s+Lj4M4YMxWHxYrb2wcuqWJdjRqripWDO2PMdDw2O050DMAtVbFGUwk8Pj2EQDym8syK\nh4M7Y8yUKh0uHG8fgD2rivW8YapYObgzxkyrwe3FrW39sEhFTmuxMJ6auYBESv+t+ji4M8ZMrd1b\nhcGWXnk8H97EswaoYuXgzhgzvf6qelzXkKliHQ+s4teL+q5i5eDOGGMA3l7XgrfVNMvjs+tLeGVl\nTsUZHQwHd8YYk7yrsROHfHXy+MWLMzi/vqzijPaPgztjjEksRBhs7UWbJ1PF+vzCOCYDayrOan84\nuDPGmIKVLLi1rR/1zkwV6zOzI1gMB1SeWWE4uDPGWA6H1YrjHYfhszsBAAmRwqnpIaxFwyrPLH8c\n3BljbBsemwMnOo7ApahiPTU9hKBOqlg5uDPG2A6qHS4cbz8Mm9SqbzMRxamZIUR1UMXKwZ0xxnbR\n6K7ALW39cqu+lWgIT80Oa76KlYM7Y4ztobOiGje29MjjuZAfz81ru4qVgztjjOVhoKoB1zZ0yOOx\nzVX8dmlSs1WsHNwZYyxPV9a24PKaJnn85toiXludV3FGO+PgzhhjeSIiXN/YhV5frfzcmeVpDG1o\nr4p1z+BORF8nokUien2XY+4jomEiepWIrizuFBljTDssRLippQ+tnkr5uV/Mj2MqsK7irC6Vz5X7\nNwHcttMHieg4gD4hRD+AOwE8VKS5Gdrp06fVnoJm8LnI4HORoeVzYbOkq1jrnB4A6SrWp2eHsaSh\nKtY9g7sQ4lcAdttY4Q4Aj0jHngFQRURNuxzPoO0Xbrnxucjgc5Gh9XPhtNpwvH0AFbZMFesTMxew\nHouoPLO0YuTc2wBMK8az0nOMMWZoXrsDJzoG4LTYAADhZByPT59HKKF+FSvfUGWMsQOocbpxu7KK\nNR7FqekLiKWSqs6L8lmjSURdAH4ihHjbNh97CMBzQohHpfF5ADcKIRa3OVabC0IZY0zjhBBUyPG2\nPI8j6d92fgzgLgCPEtF1ANa3C+z7mRxjjLH92TO4E9G/ABgEUEdEUwC+BMABQAghHhZCPE5EJ4ho\nBEAQwKdLOWHGGGN7yystwxhjTF/KdkOViG4novNEdIGI/me5vq8WbFcIRkQ1RPQUEQ0R0ZNEVLXb\n1zACImonomeJ6C0ieoOI7pWeN+O5cBLRGSJ6RToXX5KeN9252EJEFiJ6mYh+LI1NeS6IaIKIXpNe\nGy9IzxV8LsoS3InIAuABpIuhLgPwcSI6Uo7vrRHbFYL9LwDPCCEGADwL4H+XfVbllwDwRSHEZQCu\nB3CX9Dow3bkQQkQB3CSEuArAlQCOE9G1MOG5UPgCgLOKsVnPRQrAoBDiKiHEtdJzBZ+Lcl25Xwtg\nWAgxKYSIA/hXpIufTGGHQrA7AHxLevwtAB8p66RUIIRYEEK8Kj0OADgHoB0mPBcAIIQISQ+dSN//\nEjDpuSCidgAnAPyT4mlTngukF6/kxuaCz0W5gntuodMMuNCpcWtVkRBiAUCjyvMpKyLqRvqK9XcA\nmsx4LqQ0xCsAFgA8LYR4ESY9FwD+AcB/R/oP3BazngsB4GkiepGIPiM9V/C5yHcpJCs909zZJqIK\nAD8A8AUhRGCb+gdTnAshRArAVURUCeCHRHQZLv1/N/y5IKIPAFgUQrxKRIO7HGr4cyG5QQgxT0QN\nAJ4ioiHs43VRriv3WQCdinG79JyZLW7twUNEzQCWVJ5PWRCRDenA/m0hxGPS06Y8F1uEEH4ApwHc\nDnOeixsAfJiIxgB8F8D7iOjbABZMeC4ghJiX/rsM4EdIp7ULfl2UK7i/COAQEXURkQPAHyFd/GQm\nuYVgPwbwKenxJwE8lvsJBvUNAGeFEF9WPGe6c0FE9VsrHojIDeAWpO9BmO5cCCH+WgjRKYToRTo2\nPCuE+DMAP4HJzgUReaR3tiAiL4BbAbyBfbwuyrbOnYhuB/BlpP+gfF0I8Xdl+cYaoCwEA7CIdCHY\njwB8H0AHgEkAHxNCaGtD6CIjohsAPI/0i1VI//4awAsAvgdznYsrkL4xZpH+PSqE+D9EVAuTnQsl\nIroRwH8VQnzYjOeCiHoA/BDp3w0bgO8IIf5uP+eCi5gYY8yAeFdIxhgzIA7ujDFmQBzcGWPMgDi4\nM8aYAXFwZ4wxA+LgzhhjBsTBnTHGDIiDO2OMGdD/B7c/zHxR6pWGAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2871,7 +2879,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 14, "metadata": { "collapsed": false }, @@ -2892,9 +2900,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XOV5L/DfM/umzdr3zbvNvm+2SkoC2UiTNMnN0hTa\nQgIOuU1Smob0WjRJC71Nm8UQICFcSEpDmoWQUFogYMwSHINtgm15ka3FWm3J2mbf3vvHOZo5M9Y2\n0pk5M+c838+HT3TkGenNkebRmfc87+8lIQQYY4zpi0nrATDGGFMfF3fGGNMhLu6MMaZDXNwZY0yH\nuLgzxpgOcXFnjDEdWrS4E5GdiHYT0T4iepuIts/zuO8Q0TEi2k9E56s/VMYYY0tlWewBQogQEf2R\nEMJPRGYArxLRM0KI388+hohuANAuhFhDRJcBeADA5dkbNmOMsYUsaVpGCOGXP7RD+oOQvvLpRgCP\nyY/dDaCEiKrVGiRjjLHMLKm4E5GJiPYBGAHwnBBiT9pD6gGcVBwPyp9jjDGmgaVeuceFEBcAaABw\nGRFtzO6wGGOMrcSic+5KQohpInoRwPUADin+aRBAo+K4Qf5cCiLiIBvGGFsGIQRl8vhFizsRVQCI\nCCGmiMgJ4DoA96Q97CkAtwN4goguBzAphBidZ4CZjC9FOBbHwExg2c+fy7fv+QY+/+W7VP2aasjG\nuH7RP4zDUzMAgPc21OCa6vKMnn/vN76Gv73r71Ud00rxmJZmqWMSAL6/bwCvnJwAABAId13dhisa\nSrMyrs7OTnR2dmblay9XPo6JKKO6DmBpV+61AB4lIhOkaZwnhBD/RUS3AhBCiIfk43cTUTcAH4Cb\nMh7JEtjMJrSVulX9mmUOm+pfUw3ZGNelwTJ0z3gBAH1+Pz7gqs3o+S6rGeUum6pjWike09JkMqYv\nXNaC8UAEXWNeCAj88+96cM+1a7GuPP9eJ2x+S2mFfBvAhXN8/sG0420qjotlweayosTHx6Z9CMVi\nsJvNGo6I5SO7xYSvXt2GLz1/BMPeEMKxOP5h13F887p1qPHYtR4eWyLDr1Dt6OjQeghzysa4Vtlt\nqHM5AADReBxHpryaj2mleExLk+mYSh1W3L11NYps0vXfZCiCzl3dmAlFNR1XLuTjmJaDcrlZBxEJ\n3hxEW7/oHcKzg6cAAFtqKvDx9gaNR8Ty2cHTXtz14lFE4tLr9pyqInxt62pYzYa/LswpIsr4hir/\nhAxmc1lx4uODk9MrusHN9G9TpQdfuKwlcfz2qRl8Z08f/94UAC7uBtNe5E7Ms48HwxgJhDQeEct3\nW5pX4dPnJtckvtB7Bo8fHNZwRGwpuLgbjNlE2FiavLF6cGJaw9GwQvGnG6rxrraKxPHjB4bxfM+4\nhiNii+HibkCbFF0zByZnNBwJKxREhNsubsKFNclpve/8vg9vjfLFQb7i4m5AmxRX7semvAjGYhqO\nhhUKi4nw5Svb0FLiBADEhMA3XjmBvil1FxYydXBxN6Ayuw317uQL9MhkZi2RzLjcNjM6t67GKocV\nAOCLxND5UjcmAhGNR8bScXE3KGXXzIFJfmvNlq7SZUPn1tVwWKTyccofxt0vH0cwyu8A8wkXd4NS\nTs0cmJjh1jaWkfYyF758ZRtMcubJsTM+/N/f9SLOv0d5g4u7QbUXueG0SC2RE6EwhrklkmXokroS\n3HphMgz29cFJPLxvQMMRMSUu7gZlNhE2lCiv3nlqhmXuvWsq8cH1yU3Xnjx6Ck8dPaXhiNgsLu4G\npmyJ5H53tlw3nVePKxWRwA/tHcDrA5MajogBXNwNTXlT9di0DwG+IcaWwUSEL13eivVyJPBsTPDR\ncZ/GIzM2Lu4GVmKzolFuiYwLkdjIg7FM2S0m/P017ahxS5HAoVgcd+86jlEf38vRChd3g0tpiZzg\n4s6Wb86Y4JeOwxtWNyaYLQ0Xd4NLTYnklki2Mg3FDtx1dRusJqlFsn86gH989QQisbjGIzMeLu4G\n11LkgktuiZwMhTHoD2o8Ilbozqkqwv++tCVx/NboDHa80c8XDjnGxd3gzETYWKq4euepGaaCjpZV\n+LNz6hLHz/eM4ycHRzQckfFwcWdpKZHcEsnU8ZGNNbiutTxx/OMDQ3ihl2OCc4WLO0uJIujmlkim\nEiLCtkuacX518p3ht3f34Q+n+N1hLnBxZyi2WdHkcQEAhBDo4ox3phKLifCVq9rQVCy13EaFwDde\nPo5+jgnOOi7uDACwuYyjCFh2uG1m3L11NcrkmGBvJIbOXccxGeSY4Gzi4s4AAJtKuSWSZU+V24bt\nW9phN0slZ9QXwt27jiMY5RbJbOHizgAArUUuuCzS4pOpcAQD3BLJVLZmlRt/e2VrIib46Bkfvvl6\nD8cEZwkXdwZAygfZxFMzLMsuqy/FLRc0JI5fG5jED/cPajgi/eLizhKUXTOcEsmy5X1rq/An65Ix\nwb88Mopfc0yw6ri4s4RNZcUg+S3z8Rk/fBHOBGHZcfP5aTHB+wawe5BjgtXExZ0lFFktaPZILWtC\nCHRN8cbZLDtMRPji5a1Yu0qKCY4LgXtf68GxMxwTrBYu7izF5pQoAp6aYdnjsJiwfUs7qtNigk/5\nwhqPTB+4uLMUm9IigLmTgWVTqcOKzi3t8Fjl/XyDEWx/qRu+MK+SXiku7ixFs8cJj1VqiZyJRDDg\n45WELLuaSpy465p2WCg1Jjga5wuLleDizlKYiFK6ZngDD5YL51YV4fOXNSeO949OY8eePl5MtwJc\n3NlZUqdmeN6d5ca1LeX45OZkTPBzPeP46SGOCV4uLu7sLBtLixItkT1ebolkufOxTTX4Y0VM8GNv\nD2Fn7xkNR1S4uLizs3isFrQoUiIPcUokyxEiwraLm3BedXJq8Fu/78XbHBOcMS7ubE4cRcC0YjWb\nUmKCI3GBb7xyAgPTnHeUCS7ubE7KfvdDk9wSyXLLY7Ogc2s7Su1STPBMOIrtL3VzTHAGuLizOTV5\nnCiyyi+sSBT9Xm6JZLlV7banxASP+EL42svHEeKY4CXh4s7mdFZKJO+tyjSwtlyKCSZIN/gPj/vw\nLxwTvCRc3Nm8UlMi+YYW08Zl9aW45cLUmOBH3uKY4MVwcWfzUrZE9nr98HJLJNPI+9dW4ca1VYnj\nXxwexdPHTms4ovzHxZ3Ny221oFXREnmQWyKZhv7yggZcXp+MCX5g70nsGZrScET5jYs7W9A5ZZwS\nyfKDiQh/c0UL1ihigu957QSOT/g1Hll+4uLOFqS8qXqQWyKZxhwWMzq3tKPKZQMABKNxdL7UjdN+\njglOx8WdLajB7USxTWqJ9EWi6PPyVRLTVqnDis6tq+GWY4LPBCPofKkb/gjHBCtxcWcL4pRIlo+a\nS5y46+q2RExw71QA/8QxwSkWLe5E1EBELxDRQSJ6m4jumOMxW4lokoj2yv99NTvDZVrYzCmRLA+d\nV12MOy5NxgTvHZnG/W/0c0ywzLKEx0QBfEEIsZ+IPADeJKJnhRCH0x63SwjxfvWHyLS2odQDIoIQ\nAn1eP6bDkcRUDWNaekdrOUZ8ITx+YBgA8D8nxlDjseMjG2s0Hpn2Fr1yF0KMCCH2yx97AXQBqJ/j\noaTy2FiecFksaC9yJ445JZLlk49vqsW1LasSx4/+YRC7+jgmOKM5dyJqAXA+gN1z/PMVRLSfiJ4m\noo0qjI3lkdSUSC7uLH8QEe64pBnnViV/R/91dy8OnvZqOCrtLWVaBgAgT8n8DMDn5St4pTcBNAkh\n/ER0A4AnAayd6+t0dnYmPu7o6EBHR0eGQ2Za2FxWjF/1SW99Z1MiTcRv1lh+mI0J/tLzRzAwE0Qk\nLvC1l4/jm9etQ32RQ+vhZWznzp3YuXPnir4GLeXmAxFZAPwGwDNCiG8v4fE9AC4SQpxJ+7zgmx2F\nSQiBv3vjECbDUuTq35yzBu3F7kWexVhujXhD+OJzRzAZkn5Paz12/Msfr0Opo7DvEcn3vDK6mlrq\ntMwPARyar7ATUbXi40sh/dHgSS8dISLeW5XlvRqPHf9nSztsckzwsDeEr79ywpAxwUtphbwKwCcA\nXEtE++RWx+uJ6FYiukV+2IeJ6AAR7QPwLQAfzeKYmUbSV6sylo/Wlbtx5xXJmOCuMS/+dXev4VZX\nL2laRrVvxtMyBS0QjeGLvz+QeJHce8kmlHBLJMtTTx4Zxff3DSSOP7S+Gjef37DAM/JXNqdlGIPT\nYk6ZZ+eWSJbPblxbhfetScYE//zwKJ7pNk5MMBd3lpFzeN6dFQgiwi0XNuCyupLE5+5/8yTeGDZG\nTDAXd5YRZc5M1+QMYjzNxvKYiQh3XtmK1WXSvgRxIXDPqz04YYCYYC7uLCN1LgdK7VLcqj8aQ8+M\nT+MRMbYwh8WM7VtWo1KOCQ5EY7h713GM6TwmmIs7ywgRYTPvrcoKzCqnFXdvXQ2XRYoJHguE0blL\n3zHBXNxZxpQpkW/zvDsrELMxwWZ5ZXXPZAD36DgmmIs7y9j6Uk/iBTLgCyRWAzKW786vKcbnLmlK\nHL85Mo0H3tRnTDAXd5Yxh9mM1cWexPHBSb56Z4XjurYKfGxTbeL4meNj+PnhUQ1HlB1c3NmypKxW\n5Xl3VmA+uTk1JviRtwaxq19fiSlc3NmyKOfdD03OIKbTeUumT0SEz13SjM2VyYuUf3u9D4d0FBPM\nxZ0tS63TjlVyS2QwFsNxbolkBcZmNuGrV7ehQY4EDsfj+IeXj2NoJqjxyNTBxZ0tCxHx3qqs4BXZ\nLbh762qU2KWtLWbCUWx/qRtToajGI1s5Lu5s2TglkulBjceO7VtWw2aSyuGQN4Svv3wc4VhhxwRz\ncWfLtq7EA4v8ghj0BTAR0veKP6Zf68rd+NIVLYmY4ENjXvxbgccEc3Fnyya1RCZTIvnqnRWyqxrL\n8Bfn1yeOd/VP4Ed/GNJwRCvDxZ2tiDKKgOfdWaH7wLoqvHdNZeL4p10j+O/jYxqOaPm4uLMVUd5U\n7Zr0Ihov7HlKZmxEhFsuaMSlipjg+97ox5sFGBPMxZ2tSLXTjnKH1BIZ4pZIpgNmE+HOK1rRrogJ\n/qdXe9AzWVgxwVzc2YpIKZHJq3dercr0wGk1Y/s17SkxwZ0vFVZMMBd3tmLKlkhOiWR6Ue6yoXNL\nakzw3buOI1AgMcFc3NmKKVsih/1BnOGWSKYTLaVOfEURE3xi0o97XuspiLgNLu5sxexmM9YoWiIP\n8NQM05ELaoqx7eJkTPAbw1P43psn8z4mmIs7U4Wya+YgT80wnXlnewU+urEmcfzM8dP4xeFTGo5o\ncVzcmSqUxf3wlBcRbolkOvOpc+rQ0ZyMCf7hWwN45eSEhiNaGBd3pooqhw2VDjsAqSWye5pbIpm+\nEBE+f2kzNlUmN6r55u960TWWnzHBXNyZKogopWuGV6syPZJigttRnxYTPDwT0nhkZ+PizlSTMu/O\nOTNMp4rtFty9ZTWK5Zjg6VAU23d1YzrPYoK5uDPVrC1OtkSO+IMYC+bf1QxjaqgtsuP/XNOeiAke\nnAni66/kV0wwF3emGpvZhHUlio2zuSWS6diGCg++eEVL4vjgaS++tbsvb2KCubgzVW3mDTyYgVzd\nWIabz2tIHL/UfwY/fjs/YoK5uDNVbSpVtkTOcEsk070Prq/Cu1cnY4KfODSCZ09oHxPMxZ2pqspp\nR5VTaokMx+LcEsl0j4jwmQsbcXFtMiZ4x55+7BvRtmOMiztTHW+czYzGbCJ8+cpWtJVKMcExIfCP\nr5xA72RAszFxcWeq25SyOxPPuzNjcFrN2L6lHRVOKSbYH42hc1c3xjWKCebizlS3tsQDq9wiNhoI\n4jS3RDKDqHDZ0Lm1HU45Jvi0P4x/eFmbmGAu7kx1VhO3RDLjai114e+uaoVJjgnunvDj3t/lPiaY\nizvLCp53Z0Z2UW0JblfEBO8ZmsKDe3MbE8zFnWWFst/9yJQ3r1buMZYL17dX4CMbkjHBT3efxpNH\nchcTzMWdZUWFw44apxSuFInHcXQ6P5PzGMumT51bhy1NZYnjh/cP4tUcxQRzcWdZo0yJ5Hl3ZkQm\nIvz1ZS3YWCHdgxIQ+Jff9eLIePbXf3BxZ1mTMu8+yfPuzJhsZhO+ek1qTPDdu7ox4s1uFxkXd5Y1\nq4vdsJvllrBACKMBbolkxlRit6BzSzuKbFJM8FQoiu0vdWMmizHBXNxZ1pzdEslX78y46oocKTHB\nAzNBfP2VE1lrNuDizrKKUyIZS9pY6cFfX96cOD5wegbf+X1fVlokubizrFKmRHJLJGPAlqZVuOm8\n+sTxi31n8OMDw6p/Hy7uLKvKHTbUuqQbSVFuiWQMAPCh9dW4ob0icfyTg8N4TuWYYC7uLOuUV++8\nWpUxKSb4sxc14SJFTPB39/Rjv4oxwYsWdyJqIKIXiOggEb1NRHfM87jvENExItpPROerNkJW8JTz\n7gcmZnK6BJuxfGU2Ef4uLSb4G6+cQN+UOjHBS7lyjwL4ghBiE4ArANxOROuVDyCiGwC0CyHWALgV\nwAOqjI7pgrIlciwYwiinRDIGIBkTXO60ApBigre/1I2JQGTFX5syvYoioicBfFcI8VvF5x4A8KIQ\n4gn5uAtAhxBiNO25YiVXbZF4DIM+flu/Eg6zBVVOTyKxLle+d7gHb41PAQA6aiuwQZH5zpLiQmAm\nEoDH4oDZpM2sqQmE1iIXPFaLJt/fiE5M+HHnb48iEJWigVeXuXDvO9bCIUcHExGEEBm9aDMq7kTU\nAmAngM1CCK/i878G8E9CiNfk4+cB3CmE2Jv2/BUV96lwED858dayn88km8uqcVV1S06/566RcTx+\n/GROv2ch8lh8sJsjiMbNmIp4AOT2j/CsIqsVd56zGpXyloks+94YnsLdu44jLtfIy+pK8NVr2mEi\nWlZxX/KfZiLyAPgZgM8rC3umOjs7Ex93dHSgo6NjuV+KLdORyTFcVtkESw6vDM8pK4KZCDGeb58X\nIQ67WXo7bjHFYKEYokKbq+eZSAQ7unpw5zmr4eYr+Jy4uLYEt13UiB1v9GP80Bt4/Od7Mf50Bcrk\nKZtMLenKnYgsAH4D4BkhxLfn+Pf0aZnDALaqPS3ji4bx8kjPsp9vdCN+L0JxabnzexrXo8Fdssgz\n1LVvfBK7T09wgZ9HKOaDP5JMDHRYiuG0FC/wDPUJARye8iIal9YjrCnx4I6NbYmdtVj2/XD/AH7b\ncwbbt7RjbbkbQBanZYjoMQBjQogvzPPv7wZwuxDiPUR0OYBvCSEun+NxKyrubGVeHe3FgQnp7+25\nZTW4orp5kWewXHrm5BH0+yYTx5UONz7Ysjnn49g7NomHjvQmji+pLMPNa5pAOb5PY1RxITAZjGKV\n4op9OcV9Ka2QVwH4BIBriWgfEe0louuJ6FYiugUAhBD/BaCHiLoBPAjgtkwGwXKj0V2a+LjfN6Xh\nSFi6cDyGQX9qs8BY0A9/dOVdE5m6sKIUH2ypSxzvOT2Bp/pHcj4OozIRpRT25Vp0Mk0I8SoA8xIe\nt23Fo2FZVecqhplMiIk4JsMBTIdDKLbxDbN8MOibQkykRjMICAz4prC2pGKeZ2XPdXWVGAuGsWtE\nWjX5zMAoKhw2XFVdnvOxsOXhiTQDsZhMqHcl53BPKqYAmLb6vMmfhcOcvObq92rzMyIifLStHpsU\nmfz/fnwAXRz+VjC4uBtMoyc5NcPFPT/EhUgp7pdWNiY+HvBNJVrjcs1MhL9a14wGtxOANM4HD/di\n0KfOCkqWXVzcDaZR0SEz6JtOdEUw7YwGvAjGpLl1l8WGdSWVcFtsAIBQPIpTAe3C1hxmM27f0IpS\nuzSeYCyGHV09mArn/l4AywwXd4MpsTlQYpVTGkUcwwF+m621Pm+y/bHZUwoTUcof4ZMa3/wus9uw\nbUNrIkJiIhTGfV09CMZimo6LLYyLuwE1KadmNJrTZUmpxb0MQOr0mVbz7koNbiduWdecaIfs9/rx\n8NE+zaaM2OK4uBtQvhUOI5sMBTAZDgIALJS84d3gKoFJjh4YC/ngj4Y1G+OsTWXF+HhbQ+L47TPT\n+GnPIKd85iku7gZU6yyChaQf/VQkiCm5uLDcU95IbXCXJCIhbGYzalzJcLWT3vxYl3BNTTne1VCd\nON45PIYXhtXdZIKpg4u7AVlMJtS7lS2R+VE4jEg5JdMiT8nMUs679+dRZ9ONTTW4uCI51p/1DmHf\neP6Mj0m4uBtUympVnprRRCAawYjcCUOglHshQOq9ES1bItOZiPDpNY1oL5ZyT4QQ+OHRfvTM+DQe\nGVPi4m5QyuI+5OeWSC30+yYhIBXsaqcHTkvqkvMymxMeuSUyHI9hNI86m6wmEz67vjURCRyJx3F/\nVw/GeCOWvMHF3aCKbXaU2qTFKTERx5CfN0HJtb6Z5Dum5rSrdkBaJZp68zu/ps88Vgu2bWhLRALP\nRKLYcagHvkhU45ExgIu7oTWl9FLz1EwuReNxDCjudTSnzbfPanLn94riaqcdt61vTdwIHgkE8eCR\nXkT4naDmuLgbWEoUQZ5dFerdkH8aESEtAiqxOlBqc8z5uDp3caIlcjzkhzeifUtkuvZiN/58TVPi\n+OiUFz/uPsktkhrj4m5gNc4iWEladTgVCSb6rVn29Sq7ZIrK5s1Kt5nMqC2AsLeLK0rxJ83JmODd\npyfwm5OjCzyDZRsXdwOzmEyoU7ZEctdMTsSFSOlQmmu+XanJo5g+y+N3WO+sr8Q1NclI4KdPjuB3\np85oOCJj4+JucPk+p6tHY0EffPKKU4fZgmpn0YKPV3Y2DfjPzn3PF0SEj7U1pMQE/6j7JMcEa4SL\nu8E1Kq4Kh/wziMQ5DCrblKtSm9xSUNhCSm0OFFlnWw5jGPFrlxK5GDMR/nJtM+oVMcEPHenFkJ+n\n/HKNi7vBFVntKEtpieSrrGxLCQormrtLRomICuodltNixrYNrSi1SX37gWgMOw6d4JjgHOPizjgl\nModmIiGMh/wAADOZ0KBoR11IoYW9ldltuH1jWyIm+EwojPu7ehDimOCc4eLO0jbOnuQWtizqm0le\ntde5imEzLbo9sfzYIpjlsLeJcAAzkfxfCdroduKvFDHBfV4/Hj7anzcxCnrHxZ2hxuWBVS4yM5EQ\np0RmUa/iqrtlkS4ZJavJjLo8TIlczOayYvwvRUzwH85M4T97hjQckXFwcWfS9IBLmUBYGIWj0IRi\nUQwrYh6a5lmVOp/0d1iFYktNOd5ZX5U4fnH4NH47dFrDERkDF3cGILVrhufds+OkbwpxOSis0uGG\nx2rL6PnKefehAtv/9gPNtbiwIjn+n/UO4a1xvojIJi7uDEDqVeFwYAZhbolU3Vzb6WWiVLH/bUTE\nMJJHKZGLMRHhz1c3oa0oGRP8g6N96J3xazwy/eLizgAAHqsNq+wuAHJLpI9TItUUE/GUefLFVqXO\np9C6ZpRsZhM+u6EVlY5kTPB9HBOcNVzcWQKnRGbPiH8GobgUheux2FEu/yHNVGOB/4yKrBZs29gG\nl2U2JjiCHV098Ec5JlhtXNxZQnpKJLdEqqcvLUtmvqCwxdS5ihP7306Gg5guwM6maqcdt21oScYE\n+4N48HBvQd1DKARc3FlCtdOT6LueiYYwEQ5oPCJ9EEKclQK5XBaTCXWKlMhC7WxaXezBp1c3Jo6P\nTHnx4+MDfEGhIi7uLMFMJtS7CiOBsJAoFx1ZTWbUuhYOCltMo05WFF9SWYYbm2sTx6+fOoOnBzgm\nWC1c3FmKlHjZApzTzUe9ilWpTe7SxErT5VLeGyn0/W+vr6/CVdXJmODf9I/gdY4JVgUXd5YipSXS\nzy2Rakifb1+pYlty56Zoge9/S0T4eFsDNpQm3838qPskjk7lb/JloeDizlK4rbZEJ0ccAoMFOqeb\nL3zRME4FpUJFSN3weiUaCyglcjFmE+GWdS2JmOCYEHjgcA+GOSZ4Rbi4s7OkpERycV8RZS96rasI\nDrNFla/bpLP9b50WM27f0IoSOSbYH41hR9cJTHNM8LJxcWdnUfZS93s5JXIlVroqdT563P92ld2G\n2ze0JmKCx4Nh3NfVg3CscO8paImLOztLtbMo0RLpi4a5JXKZIvEYBhQrfTNJgVyMXve/bfK4zo4J\nPtbHMcHLwMWdncVElLKJRKEtc88XA77kfqerbC4UyzdB1VJIuzNlYnNZMT7aWp84fmt8Cj/v5Zjg\nTHFxZ3NKLRyFP6erhZQumSL1rtpn6Xn/247aClyniAn+7dBpvDjMMcGZ4OLO5qQsHCP+GYR5e7SM\nxIVIecej5nz7LL3vf/snzbW4oDz5R/GnPUN46wxfaCwVF3c2J5fFhgq7FM8ah8CAn19UmTgV8CIQ\nkzo9nGYrKh3urHwfPe9/ayLCTWua0KqICX74aB/6vBwTvBRc3Nm8eAOP5UvtkimFaZlBYYvR+/63\nNrMJn13fggo5Jjgck2KCx4NhjUeW/7i4s3mlz7vrrXBkU1+Wp2Rmpe9/q4eWyHTFNiu2bWxNxARP\nhyPY0XWCY4IXwcWdzavK6YHdJL2gfNEwzoS4JXIpJsPBRPuohUwpnUdqS9//Vk9dM0o1Tgc+sz4Z\nEzzsD+KhI30FnauTbVzc2bzOaonUaeFQW58iKKzBXZIoSNminD7r18Fq1fmsLfHgzxQxwYcnZ/A4\nxwTPi4s7W5DelrnnQq6mZGalhr1N6zrs7dLKMtzYlIwJfu3UGTwzcErDEeUvLu5sQcor95HADEIx\nnudcSDAWTWxcTaCUP47Z4kkLe9P7/rfXN1ThyqpVieOn+oc5JngOXNzZglyWZBufgMCgzgvHSvV7\nJyEgTRNUOd1wWaw5+b7pXTN6RkT4RHsj1nNM8IK4uLNFNRmocKyUcmOOlhxMycxqSmtb1fs8tNlE\nuHVdC2pdUqSDFBPcixGOCU5YtLgT0cNENEpEf5jn37cS0SQR7ZX/+6r6w2RaSt/WTe+FY7mi8TgG\nFFENuZhvn6UMe/MaJOzNaTHjcxvbUJyICY7iuxwTnLCUK/dHALxrkcfsEkJcKP/3dRXGxfJIpcOd\nyCH3xyIYD/EKwbkM+acREdLNzBJrcrekXDBq2NtsTLDNLJWy8WAY3zvcyzHBWEJxF0K8AmBikYdl\nZ/kdywvlI00aAAARJ0lEQVRGLRyZSt9Oj7K0KnU+Rg17a/a48BdrkzHBPTM+PHKs3/AxwWrNuV9B\nRPuJ6Gki2qjS12R5xKiFY6mEEKmRA0W5m5KZZeSwt/NWlaTEBO8bn8Qveoc1HJH21Njz600ATUII\nPxHdAOBJAGvne3BnZ2fi446ODnR0dKgwBJZtDe4SEAgCAqMBL4KxqGpbxunBWMgPX1TKO7GbLKhx\nFi3yDPXNhr2NhXyJsLe2olWLP1EnOmorcDoYwm+HpGjg54dOocJhQ0dthcYjy9zOnTuxc+fOFX0N\nWsrNMSJqBvBrIcS5S3hsD4CLhBBnNZ4SkeCbcYXrl70HE5s9v6NuNVYXl2s8ovzxxukBvDk+CABY\nU1yBa+vaNRnHntMD2CuPY31JJbbWtmkyDq3EhcBDR3qxf1x6d0lE+Oz6Fpy7KnsRELlARBBCZDTP\nt9RpGcI88+pEVK34+FJIfzB4RYEOcUrk/Hq92rRAplPuf2vEsDcTEW5e04yWImlRlxQT3I9+A8YE\nL6UV8nEArwFYS0T9RHQTEd1KRLfID/kwER0gon0AvgXgo1kcL9NQ+ry70W9YzZqJhBIdRGYyocGj\n3VVietibETubbGYTblvfinKHDQAQisVwX1cPzoSMFRO8lG6Zjwsh6oQQdiFEkxDiESHEg0KIh+R/\nv08IsVkIcYEQ4kohxO7sD5tpocLhhtMs9RQHYhGMB41XOOai7JKpcyX7zbVgIjrr6t2Iim1WbNvQ\nBpdF+llMhSPYcegEAlHj3GTmFapsyTglcm6pG3NoNyUzS7nozMhtq7UuBz6zvhVmuUVyyB/EQ0d6\nEYsb4x0nF3eWkZSUSC7uCMWiKUFd+VDcZzubACQ6m4xqbYkHn1LEBHdNzuDxE8aICebizjKiLByn\nAj5DFw4AGPBNIS4HhVXY3fBYbRqPaK6wN2NOzcy6vGoV3ttUkzh+dXQc/22AmGAu7iwjDrMFVc5k\n4RgweOFIWZValP1436VK3cCD32G9p6Ealytign/VP4w9pxdbeF/YuLizjKXEyxq4cMREPOX/v5Yt\nkOm4sykVEeGT7Q1YV5JcXPZo90kc03FMMBd3ljEuHJLRgBehuDQt5bYkN8zIBxUONxzc2ZTCYjLh\n1vXNiZjgaDyO7x3uxUhAnzHBXNxZxsodrkRLZDAWwVjQp/GItJGe3Z7roLCFpLdEcmeTxGWx4PYN\nrSiyJmOCdxzqwUxEf/eOuLizjHHhyI+gsMVwZ9PcKhz2lJjgsWAI3+vq0V1MMBd3tiyNBt84eyIc\nwHQkBACwmsyo1SAobDHpnU2BKG9iMaulKDUm+MSMD/9PZzHBXNzZsigLx+mg8QqHskum0V0Ciyn/\nXkrc2bSw81aV4E9b6hLHe8cn8WSffmKC8+83khUEh9mCaqcHgFQ4jLbMvW8mv1alzodz+Bd2bV0l\nrq2rTBw/O3gKu0bGNByReri4s2VLzTAxzpyuPxrGKfkmMoFS5rbzTSN3Ni3qwy11OE8RCfwfJwZx\nYGJ6gWcUBi7ubNma0ubdjVI4+r2TEPKq1BpnUV5vWsKdTYszEeHmtU1o9iRjgr9/pK/gY4K5uLNl\nK7e74LLIsarxKE4bpHD0Khcu5WGXjJKJUt9ZGLGzaSnsZjNu29CKVfZkTPD9XT2YKOCYYC7ubNko\nPV7WAKtVI/FYyo3J5jyekpnVyJubL0mJzYptG9vglGOCJ8MR7OjqKdiYYC7ubEWUN+yMcFU46JtG\nTEj90GU2J0psDo1HtLh6RWfTWNAPv8E6mzJR53Lg1nUtiZjgQV8A3z/aV5AxwVzc2YrUu4tTWiL1\nXjjyLbt9KRxmC2oUnU3cErmw9aVF+KQiJvjQxHRBxgRzcWcrYjdbUKNYwKPnwhEXIjUFsgCmZGbx\nBh6ZuaJqFd7bmBoT/D+DhRUTzMWdrZhR4mVPBbwIxKR3Jk6zFVXy1XAhUM67D3BL5JK8p7Eal1Um\n35092VdYMcFc3NmKKefd9Vw40q/aTXkUFLaYcrsLbkVn06mAfqNu1UJE+NTqRqwtSf4Rf7T7JLqn\nC+PccXFnK7bK7jRE4SjE+fZZ6Z1NRrj5rQaLyYRb17WgxpmMCb6/qxejgZDGI1scF3e2YkYoHFPh\nICbCAQCAmUyodxdrPKLMGT3sbbncVgu2bUyLCe46AW+exwRzcWeq0HvhUE7JNLhLYDWZNRzN8jS4\nSmCabYkM+eCLFu4CnVyrcNhx24ZWWOWAuNOBEO7v6kEknr8xwVzcmSrSC4dfZ4UjdUqmcLpklGxm\nM2pcyc4mPf4RzqbWAosJ5uLOVKHnwhGMRTHsnwEgBYUV2ny7klHD3tRyfnkJPqyICX5zLH9jgrm4\nM9Xodd5dGRRW5XDDZbFqPKLlU+bM6LmzKZuura1AR21F4liKCR7XcERz4+LOVKPXwpHv2+lloszm\nhEfubArHYxgNzGg8osJDRPhIaz3OTYkJHsi7mGAu7kw1ZbZkS6ReCkc0Hk/Z5KJQ59tnEVHaalX9\nTJ/lkokIf7G2CU1pMcEnfQGNR5bExZ2phtLiZfWw889wYAaRuJQKWGy1o8zm1HhEK5e6O5N+ps9y\nzW424/a0mOD78igmmIs7U5Xe4mXTt9OjAlqVOp86d3Gis2k85Ic3kh/FqBDNxgQ7zHJMcCiM+7p6\nEIxpHxPMxZ2pqt5dopvCIYRAr2K+Pd835lgqm8mMWldyERZfva9MncuBW9e3JOIoBnwBfP9IH2Ia\n33Pi4s5UJRUOZUpk4RaO8ZA/sdDHbkpuCK4HTR7lJiuFP32mtQ2lRfhEe0Pi+ODENH6icUwwF3em\nOuWmzIV8w0551d7kKYWZ9PNyUf6MBvxTiQ1I2PJdVV2OdzdWJ45fHhnHc0OnNRuPfn5bWd5QRgAP\nFnDh6JspzOz2pSi1OVBktQOQtg4c8esz7C3X3tdYg0sVMcG/6B3Cm2PavHvl4s5UV2ZzosgiFQ6p\nJbLwCoc3EsZYSNrw2wRKudLVAyLirpksmI0JXqOICX7kWD+OT+d+83gu7kx1Ui91YXfNKBcu1bmL\nYTMXXlDYYnh3puywmkz4zLoWVCtigr93uAenchwTzMWdZUWju7D73Qs5u32p6lxFifsIE+EAZiL5\nn1FeKJIxwRYAgDeS+5hgLu4sK+rdxYnCcSbkh7eACkc4FsOgL7mUXG/z7bOsJjPqUsLe+OpdTZVy\nTLBFjgk+FQjhgcO5iwnm4s6ywmoyo1axcXYhXb0P+KYQl4PCyu2uxI1HPUrpbCqgn1GhaC1y4+a1\nTYnFb93TPjx67GROcpe4uLOsKdQ53ZSFSzqdkpml/BkN+qYQzePNJwrVheWl+FBzbeL4jbEJ/Lp/\nJOvfl4s7y5omt7IlcrogWiLjQqT8ISr0FMjFlNocKLHKN/5EHCM6CHvLR++oq8TWmmRM8DMDo3hl\nNLsxwVzcWdaUnNVLnf+FYyQwg1BcuunltthQYXdpPKLsK9R3WIWEiPCRtnpsLkvGPvz78QEcmsje\na4KLO8uas3up839OV49BYYvh3Zlyw0yEv1zXjEa3lCwqhMCDR3oxmKWYYC7uLKsK6apQCgrT76rU\n+dS5imGRO5smw0FMh4Maj0i/HGYzbt/QhjJFTPB3u3owGYqo/r24uLOsKqRe6slwENMRqbBJbYLF\nizxDHywmU8r/V+6aya5SuxXbNrTCrogJ3tF1QvWYYC7uLKvO7qXO38KhXLjU4CpJ9CcbgfIdFve7\nZ1+924nPpMUE/0DlmOBFf3uJ6GEiGiWiPyzwmO8Q0TEi2k9E56s2OqYLqb3U+Vs49JjdvlTKzqYh\n/zS3ROZAekzwgYlpPHFiULWY4KVcmjwC4F3z/SMR3QCgXQixBsCtAB5QZWQ5snPnTq2HMKd8HNdy\nx6S8KhzyqVs41DpP/mgEpwJSuBMhdbtArcakpsXGVGxzoFTeQjAq4hjy52az50I8V2q6qrocNzQk\nY4J3jYzheZVighct7kKIVwBMLPCQGwE8Jj92N4ASIqpe4PF5JR9/uYD8HNdyx6TspY6ImKq91Gqd\np37vJIS8KrXGWQSH2aL5mNS0lDFp0TVTqOdKTe9rqsElipjgn/cOYe/4ys//8n+Dk+oBnFQcD8qf\nG1XhazOdaPSUYGpCuln52mgfim3qLOnvnh7Dfw8cWfHXORNMtqMZpUsmXZOnFG9PSCsnj02N5+Tm\nt1o/PzVpMaZaJ9DoDmMyLO389cTxgxjwVuL9zWuX/TXVKO6MLarRXYoDE9Lf+4lwABNhdXp7J8NB\n9Kl8A1Dvq1LnU+MsgpXMiIgYQvGo6ud1Ltn4+a2UVmNaZRcIx2OIxqV3kLtPn8IV1c2odCzvQoiW\nMnlPRM0Afi2EOHeOf3sAwItCiCfk48MAtgohzrpyJyJtd4xljLECJYTIaEXdUq/cSf5vLk8BuB3A\nE0R0OYDJuQr7cgbHGGNseRYt7kT0OIAOAOVE1A9gOwAbACGEeEgI8V9E9G4i6gbgA3BTNgfMGGNs\ncUualmGMMVZYcrYEj4iuJ6LDRHSUiP42V993IUTUS0RvEdE+Ivq9RmM4a5EYEZUR0bNEdISI/oeI\nShb6Gjkc13YiGiCivfJ/1+dwPA1E9AIRHSSit4noDvnzmp6rOcb1OfnzWp4rOxHtln+v3yai7fLn\nNTtXC4xJs/OkGJtJ/t5Pycf58PozyedqdkwZn6ecXLkTkQnAUQDvADAEYA+AjwkhDmf9my88rhMA\nLhJCLNTHn+0xXA3AC+Cx2RvWRHQvgHEhxD/LfwjLhBBfzoNxbQcwI4T411yORf7eNQBqhBD7icgD\n4E1IayxugobnaoFxfRQanSt5XC4hhJ+IzABeBXAHgA9B23M115hugIbnSR7XXwO4CECxEOL9efL6\nSx9Txq+9XF25XwrgmBCiTwgRAfATSC8ArRE0zteZZ5HYjQAelT9+FMAHcjooLLh4TZOb4kKIESHE\nfvljL4AuAA3Q+FzNM656+Z81ayAQQvjlD+2Q7q0JaH+u5hoToOF5IqIGAO8G8APFpzU9T/OMCcjw\nPOWqsKUvdBpA8gWgJQHgOSLaQ0R/pfVgFKpmO46EECMAqjQej9I2OUPoB1q8XQUAImoBcD6A1wFU\n58u5Uoxrt/wpzc7V7Nt6ACMAnhNC7IHG52qeMQHa/k79G4C/QfIPDaD979RcYwIyPE/Gib2b21VC\niAsh/ZW8XZ6KyEf5ctf7fgBtQojzIb1AtZie8QD4GYDPy1fK6edGk3M1x7g0PVdCiLgQ4gJI724u\nJaJN0PhczTGmjdDwPBHRewCMyu+8Froqztl5WmBMGZ+nXBX3QQBNiuMG+XOaEkIMy/97GsAvIU0f\n5YNRkvN55DndUxqPB4B0nkTyJs33AVySy+9PRBZIBfRHQohfyZ/W/FzNNS6tz9UsIcQ0gJ0Arkce\nnKv0MWl8nq4C8H753tt/ALiWiH4EYETD8zTXmB5bznnKVXHfA2A1ETUTkQ3AxyAtftIMEbnkqy0Q\nkRvAOwEc0Go4SP0r/RSAP5c//jSAX6U/IUdSxiX/os/6IHJ/vn4I4JAQ4tuKz+XDuTprXFqeKyKq\nmH3bTkROANdBuheg2bmaZ0yHtTxPQoivCCGahBBtkGrSC0KITwH4NTQ6T/OM6c+Wc55yki0jhIgR\n0TYAz0L6g/KwEKIrF997AdUAfklSJIIFwL8LIZ7N9SBo7kVi9wD4TyK6GUAfgI/kybj+iKS8/jiA\nXkgRz7kaz1UAPgHgbXneVgD4CoB7AfxUq3O1wLg+rtW5AlAL4FG5S80E4Al5seHr0O5czTemxzQ8\nT/O5Bxr+Ts3jnzM9T7yIiTHGdMjoN1QZY0yXuLgzxpgOcXFnjDEd4uLOGGM6xMWdMcZ0iIs7Y4zp\nEBd3xhjTIS7ujDGmQ/8fFq3GYjKIqOcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4XFd9//H3dzRaLcm7vEiW5N2WE6/x7gQ3FEhSGloK\nZWnLD3go4QchgbAWAnEIS4AASX5AA4XwJLRAKNCwhRJKcInteN93y7ZkWfK+al/P7487y52xtpHu\nzJnl+3qePMwZjUZfrqWvrs4993PEGINSSqn04rNdgFJKKe9pc1dKqTSkzV0ppdKQNnellEpD2tyV\nUioNaXNXSqk0NGBzF5FcEdkiIrtEZJ+IPNTH654UkWMisltEFnpfqlJKqcHyD/QCY0y7iPyFMaZF\nRLKAjSLyO2PM1uBrROROYLoxZqaILAeeAlbEr2yllFL9GdS0jDGmJfAwF+cXQvSdT28Ang28dgsw\nUkQmeFWkUkqp2AyquYuIT0R2AWeBPxhjtkW9pBSoc43rA88ppZSyYLBn7j3GmEVAGbBcRKriW5ZS\nSqnhGHDO3c0Yc11E/gTcARx0fagemOIalwWeiyAiGmSjlFJDYIyRWF4/YHMXkXFApzHmmojkA68B\nHo162a+ADwDPicgK4Kox5lwfBcZSX4SuLsP5Sx1D/vzefO2rj/CRj33G0/f0QjzqevSLWWzc6Pyx\ndv+Hunnb23ti+vzPPfwIn30ouY6V1jQ4sdR0puUk1zouhsblhXMZmTM2LnWtW7eOdevWxeW9hyoZ\naxKJqa8DgztznwQ8IyI+nGmc54wxL4jIPYAxxnw3ML5LRKqBZuBdMVcymGL9wuQJuZ6+Z1Gh3/P3\n9EI86lr7Kti00Xm8dbOPd/xjbJ+fJX6yfcl1rLSmwYmlprIRM+nsaaelqxGAuuYjZPtupsBfFM8S\nlccGsxRyH7C4l+e/EzW+18O6VBysXh1+vGMHtLZCfr69elRy8kkWFYVVHL++h46eNozpobbxINOL\nF5CTlWe7PDVIGX+H6tq1a22X0Kt41DVhAkyf7jzu7ITt2+3XNFxa0+DEWpPfl01l0TyyxDn/6zKd\n1DQdoKun02pdiZCMNQ2FJHKzDhExujmIXU8+Cc8+6zx+05vgk5+0W49Kbs2d1zjZuB8TuLVlhH8k\nlUXz8EnGnxcmlIjEfEFV/4UyjHtqZtMm0N+1qj8jskdSNmJWaNzcdY365mPDWhihEkObe4ZZsAAK\nCpzHDQ1QU2O1HJUCRuWOZ0J+RWh8teMC59vq+vkMlQy0uWcYvx9WuFJ/Nm2yV4tKHePzyhidG04U\nOd96iivtva52VklCm3sGWrUq/HjjRnt1qNQhIpQWTKcwe1ToudPN1TR1XrVYleqPNvcM5G7uO3dC\nS0vfr1UqSMRH+Yg55GUF5vUw1DYdoq1bv4GSkTb3DFRSAjNnOo+7umBbdAycUn3I8vmpKJqH35cD\nQI/ppqbxAJ093t45roZPm3uGcq+a0akZFYscXy6VhVWh5ZCdPe3UNh2kx3Rbrky5aXPPUNHz7rqy\nTcUi319I+Yg5oXFrVxN1TUd0iWQS0eaeoebPh8JC5/G5c3DypN16VOopyhnD5ILpofH1zsucbdVv\npGShzT1D+f2wfHl4vGGDvVpU6hqbN4lxeeF9eS62NXCxrcFiRSpIm3sGi75bVamhmJhfSbErEvhM\nywmud1yyWJECbe4ZzT3vvmsXNDfbq0WlLhFhyohZEZHAdc1HQpHByg5t7hls3DiYPdt53N0NW7fa\nrUelLicmeC45PicSuCcQE9zR3Wa5ssylzT3D6ZJI5RW/L4fKoqqomOCDdPd0Wa4sM2lzz3CaEqm8\nlJtVQEXhXAQnnba9u4Xa5kP0mNi2dFTDp809w910ExQFpkrPn4fqarv1qNTnxATPDI2bO6/R0FKt\na+ATTJt7hsvKgpUrw2NdNaO8MCq3JCIm+Er7eS5oTHBCaXNXmhKp4iI6Jvhc6ymutJ+3WFFm0eau\nIpr77t3Q1GSvFpU+wjHBI0PP1Tcfo6nzmsWqMoc2d8WYMTB3rvO4pwe2bLFbj0ofTkzwXHIDMcEG\nw6mmgxoTnADa3BWgSyJV/GT5/FQWVuH3ZQPQbbqpbTxAl8YEx5U2dwVETs3okkjltZysvIiY4I6e\ndmo0JjiutLkrwFkSWVzsPL54EY4ds1uPSj/5/iKmjJgdGrd2NVHXfFSXSMaJNncFgM8XuSRSp2ZU\nPBTnjGVywbTQ+HrHJY0JjhNt7ipE591VIozNm8y4vMmh8cW2Bi5pTLDntLmrkJUrQZy7xtm7F65f\nt1uPSl8T86dGxAQ3tJzgesdlixWlH23uKmT0aKiqch7rkkgVT8GY4Hx/Yei5uubDtGpMsGe0uasI\nuoGHShSfZFFZWEWOLxdwYoJrmjQm2Cva3FWE6Hn3Hg3zU3Hk9+VQUTSPLMkCoKtHY4K9os1dRZg7\nF0aNch5fvgxHj9qtR6W/vKwCygurImKCTzUfwmhM8LBoc1cRfD4NElOJV5g9klJXTHBT5zXqW47r\nGvhh0OaubqDNXdkwOreECfnlofGV9nNcaDttsaLUps1d3WDFivCSyP37dUmkSpzxeVMYnVsSGp9r\nreWqxgQPiTZ3dYNRo5w4AnAuqG7ebLcelTlEhMkFMxjhigk+3XyMZo0Jjpk2d9Ur99TMhg326lCZ\nxyc+KqJigmubDtGuMcEx0eaueuVeEvnKK7okUiVWKCZYgjHBXdQ0HqSrp9NyZalDm7vq1Zw5ziYe\nAFeuwOHDdutRmScnK4+KIndMcBu1GhM8aNrcVa80JVIlg4KomOCWrkaNCR4kbe6qT5oSqZJBcc5Y\nJt0QE1xjr6AUoc1d9WnFCucMHuDAAbh61W49KnONy5vM2IiY4HoutZ2xWFHy0+au+lRcHF4SaYxz\nYVUpWyblT6U4e0xo3NBynEaNCe6TNnfVrzVrwo81JVLZJCJMKZwdERN8qvkwrV1NFqtKXtrcVb+i\nN87WJZHKpmBMcHZ0THBPu+XKko82d9WvWbNgbGDDnGvX4OBBu/Uo5fflUFk0D18oJriD2sYDdBuN\nCXbT5q76pSmRKhnlZRVQUTg3FBPc1t3CqabDGhPsMmBzF5EyEXlJRA6IyD4Rua+X17xKRK6KyM7A\nfw/Gp1xlgy6JVMmoMHsUpSNmhMZNnVc1JtjFP4jXdAEPGGN2i0ghsENEXjTGRN+z+GdjzN3el6hs\nW77cOYPv6XGmZS5fDt+9qpRNo3Mn0NHTzvnWU4ATE5zjy6Mkf4rlyuwb8MzdGHPWGLM78LgJOASU\n9vJS8bg2lSSKimDBgvBYUyJVMinJm8KonPGhsRMTfMFiRckhpjl3EakEFgJbevnwShHZLSK/FZEq\nD2pTSURTIlWyEhFKR8xkhN8dE3w042OCBzMtA0BgSuZnwP2BM3i3HUC5MaZFRO4Engdm9fY+69at\nCz1eu3Yta9eujbFkZcPq1fCtbzmPN292pmh8ejleJQmf+CgvnMOJxr20d7eGYoKnFy8gNyvfdnkx\nW79+PevXrx/We8hgLj6IiB/4DfA7Y8wTg3j9SWCJMeZy1PNGL3akJmPgrrvgQuCv3aefhvnz7dak\nVLSO7jaOX99Dl3GigXN8eUwvXoDfl225suEREYwxMU19D/bc62ngYF+NXUQmuB4vw/mlofcFpxER\nXRKpkl8wJlg0JnhQSyFXA/8A3C4iuwJLHe8QkXtE5L2Bl71JRPaLyC7gceAtcaxZWeJeEqlRBCpZ\n9RYTfLr5WMYtkRzUtIxnX0ynZVJaUxO8+tXQHTgJ+v3vw3evKpVsLrbVc6blZGg8Lq+USQVTLVY0\ndPGcllGKwsLIJZGaEqmS2djcyYzNnRQaX2yr53IGxQRrc1cxcadE6ry7SmYiwqSCaRS5YoLrW47T\n2JkZlwO1uauYuC+qbt4cnqJRKhmJCOWFs8nPcsUENx3JiJhgbe4qJtOnQ0mJ87ixEfbts1uPUgPx\nSRYVRe6Y4G5qmw7SmeYxwdrcVUxEdNWMSj3ZUTHBnT0d1DQeTOuYYG3uKmbu5q5RBCpVBGOCCcUE\nN6d1TLA2dxWzZcvAHwiuOHo0fNeqUsmuMHsUZVExwQ0tJ9JyDbw2dxWzggJYtCg81iWRKpWMzp0Q\nEQl8uf0sF9vqLVYUH9rc1ZBoFIFKZSV55RExwWdba7jakV5/gmpzV0PinnffvBm60ve6lEpD4Zjg\n4tBzp5uO0tx53WJV3tLmroZk6lSYONF53NwMe/farUepWDkxwXNDkcBOTPBB2rtbLVfmDW3uakii\nl0Tq1IxKRX5fNpWF8/CLEwncbbqoaTxAV0+n5cqGT5u7GjJd767SQSgmOLBEMhwTnNpLJLW5qyG7\n5RbIDuyBcOwYnD9vtx6lhqrAX8SUwuiY4KMpvURSm7sasuglkXr2rlLZyJxxEZHA1zoucq611mJF\nw6PNXQ2LzrurdBIdE3yh7TSX289arGjotLmrYXE39y1boDP1r0OpDNZrTHBzNY2dVyxWNTTa3NWw\nVFTA5MnO45YW2LPHbj1KDZeIMKVwNnlZI0LPnWo6TGtXs8WqYqfNXQ2LpkSqdJQlWVQWVZHtywGC\nMcEHUiomWJu7GjZ3FIGmRKp0ke3LpbKwt5jg1NihRpu7GrZbboEc5wSHEyfgbGpef1LqBnn+EZQX\nzsEdE1zXdDgllkhqc1fDlp8PixeHxzo1o9JJUfZoSkdMD40bO6/Q0HI86Ru8NnflCV0SqdLZmNyJ\njM8rC41TISZYm7vyhLu5b90KHR32alEqHibkV9wQE3yt46LFivqnzV15YsoUKAuc2LS2wu7ddutR\nymu9xQTXNR2huSs5Y4K1uStPiOgGHir9BWOCc7LygEBMcGNyxgRrc1eeWbMm/Fgvqqp0FYwJzhJn\nI+Fu00VNU/LFBGtzV55ZsiS8JPLkSWhosFuPUvGSm5UfGRPc3cappkNJFROszV15JjfXWfMepGfv\nKp2N8BdHxAQ3d11Pqphgbe7KUxpFoDLJyJxxTMyvDI2TKSZYm7vylPuiqi6JVJlgXF4pY3InhsZO\nTPA5ixU5tLkrT02ZAuXlzuO2Nti1y249SsWbiDC5YDpF2aNDzyVDTLA2d+U5vVtVZRonJniOKybY\ncKrpMG0WY4K1uSvP6Xp3lYl6iwmusRgTrM1deW7JEmflDEBtLdQndwSHUp7J9uVSERUTXGspJlib\nu/JcTg4sXRoe69m7yiT5oZhgR6ulmGBt7ioudN5dZTInJnhGaOzEBJ9IaIPX5q7iwt3ct2+H9tTZ\nnUwpT9wYE3yGS+2Ju21bm7uKi8mTobLSedzeDjt2WC1HKSsm5FcwMmdcaHym5WTCYoK1uau4ca+a\n0btVVSYSEcpGzKLAXxR6rq7pCC1djXH/2trcVdy4UyJ13l1lKp/4qCisuiEmuKO7Lb5fN67vrjLa\nwoXO/qoAdXVw6pTdepSyJTomuMt0xj0mWJu7ipvoJZE6NaMyWW5WPhWF4Zjg9u7WuMYEa3NXcaUp\nkUqFjcgupqxwVmjc3HWd+uZjcVkiqc1dxZX7our27U6YmFKZbFTO+IiY4KsdFzjf5v2cpTZ3FVeT\nJsG0ac7jjg5dEqkU3BgTfL61jisexwRrc1dxp0FiSkXqLSb4dHM1TZ1XPfsaAzZ3ESkTkZdE5ICI\n7BOR+/p43ZMickxEdovIQs8qVCkvOoogSXYhU8qq3mKCa5sO0dbd4sn7D+bMvQt4wBgzD1gJfEBE\n5rhfICJ3AtONMTOBe4CnPKlOpYWFC6GgwHlcX69LIpUKCsYE+90xwY0H6OwZ/hZm/oFeYIw5C5wN\nPG4SkUNAKXDY9bI3AM8GXrNFREaKyARjjKeTSK1tHezYc9zLt8w4I4sLmDd7Cj5f4mbksrNh2TJY\nv94ZP/ccrFiRsC+fUrq7uznVUE/phInk5ORYqcHng5tuglGjrHz5jJPty6WysIoTjfvoMd109rRT\n23iQacU3h6KDh2LA5u4mIpXAQmBL1IdKgTrXuD7wnKfN/dKVRj7xuR96+ZYZ6e/+eiUPvO+vE/o1\nV60KN/ef/tT5T93obNNPaO44QG5WKaXF/xcRO5fFxoyBp5+GsrKBX6uGL99fSHnhbGoaDwLQ2t3E\nqaYjVBTORUSG9J6Dbu4iUgj8DLjfGNM0pK8GrFu3LvR47dq1rF27dqhvpYbot3/Ywb3vvpOcnJh+\ntw/LmjXg90NXV8K+ZMrp6rlOc8cBANq762nvrifPP8VKLZcvw/33ww9+AMXFVkrIOEXZYygtmE59\ny3G2bdjF9o27GZ07IbSzU6xkMIvnRcQP/Ab4nTHmiV4+/hTwJ2PMc4HxYeBV0dMyImKGs1j/4uXr\nfPn/PT/kz890+w7V0tjYCsDjX3g3SxfOGOAzvPWnP8ELL2iD78uJ+q3sOhz+/p479dVUTXt1Qmsw\nBrZudZatAixeDN/8pnO3sUqMMy0nudp+noqiqlDgmIhgjInpFH6wzf1Z4KIx5oE+Pn4X8AFjzF+J\nyArgcWPMDbOqw23uani+/tSv+fmvXwHgLX+7hvvec5flipTbRx56hs3bj4TGc2aW8f3H35/wOv74\nR/jEJ8LjO+6ARx6BIc4OqBgZY+gynRFn7ENp7oNZCrka+AfgdhHZJSI7ReQOEblHRN4bKOYF4KSI\nVAPfARL/HakGtPKW2aHHr2w70s8rVaK1tLazY2/kYoHD1fVcvjrkGdAhe/WrnSmZoP/+b3hK178l\njIgMeSrGbTCrZTYCA16yNcbcO+xqVFwtvnkq2Tl+Oju6OHX6Ag1nLzN54hjbZSlg265qOjui5quM\nYevOY9xx+6KE1/OP/winT8PPf+6Mv/99KC2Fu+9OeClqiPQO1QySm5vNkvnTQ+NXth+1WI1y27Dl\nUOhxcVFB6PEmS39hicDHPx55d/EXvuDMx6vUoM09w6y8JZxIt3mHNvdk0NPTw8at4Sb+vne+LvR4\n665j9PTEJxJ2IFlZ8OijMCvwLdPdDR/7GBzXW01Sgjb3DLPC1dy37z5OR/RUgEq4fYdOce16MwBj\nxxTx169dwrixzvrDxsZWDhyp6+/T46qgAB5/HEpKnHFzM9x3H1xMzDagahi0uWeYskljKSt1Nuzt\n6Ohk1/6TlitSG7aEb/Zes3wuPp+PFUvCv4RtT5+VlMATT4QjJM6dgw99CFq8iUBRcaLNPQO5p2Ze\n2a6rZmx72TXfvnqZE9uUbP9GM2fCl7/sRBMAHD4Mn/40WJoxUoOgzT0DRSyJ1IuqVtWevkDd6QsA\n5ObmcMsC54L30kUz8GU5P55Hqxu4dKXRWo1BK1fCv/xLePzyy/DYY5rymay0uWegRTdNJTfXWUd7\nuv4ip89cslxR5trompJZtngGubnZAIwoyGNBVWXoY5uT5Jfw3/4tvPOd4fFPfwo//rG1clQ/tLln\noJwcP0sWTAuNk6VxZCL3Eshbl8+N+Fjk1Ezy/Bu9//3w2teGx9/4hhMtoZKLNvcM5b5gZ2stdaa7\neq2ZvYcC4fYirFo6O+Lj7umzrbuO0d2dHBPcPh+sWwcLFjhjY+DBB2H/fqtlqSja3DOU+6xw574T\ntLd3WqwmM23adgQTuCJ589xyRo8qjPj41IoSSsaPBKC5uY19h2oTXmNfcnLga1+DKYHQyvZ2+PCH\noaHBbl0qTJt7hpo8cQzlZeMB6OzoYuc+XRKZaP1NyYCTMZLMF79HjXKWSI50fv9w5YqzBv76dbt1\nKYc29wy2cqm7cejUTCJ1dHSxZeex0HhNL80dkm9JZLTycvj618ORwDU1zl2sHcPfJU4Nkzb3DKZR\nBPbs2HuCtjanA5aVjqO8bFyvr1uyYDpZfie37/jJs5y/eC1hNQ7WggXw8MPh8Y4d8PnP6xJJ27S5\nZ7AFVZXk5TmnXPUNlzhVr/eUJ8rLmw+GHt+6vO+t1Aryc1l0U2VonKy/hF/zGvjgB8PjF16A737X\nXj1Km3tGc5ZEhlMik7VxpBsnKMwdOTCn39evSOJ5d7d3vAPe+Mbw+N/+DX7zG3v1ZDpt7hlulc67\nJ9yR6gYuXnKuOhYXFXDz3Ip+X7/K1dy37aqmszM5w95EnB2c3DHBjzyiMcG2aHPPcO717rv2nQzN\nA6v4ca+SWbV0NllZ/f8YlpeNY9KE0QC0traz92DyLImMlpUFX/qSk0UDTkzwxz8OJ07YrSsTaXPP\ncBNLRlFZ7uS5dnZ0sWOv/hTG2wbXlMytK3pfJeMmIikzNQMwYoSzRHK8s9KWpiZn275LmnKRUNrc\nVcRaap13j68z565QfeIMAP5sP8sWzxzU5yX7ksho0THBZ844Nzm1ttqtK5Noc1eRjWPbEYyuYYsb\nd3b7kvnTKMjPHdTnLZk/jewcZ8vjmlPnOXv+alzq89KsWc5OTsGY4IMHNSY4kbS5K+ZXVZAfaDJn\nzl3RJZFxtGGLawnkIKZkgvLyclh089TQOFX+wlq1Cj75yfD4z392bnpS8afNXZGd7WfpohmhcbLP\n6aaqpua2iJiH4MYcg+WePkulsLc3vtFZJhn0k59oTHAiaHNXQOSqmc0pMKebijbvOEpPINlx9oxS\nSsaNjOnz3f9GO/ak1v63994Lf/mX4fHXvw7/+7/26skE2twVEDnvvmt/DS2t7RarSU/uJZAD3bjU\nm/LScZROHgtAW1sHew7WeFVa3Pl8TkTB/PnO2Bj41KeceXgVH9rcFQAl40YyrXIiAF2dXezUJZGe\n6urqjpjuunVF1ZDeJ1WnZgByc52Y4LIyZ9ze7my0rTHB8aHNXYVEr5pR3tl9oIamJmcd4ITxo5gx\ndeKQ3sc9NZOK10ZGj4Ynn4TiYmd8+bKzBr7R/haxaUebuwqJXO9+TJdEesg9JbN6+Zw+g8IGsvjm\nqeTkOPus1p2+QP3Zy57Ul0jBmOBs5/8GJ086McGdul+Mp7S5q5Cb55ZTUOAsiTx7/go1p85brig9\nGGPYsNm1MccQp2QAcnOzWTw/vP9tqv6FtXBhZEzw9u0aE+w1be4qxO/PYunC8JLIVFlLnexO1p7n\nzLkrAORHRfgORbJunB2r174WPvCB8Pi3v4Xvfc9ePelGm7uKELk7U+o2jmTysuvGpZW3zCI72z+s\n93P/G+3cm9r7377znfA3fxMef+c7TpNXw6fNXUVwX7DbfUCXRHrh5YgpmcHfldqX0oljmBLY/7aj\nozOl978Vce5gXbEi/Nwjjzi7Oanh0eauIowfW8yMaZMA6O7qZvvu45YrSm0XL1/n0NHTAIjPF/HL\nczhSLUisP36/k0EzIzAj2NUFH/2oc6FVDZ02d3UDTYn0zsat4ca76KZKiosKPHlf9yYr6fBvVFjo\npEiOC2wl29joLJG8nHqLgZKGNnd1gxVLwjG0mzQlclgil0AOf0omKB33v50wwWnw+fnOuKHBucmp\nrc1uXalKm7u6wc1zKxgxIg+ACxevcbJWl0QORWtbB9t2V4fGXsy3B0Xvf5vqUzNBs2ffGBP84IMa\nEzwU2tzVDbKyfCxbFD57T5fGkWjbdlXTGQj3mloxgdKJYzx9/3Sbmglavdq5qSlo/Xp4/HFr5aQs\nbe6qV+myltom95SMl2ftQem8/+2b3wz/9E/h8Y9+BM89Z6+eVKTNXfVqhau57zlYQ3OLTnzGoqen\nh42uvVLXeDjfHpTu+99+8INw++3h8de+5mz2oQZHm7vq1djRRcyaMRmAnu4etu2qHuAzlNuBI3Vc\nvdYMwOhRhcydWRqXr7NqaTg6ON3+wvL5nDXvN9/sjHt6nJjgQ4f6/zzl0Oau+pTqCYQ2uW9cWrN8\nDj5ffH7U3CubNm9Pv5VNwZjg0sDvxrY2ZwXNmTN260oF2txVn9wX7Lbs1JTIWLg3wo7HlEzQDfvf\nnk79JZHRxoyJjAm+dEljggdDm7vq07zZUygqchYdX7h4jeM1Zy1XlBpO1V+kts5ZPpqTkx0Rxua1\n7Gw/y1z7325K05VNFRXw2GPhmOATJ+ATn9CY4P5oc1d98vmil0Tq1MxgbHStklm2eAa5udlx/Xru\ni9/pvP/t4sXw0EPh8dat8KUvaUxwX7S5q36tjGgc2twHwz0lc2scp2SCIpZEpvn+t3fcAe9/f3j8\nq1/B00/bqyeZaXNX/Vq+xL0kspbGwFZxqnfXrrew52CtMxBh1bLYN8KOVcm4kUwPbNvX3dXNjj3p\nHfb2rnfB3XeHx//6r/DCC/bqSVba3FW/xowqZM5MZ0dj09OjKZEDeGX7EUzgXvmb5kxhzKjChHxd\nd9hbuk+fiThLIpctCz/3uc/Bzp32akpG2tzVgNIpXjbe/vxKeGOOREzJBEX/G6X7yia/H77yFZgW\n2HEwGBNcU2O1rKQyYHMXke+LyDkR2dvHx18lIldFZGfgvwe9L1PZtCIqiiDdG8dQdXR0sWXnsdA4\nnksgo7nD3s5fyIywt8JCZ4nk2LHO+Pp1uO8+jQkOGsyZ+w+A1w3wmj8bYxYH/vu8B3WpJFI1qyyU\nQ375SiPHTugdJL3ZsfdEKN+ldPJYKqaMT9jXztSwt4kTnVCxPOf3Gg0N8MAD0J6+15QHbcDmbozZ\nAFwZ4GXiTTkqGfl8PpYvybzGESt3UNia5XMRSeyPRaaGvc2dC1/8YjgmeP9++MxnNCbYqzn3lSKy\nW0R+KyJVHr2nSiKZdMFuKIwxEUFhiZxvD8rksLfbbnPm3INeesmZsslkw9uG3bEDKDfGtIjIncDz\nQJ8bRa5bty70eO3ataxdu9aDElS8LV8801mmYAz7D9dxvbHFsy3j0sHR4w1cuHgNgKKifOZXVSS8\nhmDY29HqhlDY29rVNyW8Dlv+/u/h9GknHhjg3/8dJk92nk8169evZ/369cN6j2E3d2NMk+vx70Tk\n2yIyxhjT62UNd3NXqWPUyBFUzSrj4JE6TE8PW3dV85e3zbddVtJwB4WtWjqHrCw7C9FW3jKbo9UN\ngPMXViY1dwiHiv3pT874scdg0iS49Va7dcUq+sT34Ycfjvk9BvsdKPQxry4iE1yPlwHSV2NXqc19\nJ6TerRrpZffGHBamZIIi7ijekXkrm4IxwfPmOeNgTPDhw/1/XjoazFLIHwGbgFkickpE3iUi94jI\newMveZNuR6/gAAAQRklEQVSI7BeRXcDjwFviWK+yKLpx9GT6FauAs+evUh1YQeTP9kdcfE40d9jb\nxUvXqT6ZeWFveXnwjW84UzIAra3OGf3ZDDsUg1kt83ZjzGRjTK4xptwY8wNjzHeMMd8NfPxbxpib\njDGLjDGrjDFb4l+2smHOzFJGjRwBwJWrTRw9rksiIXKVzOL5UykIRPDa4PP5WL5YbzobMwaeeAKK\nipzxxYtOTHBTU/+fl070DlU1aM6SSG0c0Ta4t9NbZm9KJihTl0RGmzrVmXP3B64sHj/uxAR3ddmt\nK1G0uauYRE/NZLqm5jZ2uvYujcdG2LFaFlzZBOw7dIrrjS2WK7JnyRL47GfD4y1bMicmWJu7ismy\nRTORwN0i+w/Xce165jYOgC07jtLd1Q3ArBmTKRk30nJFTthbcM9W06P73951F9xzT3j8y1/CD35g\nr55E0eauYjKyuIB5s52USIxh665j/X9Cmku2KZkgveks0nveA69/fXj87W/D739vr55E0OauYqYb\nZzu6urrZtC183SEZpmSCdGVTJBH49Kdh6dLwc+vWwa5d1kqKO23uKmbus8LN2zO3cew9WEtTYPOS\n8eNGMnPaJMsVhc2ZWcrIYl3Z5JadHRkT3NkJH/kI1NbarStetLmrmM2aPonRgU0orl1v5vCxessV\n2fGy5aCw/vh8vqioZl3ZBM7SyMcfd5ZKQjgm+MpA0YgpSJu7ipnP58v4qRljDBtckQPJNCUTpCub\nejd5cmRMcH29cwafbjHB2tzVkGT6WWHNqfM0nHVSNvLzc1l001TLFd0oemXT1WvNlitKHlVVTkxw\n8I+tvXudJZPpNMOozV0NybJFM0KN49Cxeq5czaBb/4icklmxZBY5OV4ErHpLVzb177bbnDP2oD/+\nEb75TXv1eE2buxqS4qICbpozxRkYE7G9XCbYsMW1BHL5HIuV9C/i4veOzPo3Goy3vhXe9rbw+Nln\n4ec/t1ePl7S5qyHL1DndS1caOXCkDgDx+Vi1dPYAn2FPdJJnpq5s6s+HPwyvelV4/OUvw8aN9urx\nijZ3NWSRZ4WZ0zg2bTsSun99QVVFUm9aoiubBubzwec/78zDgzPv/slPwpEUv5SkzV0N2cxpkxg7\nxonda2xs5eDR05YrSgz3xhy3rkzuXSV9Pp8GiQ1Cfr4TEzwpcKtCMCb4/Hm7dQ2HNnc1ZCKScRt4\ntLV1RFyYTOb59iD3v5H7jloVaexYJya40PlDhwsXnJjg5hRdZKTNXQ1LpmWYbN9znM4OJzO2sryE\nskljLVc0sKWulU2Hq+u5nGErm2IxbRp89avhmOBjx5wpmlSMCdbmroblloXTw43j2Om0bxzuKZk1\nFrfTi0VxUQHz55Y7A2PYmmErm2K1dCk8+GB4/Mor8OijqRcTrM1dDUtRYT4LqipC4y1pvGqmp6eH\njVtTYwlkNPdNZzo1M7DXvx7e+97w+Pnn4Zln7NUzFNrc1bCtyJALdgeO1IVu1ho9qpB5s6dYrmjw\n3NNnW3cdy5iVTcPxz//sZMEHffOb8OKL9uqJlTZ3NWzu1Rhbdx2juzs9G4f7xqXVy+bg86XOj8+M\nqRMZN7YYcFY2Bdfpq76JwGc+4+zmFLRuHezeba2kmKTOd6dKWtMrJzI+sAORsyQyPRuHeyPsZAwK\n60/0yiadmhmc7GznAmtlpTPu6IAHHoBTp6yWNSja3NWwOY1jZmicjo2jruESNaecRc/ZOX5uWTDd\nckWxy9Q7ioeruBiefDIyJvj+++HqVbt1DUSbu/JExHr3NGwc7gupyxbNJC8vx2I1Q7N00Qx8Wc6P\n/NHqBi5evm65otQxebJzk1NurjOuq3PO4Ds67NbVH23uyhPRjePSlUbLFXlrQ8QSyNRZJeM2oiCP\nBVWVoXEm3HTmpXnz4AtfiIwJfuih5I0J1uauPJHOjeN6Ywu7D9Q4A5GUWd/em8ipGV3vHqu1a52g\nsaA//AG+9S1r5fRLm7vyTLpmmGzadgQTOD2bN3sKYwJBXKkoeklkuq5siqe3vQ3e8pbw+Jln4Be/\nsFdPX7S5K8+ka+NIlez2wZhaUULJeGdlU3NzG/sOpenu0HEk4mzycdtt4ecefRQ2bbJXU2+0uSvP\nTK0oCS2JTJfG0dHRFXGB+NYUnpIBZ2VTpuUBxYPP58y/zw18OwRjgo8m0eHU5q48IyIRG1ekw5zu\nrv0naW11dk6ePHEMleUllisavpUZvv+tV4IxwRMnOuOWluSKCdbmrjzlXhKZDo0jIihsxVwkuFQi\nhS1ZMJ0sfxYAx0+e5fzFa5YrSl3jxjlr4EeMcMbnzzsNvqXFbl2gzV157JaF4cZRfeJMSjcOY0zk\nXakpPiUTVJCfy6KbKkPjdLwvIZGCMcFZzrc9R486UzTd3Xbr0uauPFWQn8vCeZWhcSpvnH3sxBku\nBH45FRXlM9+VfpnqVui8u6eWLYNPfzo83rTJ2YvVZkywNnfluYg53RSOInBPyay8ZTb+wF8k6WCV\nq7lv21VNZ2cK7kaRZO6+G97znvD4F7+AH/7QXj3a3JXn3PPu23ZX09Vl+e/TIdqw1TXfviy1l0BG\nKy8bx6QJowFobW1n78HUX9mUDO65B+68Mzx+8kn4n/+xU4s2d+W5yvISJpY4jaOlpZ19h1IgQi/K\n+YvXOFrdAECWPysisz4diIhOzcRBMCZ48eLwc5/9rBNVkGja3JXn0iEl0j0ls3j+NEYU5FmsJj50\nSWR85OTAY49BReASTTAmuC7BSdja3FVcrIxY7556Z4XpPCUTtGT+NLJznJ2ga06d58y5K5YrSh/B\nmODRzh+wXL3qxARfS+DiMW3uKi6WLJiOP9tpHCdqznLuQpKHX7s0t7SxY8+J0DiVg8L6k5eXw6Kb\np4bGqfhLOJmVljo3OeUE0qFPnXJiCxIVE6zNXcVFfl5O1Frq1FkSuXVnNd2Bi8Azpk1iYskoyxXF\nj0YRxNdNN8HnPx+OCd6929mqLxExwdrcVdxEXrBLnTndl9PwxqW+uFc2bd99nI4OXRLptdtvd+5a\nDXrxRXjqqfh/XW3uKm7cF+y27z6eEmupu7t72LQtnAKZanulxqq8dBylk8cC0N7eEc6tV556+9vh\nzW8Oj59+Gp5/Pr5fU5u7ipvy0si11HtSYC313oO1NDa2AjB+3EhmTZ9suaL4W5mif2GlEhH46Edh\nzZrwc1/8ImzeHL+vqc1dxY2IRK6aSYE5XfeUzOplc9IiKGwgkWFvyf9vlKqyspyGPjvwI9HTAx//\nOFRXx+fraXNXcZVKKZHGmMgUyDSfbw9afPNUcnKyAag7fYH6s5ctV5S+Cgrg8cdhwgRn3NIC990H\nFy54/7W0uau4il5LffZ88i6JrK27QMOZSwDk5+eyZP40yxUlRm5uNksWhP+/pnIeUCoYPx6eeMJp\n9ODEBN9/v/cxwdrcVVyl0lpqd7zvskUzyAn8UsoEOjWTWDNm3BgT/C//4m1M8IDNXUS+LyLnRKTP\ndAQReVJEjonIbhFZ6F15Kh24L9glcxSBe779tpVVFitJPPe1kZ17T9De3mmxmsywfDl86lPh8caN\nTsP3KiZ4MGfuPwBe19cHReROYLoxZiZwD5CAFZzeWb9+ve0SepWMdQ21JvdZ4Y493q6l9uo4Xb7a\nxP7DTviH+HwRv5Bs1eSlgWoqnTiG8rLxAHR0dLJz38kEVJWax8pLb3gDvPvd4fHPfgb/8R/evPeA\nzd0YswHoL3TiDcCzgdduAUaKyARvyou/ZPzmguSsa6g1uddSt7V1sOdgjfWaom3aejh0yrSgqoKR\nxQXWa/LSYGpaYSFILFWPlZfe9z54nev0+fHH4aWXhv++XkwqlgLuvLP6wHPnPHhvlSZWLJnFzxte\nAeAbT/2G0kljPHnfjev30Pzws8N+nxM14W/XNcvTMyhsIKuWzuanz28E4MX1uxMSJObVv5+XbNTU\nkwXd+eHNtd95L7zlzaP46sN3D/k9M+eKkbJq5S2z+fmvneZeW3ee2jpvtoivq7/onHV7aHWGLIGM\ntqCqkry8HNraOmhsbPX8uPYmHv9+w2WrppwR0CWBYLFO+PF/TuBD73UCyIZCzCBm70WkAvi1MWZ+\nLx97CviTMea5wPgw8CpjzA1n7iJicUdBpZRKXcaYmO6oG+yZuwT+682vgA8Az4nICuBqb419KMUp\npZQamgGbu4j8CFgLjBWRU8BDQA5gjDHfNca8ICJ3iUg10Ay8K54FK6WUGtigpmWUUkqlloTdoSoi\nd4jIYRE5KiKfSNTX7Y+I1IjIHhHZJSJbLdVww01iIjJaRF4UkSMi8nsRGZkkdT0kIqdFZGfgvzsS\nWE+ZiLwkIgdEZJ+I3Bd43uqx6qWuDwaet3msckVkS+D7ep+IPBR43tqx6qcma8fJVZsv8LV/FRgn\nw8+fL3CsgjXFfJwScuYuIj7gKPBqoAHYBrzVGGP1MrmInACWGGOsbR4pImuAJuDZ4AVrEfkycMkY\n85XAL8LRxphPJkFdDwGNxpivJ7KWwNeeCEw0xuwWkUJgB849Fu/C4rHqp663YOlYBeoqMMa0iEgW\nsBG4D/g77B6r3mq6E4vHKVDXh4ElQLEx5u4k+fmLrinmn71EnbkvA44ZY2qNMZ3AT3B+AGwTLOfr\n9HGT2BuAZwKPnwH+JqFF0e/Na1YuihtjzhpjdgceNwGHgDIsH6s+6gouXrO2gMAYE4yhysW5tmaw\nf6x6qwksHicRKQPuAr7netrqceqjJojxOCWqsUXf6HSa8A+ATQb4g4hsE5F/tl2MS0lwxZEx5ixQ\nYrket3sDGULfs/HnKoCIVAILgc3AhGQ5Vq66tgSesnasgn/WA2eBPxhjtmH5WPVRE9j9nvoG8DHC\nv2jA/vdUbzVBjMcp01MhVxtjFuP8lvxAYCoiGSXLVe9vA9OMMQtxfkBtTM8UAj8D7g+cKUcfGyvH\nqpe6rB4rY0yPMWYRzl83y0RkHpaPVS81VWHxOInIXwHnAn959XdWnLDj1E9NMR+nRDX3eqDcNS4L\nPGeVMeZM4H8vAP+FM32UDM5JIJ8nMKfrze2cw2SMuWDCF2n+DViayK8vIn6cBvpDY8wvA09bP1a9\n1WX7WAUZY64D64E7SIJjFV2T5eO0Grg7cO3tx8DtIvJD4KzF49RbTc8O5TglqrlvA2aISIWI5ABv\nxbn5yRoRKQicbSEiI4DXAvttlUPkb+lfAe8MPP4/wC+jPyFBIuoKfKMHvZHEH6+ngYPGmCdczyXD\nsbqhLpvHSkTGBf9sF5F84DU41wKsHas+ajps8zgZYz5ljCk3xkzD6UkvGWP+Cfg1lo5THzW9YyjH\nKSHZMsaYbhG5F3gR5xfK940xhwb4tHibAPyXOJEIfuA/jDEvJroI6f0msUeB/xSRdwO1wN8nSV1/\nIU5efw9QgxPxnKh6VgP/AOwLzNsa4FPAl4Gf2jpW/dT1dlvHCpgEPBNYpeYDngvcbLgZe8eqr5qe\ntXic+vIoFr+n+vCVWI+T3sSklFJpKNMvqCqlVFrS5q6UUmlIm7tSSqUhbe5KKZWGtLkrpVQa0uau\nlFJpSJu7UkqlIW3uSimVhv4/pGTCmBzsgnoAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2926,7 +2934,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 15, "metadata": { "collapsed": false }, @@ -2935,7 +2943,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEACAYAAABRQBpkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnWlsZNd15/+nqrgVtyabS5PNJnvfZLllJW4vcmJ6iSw5\nE0uDTBRlEI1txRhgbMMCPAnc8mAg+UPGcYDA8SDjwQR2DDlw7CjxItmxZbUgMY5tWZKjXd3qZrd6\nZTfZzX0naznz4dTVe6+quBSryCqS/x9AsN6rV6/Ou/XeOfeec+65oqoghBCyuQkVWwBCCCHFh8aA\nEEIIjQEhhBAaA0IIIaAxIIQQAhoDQgghKJAxEJF6EfknETkpIq+JyDtEpEFEHheRUyLyUxGp9x1/\nv4j0po6/tRAyEEIIWTmFGhl8BcCPVfUQgCMAXgdwDMATqnoAwJMA7gcAETkM4C4AhwDcDuCrIiIF\nkoMQQsgKyNsYiEgdgN9S1W8AgKrGVXUMwB0AHkod9hCAO1OvPwLgO6njzgPoBXA0XzkIIYSsnEKM\nDHYBGBSRb4jI8yLytyISBdCqqgMAoKr9AFpSx28HcMn3+b7UPkIIIUWiEMYgAuBmAP9HVW8GMAVz\nEaXXuWDdC0IIKVEiBTjHZQCXVPXXqe3vwozBgIi0quqAiGwDcC31fh+AHb7Pd6T2ZSAiNCCEELIC\nVDWnWGzeI4OUK+iSiOxP7foAgNcAPArgY6l9HwXwSOr1owDuFpFyEdkFYC+AZxc5f8n/PfDAA0WX\nYSPISDkpZ6n/rRc5V0IhRgYA8BkA3xKRMgBvAPg4gDCAh0XkXgAXYBlEUNUTIvIwgBMAYgA+qSuV\nnhBCSEEoiDFQ1ZcAvD3LWx9c4PgvAvhiIb6bEEJI/nAGcgHo7u4utghLsh5kBChnoaGchWW9yLkS\npJQ9NCJCDxIhhOSIiEBzDCAXKmZACCGrxs6dO3HhwoVii1FydHV14fz58wU5F0cGhJCSJ9XTLbYY\nJcdC7bKSkQFjBoQQQmgMCCGE0BgQQggBjQEhhBDQGBBCSF7s3LkT0WgUdXV1qK2tRV1dHfr7+4st\nVs4wtZQQsqEZHQWmpoDqamDLlsKfX0TwL//yL3jf+9634nMkk0mEQsXtm3NkQAhZtyQSwOAgcO0a\nEItlvn/+PHD2LNDfb/9Xa6pCenqnquIP/uAP0NbWhsbGRrz//e/H66+//ub799xzDz796U/j9ttv\nR21tLX7+859jbm4On/3sZ9HZ2Ym2tjZ8+tOfxvz8/OoInAUaA0LIuiQWA06cMAV/6RLw6qvA9LT3\n/twcMDQU/MzgIODXr6rA5cvASy/Z569fL5x8v/d7v4ezZ8+iv78fb3nLW3DPPfcE3v/2t7+NL3zh\nC5iYmMA73/lO/Omf/ikuXLiAV199Fb29vTh//jz+/M//vHACLQEnnRFCSp5sk6uuXAGuXg0et2UL\nsGePvZ6aAnyd8Tc5dAiIRu311at2Hj/79gF1dcuXbdeuXRgaGkIkYl737u5ufO973wscMzg4iJaW\nFkxNTaGqqgr33HMPKioq8LWvfQ2AjSSi0ShOnz6NHTtsuZef//znuPfee3H69OkFv7uQk84YMyCE\nrEuyeVD8+6JRoKLCRgiOykrPEADAyEjmOUZGcjMGAPDII48EYgbJZBLHjh3Dd7/7XQwNDUFEICIY\nHBx8U9m7/wDQ39+Pubk5HDlyJHCOtYwj0BgQQtYlW7ZkuoH8AWIRYO9ecyFNT1sAeceO4PFlZcDM\nTHBfeXnusqT3zr/5zW/iscceQ09PD3bs2IGhoSE0NzcHjhPxOu6tra2oqKjAqVOn0NzcnLsABYAx\nA0LIumTLFqCjwxR6OAy0tgLbtgWPqaw0t8+RI2YYKiqC77e1Af7Od3k50NSUv2wTExOoqKhAQ0MD\npqam8PnPfz6g/NMJhUL4xCc+gfvuuw+Dg4MAgMuXL+P48eP5C7NMaAwIIeuW1lbgrW8FbrrJDMMi\n+jYrNTXA4cPA9u1AZ6e9LivL7RzZlPzHP/5xtLW1ob29HTfeeCPe8573LPmZv/qrv0JXVxeOHj2K\nLVu24LbbbsOZM2dyEyYPGEAmhJQ8rFqaHVYtJYQQUlBoDAghhNAYEFIKzM9nT5UkZK1gaikhRSSZ\nBM6ds/o5gOW379kTzHAhZC3gLUdIEbl2zTMEADA+bnV0CFlrCmIMROS8iLwkIi+IyLOpfQ0i8riI\nnBKRn4pIve/4+0WkV0ROisithZCBkPXI5OTy9hGy2hTKTZQE0K2q/sndxwA8oap/KSKfA3A/gGMi\nchjAXQAOAegA8ISI7GMOKdmMRKPA2FjmPhKkq6tr0Ulbm5Wurq6CnatQxkCQOcq4A8B7U68fAtAD\nMxAfAfAdVY0DOC8ivQCOAnimQLIQsm5obTXX0NSUbVdVZc6iJcD58+eLLcKGp1DGQAEcF5EEgP+n\nql8D0KqqAwCgqv0i0pI6djuAp32f7UvtI2TTEQ4DBw+aMVC1GbGEFINCGYNbVPWqiDQDeFxETsEM\nhJ8VuYEefPDBN193d3eju7t7pTISUrJUVxdbArKe6enpQU9PT17nKHg5ChF5AMAkgE/A4ggDIrIN\nwFOqekhEjgFQVf1S6vjHADygqhluIpajIISQ3ClKOQoRiYpITep1NYBbAbwC4FEAH0sd9lEAj6Re\nPwrgbhEpF5FdAPYCeDZfOQghhKycQriJWgF8X0Q0db5vqerjIvJrAA+LyL0ALsAyiKCqJ0TkYQAn\nAMQAfJLdf0IIKS6sWkoIIRsMVi0lhBCyImgMCCGE0BgQQgihMSCEEAIaA0IIIaAxIIQQAhoDQggh\noDEghBACGgNCCCGgMSCEEAIaA0IIIaAxIIQQAhoDQgghoDEghBACGgNCCCGgMSCEEAIaA0IIIaAx\nIIQQAhoDQgghoDEghBACGgNCCCGgMSCEEAIaA0IIISigMRCRkIg8LyKPprYbRORxETklIj8VkXrf\nsfeLSK+InBSRWwslAyGEkJVRyJHBfQBO+LaPAXhCVQ8AeBLA/QAgIocB3AXgEIDbAXxVRKSAchBC\nCMmRghgDEekA8GEAX/PtvgPAQ6nXDwG4M/X6IwC+o6pxVT0PoBfA0ULIQQghZGUUamTwZQB/BkB9\n+1pVdQAAVLUfQEtq/3YAl3zH9aX2EUIIKRKRfE8gIr8LYEBVXxSR7kUO1UXeW5AHH3zwzdfd3d3o\n7l7sKwghZPPR09ODnp6evM4hqivS0d4JRP4XgD8GEAdQBaAWwPcB/CaAblUdEJFtAJ5S1UMicgyA\nquqXUp9/DMADqvpMlnNrvvIRQshmQ0SgqjnFYvN2E6nq51W1U1V3A7gbwJOqeg+AHwL4WOqwjwJ4\nJPX6UQB3i0i5iOwCsBfAs/nKQQghZOXk7SZahL8A8LCI3AvgAiyDCKp6QkQehmUexQB8kt1/Qggp\nLnm7iVYTuokIISR3iuImIoQQsv6hMSCEEEJjQAghhMaAEEIIaAwIIYSAxoAQQghoDAghhIDGgBBC\nCGgMCCGEgMaAEEIIaAwIIYSAxoAQQghoDAghhIDGgBBCCGgMCCGEgMaAEEIIaAwIIYSAxoAQQgho\nDAghhIDGgBBCCGgMCCGEgMaAEEIIaAwIIYSgAMZARCpE5BkReUFEXhGRB1L7G0TkcRE5JSI/FZF6\n32fuF5FeETkpIrfmKwMhhJD8EFXN/yQiUVWdFpEwgF8A+AyA3wcwpKp/KSKfA9CgqsdE5DCAbwF4\nO4AOAE8A2KdZBBGRbLsJIYQsgohAVSWXzxTETaSq06mXFQAiABTAHQAeSu1/CMCdqdcfAfAdVY2r\n6nkAvQCOFkIOQgghK6MgxkBEQiLyAoB+AMdV9TkArao6AACq2g+gJXX4dgCXfB/vS+0jhBBSJCKF\nOImqJgG8TUTqAHxfRG6AjQ4Ch63k3A8++OCbr7u7u9Hd3b1CKQkhZGPS09ODnp6evM5RkJhB4IQi\n/xPANIBPAOhW1QER2QbgKVU9JCLHAKiqfil1/GMAHlDVZ7KcizEDQgjJkaLEDESkyWUKiUgVgN8B\ncBLAowA+ljrsowAeSb1+FMDdIlIuIrsA7AXwbL5yEEIIWTmFcBO1AXhIREIw4/KPqvpjEfkVgIdF\n5F4AFwDcBQCqekJEHgZwAkAMwCfZ/SeEkOJScDdRIaGbiBBCcqdoqaWEEELWNzQGhBBCaAwIIYTQ\nGBBCCEGBJp0RshTz88DoKBAKAQ0NQDi89GfGx4HpaaCmxv7SGR0FRkaASARoaQHicWBw0N5ragKq\nqwt7DYRsZJhNRFadyUmgtxdIJm27ogI4eNCU+EKcPw8MDXnbbW1Ae7u3ff06cPGitz0/bwbGGRkR\nYP/+7EaEkI0Os4lISXL1qmcIAGBuzuvBZ2N2NmgIAKC/H0gkvO2BgeD7167ZSMGhagaDELI8aAzI\nqjM/v7x9i72nam4g/3a2YxbbJoQsDI0BWXW2bFnePkdNTaYLqarK3EuOpqbg+w0NQF1dcF/6MYSQ\nhWHMgKw6qsClS8DwsAWQt22zgO9iTE3ZZ1wAuasraAwAcwMNDwNlZUBrKxCLea6h5ubFDQ4pDYaG\nvCSA1lYz+iR/VhIzoDEghBSFgQHg8mVvOxwGDh8GysuLJ9NGgQFkQsi6IT3An0jYSI8UBxoDQggh\nNAaEkOLQ3BzcDoeBxsbiyEI4A5kQUiRaWy347w8gM15QPBhAJmtCMgmMjVnvLz0FlOTO/LzN7K6q\nWnkGztSUTQCsrTWlTDYOKwkgc2RAVp2ZGeD0aW/SWDQKHDhgaaYkdwYHgQsXvO3WVqCjI7dznDvn\nBWtFgN27mYq72eHjSFadK1eCs4enpxcvR0EWJpkMpmMClqI5N7f8c0xOBrN23DwQsrmhMSCrzuzs\n8vaRpYnFgjWaHLm0Z7Zj5+eD9aPI5oPGgKw62WIEtbVrL8dGoKIicyZ2KJRbue5sbV9dTbfdZoc/\nP1kR8bi5e5YT329v9/zRrhxFQ8PqyldIZmcXL6y31uzeDVRW2uuyMmDXrsXLgadTUWHlPdxnolE7\nRzJpvylHCJsTZhORnOnvtziAqqUC7t69vJ5pImHByvXSA43HgTNnLOsGMAO2a5ddQykQj1t21krl\nUbXfJBKx9M4LF2w7HDZjsZ4MNgnCchRk1ZmZAfr6vBHB/Hwws2UxwuH1YwgAM3jOEACmMEsp8B2J\n5GeYROwcyaRnCAD7f/589tgE2bjk/WiKSIeIPCkir4nIKyLymdT+BhF5XEROichPRaTe95n7RaRX\nRE6KyK35ykDWDr9ydMzMbEzXQrZrzbZvvTMzk6n4k0kG+TcbheinxQF8VlVvAPAuAJ8SkYMAjgF4\nQlUPAHgSwP0AICKHAdwF4BCA2wF8VaRUBt5kKaLRzH2Vleurx79csl1rtn3rnWy/XyjkxSXI5iDv\nR1hV+1X1xdTrSQAnAXQAuAPAQ6nDHgJwZ+r1RwB8R1XjqnoeQC+Ao/nKQdaGaNQCwI5IxPzLG5H2\n9uDs3rq6jblgTjgMdHZ6BiEUAnbs8NaTJpuDgs5AFpGdAG4C8CsArao6AJjBEBG3nMl2AE/7PtaX\n2kfWCdu3W5Gx+XkzDhtxVABYps7hw+YaCoU29sIrW7cC9fXmMqqqyi07iWwMCvaTi0gNgH8GcJ+q\nTopIehrQitKCHnzwwTdfd3d3o7u7e6UikgJSXr55iorlksO/nolEOP9jvdLT04Oenp68zlGQ1FIR\niQD4EYCfqOpXUvtOAuhW1QER2QbgKVU9JCLHAKiqfil13GMAHlDVZ7Kcl6mlhBCSI8VMLf07ACec\nIUjxKICPpV5/FMAjvv13i0i5iOwCsBfAswWSgxBCyArIe2QgIrcA+BmAV2CuIAXweZiCfxjADgAX\nANylqqOpz9wP4E8AxGBupccXODdHBoQQkiMrGRlwBjIhhGwwOAOZEELIiqAxIIQQQmNACCGExoCQ\nvJmcBIaGbOGZjUwiYSukjY0tr3Q5WV9wniEheXD2LDA6aq9FgD17bCbvRiPbOtb797NkxUaCIwNC\nVsjYmGcIgI29lnBfH9ex3ujQGBCyQrItQp/LwvTric10rZsVuolWmVjMW0SE5M/8vLXlcovjJRJW\nm7+srPCyZFvbOdu+YjA6aj13EaClJf+aQ3V1mesblMq15svcnK3eNz9vLr6WlqU/sxGhilolEgng\n3DlzJYhYVcjOztJZMnG9MT0NvPGGPbjhsJVY3rp18c/09QEDA+a+qamx5TkLaRQqK618t3Oh1NSU\nRjnv0VGLZTjGxsy/X1Oz8nO2t1vHZmTEDHFrq7eu9XomkQBef91zgY2Pm1Ho6CiuXMWAxmCVuHrV\nHkLAlNHgoFW/3Ij18NeCc+c8t0QiYcs01tYuXDl1bMx6e47JSeDyZVvDuJA0NZlRSiZLJ5h6/Xpw\n291/+RiDcNiMaTJpHZqN0qkZGTHlPz5uxq6mxtqPxoAUjImJ7PtoDHInFst0UajaOgMLGYOF2n81\nECkdQ7AQhVLeG23tClXrWLj7a3DQ1uvYjGywn7Z0yLYQykZeHGU1iUSyu3cWW5ZxM7d/us9bhJ2Q\nhRAJZkkBmdubBRqDVaK9Pdhrra621cFI7ohYjMDfu21tXVy5NzYGA5yRSGkP/VXNBbPQdi7U1wP7\n9gENDdYOBw5sngV6ciWZBHbutLaqrQXa2paORW1UWLV0FVE110QolJ+/lhjxuPn+KyuXv1j71JR9\nrra2NF0cqhbLGBy011u32rVdvWqxkfp6U1a5ZqNNTHjZRM3Ndu3Xrtk5Gxs3RvC3EMzPA6++GpxR\n3dhY+NjSWsMS1oSsM65fBy5e9Lanp+3P79bJVTmNjQFnznjbsZj1gCsqvH07d27eHnA64+PAlSte\namlHR+nHgJZiJcaAAWRCisj4eHB7airTGKQfsxTp2UQjIzYiaGvz9l27RmPgqKvbOHMm8qEEB86E\nbB78vXXAAuXpGVLpxyxF+mBalYXlyNJwZECWhQtorvfhc6nR2mqTxNwciqYm8+/PzXkzp3NNdWxu\nDo4mGhpsZOCH2UUkHcYMyJJcuWIzeZNJCzzu3EmjUEiSSW+CYn29uXl6e80gtLdbZlCuAeT0chSh\nkP2GiYS5hxobC38dpHRgAJkUnPTSBoD1PDs7iyPPRmdyEjh1KrivocFm/xKyXBhAJgUnW/Ay14Dm\napBMWk2gkRHrNbe1mdJca8bHTQ6XibJjR36jpmxtu9yZ07Oz1hYsikhWAm8bsijZ8vmXk+M/OWmu\nj4oKc0kUOse/r88yYgBLnXzjDeDQIVt0Za2Yn7cUTjd4HRoyI5VPLz5b2y4VQJ6bs9HbzIy5hVpb\nN29JBbJyaAzIojQ1mZKbnrbtcNj82Itx7VpwkZfBQZsFW8jiZiMjmftGR1ffGExO2vUlk9mzdPyL\n3ayEhgZrLzcaCIWWnjl98aIZAsDk6e+3VMl8y1aTzUVBjIGIfB3AfwAwoKpvTe1rAPCPALoAnAdw\nl6qOpd67H8C9AOIA7lPVxwshByk8oRBw8KC5L9yM2KXcIFevBrenpmyUUMhZr2VlmWsOr8aaBX6m\np23pR2cAxse9oLojXxeNiJWbHh+3mdN1dUufc3Iy+z4aA5ILhRq8fwPAh9L2HQPwhKoeAPAkgPsB\nQEQOA7gLwCEAtwP4qshGKYi7MRExI9DYuLQhUM1MYwQKX/yrrS040qisXP0MmaGh4EigtjZzta+l\nRk3Lpa7Ormc5xiXbaGgt3WVkY1AQY6CqPweQPnC/A8BDqdcPAbgz9fojAL6jqnFVPQ+gF8DRQshB\nio9I5gggFCr8IvFbtliMoL3dMpsOHlz7dFcRKxPR1WXG6eDB4uTv79gRNBqNjYVvb7LxWc2YQYuq\nDgCAqvaLiCusux3A077j+lL7yAahq8sUswsgt7evjgunqmpty1I3NdmcCzdCqK+3YHExspj8RKPA\njTeaa6i8fPlF/NYD8/M27yIeNyNH19fqsZYB5BVNGHjwwQfffN3d3Y3u7u4CiUNWi3B46eUfR0a8\nJSm3bl0f686GQhYjcOsqJxLLy5KanLQYQGWlGY50p2gsBgwP2+uGhoUX7FlKto1WXycWA06e9FyM\ng4M2EuOEuUx6enrQ09OT1zkKNulMRLoA/NAXQD4JoFtVB0RkG4CnVPWQiBwDoKr6pdRxjwF4QFWf\nyXJOTjpbJ8zMWKC4unrp3vr4uM2w9dPVVfolEi5ftkydyUkzBjU15q7av3/hz1y7ZmmvblW21tbg\n8XNzwTV4w2HLvNosC/EsRn+/pRD7qaoCDh8ujjzriWJPOpPUn+NRAB8D8CUAHwXwiG//t0TkyzD3\n0F4AzxZQDrLGXL1q7hNHW9vigVTXC/YzNJS/MXDrRwDmTih0WkIsFlyLORy2uMVi8pw8aUbE9WlG\nRoBt27xe/MCAnc8v98CAlfzIhUTCzlFWtnEWssmWiLCSBX9UrQMSCtHNtBiFSi39BwDdALaKyEUA\nDwD4CwD/JCL3ArgAyyCCqp4QkYcBnAAQA/BJdv/XL/F4Zippf7+VrEiPE8zMmALNFujNN/gbi1na\np1vLtrLSetiFnI2bTAazhxKJzPRWP4mEtY3/7h4ft7kIzhhMTZmBcee5dm15yjwWs89WVdnrM2ds\nOxIxo7p79/pftL6x0XMlOnItuz03Z/fF/LxtV1dbradCJxuo2ohRdXU6ImtBQR4VVf3PC7z1wQWO\n/yKALxbiu0lxmZvLXjJ5ft4zBk5ZuYlr1dWe/x3wZs36SSRMMc7MmDumuXnxB6y/3zMEgL3u7w9O\n2JqctF767Kw9sJ2duQW2IxHL3PEHkLMpbnf94bAF0P1ptSLBGcXxeNCgJBKZ6arpDA3ZIu6u3YeH\n7S8Ws/MPDprSLMXVzBIJM1qVldljI1NTJj9gRq29HXjtNWtPl7WVfj7nuotG7X1/B8AtWpN+/vT7\nLR/icTM4buJfZaXJOjJi7zU0lOZvkQ5nIJO8iEYzJ4BFIsE8974+zxAA9kBu22avXQA53Ufe22vH\nAfZQTU0tvtqX3xBk2xeP2zmdARodNUWymL8/nbo6M0z+JUzTUzhHR01Rx+PWLm1t1rudmjIj0Noa\nzD6KRi147mZUb9my+BKpyaTN7vYb4JdesjYsK7P9IyNmSEtNAY2NWfzE/Qbp7sSJCfuN3LVdvRqc\n1DczY23pV+Rnz3outslJe+2PKWS7L5zSXi7JpMnikgDa2oIZWwMDwXNOTgK/+IXn9hweto5Hqa+B\nzsVtSF6ImEvCPRyVlcCePcFevFPqfuJxq5/T0ZFpCKamMj/jer4Lkc0X7N/nZgv7mZjI7pdeiIYG\nUwShkF1fY2Owp5pImMvHjQRiMRsd7N9vLqt9+4Abbgj2iOvrTZHv3Wt/TU1mdJxC9/dq3TkTCa8s\nxtiYyZLeNqW23rOqGUn/b3D1alBZX78eNHKuDLcf/7Y/1uJwiQyObIY117jBhQs2+pietvvw9Ong\ndaQbl7GxzPt3YCC37ywGHBmQvKmpMSWXSGT3xUajmT20xfziC0WQ3AI72RRdSwvwwgvmUhAB3vIW\n4OabvfezuYPC4dyVZnu7GQDVzM9OT2canFDIXAaVldm/q6nJlJorutfYaArHKZjLl81IuBhDebm9\n71cuZWVmVJybqKmp9FJ1091hjpkZryOR3nYimfeCv5OxkNvQv7+93drXGc2mptziDslkZh2sWMzO\n50Z4tbXeehSAyZx+f6+HqCiNASkYCwXltm83RekMwpYtiz+Q1dWmIPwGpKIimKLZ2Rl00Zw9awrS\nKf2rV+34PXtsu7bWFKq/RHR6SYvlIpL9c5WVmQosFDLZFzM627d7VUYHB4O9X1VzszljkEzaSMq5\n5tzIo7HRM1AtLaUx58C5rFzcp6IiGA8RCSrNpqagUs0Wk/EbufJyu5f8xQFraoIuynDYjGk8bt+3\nksBxNqPk/z1bWrxRA2DGP31kUOpp0wAXtyFryNSUPYzLmSEbi5lCn562B3xkJOgyCYVs1q0LFv74\nxzYycL3LUAj4jd8AbrvN+4yqKY7ZWVOWq5GCOTBgvXnAlEhnZ26K4MqVzOysSAQ4csRez88Dr7xi\nr2Mxe0/EFF4kkn0N5WJx9mymop6bM7ldNdZ0P/roqLmLAFOyFRU2anIzkNPjIMmkHe8CyC0thc8U\nunw5OBKrqrKU4vQOgXMPRiJ23/b327U2NKz9SK3Y8wzIJiYWswfABZSzkYvyLSvzVlOLxTJ9rsmk\n+YvdUH1qKuhmSCYze2ciq186wgWIp6ftenMtw7FlS6Yx8I+AysvtvFNT3rnLymzkU+g4gYtNVFTk\nXuJiejqznPfUlBnweNyuI5vS3rIlU+Evtqqeqp0vkbC/1eg7uriWCyAvlNnmz2KKRtff6nQ0BiRv\nrl/3MlxcmujsrFebqKMjv8JpbvWu2VlTMq7+jj9Fc9euYGAvHM594tZyuHbNWw9661Zz76QrhvLy\nlffOo1GT+8oVr1e5Y0fwmD17rL0nJ01JdXSYYRwZse/NNscjVyYmrGfvAuy5LnWarUqti/kUcnb1\nG294rr+JCftbbCLgStm6Nfc5DusNGgOSF4lEcIatKvDrX1vqqFPgZ89aQHelClLElOSrr3rfs3t3\n0De8axfw27/tLaqzY8fiqagrYWwsuGjPwIAZnfTcdz+qdpzrVW7bltkOo6Om1Nx1LKV4ysqCvc5s\niwndcEN+7pKLF4OZVtevm5tmsbTXRMK+OxYzN1x6ynE0uvSqbcshHjd3UzicuUzo9LRXFoXkBo0B\nyYvZ2aB7xpWE8NfiVzVFutI8a1V7yN2qazU1pmhmZrxe5tat1nOdmzPj0dVV+IJm2VYxGx1d3Bhc\nvOgFhCcmrB1uuMFz6QwPA8ePe0rz9GngAx/Ira3SXWiu8F0+7b1Qfv5CxiCZtBpL7nMDA+Ynn531\nPrfUim3Lob/fRk1ulTnnjvOzHmf/lgI0BiQvnDJ2E2+qqrIHifMJasbjllHjsjXGx03h7d3rff/U\nlL3vYgKu1lEhF3nJ5npZzB2TTJocfubng2mJr78e7D3H48CJE8B737t8ubLV68m1hk88borW9arL\nyzPnOCwLtUb7AAAZMUlEQVQ2KhgezjQgo6MWIygUs7PBwnUi5irzG4Pqai7ss1JoDNYY16MptUlB\nKyUU8nr+iYQpkKam4PXV1uYXMwiHvWCwm2cwOxsMFrp1iR3JpO0rZNygudmUu1OSodDio4KF8Pdc\n0xUusPjkumxs3RocHYRCuQfKXW0jwBSsM+izs3a+9vbFff3ZJu/lMqFvOWSbvNjcbDGquTmTr5Bl\nJjYbNAZrSF+fKShVy5jYudN6ZPPz1qNZj8PbmRkvhXJiwhR/ZaX5vmMx8xHnu+qWC9a++KI3z+DQ\noaDBWQtlVFZmpQ6Gh02mpdYeCIXMMLpUSSCzPbq67L7wG7al1oJIZ/t2c8mNjHglMMrLzYUiYkrS\nTZ5KJOze88udPmsXsOMOHLBriESWjj9s2ZJ5HY2Ndk84N1G+PfZscQAXQCf5Q2OwRoyM2DDcvz00\n5Cm0SMTcHust8OUKozmFNzhovbXDhwvns49ErOfX0uItKDM9Heypbt0anLDk9hWacDg3X/yOHWYc\nXQC5tTVo9HfutGs7c8YU6e7ddh/kgogFpl29p3jcSme7elBVVcEZwH19VhrDuX0Wm8m73IBvRYWd\n02VBbdniVZJ1bN/uybgSKivtHC5mEInkbjjJwtAYrBHZsh76+72skHjcgo3paXHxuPWuKiuXl5K3\n1pNdIpHM2izT0/mXjnaTzmZmTNE0NHhzByoqrMc9Pe0pq4YGUwz+CUulUKhNxGRJ/x1mZ82wlJXZ\n2skHDhTOfegm6zlcppGb/OYKr+3bZ9uVlZmzs+vqcp9bUFtr1wHY9b30knUOZmdtVKBqhjSfLKdt\n27wSHtHo+hxNlyo0BqvI8LA9DM6v7md2NtPFMD5uRbGmpqzXVllprpGJCTv24EHvAc7G/Lwd79aM\nrauzlM70Ymr9/XbOqirPpbAY/phAfX1Q0c/NWW/NBRArK21EMDe3eHDVndOVgk5Xgv61CSYmzL22\nfXuw/lF6r7WpKXO27/i4tUV9fWFmpk5PW/smEjbyyNUF5i/n7WrldHYuXOIiG4mE9Y79v+HYmN1r\nFRWZxdvi8cy8//RYxZ491sYugJxvJ2Juzu5l9z0zM7bvxhvz/x3cvBNSWNikq8TQkOXFDw97AT1/\nT6a2NtOHOjBgD/XMjL137px3zMwM8O//bj2jsjKvVwnYA+fy2U+d8hS3i0P4jcG5c547ZWrKFMcN\nNyysiBIJU8yup+lq4Ti5olEzJn4lnF7COp143OQcHvbiJwcOeMp9cjKYmSJi13r6tMlTVmYjqPTv\nSCSs3d1M47NnvWqlzo0RjXrlpReTLxz22mR+3n7DWMzkdoHqkREb2dXW2nsLjdyGhuyvutra0bWl\nqhmW2trMgG8yaX/ZlJ5/otXMjLXLxIQX7A2FLGbjPuvKQPjZssWbvVtWZp9Jd+G4zkx1tbm3Jidt\nRBGJZK82m60dAc+Az89bm7r2VbVRy/Xrdg91dBRvfeO5OS92t1GSO3KFxmCV6O21yVeuB1hbC9x6\nq2VluB72wIDnYw2FTDm7h3xkxPy+N97o9dzn5oBf/tJTvI2NpjBc/vulS15dHMBz17hiYZWVmX51\nVwZ4ocJmQ0NBl0Mi4fmcAbu2PXuA8+ftXBUV5q7J9kA5pXr1KvCjH9lnADNWf/iHnoshm2GanDT/\nu/sO19t1Cm92FnjqKS/9NBIxZTUx4VWRdDnp8bi9t2tXUKHNz1ubDwx4pbhPnbLfyP2Gra2egamr\nM4NfXW3fUVFhn/Gf88wZq5nkJknFYhZPicetLcJhuza/Mejv92r519aanP6FgtJdjidPmpGLRu0z\nsViwVMf27d5ymm5EU1YGvPyyyRGN2nf43ULnzlnnwxmY6mprH2dUTp8G3v/+hQ1COGzff+KEtbtz\nIbkF7svK7P/5894zcvUq8Fu/lXug2S0mVF6+MrfRxYueezESsd9wsTTajQqNwSpx9mywBzg+bj06\np8BjMXuwLl70lJRbAQqwBzCRCKZLDg0Fe/mnTwdXDBsfN8Xiv5EHB73ZrfG4GY50V0o2xe3cWtlW\n3UrfV1Nj7ii/cvYTj5sMExP2sD7zjGcIAFMCTz3lGYPqaq893OfLy03xOOXjJrc5hffqq8Gc/vPn\nTUG4WchjY2Yo3/1u256ZMYXX0eEVOTtzxvL+HU8/bQo/kTC5+/rMyFdW2ve79YZ37rTfMxo118jB\ng/b5ZNL85q69EglTyO56RKyHvn27yeJGSf5c+okJM/IutuTcSX6348xMsEZ/OGy9/L17g0FgV+a6\nrMxKfTump629nNyqJrcbnSWTwK9+ZXK6OMzIiDezPBtVVSaXP9Xz0iXP/RSL2QIwzn3nRkmXL+e2\n4ND4uMnuivZ1deUWK5qYCGZ7udidf4GczQKNQQGYnQWefdaUWnU1cNNNmf7sZNJ6mK7n3ttrf2Vl\n9t7wsCmSujpTHpWV3qQqF1jcujU4jB4ft16kU4hjY6YUams9xezvuUUitt+/JkA0GjQebujuFGu2\nIOJCfvKF/Lh9fdY2V67Yg3/unBdfcKSPWPbt85a9rK629kxPFfW38ciInf/KFU8WvysofV4CYEpk\nYsKT++mngz30y5dNXpeVNDhoBsplsLjYjotLVFfbb+aUaiKRORHLGbGtW711c48f93q0s7OeMnSu\nPv9IIBKxz/rLXHd2Bq8tEjEl7NpX1QzwG294WTgdHcH2d4X+XHwrPdV0bs6Mhl/RZsv7d0xO2neM\njHjxMX8PHrDXs7PBDLpsM58XQjW4mFA8bttvfevy4xLZVj3LdSW0jQKNQQH4xS9MCY2O2gPT22sl\nh7dts4fC9fL9Qblr16wHEol4Pu3hYa+mT0WFuUXe/W578Gtq7FyTk945ZmaCCri21vPXz89n90W3\ntpqranbWDEV6oHBgINhTmp42peFW2HJKdnDQHsa6uuzph3NzpsTcOgT/9m92rlDIc+W4Hq5z2fhJ\nr/kTDpuxdLjZxc4VNjVlvVe3EEk0CrzjHd7IqaHB2sS5syorrf22brX/Li/fGZ1w2KuEOTLizXZ1\npa+dP9+/TOPYmH3fnj3eaK+mxnOFuFm973iHV1v/7Fk7vzM4sZi5Al3ufCjkGRdHZ6ed2xWq27fP\nEgdGR00mN9Hu9dfte6anbdTjmJiw9266ydtXXu51EEIhy/pxC+4AJl91tX1HOGz3VvqEO5cUEItZ\n+4bD3ijUjY7992trazCwXVERXAZzKWZnMwPjsZhdWyJh1+RcZAuRLZV7M7qIABqDvHFpesPDXq38\nSMQUalubKQL3UPgfHud2cD0mwFPkiYT9b2y0/859MjdnriGXobF9u9fzAjw3iguS1tRk9pBqahZ/\n4NJ76IC37uupU3beZ57xen41NabI/SOWkRFzMwwNmTzPPms9Nv8kKLfcI2C9zQ98IHvbzs97qaQ1\nNWaE6uut3V57zbv2l1+2tnbyu9HL/v12HmdMnOtubMxe//KXJmd9vR13/Lgpy7IyMyCu5y/iue1O\nnLDXrq0doZB9h2ufyUn77NSUHRsKWTuNjXkTxK5dy1RIfX1mlGMxu+50t0ksZveaCxrX1AC33GLf\nVVZm98lzz9l3uBiNiym433NoyH6T+Xnv836OHrXfzbXF+94H/OxnJpeIBfD995Gq3Zuus+J+Z9fL\nFjHjMzXl3e9vf7vJfPmyHbt7d25zQ5wB87tSXU2kSMTaqbc3e5HEWMyLJbW3Wxu5uE8u1Vk3EjQG\neRIK2Y2WvkLVlSumYFymhlNszm1TVmYPpXN9JJOmnMrKPMU6MBDsSVVU2I3tFomZnbVet3OBTE/b\nfv9QPpGwh935lZe60Ssq7IF2K0MB5jY6dcoeWrf+bzJp+44csf3RqF1/Y6P10J9/3uSMRKzXOj7u\nuWSam23Rma4uU1y33GLv/exndi3bt5vMTz/txUmOHDEDc/q0jZ527rTvHB629n/5ZbtW5/oQMUXb\n2GhyuIli166Zkty5E/jWt7y1lcvK7LvcSCkU8lI1Z2ftfOXlXvzFlRXZscOOcbNsL12y1/399rnB\nQXNbANbD7++363AyumQCx9iYtW1NjRerePFFM0zuNxwf9zoEU1PW67/xRm8U+Morpuhdiun0tP2m\nbsTgAuhtbXaeaDQ4OgHsHnr/++0cFRWWDNHe7q3RUFVloxrXURkZCY5aXfscPuwtUFRRYd/nUmKT\nSeDJJ63jFImY4cslABwOW/tfvOgZmMrK4DPjFjRyv6tbi9m5QWtrzQi1tHgjmkIwPm4GJh731s4u\n9TkRNAYF4MYbrYfpqKnxyk74A2bxuN1syaQpp9/8TVNGbgKN83c7nMvC7/sW8YaxVVX2MLjhfF1d\nZl2bykrvgV0OLS3W43auEZeqeP26NwoZHfUevtFRU7gvveQFN3/1q+Dw/cKFoN97ctKOcYbwu98N\nGp++PlOArvf22mumuN0C9iKmQP1ujuvXg26zmRlTzO53SSZNBudGeuUVb9Tmair19VmbuvYdHPRS\nHkXsfLGYKZDJSZPt1VftnC4bq7HRjvGnUSaTnmupv9/a2LmJysq8DoObczE357lskklT9m97m9d2\nV68GjbqbmOiMSl9fsGPifkc/+/fbveGUnzNC/uMiEc/AXLtm53W/6+SkfYe7t7LVWHKdH3/cqrzc\nMzpPPmm/iRsZnTplSjOX8hJNTXbdbkZ6euE/IPj8uDRfx8SEteeOHYVbIW121ptRDniZYaVeNqNo\nxkBEbgPw1wBCAL6uql8qliz5cugQ8J732M3sVkI6eTIzlz0SsZx+wB6CwUFPecXj1hvbscMLrtbU\nLJ3z7J/dOj9vitM/bM517dXRUZPfred79aopu6oq+x+LmRLt7LRjpqbsWp2bJ5GwHqOrlwN4gUY3\nqpibCxq+ixftGOcOuX7dzunWL56dtZ5pZ6fnVjtxwpt1DJhCqa31DJLL1HFMTdnowS0UMz9v19rZ\n6bVxIhFUJK4uv8uIuXzZrqmmxguylpXZ++GwXXN/v3ed7vdxMRVX4yd95uyBAzbiU7W2PX48qJz9\nPXZXiiM9c8vvBnGZSk4ZhcPAO99p956bD+HP5nKyLXavJZNBAz8zE7y/6+uDWVBu32L4DZajvz93\npVlW5n1Xe3swtlRVFbwP/KMXR/okvXwZGclMVhgepjHIioiEAPwNgA8AuALgORF5RFVfX/yTpcuR\nI6ZEnY81FMpc/NvvY62rs4fTDSX9hepczzS9oNhSlJebYsmnHMXERNDVdP26t2ZwU5Pd1C6IWlvr\nBVKdchIJKq9w2JvI4953uev+tvFncKSXX3bB6/SF5v3te/CgV7IC8Go9OVxwuLnZq53j1hJ2MnR2\nej18t33woPd7Hj4czF5JJOw3bW72Jm25/4mEfefOnV5gf98+U04nT3rXUlZmSsL9zm5ugxt9xePB\n9EwXf/Ibk4aGYO979277nVz8pKHBrsV/nqGhoBJcKnC7e7fdVy5+0toavLeqquxa3eihvn5pl2R9\nfTBZAci/nlRTk8kyOuqNQvxtlW1eRKFLXmcbYRR6XebVoFgjg6MAelX1AgCIyHcA3AFg3RqDri7P\n1xsOW0/v4kUbXotYjzS9qNbu3V753bo6zx3jUhZXsjhJvmuvVlYGe0+uOBxgMt58s11Ta6u3jKG/\nFpGIGaTaWi9LZ2bGK/3sJl75S0unj15aWrxRAeAFvf2GsaHB3Gxu9NTSYrEHJ2s4HHQH1Neb/M7Q\nqgLvepcpLpeS291tvfsLF2x7xw47h1P+O3fapKgXXrA2aGryFKpztxw5YnJNT3s9+2jU67nW1dl3\nu1Fh+qLwkQjw4Q/b6GpuzhTqwEDwN7nhBjufyyZKz6vv6rJ7aGwsOJfBz7591oOdm7NzLaUQm5ut\nvVy8KhrNnKjoVmhzy58uxdvfbq4ilwTQ0VGYwnNunko2mputXdzvlmsG03JwJcX9rrOVlDpfa0RX\nYwXppb5U5PcBfEhV/2tq+48BHFXVz6Qdp8WQLx/8pQxcHrmbwbkemJ+3IK3rdTufryvbXF9vvcPe\nXi/rqavLlJfLIT9yxNphcNBzd/3gB2YcnaE8dMirPukCxG6iXkeHnftf/9UeXJeJ9cMfmhxVVcAH\nP2jKyCm8fftsJOAvVHfmjMnpSmC3t3s+5Zoa88MPD9ufc9G5Gdeuhn9zs/WIIxE7p6s+e+WKyehi\nEw0NNiJ417uWVqzuvnBKdSncIjkuc2g5axVMT3ulOZqa8g+MxuP2+zij1NRUGMXtFtVx2XNrhZtX\nUVOzOoFdd/+7Efpap6uKCFQ1pysreWPwwAMPvLnd3d2N7u7utRR1U+Jywl0JBn9apfMTu7VmGxpM\nUSYS9hnnEgHsQQiHTbHOz1smTmWlF6xzWVALlTRwZRXcLNW5OfN1t7V5PeyxMevdLXSO+Xk7jzPG\nToH7H043e9UpBb/cixGPewF+N6t4o+OC24vVdiJrT09PD3p6et7c/sIXvrBujME7ATyoqrelto8B\n0PQg8nocGRBCSLFZycigWPX5ngOwV0S6RKQcwN0AHi2SLIQQsukpSgBZVRMi8mkAj8NLLT1ZDFkI\nIYQUyU20XOgmIoSQ3FlPbiJCCCElBI0BIYQQGgNCCCE0BoQQQkBjQAghBDQGhBBCQGNACCEENAaE\nEEJAY0AIIQQ0BoQQQkBjQAghBDQGhBBCQGNACCEENAaEEEJAY0AIIQQ0BoQQQkBjQAghBDQGhBBC\nQGNACCEENAaEEEJAY0AIIQQ0BoQQQpCnMRCR/yQir4pIQkRuTnvvfhHpFZGTInKrb//NIvKyiJwW\nkb/O5/sJIYQUhnxHBq8A+I8A/tW/U0QOAbgLwCEAtwP4qohI6u3/C+BPVHU/gP0i8qE8ZSg6PT09\nxRZhSdaDjADlLDSUs7CsFzlXQl7GQFVPqWovAEl76w4A31HVuKqeB9AL4KiIbANQq6rPpY77JoA7\n85GhFFgPN8h6kBGgnIWGchaW9SLnSlitmMF2AJd8232pfdsBXPbtv5zaRwghpIhEljpARI4DaPXv\nAqAA/oeq/nC1BCOEELJ2iKrmfxKRpwD8d1V9PrV9DICq6pdS248BeADABQBPqeqh1P67AbxXVf/b\nAufNXzhCCNmEqGq6+35RlhwZ5ID/ix8F8C0R+TLMDbQXwLOqqiIyJiJHATwH4L8A+N8LnTDXiyGE\nELIy8k0tvVNELgF4J4AfichPAEBVTwB4GMAJAD8G8En1hiCfAvB1AKcB9KrqY/nIQAghJH8K4iYi\nhBCyvim5GcgrmchWLETkNhF5PTWB7nPFlschIl8XkQERedm3r0FEHheRUyLyUxGpL6aMKZk6RORJ\nEXlNRF4Rkc+UmqwiUiEiz4jICykZHyg1Gf2ISEhEnheRR1PbJSeniJwXkZdSbfpsCctZLyL/lNI3\nr4nIO0pNThHZn2rH51P/x0TkMyuRs+SMAVY2kW3NEZEQgL8B8CEANwD4IxE5WCx50vgGTC4/xwA8\noaoHADwJ4P41lyqTOIDPquoNAN4F4FOpNiwZWVV1DsD7VPVtAG4CcHsq5lUyMqZxH8w96yhFOZMA\nulX1bap6NLWvFOX8CoAfpxJejgB4HSUmp6qeTrXjzQB+A8AUgO9jJXKqakn+AXgKwM2+7WMAPufb\n/gmAdxRRvncC+MlC8hX7D0AXgJd9268DaE293gbg9WLLmEXmHwD4YKnKCiAK4NcA3l6KMgLoAHAc\nQDeAR0v1dwdwDsDWtH0lJSeAOgBns+wvKTnTZLsVwL+tVM5SHBksxEIT2YpFujylPoGuRVUHAEBV\n+wG0FFmeACKyE9bz/hXsJi4ZWVOulxcA9AM4rjaDvqRkTPFlAH8GmwfkKEU5FcBxEXlORD6R2ldq\ncu4CMCgi30i5YP5WRKIoPTn9/CGAf0i9zlnOQqaWLhtOZCsJSiZzQERqAPwzgPtUdTLL/JKiyqqq\nSQBvE5E6AN8XkRuyyFRUGUXkdwEMqOqLItK9yKGl8LvfoqpXRaQZwOMicgol1p4w3XgzgE+p6q9T\nafLHUHpyAgBEpAzARwC42GXOchbFGKjq76zgY30Advi2O1L7ikUfgE7fdrHlWYoBEWlV1YFUjahr\nxRYIAEQkAjMEf6+qj6R2l6SsqjouIj0AbkPpyXgLgI+IyIcBVAGoFZG/B9BfYnJCVa+m/l8XkR8A\nOIrSa8/LAC6p6q9T29+FGYNSk9NxO4B/V9XB1HbOcpa6myh9ItvdIlIuIruQmshWHLEA2KS5vSLS\nJSLlAO5OyVgqCDLb72Op1x8F8Ej6B4rE3wE4oapf8e0rGVlFpMllYohIFYDfAXASJSQjAKjq51W1\nU1V3w+7FJ1X1HgA/RAnJKSLR1EgQIlIN83O/gtJrzwEAl0Rkf2rXBwC8hhKT08cfAfi2bzt3OYsd\n9MgSBLkT5oufAXAVwSDt/QDOwB7GW0tA1tsAnIJVZT1WbHl8cv0DgCsA5gBcBPBxAA0AnkjJ+ziA\nLSUg5y0AEgBeBPACgOdTbdpYKrICuDEl14sAXoa5MlFKMmaR+b3wAsglJSfMF+9+71fcc1NqcqZk\nOgLr9L0I4HsA6ktUziiA67CK0G5fznJy0hkhhJCSdxMRQghZA2gMCCGE0BgQQgihMSCEEAIaA0II\nIaAxIIQQAhoDQgghoDEghBAC4P8DOqqUeTVxGSkAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2944,7 +2952,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2958,7 +2966,7 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 16, "metadata": { "collapsed": false }, @@ -2967,7 +2975,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEACAYAAACwB81wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlwZNd13r/TaKCx7zswAGY4nI2kKDESJZtyCbYcifIi\nKZWIoSthJDGqVEVWpIrilIdKpUj94dhKlctWKlEqLtkqyqWYpiy7SFsORdEk7CiiSGrnaMiZ4cwA\ng2UADPYdvd38cfrwvgYae2N9368Khe7Xr9+77/Z73z333HPPFeccCCGEHH0i+10AQgghewMFnxBC\nQgIFnxBCQgIFnxBCQgIFnxBCQgIFnxBCQkJeBF9EqkTk6yLymoj8TETeKSI1IvKsiFwSkW+JSFVg\n/0dE5Epm//flowyEEELWJ18W/hcB/K1z7iyAuwG8DuA8gOecc6cBPA/gEQAQkXMAHgBwFsAHAHxJ\nRCRP5SCEELIGOxZ8EakE8AvOua8AgHMu6ZybBvAhAI9ndnscwIczrz8I4InMfr0ArgC4d6flIIQQ\nsj75sPCPAxgTka+IyA9F5I9EpBRAk3NuBACcc8MAGjP7twHoD3x/MLONEELILpIPwY8CuAfA/3DO\n3QNgHurOWZmzgTkcCCFkH4nm4RgDAPqdc9/PvP8GVPBHRKTJOTciIs0ARjOfDwI4Fvh+e2bbKkSE\njQQhhGwD59yqsdEdW/gZt02/iJzKbHovgJ8BeBrAxzLbPgrgqczrpwE8KCJFInIcwEkAL69z/H39\ne/TRR/e9DAflj3XBumBdHI66WIt8WPgA8GkAXxORQgDXAHwcQAGAJ0XkYQB90MgcOOcuisiTAC4C\nSAD4pFuvhIQQQvJCXgTfOfcTAO/I8dEvr7H/7wL43XycmxBCyObgTNsN6O7u3u8iHBhYFx7WhYd1\n4TnodSEH2ZsiIvT2EELIFhERuByDtvny4RNCyK7R1dWFvr6+/S7GgaOzsxO9vb2b3p8WPiHkwJOx\nWPe7GAeOteplLQufPnxCCAkJFHxCCAkJFHxCCAkJFHxCCAkJFHxCCNkBXV1dKC0tRWVlJSoqKlBZ\nWYnh4eH9LlZOGJZJCDnSTE0B8/NAWRlQXZ3/44sIvvnNb+IXf/EXt32MdDqNSGT37W9a+ISQQ0sq\nBYyNAaOjQCKx+vPeXuDqVWB4WP/vVij/ytBI5xw+8pGPoKWlBbW1tfilX/olvP76629+/tBDD+FT\nn/oUPvCBD6CiogLf+c53sLy8jM9+9rPo6OhAS0sLPvWpTyEej+e1nBR8QsihJJEALl5UEe/vBy5c\nABYW/OfLy8D4ePZ3xsaAoIY6BwwMAD/5iX7/1q38le/Xf/3XcfXqVQwPD+POO+/EQw89lPX5n/3Z\nn+Hzn/88Zmdn8a53vQu/9Vu/hb6+Ply4cAFXrlxBb28vfud3fid/BQInXhFCDgG5JhgNDQE3b2bv\nV10N3Habvp6fBwJG9ZucPQuUlurrmzf1OEFuvx2orNx82Y4fP47x8XFEo+oh7+7uxl/+5V9m7TM2\nNobGxkbMz8+jpKQEDz30EGKxGL785S8D0B5BaWkpLl++jGPHdLmQ73znO3j44Ydx+fLlNc+91YlX\n9OETQg4lubwdwW2lpUAsppa+UVzsxR4AJidXH2NycmuCDwBPPfVUlg8/nU7j/Pnz+MY3voHx8XGI\nCEQEY2Njbwq6/QeA4eFhLC8v4+677846Rr79+hR8QsihpLp6tcsmOCgrApw8qe6ehQUdtD12LHv/\nwkJgcTF7W1HR1suy0sr+6le/imeeeQY9PT04duwYxsfH0dDQkLWfiDfAm5qaEIvFcOnSJTQ0NGy9\nAJuEPnxCyKGkuhpob1fRLigAmpqA5ubsfYqL1UVz990q/rFY9uctLUDQiC4qAurrd1622dlZxGIx\n1NTUYH5+Hp/73OeyBH4lkUgEn/jEJ/CZz3wGY2NjAICBgQF8+9vf3nlhgufJ69EIIWQPaWoC3vIW\n4K1vVfFfR1NzUl4OnDsHtLUBHR36urBwa8fIJeQf//jH0dLSgtbWVtx1111497vfveF3fv/3fx+d\nnZ249957UV1djfvvvx9vvPHG1gqzUVkP8qAoB20JIQCzZa4Fs2USQgjJCQWfEEJCAgWfhIpUClha\n0gk3gL5Opfa3TITsFQzLJKFhdBQYHATSaf1zTqM7IhGN1lgZ4UHIUYMWPgkFy8saj51O6/sbNzTP\nCqDbBgezp+UTchTJi+CLSK+I/EREfiQiL2e21YjIsyJySUS+JSJVgf0fEZErIvKaiLwvH2UgZD3m\n5/1r53SyTTwOJJN++9zc3peLkL0kXy6dNIBu51xwovJ5AM855/6riPw2gEcAnBeRcwAeAHAWQDuA\n50TkdsZfkt2kpMS/FtEJOOk0EA08AcEp9+Rg0dnZue7EpbDS2dm5pf3zJfiC1b2FDwF4T+b14wB6\noI3ABwE84ZxLAugVkSsA7gXwUp7KQsgqSkrUR2/rUrS1ZQ/WNjToJBxyMOk1/xvZEfkSfAfg2yKS\nAvC/nHNfBtDknBsBAOfcsIg0ZvZtA/Bi4LuDmW2E7CptbSrsS0uaV0VE3Tix2Oop94QcRfIl+Pc5\n526KSAOAZ0XkErQRCLItl81jjz325uvu7m50d3dvt4yEoKgoOznWVrMiEnIQ6enpQU9Pz4b75T21\ngog8CmAOwCegfv0REWkG8IJz7qyInAfgnHNfyOz/DIBHnXOrXDpMrUAIIVtn11IriEipiJRnXpcB\neB+AVwE8DeBjmd0+CuCpzOunATwoIkUichzASQAv77QchBBC1icfLp0mAH8lIi5zvK85554Vke8D\neFJEHgbQB43MgXPuoog8CeAigASAT9KMJ4SQ3YfZMgkh5IjBbJmEEBJyKPiEEBISKPiEEBISKPiE\nEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBIS\nKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiE\nEBIS8ib4IhIRkR+KyNOZ9zUi8qyIXBKRb4lIVWDfR0Tkioi8JiLvy1cZCCGErE0+LfzPALgYeH8e\nwHPOudMAngfwCACIyDkADwA4C+ADAL4kIpLHchBCCMlBXgRfRNoB/AqALwc2fwjA45nXjwP4cOb1\nBwE84ZxLOud6AVwBcG8+ykEIIWRt8mXh/wGA/wjABbY1OedGAMA5NwygMbO9DUB/YL/BzDZCCCG7\nSHSnBxCRXwUw4pz7sYh0r7OrW+ezNXnsscfefN3d3Y3u7vVOQQgh4aOnpwc9PT0b7ifObUuH/QFE\n/guAfwkgCaAEQAWAvwLwdgDdzrkREWkG8IJz7qyInAfgnHNfyHz/GQCPOudeynFst9PyEUJI2BAR\nOOdWjY3u2KXjnPucc67DOXcCwIMAnnfOPQTgrwF8LLPbRwE8lXn9NIAHRaRIRI4DOAng5Z2WgxBC\nyPrs2KWzDr8H4EkReRhAHzQyB865iyLyJDSiJwHgkzTjCSFk99mxS2c3oUuHEEK2zq65dAghhBwO\nKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiE\nEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBIS\nKPiEEBISKPiEEBISKPiEEBISdiz4IhITkZdE5Eci8qqIPJrZXiMiz4rIJRH5lohUBb7ziIhcEZHX\nROR9Oy0DIYSQjRHn3M4PIlLqnFsQkQIA/w/ApwH8UwDjzrn/KiK/DaDGOXdeRM4B+BqAdwBoB/Ac\ngNtdjoKISK7NhBBC1kFE4JyTldvz4tJxzi1kXsYARAE4AB8C8Hhm++MAPpx5/UEATzjnks65XgBX\nANybj3IQQghZm7wIvohERORHAIYBfNs59wqAJufcCAA454YBNGZ2bwPQH/j6YGYbIYSQXSSaj4M4\n59IA3iYilQD+SkTugFr5Wbtt59iPPfbYm6+7u7vR3d29zVISQsjRpKenBz09PRvulxcfftYBRf4z\ngAUAnwDQ7ZwbEZFmAC84586KyHkAzjn3hcz+zwB41Dn3Uo5j0YdPCCFbZNd8+CJSbxE4IlIC4B8D\neA3A0wA+ltntowCeyrx+GsCDIlIkIscBnATw8k7LQQghZH3y4dJpAfC4iESgDcifO+f+VkS+B+BJ\nEXkYQB+ABwDAOXdRRJ4EcBFAAsAnacYTQsjuk3eXTj6hS4cQQrbOroZlEkIIOfhQ8AkhJCRQ8Akh\nJCRQ8AkhJCTkZeIVOXpMTQGTk0A0CjQ2ArHYfpeIHAVSKeDWLWBhASgvBxoaAFk1tEh2C0bpkFWM\njgL9geQX0Shw7hxQWLh/ZSJHg0uXgLk5/76mBjhxYv/Kc1RhlA7ZNKOj2e+TSWBiYn/KQo4OCwvZ\nYg9oLzIe35/yhBEKPllFrk4VO1pkp6TTubfz3to7KPhkFfX12e8jEaC2dn/KQo4O5eVASUn2tooK\njg/tJfThk5yMjmp3u7AQaG4GSku39v1UChgZAebn9btNTToWQMJNIgHcvOkHbVtagIKC/S7V0WMt\nHz4Fn+wKV64AMzP+fVkZcObM/pWHkDDBQVuyZywvZ4s9oJb+wkLu/QkhewMFnxBCQgIFn+SdWAyo\nrMzeVla29XEAQkh+oQ+f7Arp9OpBWw7OEbI3cNCWEEJCAgdtCSEk5FDwCSEkJFDwCSEkJFDwCSEk\nJFDwyb6TSmkWxWRyv0tCyNGG2U3IvjI1BVy/rmGcIkB7uy64QgjJP7Twyb7hHNDX59PmOgcMDDA/\nOiG7xY4FX0TaReR5EfmZiLwqIp/ObK8RkWdF5JKIfEtEqgLfeURErojIayLyvp2WgRxO4vHVbhzn\ngMXF/SkPIUedfFj4SQCfdc7dAeDnAPymiJwBcB7Ac8650wCeB/AIAIjIOQAPADgL4AMAviTCVS3D\nSFHR6mUTRZiCgZDdYseC75wbds79OPN6DsBrANoBfAjA45ndHgfw4czrDwJ4wjmXdM71ArgC4N6d\nloMcPkSAri6fJz8SATo6uHYuIbtFXgdtRaQLwFsBfA9Ak3NuBNBGQURsKK4NwIuBrw1mtpEQUlkJ\n3HUXsLSkSdeYb4eQ3SNvgi8i5QD+AsBnnHNzIrIyCc62kuI89thjb77u7u5Gd3f3dotIDiiRCN04\nhOyEnp4e9PT0bLhfXpKniUgUwN8A+D/OuS9mtr0GoNs5NyIizQBecM6dFZHzAJxz7guZ/Z4B8Khz\n7qUcx2XyNEII2SK7nTztTwBcNLHP8DSAj2VefxTAU4HtD4pIkYgcB3ASwMt5KgchhJA12LGFLyL3\nAfgHAK9C3TYOwOegIv4kgGMA+gA84JybynznEQD/GkAC6gJ6do1j08InhJAtwnz4hBASEpgPnxBC\nQg4FnxBCQgIFnxBCQgIFnxBCQgIFnxBCQgIFnxBCQgIFnxBCQgJXvNok6bTmbi8q2u+SkN0mkQCG\nhzUvf0UF0NSk+X4IOexQ8DfB8DBw86aKfmkpcOKEZnYkRw/ngMuXNXsnAMzOqvCfOLG/5SIkH9Bu\n2YD5eWBw0C/Dt7AA3Lixv2Uiu8fsrBd7Y3KSC6yTowEFfwPm5lZvm53d+3KQvYFrr5GjDAV/A4qL\nV28rKdn7cpC9obx89e9bW+tX5SLkMMPkaZvg+nVgYkJfFxQAJ0+qMBAlnVbL+KhYx8kkMDLiB20b\nG4/OtZFwwGyZO2RhQaM3ysu5DJ+RSgG9vcDUlNZJc7P+kd1ncVFdi6WlND7IatYSfHZUNwmX4FvN\nwICKPaDiPzio9VRZub/lOuqMjGjdG/X1QGfn/pWHHB7owyfbZmZmc9tI/kingaGh7G1jY6sjiwjJ\nBQWfbJtccxE4P2F3SSR8iHCQ5eW9Lws5fFDwDxnpdO4Hfj9oa8sezygrA+rq9q882yGV0slWh4VY\nbHXkWEEB/fhkc3DQ9pDgHNDfr913QIW1o2P/o0eSSWB6WsMWKyv3vzybJR7X6Ku5OS17W5v6wg8D\nS0s6WD4/r+Lf0aHRRIQYjNI55IyOquAHaW/XPC9k61y+vHoC3R135J53cVBx7vA0sGRvYZTOIWet\nAdKdCr75hMPke3cu92zpmZmDLfjJpP5ZGfdC7OfnNSJoaUl7cO3tQGHh7p+X7A4U/ENCLkHeiTg5\nB/T1AePj+r6sTGeU2lyDqqrtH/ugI6L1uXKg8yCL/eCghmM6pzOBb7tt9xvpVAq4ckX/Azr5MJEA\nTp3a3fOS3YOCf0hoblZfuYlUUdHOrPvxcS/2AHDpkvqybeJUYyNw7Nj2j3/QOXYMuHrVD9hWVx/c\n+QOzs5qx1ZifB77/faChQcW/uXl3rO6ZGS/2wbKkUpx8eFjJi+CLyB8D+DUAI865t2S21QD4cwCd\nAHoBPOCcm8589giAhwEkAXzGOfdsPspxlCksBM6d866dysqd5WgPJoVbWtIHOWgx3roFtLQc3Rwy\nVVXAXXdpfcZiBzvKZWUCv6Eh3VZcrL/bzIzeG/l28eT67QsKuDbAYSZfP91XALx/xbbzAJ5zzp0G\n8DyARwBARM4BeADAWQAfAPAlEQ49bYZIRC3R6uqdP3TBmcNmxQVdGs6ttu6OGoWFGu10kMUeyP6t\nkkkV+eBvtbSUO6vrTqmoWB3909zMgeLDTF4E3zn3HQCTKzZ/CMDjmdePA/hw5vUHATzhnEs653oB\nXAFwbz7KQTZPfb1/mEtL1TXQ0OA/Ly0N10DuQaaqSsdXDMtbFGS3RPj224Hjx7W3d+oUcyUddnaz\nw97onBsBAOfcsIg0Zra3AXgxsN9gZhvZQyIRfYAXFtSSP3dOBwYXFtTiPcr++8OIiW48rr2S6Wn/\n2W4mUBPJbmzI4WYvPbTbCqh/7LHH3nzd3d2N7u7uPBWHANnugttv373zjIzoIHFBgQ42V1fv3rl2\ninOaFM7SI+djUtP0tA62lpVtPwIqElG/+okTOsYyO6s9M87FID09Pejp6dlwv7xNvBKRTgB/HRi0\nfQ1At3NuRESaAbzgnDsrIucBOOfcFzL7PQPgUefcSzmOyYlXR4CV2R0B4MwZFb+DyNWrPgsoALS2\nqnW9Xfr6/AxpQF1nHR1bO8aNGyrygEZonTzJhXjI2qw18Sqf4+2S+TOeBvCxzOuPAngqsP1BESkS\nkeMATgJ4OY/lIAeMYPinYQvKHDQWFrLFHtCQyO3mL4rHs8UeAG7eVPfZ5OTm8vjMzHixt2OunHVN\nyGbIV1jm/wbQDaBORG4AeBTA7wH4uog8DKAPGpkD59xFEXkSwEUACQCfPCpmfDyuluzcnFpf7e20\nwtaK2c61zfIFjY+r77ipaWeW9XZIJFZvS6c1OqaoaOfHW1hQa91mzJaU6FhKJLJ25NX8/Oa2Bc+Z\nSOixdzuixhpChmoeDphLJ4+89po+0EZhIXDnnUfvYZid1essK1t7sHB+XhN8LS1pQ5hIeBdONAqc\nPesFNJXS/aemsi1ZQP3VNTX5v4ZkUhuX6WktR1ub+tbTaeDVV/Vzo6xMXVDbwTngwgWtA0DdO4mE\numQAbdyiUT13VRXQ1eXj353Tepmb0x5BkIqK3DNegzNyV7p+kkntVYhone508tTAgP5ezunAbkfH\n0bvXDyvMpbPLLC9niz2gD/bc3MGdwbmSZFIFuqRkbTHo71cL1a6ro0PFMohz6gdfWtJ6KSrSxq++\n3v83sZ+c1IYhndb/5eXZWSunpjYn+PG4/pWWbk50+vq862ZxUct7551eJAcG/KDtTiKWRHQwvL9f\nxbuoyIc2zs9rUrzaWhX76Wk9b1eX1tuVK35m9dycv7aiotxlmpvLnpEbj+t1njmjv8WlS74hGxrS\n7dvptQDaUI2MZL8vKtLxDnJwoeDniYICfbhXdkgOy0zVW7dUlJxTUenqWi208Tjwyivak0mndb9z\n54Bf+7Xsqf1LS+q3vnnTZ3RsblZhC0a8pNPaeJhbIBrVclRV+eNtZi7A4KAXumhU88ysF6boXHZY\nY3BbQ4Na9KdPb3zezVJc7COgamt9L8bcMsGy2kzqoaHsXD/l5VqH1dUq/LlcNeu5foaHs3stiYQK\n9nYbs5X1Z2XfD8G3XlBpKdNEbwQ7YHkiGtX8M0Hs4TzoJBJe7AEV4L6+1QOV8/Ne7G2/ixdXC01B\ngXcrAPp/eHh1ryGRyBah+nptREzoYjEV4PUGTBcWsq3aZFLLvh4iuRvivcgC2d6uoi/iQyqD0UrW\nwK3sLQJ6bWVla/vlc0U92f1nLqUgubZtllyJ5vYj+dzQEPD669ozunxZDQiyNofE/jwctLerhWGD\ntrvhe94NFhdX90xSKRWElVP4V4pNUKCNZDLbkgX0/cpUDebqsYHN4mJ1p3R06PZ0WhuYRELdR11d\nq0U5l1W7tOR7IGvR1qYuJGMn8fFbIRLRSVRdXVrnV674tAgFBd49Vl6+ep3ajSZXlZer0TE6qu8L\nC/3i5tXVq1NC72QuRGOjuuOsjIWFez/AnkxmN/aA3nNNTZwlvhYU/Dxjg2+HCXMRBEU/Gl390NTV\naZd9dFRFPhZTN4Mta3jrlrpx4nF9GM0XXVys51jZ2xFR8bt+XUW9oEC/U1enjdDFi37fmRm13G2w\n08glgiUlG/vx6+p0v+lpvY6amr3NESOif6dPa50tL2vdmk+9rS07R05d3dozXtNpvQ4RvyhOPJ7d\nG2hoyA4RbWzc2XKU0ai686an9b6pqtregO38vDYc0aj28LbiAk0kcoe1xuMU/LVglA4BoELQ36/i\nUVCgQpyr4bp6VVPzJhJq1d17r+47N6eDgoZF8jQ1qRB0dKwtMM6puMViXjRyTdYSAe65Z/X3b970\n4wWFherDP6iTuoLY4Lb5w6NR9fUHG8blZa2TtdxNS0vqygj2kk6fPhxjRxMT2tgbRUXaiGwleujC\nheweZjSqWVDDHi3EKB2yLvX1auWaRb7WA3PbbeommJpSl4AJy8pBvIoK/fzUKRXyVEpFPBLR96Oj\nKlLV1dpLsNDBsTH9m5vTv+AgXNBqGxzUHoWIiuH4uJapq+vwWHeTk9n1lkzqdQVTXNi1TE6qvzqR\n0Ia4tFR7QaOjWgf2ey0t+dTWB52V7ph4XH/HlWNh63HbbT5qrLSUoaEbQcEnb1JQ4K3LsTEVmcJC\ntdKDE8is+x0kV3hfSYkeb25OfdXptArWjRvaaESj+tnQkAr74qIKljUik5O+TOauAFTkLCd8IqE9\njpoaPcalS9povfvdW7v28XG1lFMpdRttJyvk9LReW0lJdjz9Wiwurt42NaV1b9lKbdGbwUHvnvnZ\nz7R30NrqZ9x2dfljrPT9G86pa0xE62q/0xwHB+yNrabkLinJb0TVUYeCT1YxPJw90WdqSrva68Vs\n19WpUFl0SSTiQ/Ru3vSRNtPTaslNTWmjMTSk3zl1ysfjnzihYtTR4ccJKiv9+UdHgR/8QBuEsTE9\n1unTvjfQ1wf8/M9v3tIbHweefdaLTV8f8J73+AZmM9y4Afzf/+t9yhcvAr/yK+uL/srxh7ExFetI\nRP8vLKjffmxMhbqz04ePmliXlenni4u+Uc417yMe1wbN3B8HwfVTW5sdy28TwnbCwoJP0hec70EU\nCv4mSKVUtObn1fLazZWglpf9IF5VlVrX9nBPT/vIl4aGtQeHZ2ZUFJ3zrpqtsHK2ayql/tb1rN5I\nRCfyTE2p5VZd7f3OwfQC5p+1BblnZ/1+kYgKwPKyilddnXbvV/Yment9GW3AcmLCNzBb/W0uXcq2\nLJ3TbVsR/J/8JHsAcWYGeOON9WfoVlVpnY6MaB3Nz/sonbExrZuKCr2e5WWt26oqP1YBaB3F4z4q\nqaEh91jJ8HC2r3tpSc+7ctLcXtLWpve29SRbWnYW2jk9nb1s5a1b2TO6CQV/U1y96kPazLd89mz+\nz5NKaUyxdXXn5vRh7ujwAmJMT6vrYaXom/vEmJnJT3qCzXT/17LQqqvVAk2nVcDGx7OtWxOoggIV\nbntABweBO+7Ifa5IRI9XXa0PdjBW//bbt+bHzRXnv1XXQi43Si6XzUra2lT05+ayGyoT53hcLfbJ\nSX0djWrdWUhlJKK/79mz+nqt3ylX+dZy/ewVInr9+Wp0gnM/AH2Obt3a30btoEHB3wBb73VuTi2s\nykq1xnp7VbxqarY3SLSw4JeqM9E26zjI2JjOhlyZcdE+Wyn4Y2MqVrOzevNXVOg2E+KlJZ8/pro6\nt0A0NmZHyBQU7GwRjMZG4No19TcXFKggNzdrPRYX+2tOJPwMXxEtX64JSI2Nan3Pz+t+ra36u7S3\n6+vjxzdXrulp/Ssv9zOCjZXhnxvR1qbXaIhsfhZrQYF3WVlIa3m53g8WYtrZqQ1jaan2GiYm/HyP\n1taNI1sqKlbH4edjVqrN4TgIEwxzNdJHfZnOrULB3wARtZh/8hM/M7G2FujuVrG6eVMfwK24EVaG\nHNqkHxP84LFMhHIJc65tiYQKj4no6KgPUZyc1DA4s4IshcDK4zQ1+cHVkhIV6J3MQr1502eFBLxA\nVFerKI6Oqng1NmZ3v6PR3I3pHXeo9T815ccK3v/+rbkDVo5TtLSopZ9Oq9ifOLG1a3zHO/S7g4Na\njjvvXO2KCpJIaNlNqEX0+r/3PW8IdHX5lB0tLdlpC7YadtrUpI39xIQer64ue0lLwPcgNmPApNPa\n47RGpLRU620vZiuvRW3tagNhJ3MNjiIU/A0Q0VhfS7Q1NaUuife8R98vL6sFvdmojnRaBdBYWlI3\nTmenDlDeuKGWqglfY6OWoaEhO3+6bctF0KoxEQNUjMw3bAt4T06utt4nJ7VRisV8UrMzZ7afXdHy\nw6zcZouxW93V1QF///faAJiQnzu3+rvOeX+vLcG31ekawcFCQHsVx49vvydTWKiRQem0n1SVi2RS\nXYRzc17k29t9+onSUj1GWZle31ve4kV/J9gMX1t4JfhbLi6qkbC05Gf7rnVvGaOj2T2G+Xm9jysr\n929h+Kb8E8GxAAAYb0lEQVQmdeFcu6a/x7lzh2M+xl5Cwd+A8XG9ecrLfY7xwkIVzrY2FfzLl1Uk\nKyv1YZ2a0u5yW9tqiyeV8oKcTOpxbOJRUZEKwNCQni+40lJ5uVrjNlhZX5/7obLZqpOT3sdtsdwW\nuw7oQz43pw3NSpELNkiAtww3EoG1KC5e7S9OJPSYlZU++dXwsF9aENDXQ0N6DZWVvi5HR/W1xWun\n0yo29fXejbXRzM9cXf3ZWf0NgvXqnJ5vakrPWVWlZU2lVNhWutQ2so5tvQQ79siIni8W04bVRNTq\n5Pbbt+Z6Saf1no3Htd5WCp4JfTqt9W9BAnNzes7CQj9uYPdNPK6/X1mZ//5KS/rSJT1Oc7Me4+1v\n1xj5vcQG/IMD33vV+Fj01E5mHe8FFPwNqKzMnuIejerNPjSkIjA7q933mRngRz9SP3U0qiJ3993A\nffdlW2eFhfrQXL6sD5LdpOm0HnNyUkW4vl63//CH+uAWF6sFE4y3zkV1tR4jOPHGBvgsWiaV8lZo\nrgHLXIuA5IqZ3iytrVp/lotnfFzLYPnvLeb8+9/XfaqqdL/+fhXbEyd8KmYRFZbCQi/aQ0P6oF28\nqP+bmlR4Tp9WAbceRmWlD9urrNTwS3M3JRJa3yMjKmynTuk5hoZ8psl4HPi7v/MZRVtbgZ/7OT8+\nkkjovsXF+vslk1pGczUlEnq/pNO63/S0n4twxx3+HjMWFrTswfkRa2E9hhs3vBgPD/t7yYjHtfzX\nr6vAp1LAy5n15iy30fS09gYaGrIzkdoAcVWV1pHl0pmZ0eNZw5RIaFbVoiI/AS+Ic1o3hYX6em5O\nX+80+VquVdQmJnZf8BMJP/8D0Ou2e++gQcHfgNlZvfkvXtQfNB7XG2hiQq21VErFqqhI47ALC9XC\nWFgAvvtdbQxyJakKJg2zgS97wM09MTLiY8xFfDz8etZDba1vSCws0yzhhgYVOQuDW2td1Npan4AL\n8AOoW2VmRh/mWEwf5vFxb70XFGjdDQ6qwDQ2+tWumptVEG7c0DKaoLz6qtaFrRpVU6OvR0a0/hMJ\n/Z9K6TUMDmr33gRreNiL4fS01oPVeVWVTsm3MNCyMm1cb97UxnliQs9z44aWr7xcP4vFgPe+V63J\nnh7fqEUiWnaLJioo0N/jjTf0eKOjfrzm3Dk97uKilsn8++Xlet3Dw9pA3Xbb6t8+kdDj2WD85GT2\nbNOhId/4fPe7WscLC1oeS0EwPq4Nr7kPLTBhcTF7Nqyls77zTq3fn/5U68Qm6ZmRMTurz8vcnB+L\nsIlw09N+EZig8APerbZd99VmV1bLN2a0GfG41ttW1y3eCyj4GzA9rZa6ZX8cGFBrq6pKhWVoSB+Y\nmhrdNyigy8v6naBYJhL6PbsZbODXltAzwbZJRUGX0PKy932vR3Nz7jEFC4ssKlKhSSSy0xAkk/qQ\n23eD8dFbXarRrHPArwnb2qrnNLdSNKrXbg94QYG3pm3ikbkobtzQbTU1Kr6W2gHQMptwxOP6m7S3\nq9jbnIS5ORWh5mYtx49/rMdvbfVWf329lsXGUrq6dMD+6lU9z9Wr+psEXWDXrqng/+AH3m01O+t7\nLq2teozycjUERka0fDbr2HqJFRV+Nar6ei13MFvpzIyWcaVbbWjInzeV8o2GDVZaz+zCBZ862LJM\nlperwDqn5bFIJXufK6w0HtfzjI9rPZjrcX5eryMW0zqxFBqAuqpsoZxr13yvsr9f7+mTJ308fk3N\n9kOIm5r0dzaDKRrdvhtyKxzEkNe1oOBvQHGx3pjXr3t3xMSE3rSzs/q+uFhvMueyI2xisdX+8WhU\n/+xBLC5W4Tp+XIX4pZe8xdDfr/HVJogzMyoeVVV6I2/1wbBJSrduadnOnFGxq6xUURwYyF4AZbuL\nYwRFHVAxWFjw1m5vr/rcS0v1tYVROqdlqanR+rl2TY9TUKBiZXW5vOwHPAHdx+rT0jOYdX/tmlrr\nlo6huFhFf3bWr5IFeBdTQ4O+NlEKDkzGYlrGYB55c2MEc+IEV6myVM0mnsvLeo7FRZ/VcWFBX9fV\n+c9t4HZx0btzcoWoBrdVVOh1BsXG7pHgILWlqpiY0N+5osIbMeZaKSzMPeBZXOzdmoDes5b0rL/f\nuwlvvz3bUrcGOuhCXFrSurb8TXY92xX8qiofshqJ7N1M28rK1bmkDuoqdxT8DSgoUOtocVFvnsVF\n744oKNAbeGFBf3AbsCor033PnFkdFmbx2b29Kh51dbpvcbEKY1mZCub0tN7AJi5zc/owl5erCM3O\nahd/K66WGzf84GM6rY3H29+u5zOxB3zInaU2EFHBSKXU0o/H/Zq2x45l+6hv3dKyTkxoGRcXvWsq\nmdSH+/p1vQ6zYBcXfUx9U5OKz9iY7j8z41MZ2+ImtlSg+Zxrarx7ZmJCy1RXp9cwP6/XZb+Vncf8\n9ktL/vOKChWKigrfA6ur82vLnjzpZwjPzOg1dHZ6y9RE1USmtta7mmZmvLjZddrgqjVyNmhqczPS\n6WwDIpcvurzci29hofZszI1RX+9nC1dW6m9jLqfmZj2nhZAuL/vAAZvFHYtpPQwMaFmKirSBSCT0\nN5qc9OXo6FAXUV2dH0cK0ti42kdveZaCvdid+ttzpeHebRoa/CpvgNZBU9PelmGzUPA34MIF75NN\npbx/uaZGH4iKCv0rL/cTsU6d0v2Cs3EXF32u+Opqfchs4kxxsQq8+YgLC/WmNWuyrEwf6s7ObB/u\njRtaloqKzWWINLExH3FhoZZhcVH/Llzwg1yW3iAW8yFuIuq3LSrS8pWU6H533qnl+PrXdRxjcVHP\ncfy4is/UlLpDXn9dG4FkUr8Ti/nB7okJP5loedlbtq2tev2trToXor9fy9fUpNcvonXT1uYbJEs3\n4JzuPzurwmnRVsmkCuGNG74n0toKvPWtKlytrV4oT5zQ846P+xDQ1lbfy/vxj7XnUFen1zg6qtd1\n8qSKnPX8Skp0/5YWPWdzs/5u6bSOS1RWqsvJFhq3Hkdvrx8PsB5OPK5lt6gi62nab2oLx1tkVWmp\n3ouvvOIt0dpa4P77tW5PntSyx+O+wRsc1HI3NGhoqI03Xb/ue2tm9AD6Hfu977tPw2snJvyC9eYm\nbGnxUWBNTVpvFnba2KjlsbUWNotzfu3k/YiOsbxPds8c1AgdgIK/LouLfqBRxFvhbW1qzfT1efE3\n//HcXPbAaVub7hPM1zI/rw9Q0GVSXb06SsOyGp4+rQ9AMArBHkh7EG3hkFzYfqWlaq1dvaoP1l13\n6USfCxfUlTQwoNdrYwWAPrAtLX6AzWbIjo2paJ84AfzRH+l3rl71lvzsrB7XYv0jET1nOq3HnpjQ\n+lxe9r2W8XEVFJsAVFys+8ZiPhTSkosNDenxbCaqhcbW1fkIqKEh/X5pqYqK9QrMgm5u9gPux46p\nMB07pr/Z8LAvT3m5HttyBFVU6DFu3dLrKC1VEVtc1HJbDH1xsZ73jju0Iejv95ZwebneN3av2DjE\nzZt6XrsnKiu9xTo7q++tnhcWtD4mJ7UeFhbUhWVzFEZGgBdf1DGG2VmNKLJxlcZGP+YUj+t120xf\nG7MAslN4XLqk57DFamzWdCyWLdA2Wc8av+CEsdZWP0GqvNyHOBcX63X89Kd6r5WVaQ92o4lcMzPa\nKNpymS0tei0bDfxadJDdl/ngIAu9QcFfh95evTELC/UBW1rSB+W++7wfNJn01tvYWHYu7+FhPwC3\nMu57fHy1j7y8XG/Y0VEfztfe7q0fm3i1uKgPcDAKYGDAr5UaZGJChSaZBL79bY3UcE6P/93v+hQC\ntniJ5bOx8yeTaoGbpW8ukuJijUpJJvWzeNynObC6SKVUtOz6i4p842OCaA/+3JyKq00Ks+s0F9n0\ntJatuNg3cubv/sEP9L31GGx94YkJ3dd8wrOzahlfu+bDCFta9DxvvKENVEkJ8M1vetH9wQ+0DPY7\nXr/uJ0fNz+uxx8b0Xhkc1M8iEa3bkRHtlb34ol5nUZEeLxZTq3l6Whuot79d6+36dT1OMqn3QDoN\nvO1tes0TE7pvcXF2qOTVq1ruigotTzyu96dZ1Lbf4mL2JDdAz29uJau/XAI7NqYNjUWm2aIs5sqo\nrPQN7OKi7m+9X0AbscpK766x335xUXt95vKamfEJ1ebn9TrXC0O28NJEwjfub7yhvdHTp9d27cTj\n6s60sY7ycn0O9iKiZ7/ZN8EXkfsB/CF0IfU/ds59Yb/KkotUSkWorMznMUmndYWnd77T71Nd7a27\n+vrVU/JzrQML5N5WVaUPvkUARaO+m1hWpmMClg64qyvbJ2ox30Gfr+X8Md/8pUs+QmdkxHf7i4u9\n0Nq57fpsMNQyMgYXJg/mwAG80FdU+M9SqezP7c/CWS1PEaCiaNdgYXs2c9UailhMj22T1fr7s336\ny8v6Z+MsFlUSifjxFxvYXVjQ38yu06KqXn3Vp36wRqO2Vj+3hqC0VAXGXCgWcWIuiclJbVjM1VNU\n5N05yaQfu7l5U3uK8biKaTBxnkUpAb6RF8nOq3TtmnfDmbXc1+eF3azXsrLVuXRWDgIvL2sjkCse\n3gIWbEA6nfZjFs5lp16+ccOP7xhzc6v98/39/t6w3FLWi7HvrMfSktbX3JzvkTqnxxgY8Kk8VnLz\nZvbA9tycd7MddfZF8EUkAuC/A3gvgCEAr4jIU8651/ejPLkwkWhv95NprKtqWCyzhRsODmYLrsVS\nA95/b+Qa1LE1TsfGfHrk4Gi/rejT0qKiFEwnUFa2Op+PWePBa7Jsi8PDPqLCfPsreyEr0xUE3wcb\nrJUZCk2kLXtjcL3cYJKyggJvzVt9mavAhC94HIsgikSyQweDKz4Fr7WoSB9sc0FYqKBz+pm5RAC/\nFvH0tA87TCT8GIGFdtoksURC6zES0YahqMiL8/Ky1nNBgYqPWZomypGId/0Bes7KSv2LRv3kM3Ox\nlJZqmSwraDCEMpXSY4ro8c1FY3X31rfq6+ZmP+cA0DKbWAYpL9djBn9TG4uoqPCzSQF/b87OZseh\nFxfrcYN5oXKF9QbDPq2RsR7DWt8JEotpHQfF28Jqc0U05TrvetuOIvtl4d8L4Ipzrg8AROQJAB8C\ncGAEv6jIW0e33eZzkK+M641GvXjX1KhFbdEOHR2+m3jmjIqGDdquFXoWiWy8xFthoQ6QDQz4Qd1c\nGSJXWmpnz2pDYeKwuOjdQDbgVVjoJ4VFo15gbNAzKMTB8gD+2lpavB++sFD/B106S0v6MFuESXm5\n1tX8vDaMxcW679SUDwOMRvWc5o93TkXMQk3NTWDJv2Ix7145dcrPbrb8OzYgbXlsSkv1d7Reh/Uy\n7D5oafE5hurrveuro0OPPz+vv31hoR57cVEt3NpaPVZJiRf1hYXslAxVVVoHdXX+nist1f2OH9dr\nMKs+mdRzx2L6nTNn1KIvL9ftb3ubzhu58069NjM4zN9ujUFRkV7LSsFvadFzB1N4mGumvt6PFVg0\nUUlJ7uR7weSAtbW5126wjKBWBzbeYuXbKK1xJKJ1bI2Y5Zcyo2Ytysv191q5LQzsyyLmIvJPAbzf\nOfdvMu//JYB7nXOfXrHfvi5ibt3s2Vm9sdvbNxfyZQ/lXiwhZwtfrMXAgO96z86qH7+/3wuqpXWw\nyBAbzLJBShunsLBGc5MERd6suLo64OGHVSxGRtRPurzs1xCwtBIW/WF5a06f9sfr7/fuJou+sAHz\noKunqUndZ9XV6qq6dMlblPX1WlZroC2V8sCA7/XYYucWJVJXp4Or0aimGrD1Y21Q1o5hIZhLS1q2\njg7gH/0jFeAXXtA6jUZVwG6/3edYsfGXoiLvNpua0sbdooOc0/ESE1TLhTMxofVhLgdbvKSzU7e/\n9JIX7q4u4J//881lrXRO3S/mpqqvX3/Ac2ZG3VPWk6mt9YbG669ni2htrdapNYC5iMfV5269tMZG\n/V4qpffFZp+fZFIbc2uoS0r0t10r0ieV8pPyrKxdXfu/5GM+WWsR8wMv+I8++uib77u7u9Hd3b2X\nRT0SLC3pQ2UuBUu/W1AAvPaaPjBnzvioFHP9XLyo4mbjGQUFKjIdHbrfO96hD8lXv6oP60c+4mPb\nTdD6+rzr6MUX1Vp85zv1f0mJHm9hQV1MloxsZES/Y3ldZma0d7K4qD2Uzk61RGdnffz8zIzPHdPb\nqw1HdbUKdTyun9tAYTzuw/hsu8WcFxaqqC0sqIDduuUtyWD+fAuFLS3Vc5aX6/HGx/W6ior0u4mE\nCqlZ7OaeMZG1QelgorKFBd8DSSR032AqZ8BPdrKxipERfW3pEbaCCfhmokxsrQULzQ1uv3VL67ei\nQn/LzZbDxlx2uoqczZHYbE4eCzTYz5TO+aKnpwc9PT1vvv/85z9/oAT/XQAec87dn3l/HoBbOXC7\n3xZ+WLl1y0/DB/yEHpHtZQK0OHyjoEAFfCux1ltlo57PzZtqxRuxmM9TFLRWLYqlpcUvJt7Z6V11\nuVYdyzeplC5cHkxqd+zYxq4/El4OmoVfAOASdND2JoCXAfyGc+61FftR8PcJc0OYW2SnU9Tn5vzi\n0g0Nuyv2m2Vy0q/+1djoLUyzVpeWvG/c9rOBS0uPvFe+30RCx4AszHS3GxlyuDlQgg+8GZb5Rfiw\nzN/LsQ8FnxBCtsiBE/zNQMEnhJCts5bgH4LJwIQQQvIBBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkIC\nBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8Q\nQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkLCjgRfRP6ZiFwQkZSI\n3LPis0dE5IqIvCYi7wtsv0dEfioil0XkD3dyfkIIIZtnpxb+qwD+CYC/D24UkbMAHgBwFsAHAHxJ\nRCTz8f8E8K+dc6cAnBKR9++wDLtKT0/PfhfhwMC68LAuPKwLz0Gvix0JvnPuknPuCgBZ8dGHADzh\nnEs653oBXAFwr4g0A6hwzr2S2e+rAD68kzLsNgf9B9xLWBce1oWHdeE56HWxWz78NgD9gfeDmW1t\nAAYC2wcy2wghhOwy0Y12EJFvA2gKbgLgAPwn59xf71bBCCGE5Bdxzu38ICIvAPgPzrkfZt6fB+Cc\nc1/IvH8GwKMA+gC84Jw7m9n+IID3OOf+7RrH3XnhCCEkhDjnVrraN7bwt0Dw4E8D+JqI/AHUZXMS\nwMvOOSci0yJyL4BXAPwrAP9tKwUmhBCyPXYalvlhEekH8C4AfyMi/wcAnHMXATwJ4CKAvwXwSee7\nEr8J4I8BXAZwxTn3zE7KQAghZHPkxaVDCCHk4MOZtusgIveLyOuZSWK/vd/l2UtEpF1EnheRn4nI\nqyLy6cz2GhF5VkQuici3RKRqv8u6F4hIRER+KCJPZ96HtR6qROTrmQmVPxORd4a4Lv59ZuLpT0Xk\nayJSdNDrgoK/BiISAfDfAbwfwB0AfkNEzuxvqfaUJIDPOufuAPBzAH4zc/3nATznnDsN4HkAj+xj\nGfeSz0BdlEZY6+GLAP42E3hxN4DXEcK6EJFWAP8OwD3OubdAx0N/Awe8Lij4a3MvdIyhzzmXAPAE\ndEJZKHDODTvnfpx5PQfgNQDt0Dp4PLPb4zjgE+fygYi0A/gVAF8ObA5jPVQC+AXn3FcAIDOxchoh\nrIsMBQDKRCQKoAQ63+hA1wUFf21WTh4L7SQxEekC8FYA3wPQ5JwbAbRRANC4fyXbM/4AwH+Ezj8x\nwlgPxwGMichXMu6tPxKRUoSwLpxzQwB+H8ANqNBPO+eewwGvCwo+WRcRKQfwFwA+k7H0V47yH+lR\nfxH5VQAjmd7OemHCR7oeMkQB3APgfzjn7gEwD3VhhOqeAAARqYZa850AWqGW/r/AAa8LCv7aDALo\nCLxvz2wLDZmu6l8A+FPn3FOZzSMi0pT5vBnA6H6Vb4+4D8AHReQagD8D8Esi8qcAhkNWD4D2cvud\nc9/PvP8GtAEI2z0BAL8M4JpzbsI5lwLwVwB+Hge8Lij4a/MKgJMi0ikiRQAehE4oCxN/AuCic+6L\ngW1PA/hY5vVHATy18ktHCefc55xzHc65E9B74Hnn3EMA/hohqgcAyLgq+kXkVGbTewH8DCG7JzLc\nAPAuESnOZAJ+L3RQ/0DXBePw10FE7odGJUQA/LFz7vf2uUh7hojcB+AfoCmwXebvcwBehk6qOwZN\nlfGAc25qv8q5l4jIe6ApRD4oIrUIYT2IyN3QwetCANcAfBw6eBnGungUagQkAPwIwCcAVOAA1wUF\nnxBCQgJdOoQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhL+P19W\nzfGfDXAJAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2976,7 +2984,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, diff --git a/.ipynb_checkpoints/model_iteration_1-checkpoint.ipynb b/.ipynb_checkpoints/model_iteration_1-checkpoint.ipynb new file mode 100644 index 0000000..d49c375 --- /dev/null +++ b/.ipynb_checkpoints/model_iteration_1-checkpoint.ipynb @@ -0,0 +1,392 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Shivali Chandra
\n", + "First iteration of model for Titanic Kaggle dataset.
\n", + "1/27/16
\n", + "Initial Score: 0.75120
\n", + "Random forests Score: 0.7535
\n", + "Adding more columns Score: 0.7799" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First steps: load libraries used, read from training file and show basic statistics of file" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassAgeSibSpParchFare
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.204208
std257.3538420.4865920.83607114.5264971.1027430.80605749.693429
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.910400
50%446.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%668.5000001.0000003.00000038.0000001.0000000.00000031.000000
max891.0000001.0000003.00000080.0000008.0000006.000000512.329200
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Age SibSp \\\n", + "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", + "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", + "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", + "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", + "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", + "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", + "\n", + " Parch Fare \n", + "count 891.000000 891.000000 \n", + "mean 0.381594 32.204208 \n", + "std 0.806057 49.693429 \n", + "min 0.000000 0.000000 \n", + "25% 0.000000 7.910400 \n", + "50% 0.000000 14.454200 \n", + "75% 0.000000 31.000000 \n", + "max 6.000000 512.329200 " + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "from sklearn.linear_model import LinearRegression, LogisticRegression\n", + "from sklearn.cross_validation import KFold\n", + "from sklearn import cross_validation\n", + "import numpy as np\n", + "\n", + "titanic = pd.read_csv(\"train.csv\")\n", + "titanic.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cleaning code, filling in NaN values and replacing text values with number codes: " + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median())\n", + "\n", + "titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0\n", + "titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1\n", + "\n", + "titanic['Embarked'] = titanic['Embarked'].fillna('S')\n", + "titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0\n", + "titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1\n", + "titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Defining columns used to predict target, generating cross validation folds for the dataset (with random state set to ensure splits are the same every time), initializing predictors and target, training algorithm, and making predictions:" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.78787878787878773" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test = pd.read_csv('test.csv')\n", + "test['Age'] = test['Age'].fillna(titanic['Age'].median())\n", + "\n", + "test.loc[test['Sex'] == 'male', 'Sex'] = 0\n", + "test.loc[test['Sex'] == 'female', 'Sex'] = 1\n", + "\n", + "test['Embarked'] = test['Embarked'].fillna('S')\n", + "test.loc[test['Embarked'] == 'S', 'Embarked'] = 0\n", + "test.loc[test['Embarked'] == 'C', 'Embarked'] = 1\n", + "test.loc[test['Embarked'] == 'Q', 'Embarked'] = 2\n", + "\n", + "test['Fare'] = test['Fare'].fillna(titanic['Fare'].median())\n", + "\n", + "alg = LogisticRegression(random_state=1)\n", + "scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3)\n", + "scores.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.819304152637\n" + ] + } + ], + "source": [ + "from sklearn import cross_validation\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "\n", + "titanic['FamilySize'] = titanic['SibSp'] + titanic['Parch']\n", + "titanic['NameLength'] = titanic['Name'].apply(lambda x: len(x))\n", + "test['FamilySize'] = test['SibSp'] + test['Parch']\n", + "test['NameLength'] = test['Name'].apply(lambda x: len(x))\n", + "\n", + "predictors = [\"Pclass\", \"Sex\", \"Age\", \"SibSp\", \"Parch\", \"Fare\", \"Embarked\"]\n", + "\n", + "# Initialize our algorithm with the default paramters\n", + "# n_estimators is the number of trees we want to make\n", + "# min_samples_split is the minimum number of rows we need to make a split\n", + "# min_samples_leaf is the minimum number of samples we can have at the place where a tree branch ends (the bottom points of the tree)\n", + "alg = RandomForestClassifier(random_state=1, n_estimators=10, min_samples_split=10, min_samples_leaf=5)\n", + "# Compute the accuracy score for all the cross validation folds. (much simpler than what we did before!)\n", + "scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic[\"Survived\"], cv=3)\n", + "\n", + "# Take the mean of the scores (because we have one for each fold)\n", + "print(scores.mean())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']\n", + "\n", + "alg = LinearRegression()\n", + "kf = KFold(titanic.shape[0], n_folds=3, random_state=1)\n", + "scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3)\n", + "scores.mean()\n", + "\n", + "predictions = []\n", + "for train, test in kf:\n", + " train_predictors = (titanic[predictors].iloc[train,:])\n", + " train_target = titanic['Survived'].iloc[train]\n", + " alg.fit(train_predictors, train_target)\n", + " test_predictions = alg.predict(titanic[predictors].iloc[test,:])\n", + " predictions.append(test_predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Concatenating three prediction np arrays into one, and mapping the predictions to outcomes. Then, calculating the accuracy: " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "predictions = np.concatenate(predictions, axis=0)\n", + "\n", + "predictions[predictions > 0.5] = 1\n", + "predictions[predictions <= 0.5] = 0\n", + "\n", + "accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Computing accuracy score for all cross validation folds, and taking mean of scores" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cleaning test data. Filling missing NaN values and replacing text values with number codes: " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generating submission for competition - training algorithm, making predictions, and creating dataframe with the columns needed: " + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "alg.fit(titanic[predictors], titanic['Survived'])\n", + "\n", + "predictions = alg.predict(test[predictors])\n", + "\n", + "submission = pd.DataFrame({\n", + " 'PassengerId': test['PassengerId'],\n", + " 'Survived': predictions\n", + " })" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "submission.to_csv('kaggle.csv', index=False)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/DataExploration.ipynb b/DataExploration.ipynb index 59cdf73..9aa1ad4 100644 --- a/DataExploration.ipynb +++ b/DataExploration.ipynb @@ -11,11 +11,19 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/kiki/anaconda/lib/python2.7/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.\n", + " warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')\n" + ] + }, { "data": { "text/html": [ @@ -1152,7 +1160,7 @@ "[891 rows x 12 columns]" ] }, - "execution_count": 8, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -1172,7 +1180,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -1197,33 +1205,33 @@ " \n", " \n", " count\n", + " 891.000000\n", + " 891.000000\n", + " 891.000000\n", " 714.000000\n", - " 714.000000\n", - " 714.000000\n", - " 714.000000\n", - " 714.000000\n", - " 714.000000\n", - " 714.000000\n", + " 891.000000\n", + " 891.000000\n", + " 891.000000\n", " \n", " \n", " mean\n", - " 448.582633\n", - " 0.406162\n", - " 2.236695\n", + " 446.000000\n", + " 0.383838\n", + " 2.308642\n", " 29.699118\n", - " 0.512605\n", - " 0.431373\n", - " 34.694514\n", + " 0.523008\n", + " 0.381594\n", + " 32.204208\n", " \n", " \n", " std\n", - " 259.119524\n", - " 0.491460\n", - " 0.838250\n", + " 257.353842\n", + " 0.486592\n", + " 0.836071\n", " 14.526497\n", - " 0.929783\n", - " 0.853289\n", - " 52.918930\n", + " 1.102743\n", + " 0.806057\n", + " 49.693429\n", " \n", " \n", " min\n", @@ -1237,33 +1245,33 @@ " \n", " \n", " 25%\n", - " 222.250000\n", + " 223.500000\n", " 0.000000\n", - " 1.000000\n", + " 2.000000\n", " 20.125000\n", " 0.000000\n", " 0.000000\n", - " 8.050000\n", + " 7.910400\n", " \n", " \n", " 50%\n", - " 445.000000\n", + " 446.000000\n", " 0.000000\n", - " 2.000000\n", + " 3.000000\n", " 28.000000\n", " 0.000000\n", " 0.000000\n", - " 15.741700\n", + " 14.454200\n", " \n", " \n", " 75%\n", - " 677.750000\n", + " 668.500000\n", " 1.000000\n", " 3.000000\n", " 38.000000\n", " 1.000000\n", - " 1.000000\n", - " 33.375000\n", + " 0.000000\n", + " 31.000000\n", " \n", " \n", " max\n", @@ -1271,7 +1279,7 @@ " 1.000000\n", " 3.000000\n", " 80.000000\n", - " 5.000000\n", + " 8.000000\n", " 6.000000\n", " 512.329200\n", " \n", @@ -1281,27 +1289,27 @@ ], "text/plain": [ " PassengerId Survived Pclass Age SibSp \\\n", - "count 714.000000 714.000000 714.000000 714.000000 714.000000 \n", - "mean 448.582633 0.406162 2.236695 29.699118 0.512605 \n", - "std 259.119524 0.491460 0.838250 14.526497 0.929783 \n", + "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", + "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", - "25% 222.250000 0.000000 1.000000 20.125000 0.000000 \n", - "50% 445.000000 0.000000 2.000000 28.000000 0.000000 \n", - "75% 677.750000 1.000000 3.000000 38.000000 1.000000 \n", - "max 891.000000 1.000000 3.000000 80.000000 5.000000 \n", + "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", + "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", + "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", "\n", " Parch Fare \n", - "count 714.000000 714.000000 \n", - "mean 0.431373 34.694514 \n", - "std 0.853289 52.918930 \n", + "count 891.000000 891.000000 \n", + "mean 0.381594 32.204208 \n", + "std 0.806057 49.693429 \n", "min 0.000000 0.000000 \n", - "25% 0.000000 8.050000 \n", - "50% 0.000000 15.741700 \n", - "75% 1.000000 33.375000 \n", + "25% 0.000000 7.910400 \n", + "50% 0.000000 14.454200 \n", + "75% 0.000000 31.000000 \n", "max 6.000000 512.329200 " ] }, - "execution_count": 51, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -1321,7 +1329,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -2462,7 +2470,7 @@ "[714 rows x 12 columns]" ] }, - "execution_count": 10, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -2474,7 +2482,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -2511,7 +2519,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -2520,7 +2528,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHEJJREFUeJzt3X+UVXW9//HnCwSFFBrhinwBgTK54L0GWFT++HrUIuWb\nUt27iHSVZqGpePW2Mgf7XhmkBE3NftEP6raor6bUrZjMH6jDkHVL/AGKgTKQg4r8EBER9ArI+/vH\n2UxHmJl9Zpx9zhnm9VjrLPb57M/e533OOszr7M/+pYjAzMysNd3KXYCZmVU+h4WZmaVyWJiZWSqH\nhZmZpXJYmJlZKoeFmZmlKklYSOom6TFJtcnzKkkLJT0t6V5JfQv6TpPUIGmlpPGlqM/MzFpXqi2L\ny4EVBc+rgfsjYgRQB0wDkDQKmASMBM4E5khSiWo0M7MWZB4WkgYDE4AfFzRPBOYl0/OAjyfTZwO3\nR8TuiGgEGoBxWddoZmatK8WWxTeBK4HCU8UHRMRGgIjYAByRtA8Cnivoty5pMzOzMso0LCT9H2Bj\nRCwDWhtO8jVHzMwq2EEZr/9E4GxJE4BewGGSfg5skDQgIjZKOhLYlPRfBwwpWH5w0vYWkhwuZmbt\nEBHt2g+c6ZZFRFwdEUdFxLuAyUBdRHwG+B1wftLtPGBBMl0LTJbUU9Jw4GhgSQvr9qODHtOnTy97\nDQfSw5+nP8tKfbwdWW9ZtGQ2MF/SBcBa8kdAERErJM0nf+TULuCSeLvv0MzM3raShUVELAYWJ9Nb\ngA+30G8WMKtUdZmZWTqfwW3kcrlyl3BA8efZcfxZVg51xlEeSR6dMjNrI0lEO3dwl2ufhZl1McOG\nDWPt2rXlLqNLGDp0KI2NjR26Tm9ZmFlJJL9qy11Gl9DSZ/12tiy8z8LMzFI5LMzMLJXDwszMUjks\nzMw6yOc+9zmuueaacpeRCR8NZWZl8x/XLcp0/TOvPjXT9Xcl3rIwM7NUDgsz6/KGDx/OjTfeyHvf\n+14OO+wwpkyZwqZNm5gwYQJ9+vRh/PjxvPLKKwBMmjSJgQMHUlVVRS6XY8WKFS2u984772TMmDFU\nVVVx0kknsXz58qZ5119/PYMHD6ZPnz6MHDmSRYuy3cp6uxwWZmbAr3/9ax544AFWrVpFbW0tEyZM\nYPbs2WzevJk333yTb3/72wBMmDCBNWvWsGnTJsaOHcu5557b7PqWLl3K5z//eebOncuWLVu46KKL\nOPvss9m1axerVq3ie9/7Ho8++ijbtm3j3nvvZdiwYSV8t23nsDAzAy677DL69+/PwIEDOfnkk/nA\nBz7AcccdR8+ePfnEJz7B0qVLATj//PPp3bs3PXr04JprruHxxx/n1Vdf3W99c+fO5Ytf/CLve9/7\nkMRnPvMZDj74YP7yl7/QvXt3du7cyZNPPsnu3bs56qijGD58eKnfcps4LMzMgAEDBjRN9+rVa7/n\n27dvZ8+ePVRXV3P00Ufzzne+k+HDhyOJzZs377e+tWvXctNNN3H44Ydz+OGHU1VVxfPPP88LL7zA\nu9/9bm655RZqamoYMGAA55xzDuvXry/J+2wvh4WZWZFuu+02amtrqaurY+vWrTQ2NrZ4Y6EhQ4bw\n1a9+lS1btrBlyxZefvlltm/fzqc+9SkAJk+ezIMPPth0vazq6uqSvpe2cliYmRVp+/btHHLIIVRV\nVbFjxw6mTZuG1PyllqZMmcIPfvADlizJ3+xzx44d3HXXXezYsYNVq1axaNEidu7cSc+ePenVqxfd\nulX2n2OfZ2FmZVMp50Hs+we/pQD47Gc/yz333MOgQYPo168fM2fO5Ic//GGzfY8//njmzp3L1KlT\nWb16Nb169eKkk07ilFNO4Y033qC6upqnnnqKHj16cMIJJ/CjH/2ow99XR/JVZ82sJHzV2dLJ4qqz\n3rKwzM+i7Woq5deyWUfKdJBM0sGSHpK0VNJySdOT9umSnpf0WPI4o2CZaZIaJK2UND7L+szMrDiZ\nbllExBuSTo2I1yR1B/4k6e5k9s0RcXNhf0kjgUnASGAwcL+k93jMycysvDLf/R4RryWTB5MPp71/\n+JsbN5sI3B4RuyOiEWgAxmVdo5mZtS7zsJDUTdJSYANwX0Q8nMyaKmmZpB9L6pu0DQKeK1h8XdJm\nZmZlVIotiz0RMYb8sNI4SaOAOcC7ImI0+RC5Kes6zMys/Up2NFREbJNUD5yxz76KucDvkul1wJCC\neYOTtv3U1NQ0TedyOXK5XAdWa2bW+dXX11NfX98h68r0PAtJ/YFdEfGKpF7AvcBs4LGI2JD0+Xfg\n/RFxTrLVcSvwAfLDT/cB++3g9nkWHcuHznYsHzrbPJ9nUTpZnGeR9TDUQGCRpGXAQ8C9EXEXcIOk\nJ5L2U4B/B4iIFcB8YAVwF3CJU8HMSmHVqlWMGTOGvn378t3vfrdkr9utWzf+9re/lez12ivrQ2eX\nA2Obaf9sK8vMAmZlWZeZVYbqulWZrn/2accU3feGG27gtNNOa7oUeam0dGmRSlPZV64yMyuRtWvX\ncuyxx5b8dTvL4InDwsy6vNNPP51FixZx6aWX0qdPHxoaGvjyl7/M0KFDGThwIJdccglvvPEGAIsX\nL2bIkCF84xvfYMCAAQwaNIgFCxZw9913M2LECPr378+sWX8fHHn44Yc54YQTqKqqYtCgQVx22WXs\n3r272Tp27tzZ4uu+9NJLnHXWWVRVVdGvXz9OOeWU7D+YAg4LM+vyHnjgAU4++WTmzJnDtm3bmDNn\nDqtXr+aJJ55g9erVrFu3jmuvvbap/4YNG9i5cycvvPACM2bMYMqUKdx6660sXbqUP/zhD8ycObPp\nPhXdu3fnlltuYcuWLfz5z3+mrq6OOXPmNFvHVVdd1eLr3nTTTQwZMoSXXnqJTZs2cd1112X/wRRw\nWJiZJfYOCc2dO5dvfvOb9O3bl3e84x1UV1fzi1/8oqlfz549ufrqq+nevTuTJ09m8+bNXHHFFfTu\n3ZtRo0YxatQoHn/8cQDGjh3LuHHjkMRRRx3FhRdeyOLFi5t9/dZet0ePHqxfv55nnnmG7t27c+KJ\nJ2b8abyVrzprZlbgxRdf5LXXXuP4449vatuzZ89b9i3069evacd0r169ADjiiCOa5u+9DStAQ0MD\nX/rSl3jkkUd4/fXX2b1791vWXezrXnnlldTU1DB+/HgkMWXKFK666qoOfOet85aFmVmB/v3707t3\nb/7617823RJ169atvPLKK+1a38UXX8zIkSNZs2YNW7du5etf/3qzO7XTXvfQQw/lxhtvZM2aNdTW\n1nLzzTezaFHpzpFyWJiZFdj7q/2KK67gxRdfBGDdunUsXLiwXet79dVX6dOnD7179+app57i+9//\nfrte9/e//z1r1qwB4LDDDuOggw4q6a1YPQxlZmXTlvMgslZ4vsPs2bO59tpr+eAHP8hLL73EoEGD\nuPjiixk/vvlb7LR2W9Ybb7yRCy+8kBtuuIExY8YwefJk6urqmu17/fXXM2PGjGZft6GhgalTp7J5\n82aqqqq49NJLS3pElG+rar7cRwfz5T6a58t9lE5nvNyHmZkdABwWZmaWymFhZmapHBZmZpbKYWFm\nZqkcFmZmlsrnWZhZSQwdOrTT3Luhsxs6dGiHr9NhYWYl0djYWO4S7G3wMJSZmaVyWJiZWapMw0LS\nwZIekrRU0nJJ05P2KkkLJT0t6V5JfQuWmSapQdJKSc1fiMXMzEoq07CIiDeAUyNiDDAaOFPSOKAa\nuD8iRgB1wDQASaOAScBI4ExgjrxHzMys7DIfhoqI15LJg8nvUA9gIjAvaZ8HfDyZPhu4PSJ2R0Qj\n0ACMy7pGMzNrXeZhIambpKXABuC+iHgYGBARGwEiYgOw9xZTg4DnChZfl7SZmVkZZX7obETsAcZI\n6gP8RtKx5Lcu3tKtreutqalpms7lcuRyubdRpZnZgae+vp76+voOWVfJzrOIiG2S6oEzgI2SBkTE\nRklHApuSbuuAIQWLDU7a9lMYFmZmtr99f0jPmDGj3evK+mio/nuPdJLUC/gIsBKoBc5Pup0HLEim\na4HJknpKGg4cDSzJskYzM0uX9ZbFQGCepG7kg+mOiLhL0l+A+ZIuANaSPwKKiFghaT6wAtgFXOJb\n4pmZlV+mYRERy4GxzbRvAT7cwjKzgFlZ1mVmZm3jM7jNzCyVw8LMzFI5LMzMLJXDwszMUjkszMws\nlcPCzMxSOSzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwslcPCzMxSOSzMzCyVw8LMzFI5LMzMLJXD\nwszMUjkszMwslcPCzMxSOSzMzCxVpmEhabCkOkl/lbRc0mVJ+3RJz0t6LHmcUbDMNEkNklZKGp9l\nfWZmVpyDMl7/buBLEbFM0qHAo5LuS+bdHBE3F3aWNBKYBIwEBgP3S3pPRETGdZqZWSsy3bKIiA0R\nsSyZ3g6sBAYls9XMIhOB2yNid0Q0Ag3AuCxrNDOzdCXbZyFpGDAaeChpmippmaQfS+qbtA0CnitY\nbB1/DxczMyuTrIehAEiGoH4FXB4R2yXNAa6NiJD0NeAm4AttWWdNTU3TdC6XI5fLdVzBZmYHgPr6\neurr6ztkXcp6d4Ckg4A7gbsj4lvNzB8K/C4ijpNUDUREXJ/MuweYHhEP7bOMd2N0oP+4blG5Szig\nzLz61HKXYNYsSUREc7sAUpViGOo/gRWFQSHpyIL5nwSeTKZrgcmSekoaDhwNLClBjWZm1opMh6Ek\nnQicCyyXtBQI4GrgHEmjgT1AI3ARQESskDQfWAHsAi7xJoSZWfllGhYR8SegezOz7mllmVnArMyK\nMjOzNvMZ3GZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqmKCovkBLnUNjMzOzAVu2XxX820\n/aojCzEzs8rV6kl5kv4ROBboK+mTBbP6AIdkWZiZmVWOtDO4RwAfA94JnFXQ/iowJauizMyssrQa\nFhGxAFgg6UMR8ecS1WRmZhWm2GtDrZZ0NTCscJmIuCCLoszMrLIUGxYLgAeB+4E3syvHzMwqUbFh\n0Tsirsq0EjMzq1jFHjp7p6QJmVZiZmYVq9iwuJx8YLwuaZukVyVty7IwMzOrHEUNQ0XEYVkXYmZm\nlauosJD0v5trj4g/dGw5ZmZWiYrdwX1lwfQhwDjgUeC0Dq/IzMwqTlH7LCLirILHR4B/Al5OW07S\nYEl1kv4qabmkf0vaqyQtlPS0pHsl9S1YZpqkBkkrJY1v7xszM7OO095LlD8PjCyi327gSxFxLPAh\n4NLkelPVwP0RMQKoA6YBSBoFTErWfSYwR5LaWaOZmXWQYvdZfAeI5Gk3YDTwWNpyEbEB2JBMb5e0\nEhgMTAROSbrNA+rJB8jZwO0RsRtolNRAfsjroSLfj5mZZaDYfRaPFEzvBn4REX9qywtJGkY+ZP4C\nDIiIjZAPFElHJN0GAYXXoFqXtJmZWRkVe+jsPEk9gWOSpqfb8iKSDiV//4vLky2M2KfLvs9T1dTU\nNE3ncjlyuVxbV2FmdkCrr6+nvr6+Q9ZV7DBUjvxwUSMgYIik84o5dFbSQeSD4ufJVWwBNkoaEBEb\nJR0JbEra1wFDChYfnLTtpzAszMxsf/v+kJ4xY0a711XsMNRNwPiIeBpA0jHAL4Dji1j2P4EVEfGt\ngrZa4HzgeuA88hcq3Nt+q6Rvkh9+OhpYUmSNZhWhum5VuUs4YMw+7Zj0TlYSxYZFj71BARARqyT1\nSFtI0onAucBySUvJDzddTT4k5ku6AFhL/ggoImKFpPnACmAXcElEtHmIyszMOlbRO7gl/Rj4f8nz\nc3nrTu9mJTvBu7cw+8MtLDMLmFVkXWZmVgLFhsXFwKXAvyXPHwTmZFKRmZlVnGKPhnoDuDl5mJlZ\nF1PUGdySPiZpqaQtvkS5mVnXU+ww1C3AJ4Hl3uFsZtb1FHttqOeAJx0UZmZdU7FbFl8B7pK0GHhj\nb2NEeB+GmVkXUGxYfB3YTv5eFj2zK8fMzCpRsWHxvyLinzKtxMzMKlax+yzu8o2IzMy6rmLD4mLg\nHkmv+9BZM7Oup9iT8g6TdDjwHvL7LczMrAsp9hLlXwAuJ3/J8GXAB4H/Bk7PrjQzM6sUxQ5DXQ68\nH1gbEacCY4BXMqvKzMwqSrFh8T8R8T8Akg6OiKeAEdmVZWZmlaTYQ2efl/RO4LfAfZJeJn8fCjMz\n6wKK3cH9iWSyRtIioC9wT2ZVmZlZRSl2y6JJRCzOohAzM6tcxe6zMDOzLsxhYWZmqTINC0k/kbRR\n0hMFbdMlPS/pseRxRsG8aZIaJK305UXMzCpH1lsWPwU+2kz7zRExNnncAyBpJDAJGAmcCcyRpIzr\nMzOzImQaFhHxR+DlZmY1FwITgdsjYndENAINwLgMyzMzsyKVa5/FVEnLJP1YUt+kbRD5O/LttS5p\nMzOzMmvzobMdYA5wbUSEpK8BNwFfaOtKampqmqZzuRy5XK6j6jMzOyDU19dTX1/fIesqeVhExIsF\nT+cCv0um1wFDCuYNTtqaVRgWZma2v31/SM+YMaPd6yrFMJQo2Ech6ciCeZ8Enkyma4HJknpKGg4c\nDSwpQX1mZpYi0y0LSbcBOaCfpGeB6cCpkkYDe4BG4CKAiFghaT6wAtgFXBIRkWV9ZmZWnEzDIiLO\naab5p630nwXMyq4iMzNrD5/BbWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwW\nZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZm\nlsphYWZmqTINC0k/kbRR0hMFbVWSFkp6WtK9kvoWzJsmqUHSSknjs6zNzMyKl/WWxU+Bj+7TVg3c\nHxEjgDpgGoCkUcAkYCRwJjBHkjKuz8zMipBpWETEH4GX92meCMxLpucBH0+mzwZuj4jdEdEINADj\nsqzPzMyKU459FkdExEaAiNgAHJG0DwKeK+i3LmkzM7MyO6jcBQDRnoVqamqapnO5HLlcroPKMTM7\nMNTX11NfX98h6ypHWGyUNCAiNko6EtiUtK8DhhT0G5y0NaswLMzMbH/7/pCeMWNGu9dVimEoJY+9\naoHzk+nzgAUF7ZMl9ZQ0HDgaWFKC+szMLEWmWxaSbgNyQD9JzwLTgdnALyVdAKwlfwQUEbFC0nxg\nBbALuCQi2jVEZWZmHSvTsIiIc1qY9eEW+s8CZmVXkZl1Jv9x3aJyl2AJn8FtZmapHBZmZpbKYWFm\nZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmap\nHBZmZpbKYWFmZqkq4R7c7VJdt6rcJRwwepS7ADOreN6yMDOzVA4LMzNL5bAwM7NUZdtnIakReAXY\nA+yKiHGSqoA7gKFAIzApIl4pV41mZpZXzi2LPUAuIsZExLikrRq4PyJGAHXAtLJVZ2ZmTcoZFmrm\n9ScC85LpecDHS1qRmZk1q5xhEcB9kh6W9IWkbUBEbASIiA3AEWWrzszMmpTzPIsTI2K9pH8AFkp6\nmnyAFNr3eZM/zvtO0/RR7x3HUaM/kE2VZmadVOPflrH2mWUdsq6yhUVErE/+fVHSb4FxwEZJAyJi\no6QjgU0tLX/SeZeVqFIzs85p2LtGM+xdo5ueP1j3s3avqyzDUJJ6Szo0mX4HMB5YDtQC5yfdzgMW\nlKM+MzN7q3JtWQwAfiMpkhpujYiFkh4B5ku6AFgLTCpTfWZmVqAsYRERzwCjm2nfAny49BWZmVlr\nfAa3mZmlcliYmVkqh4WZmaVyWJiZWSqHhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVyWJiZWSqH\nhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVyWJiZWSqHhZmZpXJYmJlZqooMC0lnSHpK0ipJV5W7\nHjOzrq7iwkJSN+C7wEeBY4FPS/rH8lZ1YGv827Jyl3BAeXbZQ+Uu4YDh72blqLiwAMYBDRGxNiJ2\nAbcDE8tc0wFt7TP+D9mRnn18SblLOGD4u1k5KjEsBgHPFTx/PmkzM7MyqcSwMDOzCqOIKHcNbyHp\ng0BNRJyRPK8GIiKuL+hTWUWbmXUSEaH2LFeJYdEdeBo4HVgPLAE+HREry1qYmVkXdlC5C9hXRLwp\naSqwkPww2U8cFGZm5VVxWxZmZlZ5OsUObklVkhZKelrSvZL6ttCvUdLjkpZK8vGL+yjmZEdJ35bU\nIGmZpNGlrrGzSPssJZ0iaaukx5LH/y1HnZ2FpJ9I2ijpiVb6+LtZhLTPsr3fzU4RFkA1cH9EjADq\ngGkt9NsD5CJiTESMK1l1nUAxJztKOhN4d0S8B7gI+EHJC+0E2nDi6B8iYmzy+FpJi+x8fkr+82yW\nv5tt0upnmWjzd7OzhMVEYF4yPQ/4eAv9ROd5T6VWzMmOE4GfAUTEQ0BfSQNKW2anUOyJo+066qQr\niog/Ai+30sXfzSIV8VlCO76bneUP6xERsREgIjYAR7TQL4D7JD0saUrJquscijnZcd8+65rpY8Wf\nOPqhZMjk95JGlaa0A5a/mx2rzd/NijkaStJ9QOEvBZH/49/ceFpLe+VPjIj1kv6BfGisTFLWrNQe\nBY6KiNeSIZTfAseUuSYzaOd3s2LCIiI+0tK8ZGfNgIjYKOlIYFML61if/PuipN+QHy5wWOStA44q\neD44adu3z5CUPlbEZxkR2wum75Y0R9LhEbGlRDUeaPzd7CDt/W52lmGoWuD8ZPo8YMG+HST1lnRo\nMv0OYDzwZKkK7AQeBo6WNFRST2Ay+c+1UC3wWWg6k37r3uE/e4vUz7JwPF3SOPKHqTsoWidaHkv3\nd7NtWvws2/vdrJgtixTXA/MlXQCsBSYBSBoIzI2Ij5EfwvpNcimQg4BbI2JhuQquNC2d7Cjpovzs\n+FFE3CVpgqTVwA7gc+WsuVIV81kC/yrpYmAX8DrwqfJVXPkk3QbkgH6SngWmAz3xd7PN0j5L2vnd\n9El5ZmaWqrMMQ5mZWRk5LMzMLJXDwszMUjkszMwslcPCzMxSOSzMzCyVw8Ksg0k6S9JXOmhdr3bE\neszeLp9nYdYOkrpHxJsleJ1tEdEn69cxS+MtC+vSksvE3JncMOsJSZMkPSPp8GT+8ZIWJdPTJf1M\n0oPAzyX9WdLIgnUtkjRW0nmSviOpj6TGfV7rWUndJb1L0t3JFZIXSzom6TNM0n8rfxOvmaX9NMxa\n5rCwru4MYF1yw6zjgHvY/6rGhc9HAqdHxDnk72PxKYDkApdHRsRje5eJiG3AUkmnJG0fA+5Jtkh+\nBEyNiPcDVwLfT/p8C/heRLwXWN+Rb9Ts7XBYWFe3HPiIpFmSTkr+wLd2Y5jaiNiZTP8S+JdkehLw\nq2b6z+fv196ZDNyRXOjyBOCXkpYCP+Tvl+c/kXwIAfy8PW/ILAud5UKCZpmIiAZJY4EJwExJdeQv\nsLb3h9Qh+yyyo2DZFyS9JOmfyQfCRc28RC3wdUlVwFjytwU+FHg5IsY2VxJ/35LxnfasYnjLwrq0\n5MrFr0fEbcCN5P+gNwLvS7r8SwuL7nUH8BWgT0Tsd0n8iNgBPEJ+eOnOyHsVeEbSvxbUcVwy+Sfg\n08n0ue16U2YZcFhYV/fPwJJkOOgaYCZwLfAtSUuA3SnL/xf5rYo7WulzB/k//LcXtJ0LfD65teWT\nwNlJ+xXApZIeBwa29c2YZcWHzpqZWSpvWZiZWSqHhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVy\nWJiZWSqHhZmZpfr/pEDnUlg85McAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2529,7 +2537,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2554,16 +2562,16 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEPCAYAAABBUX+lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFHFJREFUeJzt3X2QXXWd5/H3NySBRAgE0QwSSDI4KLorEhAcHobrE2LG\nYYd5EJFCYYDSKSOZnS2XVregU9ZaUCUjOrClJA7luuJuyaBkrAwPSq4yKoKQQCCEjDiJIAimAoHE\nGR6/+8c9xKbTndxO+txzm9/7VdXV597ce36fvt359OnfOfecyEwkSa98k5oOIEnqDQtfkgph4UtS\nISx8SSqEhS9JhbDwJakQtRZ+RBwWESsj4q7q8+aIuKDOMSVJI4teHYcfEZOAh4FjM/OhngwqSdqm\nl1M67wYetOwlqRm9LPzTgW/2cDxJ0hA9mdKJiCnAI8CbMvM3tQ8oSdrO5B6N8z7gztHKPiI8oY8k\njVFmxlge36spnTPYyXROZvbVx8UXX9x4home6eMXLum7TP36WpnJTGP92BW1F35ETKezw/a6useS\nJI2u9imdzPwt8Jq6x5Ek7ZjvtB1Fq9VqOsJ2zNSdfswE/ZnLTN3px0y7omdvvNphiIjshxwaXwsH\nlnLFJec1HUN6RYoIcow7bXt1lI6kgs2dO5cNGzY0HWNCmjNnDuvXrx+XdVn4kmq3YcOGXT6ypHQR\nY9qI3yHn8CWpEBa+JBXCwpekQlj4kjQOzjnnHC666KKmY+yQO20lNWLhwNJa1+8hwdtzC1+SCmHh\nSyravHnz+PznP88RRxzBPvvsw/nnn8/jjz/OggULmDFjBieffDKbN28G4AMf+AAHHnggM2fOpNVq\nsWbNmlHX+93vfpcjjzySmTNncsIJJ7B69ept/3bppZcye/ZsZsyYweGHH86KFStq/zrBwpckrrvu\nOr7//e+zbt06li1bxoIFC7jkkkvYuHEjL7zwAl/60pcAWLBgAQ8++CCPP/448+fP58wzzxxxfStX\nruTcc89lyZIlbNq0iY9+9KOceuqpPPfcc6xbt44rr7ySO++8k6eeeoobb7yRuXPn9uTrtPAlFe8T\nn/gEBxxwAAceeCAnnngixx57LG95y1uYOnUqp512GitXrgTg7LPPZvr06UyZMoWLLrqIu+++m6ef\nfnq79S1ZsoSPfexjHH300UQEZ511FnvuuSe33XYbe+yxB88++yz33nsvzz//PIcccgjz5s3ryddp\n4Usq3qxZs7YtT5s2bbvbW7Zs4cUXX2RgYIDXv/717LfffsybN4+IYOPGjdutb8OGDVx22WXsv//+\n7L///sycOZOHH36YRx55hEMPPZTLL7+cwcFBZs2axYc+9CEeffTRnnydFr4kdeGaa65h2bJl3HLL\nLTz55JOsX79+1IuRHHzwwXzmM59h06ZNbNq0iSeeeIItW7Zw+umnA/DBD36QW2+9ddv5hQYGBnry\nNVj4ktSFLVu2sNdeezFz5ky2bt3Kpz71qVHPc3P++efz5S9/mdtvvx2ArVu3snz5crZu3cq6detY\nsWIFzz77LFOnTmXatGlMmtSbKvY4fEmN6Jfj5IeX9mgl/uEPf5gbbriBgw46iFe/+tV89rOf5Stf\n+cqIjz3qqKNYsmQJCxcu5Oc//znTpk3jhBNO4KSTTuKZZ55hYGCAtWvXMmXKFI477jiuuuqqcf+6\nRuL58FUbz4evl1Tnbm86xoQ02mu3K+fDd0pHkgph4UtSISx8SSqEhS9JhbDwJakQtRd+ROwbEd+K\niPsj4r6IOLbuMSVJ2+vFcfhfBJZn5l9GxGRgeg/GlNRH5syZM64X4y7JnDlzxm1dtRZ+RMwATszM\nswEy83ngqTrHlNR/1q9f33QEUf+UzjxgY0RcHRF3RcRVETGt5jElSSOoe0pnMjAf+Hhm/iwiLgcG\ngIuHP3BwcHDbcqvVotVq1RxNkiaOdrtNu93erXXUemqFiJgF/CQzf7+6fQJwYWb+ybDHeWqFVyBP\nrSDVp+9OrZCZjwEPRcRh1V3vAka/JpgkqTa9OErnAuAbETEF+AVwTg/GlCQNU3vhZ+bdwNvqHkeS\ntGO+01aSCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9J\nhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQkyue4CI\nWA9sBl4EnsvMY+oeU5K0vdoLn07RtzLziR6MJUkaRS+mdKJH40iSdqAXRZzAzRFxR0Sc34PxJEkj\n6MWUzvGZ+WhEvIZO8d+fmf8y/EGDg4PbllutFq1WqwfRJGliaLfbtNvt3VpHZOb4pOlmsIiLgacz\n8++G3Z+9zKHeWDiwlCsuOa/pGNIrUkSQmTGW59Q6pRMR0yNi72r5VcDJwL11jilJGlndUzqzgG9H\nRFZjfSMzb6p5TEnSCGot/Mz8N+CtdY4hSeqOh0tKUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4\nklQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9J\nhbDwJakQFr4kFcLCl6RCWPiSVIieFH5ETIqIuyJiWS/GkyRtr1db+IuANT0aS5I0gtoLPyJmAwuA\npXWPJUkaXVeFHxHzurlvFF8APgnkGHJJksbZ5C4f94/A/GH3XQsctaMnRcQfA49l5qqIaAEx2mMH\nBwe3LbdaLVqtVpfRNFYLB5ZyxSXnNR1jhyZCRqmX2u027XZ7t9axw8KPiDcCbwb2jYg/G/JPM4C9\nulj/8cCpEbEAmAbsExH/OzM/PPyBQwtfkvRywzeEFy9ePOZ17GwL/w3A+4H9gD8Zcv/TwPk7W3lm\nfhr4NEBEnAT8t5HKXpJUvx0WfmZeD1wfEX+YmT/pUSZJUg26ncP/eUR8Gpg79DmZ+VfdDpSZPwB+\nMKZ0kqRx023hXw/cCnwPeKG+OJKkunRb+NMz88Jak0iSatXtG6++Wx1pI0maoLot/EV0Sv/fI+Kp\niHg6Ip6qM5gkaXx1NaWTmfvUHUSSVK+uCj8i/mik+zPzh+MbR5JUl2532n5yyPJewDHAncA7xz2R\nJKkW3U7pDH2XLRFxMHB5LYkkSbXY1dMjPwwcPp5BJEn16nYO/+/53emNJwFvBe6qK5Qkafx1O4f/\nsyHLzwPfzMwf1ZBHklSTbufwvxYRU4HDqrseqC+SJKkO3U7ptICvAevpXMTk4Ij4iIdlStLE0e2U\nzmXAyZn5AEBEHAZ8k51c8UqS1D+6PUpnyktlD5CZ64Ap9USSJNWh6522EbEU+D/V7TN5+Y5cSVKf\n67bw/xr4OHBBdftW4H/VkkiSVItuj9J5Bvi76kOSNAF1NYcfEe+PiJURscnTI0vSxNTtlM7lwJ8B\nqzMzd/ZgSVL/6fYonYeAey17SZq4ut3C/+/A8oj4AfDMS3dmpnP6kjRBdFv4/xPYQudc+FPriyNJ\nqku3hf+6zPxPY115ROwJ/JDOL4nJwLWZuXis65Ek7b5u5/CXR8TJY115dTjnOzLzSDqnVH5fRBwz\n1vVIknZft4X/18ANEfHvYz0sMzN/Wy3uSWcr3x2/ktSAbt94tU9E7A/8AZ15/K5FxCQ61789FLgy\nM+8Yc0pJ0m7r9vTI5wGLgNnAKuDtwI+Bd+3suZn5InBkRMwAvhMRb8rMNcMfNzg4uG251WrRarW6\niaYeWziwlCsuOa/pGFJx2u027XZ7t9bR7U7bRcDbgNsy8x0R8Ubgc2MZKDOfiogVwCnADgtfkvRy\nwzeEFy8e+/Ev3c7h/0dm/gd0jrzJzLXAG3b2pIg4ICL2rZanAe8B1o45pSRpt3W7hf9wROwHfAe4\nOSKeADZ08bwDga9V8/iTgP+Xmct3LaokaXd0u9P2tGpxsJqW2Re4oYvnrQbm73o8SdJ46XYLf5vM\n/EEdQSRJ9ep2Dl+SNMFZ+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgL\nX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFqLXw\nI2J2RNwSEfdFxOqIuKDO8SRJo5tc8/qfB/42M1dFxN7AnRFxU2aurXlcSdIwtW7hZ+avM3NVtbwF\nuB84qM4xJUkj69kcfkTMBd4K/LRXY0qSfqfuKR0Aqumca4FF1Zb+dgYHB7ctt1otWq3WTte7cGAp\nV1xy3viElKQ+1m63abfbu7WO2gs/IibTKfuvZ+b1oz1uaOFLkl5u+Ibw4sWLx7yOXkzp/AOwJjO/\n2IOxJEmjqPuwzOOBM4F3RsTKiLgrIk6pc0xJ0shqndLJzB8Be9Q5hiSpO77TVpIKYeFLUiEsfEkq\nhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY\n+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RC1Fr4EfHViHgsIu6pcxxJ0s7VvYV/\nNfDemseQJHWh1sLPzH8BnqhzDElSd5zDl6RC9E3hDw4Obvtot9tNx3mZhQNL+36cXmWcCPrxtejH\nTJpY2u32y3pyV0we30i7ble/AEkqQavVotVqbbu9ePHiMa+jF1v4UX1IkhpU92GZ1wA/Bg6LiF9G\nxDl1jidJGl2tUzqZ+aE61y9J6l7f7LSVJNXLwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAl\nqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IK\nYeFLUiEsfEkqRO2FHxGnRMTaiFgXERfWPZ4kaWS1Fn5ETAKuAN4LvBk4IyLeWOeY46XdbjcdYTtm\n6s6vfvlA0xFG1I+vlZm604+ZdkXdW/jHAP+amRsy8zng/wL/peYxx0U/foPN1B0Lv3tm6k4/ZtoV\ndRf+QcBDQ24/XN0nSeoxd9pKUiEiM+tbecTbgcHMPKW6PQBkZl467HH1hZCkV6jMjLE8vu7C3wN4\nAHgX8ChwO3BGZt5f26CSpBFNrnPlmflCRCwEbqIzffRVy16SmlHrFr4kqX80utO2X96UFRFfjYjH\nIuKeIffNjIibIuKBiLgxIvbtYZ7ZEXFLRNwXEasj4oKmM1Xj7xkRP42IlVWui/sk16SIuCsilvVD\nnirD+oi4u3qtbu+HXBGxb0R8KyLur362jm345/yw6vW5q/q8OSIu6IPX6b9GxL0RcU9EfCMipjad\nqcq1qPp/t8ud0Fjh99mbsq6ucgw1AHwvM98A3AJ8qod5ngf+NjPfDPwh8PHqtWkyE5n5DPCOzDwS\neCvwvog4pulcwCJgzZDbTecBeBFoZeaRmXlMn+T6IrA8Mw8HjgDWNpkpM9dVr8984ChgK/DtJjNF\nxOuATwDzM/MtdKa9z2gyU5XrzcC5wNF0/u+9PyIOHXOuzGzkA3g78M9Dbg8AFzaYZw5wz5Dba4FZ\n1fLvAWsbzPYd4N19lmk68DPgbU3mAmYDNwMtYFm/fO+AfwNePey+Jl+nGcCDI9zf+GtVjX0ycGvT\nmYDXARuAmXTKflk//N8D/gJYMuT2/wA+Cdw/llxNTun0+5uyXpuZjwFk5q+B1zYRIiLm0vmNfhud\nb2yjmarpk5XAr4GbM/OOhnN9gc4P/tCdUY2/TlWemyPijog4rw9yzQM2RsTV1RTKVRExveFMQ50O\nXFMtN5YpMx8BLgN+CfwK2JyZ32syU+Ve4MRqCmc6sAA4eKy5fONV93q+dzsi9gauBRZl5pYRMvQ8\nU2a+mJ0pndnAMdWfmo3kiog/Bh7LzFXAjo5HbuLIhOOzM1WxgM6U3Ikj5OhlrsnAfODKKtdWOn9V\nN/4zFRFTgFOBb42SoWeZImI/Oqd/mUNna/9VEXFmk5kAMnMtcCmdv2aXAyuBF0Z66I7W02Th/wo4\nZMjt2dV9/eKxiJgFEBG/Bzzey8EjYjKdsv96Zl7fD5mGysyngDZwSoO5jgdOjYhfAN8E3hkRXwd+\n3fTrlJmPVp9/Q2dK7hia/f49DDyUmT+rbv8jnV8A/fAz9T7gzszcWN1uMtO7gV9k5qbMfIHOPoXj\nGs4EQGZenZlHZ2YLeJLOe5zGlKvJwr8DeH1EzImIqcAH6cyXNSV4+VbiMuDsavkjwPXDn1CzfwDW\nZOYX+yVTRBzw0lEAETENeA+dOcRGcmXmpzPzkMz8fTo/P7dk5lnAPzWR5yURMb3664yIeBWd+enV\nNPj9q/7sfygiDqvuehdwX5OZhjiDzi/slzSZ6ZfA2yNir4gIOq/TmoYzARARr6k+HwKcRmcKbGy5\nernjYYQdEafQ+S31r8BAgzmuAR4BnqHzDT+Hzk6b71X5bgL262Ge4+n8ubaKzp9ud1Wv1f5NZapy\n/ecqyyrgHuAz1f2N5qoynMTvdto2/TrNG/K9W/3Sz3Yf5DqCzobWKuA6YN8+yDQd+A2wz5D7ms50\nMZ0NmXuArwFTms5U5fohnbn8lXSOABvza+UbrySpEO60laRCWPiSVAgLX5IKYeFLUiEsfEkqhIUv\nSYWw8CWpEBa+JBXCwlfRIuLb1RktV790VsuIOLe6oMRt1Vklv1Tdf0BEXBudi8D8NCKOaza9NDa+\n01ZFi4j9MvPJiNiLzmkH3gv8iM4pqbcAK4BVmXlBRHyDztkmfxwRBwM3ZuabGgsvjVGtFzGXJoC/\niYg/rZZnA2cB7czcDBAR3wL+oPr3dwOHVyfVAtg7IqZn5m97mljaRRa+ihURJwHvBI7NzGciYgWd\nk2YdPtpTqsc+16uM0nhyDl8l2xd4oir7N9K57ObewB9VF/yeDPz5kMffROf6uQBExBE9TSvtJgtf\nJbsBmBIR9wGfA35C50IhnwNuB26lc23azdXjFwFHR8TdEXEv8NHeR5Z2nTttpWEi4lWZuTUi9qBz\nxaOv5u+uOiZNWG7hS9sbrC7UvprO5e4se70iuIUvSYVwC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAW\nviQV4v8D4frhjknO3JMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEPCAYAAABBUX+lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFP5JREFUeJzt3X2wXHWd5/H3NySBRAgE0YgEkiwOiO6KBAwKYWgfBjHj\nssvsjogUDixQOmUku7PlctUtSMpaC2plBx2YUoKyrivulgxI1srwJGlldJCnBAIhZMRJIIJAKhBI\n1PD03T/6EC7JvUnf5J4+HX7vV9Wt29339Pl9uu+9n3vu75w+HZmJJOmNb0zTASRJvWHhS1IhLHxJ\nKoSFL0mFsPAlqRAWviQVotbCj4jDImJpRNxbfd4QEefXOaYkaWjRq+PwI2IMsBY4NjMf68mgkqQt\nejml8xHgEctekprRy8I/DfhBD8eTJA3SkymdiBgHPA68KzOfrn1ASdI2xvZonI8B9wxX9hHhCX0k\naYQyM0ayfK+mdE5nB9M5mdlXHxdddFHjGXbnTJ+7YOGWj37J1PRHP+Yy0+6baWfUXvgRMZHODtvr\n6h5LkjS82qd0MvN3wFvqHkeStH2+0nYYrVar6QjbMFN3+jET9GcuM3WnHzPtjJ698Gq7ISKyH3Jo\n9MwduGrL5csvPrfBJNIbU0SQI9xp26ujdCQVbPr06axZs6bpGLuladOmsXr16lFZl4UvqXZr1qzZ\n6SNLShcxoo347XIOX5IKYeFLUiEsfEkqhIUvSaPg7LPP5sILL2w6xna501ZSIwYfulsHDwfellv4\nklQIC19S0WbMmMHXvvY1jjzySPbZZx/OO+88nnrqKebMmcOkSZM46aST2LBhAwCf+MQnOPDAA5k8\neTKtVosVK1YMu94f//jHHHXUUUyePJnZs2ezfPnyLV+75JJLmDp1KpMmTeKII45gyZIltT9OsPAl\nieuuu46f/OQnrFq1ikWLFjFnzhwuvvhi1q1bx8svv8w3vvENAObMmcMjjzzCU089xcyZMznjjDOG\nXN/SpUs555xzWLhwIevXr+czn/kMp5xyCi+++CKrVq3iiiuu4J577uG5557jpptuYvr06T15nBa+\npOJ9/vOf54ADDuDAAw/khBNO4Nhjj+U973kP48eP59RTT2Xp0qUAnHXWWUycOJFx48Zx4YUXct99\n9/H8889vs76FCxfy2c9+lmOOOYaI4Mwzz2TPPffkjjvuYI899uCFF17ggQce4KWXXuKQQw5hxowZ\nPXmcFr6k4k2ZMmXL5QkTJmxzfePGjbzyyisMDAzwjne8g/32248ZM2YQEaxbt26b9a1Zs4ZLL72U\n/fffn/3335/Jkyezdu1aHn/8cQ499FAuu+wy5s+fz5QpU/jUpz7FE0880ZPHaeFLUheuueYaFi1a\nxG233cazzz7L6tWrh30zkoMPPpgvf/nLrF+/nvXr1/PMM8+wceNGTjvtNAA++clPcvvtt285v9DA\nwEBPHoOFL0ld2LhxI3vttReTJ09m06ZNfPGLXxz2PDfnnXce3/zmN7nzzjsB2LRpE4sXL2bTpk2s\nWrWKJUuW8MILLzB+/HgmTJjAmDG9qWKPw5fUiH45Tn7r0h6uxD/96U9z4403ctBBB/HmN7+Zr3zl\nK3zrW98actmjjz6ahQsXMnfuXH71q18xYcIEZs+ezYknnsjmzZsZGBhg5cqVjBs3juOOO44rr7xy\n1B/XUDwfvmrh+fA1WHXu9qZj7JaGe+525nz4TulIUiEsfEkqhIUvSYWw8CWpEBa+JBWi9sKPiH0j\n4ocR8VBEPBgRx9Y9piRpW704Dv/rwOLM/POIGAtM7MGYkvrItGnTRvXNuEsybdq0UVtXrYUfEZOA\nEzLzLIDMfAl4rs4xJfWf1atXNx1B1D+lMwNYFxFXR8S9EXFlREyoeUxJ0hDqntIZC8wEPpeZd0fE\nZcAAcNHWC86fP3/L5VarRavVqjmahuIrZKX+1G63abfbu7SOugt/LfBYZt5dXb8WuGCoBQcXviTp\n9bbeEF6wYMGI11HrlE5mPgk8FhGHVTd9GBj+PcEkSbXpxVE65wPfj4hxwK+Bs3swpiRpK7UXfmbe\nB7yv7nEkSdvnK20lqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLC\nl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJ\nKsTYugeIiNXABuAV4MXMnFX3mJKkbdVe+HSKvpWZz/RgLEnSMHoxpRM9GkeStB29KOIEbomIuyLi\nvB6MJ0kaQi+mdI7PzCci4i10iv+hzPyHrReaP3/+lsutVotWq9WDaJK0e2i327Tb7V1aR+2Fn5lP\nVJ+fjojrgVnAdgtfkvR6W28IL1iwYMTrqHVKJyImRsTe1eU3AScBD9Q5piRpaHVv4U8Bro+IrMb6\nfmbeXPOYkqQh1Fr4mfnPwHvrHEOS1B0Pl5SkQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAW\nviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFL\nUiEsfEkqhIUvSYWw8CWpED0p/IgYExH3RsSiXownSdpWr7bw5wErejSWJGkItRd+REwF5gBX1T2W\nJGl4XRV+RMzo5rZh/DXwBSBHkEuSNMrGdrnc3wEzt7rtWuDo7d0pIv4UeDIzl0VEC4jhlp0/f/6W\ny61Wi1ar9bqvzx147R+Eyy8+t6vQ2tbu8DzuDhmlXmu327Tb7V1ax3YLPyLeCbwb2Dci/mzQlyYB\ne3Wx/uOBUyJiDjAB2Cci/ldmfnrrBQcXviTp9bbeEF6wYMGI17GjLfzDgY8D+wH/etDtzwPn7Wjl\nmfkl4EsAEXEi8J+HKntJUv22W/iZeQNwQ0R8IDP/sUeZJEk16HYO/1cR8SVg+uD7ZOZ/6HagzPwp\n8NMRpZMkjZpuC/8G4HbgVuDl+uJIkurSbeFPzMwLak0iSapVty+8+nF1pI0kaTfVbeHPo1P6v4+I\n5yLi+Yh4rs5gkqTR1dWUTmbuU3cQSVK9uir8iPjjoW7PzJ+NbhxJUl263Wn7hUGX9wJmAfcAHxr1\nRJKkWnQ7pTP4VbZExMHAZbUkkiTVYmdPj7wWOGI0g0iS6tXtHP7f8NrpjccA7wXurSuUJGn0dTuH\nf/egyy8BP8jMn9eQR5JUk27n8L8bEeOBw6qbHq4vkiSpDt1O6bSA7wKr6byJycER8RcelilJu49u\np3QuBU7KzIcBIuIw4Afs4B2vJEn9o9ujdMa9WvYAmbkKGFdPJElSHbreaRsRVwH/u7p+Bq/fkStJ\n6nPdFv5fAp8Dzq+u3w78bS2JJEm16PYonc3A/6g+JEm7oa7m8CPi4xGxNCLWe3pkSdo9dTulcxnw\nZ8DyzMwdLSxJ6j/dHqXzGPCAZS9Ju69ut/D/C7A4In4KbH71xsx0Tl+SdhPdFv5/AzbSORf++Pri\nSJLq0m3hvz0z/+VIVx4RewI/o/NHYixwbWYuGOl6JEm7rts5/MURcdJIV14dzvnBzDyKzimVPxYR\ns0a6HknSruu28P8SuDEifj/SwzIz83fVxT3pbOW741eSGtDtC6/2iYj9gT+iM4/ftYgYQ+f9bw8F\nrsjMu0acUpK0y7o9PfK5wDxgKrAMeD/wC+DDO7pvZr4CHBURk4AfRcS7MnPF1svNnz+fxbd23kTr\noEMO5/pr/nvXD+KNbu7AVVsuX37xuY2te3vL7krGOh9fr8bp1WNQudrtNu12e5fW0e1O23nA+4A7\nMvODEfFO4KsjGSgzn4uIJcDJwJCFv+4PV217R0kSrVaLVqu15fqCBSM//qXbOfw/ZOYfoHPkTWau\nBA7f0Z0i4oCI2Le6PAH4E2DliFNKknZZt1v4ayNiP+BHwC0R8Qywpov7HQh8t5rHHwP838xcvHNR\nJUm7otudtqdWF+dX0zL7Ajd2cb/lwMydjydJGi3dbuFvkZk/rSOIJKle3c7hS5J2cxa+JBXCwpek\nQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqE\nhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiFqLfyImBoRt0XEgxGxPCLOr3M8SdLwxta8\n/peAv8rMZRGxN3BPRNycmStrHleStJVat/Az87eZuay6vBF4CDiozjElSUPr2Rx+REwH3gv8sldj\nSpJeU/eUDgDVdM61wLxqS38bs2afwqO/eRqAD3xg9g7XOXfgqi2XL7/43F3KN5rrGi2DM/VDhtF+\nXvrh8W3Prjz2fvx50u6v3W7Tbrd3aR21F35EjKVT9t/LzBuGW27W7FN44c6HADjokMPrjiVJu5VW\nq0Wr1dpyfcGCBSNeRy+mdL4DrMjMr/dgLEnSMOo+LPN44AzgQxGxNCLujYiT6xxTkjS0Wqd0MvPn\nwB51jiFJ6o6vtJWkQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtf\nkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWp\nELUWfkR8OyKejIj76xxHkrRjdW/hXw18tOYxJEldqLXwM/MfgGfqHEOS1B3n8CWpEGObDvCq//md\nK9j8wkuMiWDG2zp/h+YOXLVT6xp8v8svPnfEX9/esiO57/bWNdhI17ujTNsbZzTt7PdntMbZ0WMf\nre/PrhrJ92skmUfrse7q78gbXb88F+12m3a7vUvr6JvC3/utM8mNv2fsHntw0CGHNx1HkvpKq9Wi\n1Wptub5gwYIRr6MXUzpRfUiSGlT3YZnXAL8ADouIRyPi7DrHkyQNr9Ypncz8VJ3rlyR1z6N0JKkQ\nFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHh\nS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSIWov/Ig4OSJWRsSqiLig7vEk\nSUOrtfAjYgxwOfBR4N3A6RHxzjrHHC3tdrvpCNv4zaMPNx1hG2bqXj/m6sdM/u7Vp+4t/FnAP2Xm\nmsx8Efg/wL+pecxR4Q9dd8zUvX7M1Y+Z/N2rT92FfxDw2KDra6vbJEk95k5bSSpEZGZ9K494PzA/\nM0+urg8AmZmXbLVcfSEk6Q0qM2Mky9dd+HsADwMfBp4A7gROz8yHahtUkjSksXWuPDNfjoi5wM10\npo++bdlLUjNq3cKXJPWPRnfa9suLsiLi2xHxZETcP+i2yRFxc0Q8HBE3RcS+PcwzNSJui4gHI2J5\nRJzfdKZq/D0j4pcRsbTKdVGf5BoTEfdGxKJ+yFNlWB0R91XP1Z39kCsi9o2IH0bEQ9XP1rEN/5wf\nVj0/91afN0TE+X3wPP2niHggIu6PiO9HxPimM1W55lW/dzvdCY0Vfp+9KOvqKsdgA8CtmXk4cBvw\nxR7meQn4q8x8N/AB4HPVc9NkJjJzM/DBzDwKeC/wsYiY1XQuYB6wYtD1pvMAvAK0MvOozJzVJ7m+\nDizOzCOAI4GVTWbKzFXV8zMTOBrYBFzfZKaIeDvweWBmZr6HzrT36U1mqnK9GzgHOIbO797HI+LQ\nEefKzEY+gPcDfz/o+gBwQYN5pgH3D7q+EphSXX4bsLLBbD8CPtJnmSYCdwPvazIXMBW4BWgBi/rl\newf8M/DmrW5r8nmaBDwyxO2NP1fV2CcBtzedCXg7sAaYTKfsF/XD7x7w74GFg67/V+ALwEMjydXk\nlE6/vyjrrZn5JEBm/hZ4axMhImI6nb/od9D5xjaaqZo+WQr8FrglM+9qONdf0/nBH7wzqvHnqcpz\nS0TcFRHn9kGuGcC6iLi6mkK5MiImNpxpsNOAa6rLjWXKzMeBS4FHgd8AGzLz1iYzVR4ATqimcCYC\nc4CDR5rLF151r+d7tyNib+BaYF5mbhwiQ88zZeYr2ZnSmQrMqv7VbCRXRPwp8GRmLgO2dzxyE0cm\nHJ+dqYo5dKbkThgiRy9zjQVmAldUuTbR+a+68Z+piBgHnAL8cJgMPcsUEfvROf3LNDpb+2+KiDOa\nzASQmSuBS+j8N7sYWAq8PNSi21tPk4X/G+CQQdenVrf1iycjYgpARLwNeKqXg0fEWDpl/73MvKEf\nMg2Wmc8BbeDkBnMdD5wSEb8GfgB8KCK+B/y26ecpM5+oPj9NZ0puFs1+/9YCj2Xm3dX1v6PzB6Af\nfqY+BtyTmeuq601m+gjw68xcn5kv09mncFzDmQDIzKsz85jMbAHP0nmN04hyNVn4dwHviIhpETEe\n+CSd+bKmBK/fSlwEnFVd/gvghq3vULPvACsy8+v9kikiDnj1KICImAD8CZ05xEZyZeaXMvOQzPwX\ndH5+bsvMM4H/10SeV0XExOq/MyLiTXTmp5fT4Pev+rf/sYg4rLrpw8CDTWYa5HQ6f7Bf1WSmR4H3\nR8ReERF0nqcVDWcCICLeUn0+BDiVzhTYyHL1csfDEDsiTqbzV+qfgIEGc1wDPA5spvMNP5vOTptb\nq3w3A/v1MM/xdP5dW0bnX7d7q+dq/6YyVbn+VZVlGXA/8OXq9kZzVRlO5LWdtk0/TzMGfe+Wv/qz\n3Qe5jqSzobUMuA7Ytw8yTQSeBvYZdFvTmS6isyFzP/BdYFzTmapcP6Mzl7+UzhFgI36ufOGVJBXC\nnbaSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4KlpEXF+d0XL5q2e1jIhzqjeU\nuKM6q+Q3qtsPiIhro/MmML+MiOOaTS+NjK+0VdEiYr/MfDYi9qJz2oGPAj+nc0rqjcASYFlmnh8R\n36dztslfRMTBwE2Z+a7GwksjVOubmEu7gf8YEf+2ujwVOBNoZ+YGgIj4IfBH1dc/AhxRnVQLYO+I\nmJiZv+tpYmknWfgqVkScCHwIODYzN0fEEjonzTpiuLtUy77Yq4zSaHIOXyXbF3imKvt30nnbzb2B\nP67e8Hss8O8GLX8znffPBSAijuxpWmkXWfgq2Y3AuIh4EPgq8I903ijkq8CdwO103pt2Q7X8POCY\niLgvIh4APtP7yNLOc6ettJWIeFNmboqIPei849G387V3HZN2W27hS9uaX71R+3I6b3dn2esNwS18\nSSqEW/iSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEP8fHts4oINal+0AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2572,7 +2580,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2581,7 +2589,7 @@ ], "source": [ "hist = thinkstats2.Hist(male_sur.Age)\n", - "thinkplot.Hist(hist, label='males')\n", + "thinkplot.Hist(hist, label='males', width=.8)\n", "thinkplot.Show(xlabel='age', ylabel='amount')" ] }, @@ -2594,16 +2602,16 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFihJREFUeJzt3X2QXXWd5/H3F5JAIgQSKCMSSKJOkGUHJCAwPMgdQGAy\nMzjO1ipCgWSAUosAO7PF0kgVdJe1U3FXVlScUgKmGNe4tSJK1mJ4MrkuyiAPSUggQFQmCQgkk00E\nkhkDId/9457uaTqd9O2He8/p5P2q6sq9554+59O3b+dzz8P9nchMJEl7t33KDiBJKp9lIEmyDCRJ\nloEkCctAkoRlIEmixWUQEXdGxPqIWNFn+tUR8VxErIyIea3MIEka2JgWL38B8A3g77snREQN+HPg\nDzNze0Qc2uIMkqQBtHTLIDN/DmzuM/kLwLzM3F7Ms7GVGSRJAyvjmMFM4GMR8VhELImIE0vIIEnq\npdW7iXa1zkmZeUpEfBT438AHSsghSSqUUQYvAfcAZOYTEbEjIg7JzP/Xd8aIcOAkSRqCzIzBzN+O\n3URRfHX7MXAWQETMBMb2VwTdMrPyXzfffHPpGfp+XXX9/N3mvOr6+f3O0+pMzayzis/naMxozr03\n51C0dMsgIhYCNeCQiFgH3Ax8B1gQESuBbcClrcwgSRpYS8sgMy/axUOXtHK9kqTB8RPII6BWq5Ud\noSnmHDmjISOYc6SNlpxDYRmMgNHyAjHnyBkNGcGcI2205ByKMs4mkiQApk+fztq1a8uOMWpNmzaN\nNWvWjMiyLANJpVm7du2Qz34RRAzq7NHdcjeRJMkykCRZBpIkLANJark5c+Zw0003lR1jtzyALKlS\n5nbc0dLl3zbvipYuf7Ryy0CSZBlI0q7MmDGDr3zlKxx33HEceOCBXHnllWzYsIHZs2czceJEzj33\nXF5//XUAPvWpT3HYYYcxadIkarUaq1at2uVyf/KTn3D88cczadIkTj/9dFauXNnz2Je//GWmTp3K\nxIkTOfroo1myZEnLf06wDCRpt+655x5++tOfsnr1ahYtWsTs2bOZN28eGzdu5J133uHrX/86ALNn\nz+Y3v/kNGzZsYNasWVx88cX9Lm/ZsmVcfvnlzJ8/n02bNvG5z32OCy64gLfffpvVq1fzzW9+k6ee\neoo33niDBx54gOnTp7fl57QMJGk3rr76ag499FAOO+wwzjjjDE4++WSOPfZYxo0bxyc/+UmWLVsG\nwGWXXcaECRMYO3YsN910E08//TRvvvnmTsubP38+n//85znxxBOJCC655BL2228/HnvsMfbdd1/e\neustnnnmGbZv386RRx7JjBkz2vJzWgaStBtTpkzpuT1+/Pid7m/ZsoUdO3bQ0dHBhz70IQ4++GBm\nzJhBRLBx486XeF+7di233HILkydPZvLkyUyaNImXX36ZV155hQ9+8IPceuutdHZ2MmXKFC666CJe\nffXVtvycloEkDdPChQtZtGgRixcv5ne/+x1r1qzZ5YVmjjjiCG688UY2bdrEpk2b2Lx5M1u2bOHT\nn/40ABdeeCGPPPJIz5hNHR0dbfkZLANJGqYtW7aw//77M2nSJLZu3coNN9ywy3GDrrzySr71rW/x\n+OOPA7B161buu+8+tm7dyurVq1myZAlvvfUW48aNY/z48eyzT3v+m/ZzBpIqpUqfA+j7H/qu/oO/\n9NJLuf/++zn88MM55JBD+NKXvsS3v/3tfuc94YQTmD9/PnPnzuXXv/4148eP5/TTT+fMM89k27Zt\ndHR08PzzzzN27FhOPfVUbr/99hH/ufoTVR4xMCKyyvmqbG7HHbv9o+r+YE87//DKWKeqLSIctXQY\ndvX8FdMHNaSpu4kkSa0tg4i4MyLWR8SKfh77zxGxIyImtzKDJGlgrd4yWACc13diREwFPg54iSNJ\nqoCWlkFm/hzY3M9DXwWua+W6JUnNa/sxg4i4AHgpM1cOOLMkqS3aemppRIwHvkhjF1HP5HZmkCTt\nrN2fM/ggMB14Ohon7E4FnoqIkzJzQ3/f0NnZ2XO7VqtRq9Van3IvNJTTPj1VVMM1bdq0Eb2o+95m\n2rRpANTrder1+rCW1Y4yiOKLzHwGeF/PAxH/BMzKzP6OKwDvLgNJe5Y1a9aUHWGP0PeNcldX16CX\n0epTSxcCjwIzI2JdRMzpM0vibiJJKl1Ltwwy86IBHv9AK9cvSWqOn0CWJFkGkiTLQJKEZSBJwjKQ\nJGEZSJKwDCRJWAaSJCwDSRKWgZo0t+OOnoHpWr0eSe1nGUiSLANJkmUgScIykCRhGUiSsAwkSVgG\nkiQsA0kSloEkiRaXQUTcGRHrI2JFr2n/LSKei4jlEfHDiJjYygySpIG1estgAXBen2kPAsdk5keA\nXwE3tDiDJGkALS2DzPw5sLnPtIczc0dx9zFgaiszSJIGVvYxg78C/qHkDJK01xtT1ooj4kbg7cxc\nuLv5Ojs7e27XajVqtVprg41C3SN93jbvipKTSCpDvV6nXq8PaxmllEFEXAbMBs4aaN7eZSBJ2lnf\nN8pdXV2DXkY7yiCKr8adiPOB64CPZea2NqxfkjSAVp9auhB4FJgZEesiYg7wDeAA4KGIWBoRf9fK\nDJKkgbV0yyAzL+pn8oJWrlOSNHhln00kSaoAy0CSZBlIkiwDSRKWgSQJy0CShGUgScIykCRhGUiS\nsAy0F5rbcUfPSK+SGiwDSZJlIEmyDCRJWAaSJCwDSRKWgSQJy0CShGUgScIykCTR4jKIiDsjYn1E\nrOg1bVJEPBgRL0TEAxFxUCszSJIG1uotgwXAeX2mdQAPZ+ZRwGLghhZnkCQNoKVlkJk/Bzb3mfwJ\n4K7i9l3AX7QygyRpYGUcM3hvZq4HyMzXgPeWkEGS1MuYsgMAubsHOzs7e27XajVqtVqL41RP9wib\nt827otRljPQ62pFJ2hvU63Xq9fqwllFGGayPiCmZuT4i3gds2N3MvctAkrSzvm+Uu7q6Br2Mduwm\niuKr2yLgsuL2Z4F725BBkrQbrT61dCHwKDAzItZFxBxgHvDxiHgBOLu4L0kqUUt3E2XmRbt46JxW\nrleSNDh+AlmSZBlIkiwDSRKWgSQJy0CShGUgSaLJMoiIGc1MkySNTs1uGfywn2l3j2QQSVJ5dvuh\ns4j4MHAMcFBE/GWvhyYC+7cymCSpfQb6BPJRwJ8BBwN/3mv6m8CVrQql8o2WEUX75hwtuaWq2W0Z\nZOa9wL0R8UeZ+Y9tyiRJarNmxyb6dUR8EZje+3sy869aEUqS1F7NlsG9wCPAw8A7rYsjSSpDs2Uw\nITOvb2kSSVJpmj219CcRMbulSSRJpWm2DK6lUQj/GhFvRMSbEfFGK4NJktqnqd1EmXlgq4NIksrT\nVBlExMf6m56Z/3dk40iSytDsAeTret3eHzgJeAo4a8QTSZLartndRL0/fUxEHAHcOpwVR8RfA5cD\nO4CVwJzMfGs4y5QkDc1Qh7B+GTh6qCuNiPcDVwOzMvNYGqV04VCXJ0kanmaPGXwDyOLuPsBHgKXD\nXPe+wHsiYgcwAXhlmMuTJA1Rs8cMnux1ezvw/cz8xVBXmpmvRMQtwDrgX4AHM/PhoS5PkjQ8zR4z\nuCsixgEzi0kvDGelEXEw8AlgGvA6cHdEXJSZC/vO29nZ2XO7VqtRq9WGs2qNco5KKu2sXq9Tr9eH\ntYxmdxPVgLuANUAAR0TEZ4dxauk5wIuZualY/j3AqcBuy0CStLO+b5S7uroGvYxmdxPdApybmS8A\nRMRM4PvACYNeY8M64JSI2B/YBpwNPDHEZUmShqnZs4nGdhcBQGauBsYOdaWZ+TiNy2YuA56msbVx\n+1CXJ0kanqYPIEfEHcD/LO5fzLsPKg9aZnYBg9+WkSSNuGbL4AvAVcA1xf1HgL9rSSJJUts1ezbR\nNuB/FF+SpD1MU8cMIuLPImJZRGxyCGtJ2vM0u5voVuAvgZWZmQPNLEkaXZo9m+gl4BmLQJL2TM1u\nGfwX4L6I+BmNzwUAkJkeQ5CkPUCzZfBfgS00rmUwrnVxJEllaLYM3p+Z/76lSSRJpWn2mMF9EXFu\nS5NIkkrTbBl8Abg/Iv7VU0vVTnM77ugZqbSM7x/qMkZive1YptSt2Q+dHRgRk4E/oHHcQJK0B2l2\nCOsrgGuBqcBy4BTgURqjjUqSRrlmdxNdC3wUWJuZfwwcT+OiNJKkPUCzZfD7zPw9QETsl5nPA0e1\nLpYkqZ2aPbX05eJSlT8GHoqIzcDa1sWSJLVTsweQP1nc7IyIJcBBwP0tSyVJaqtmtwx6ZObPWhFE\nklSeZo8ZSJL2YJaBJKm8MoiIgyLiBxHxXEQ8GxEnl5VFkvZ2gz5mMIK+BtyXmf8xIsYAE0rMIkl7\ntVLKICImAmdk5mUAmbkdcKwjSSpJWbuJZgAbI2JBRCyNiNsjYnxJWSRpr1fWbqIxwCzgqsx8MiJu\nBTqAm/vO2NnZ2XO7VqtRq9XaFLG6ukeuvG3eFSUn2b3RknOw9tSfS6NXvV6nXq8PaxlllcHLwEuZ\n+WRx/27g+v5m7F0GkqSd9X2j3NXVNehllLKbKDPXAy9FxMxi0tnAqjKySJLKPZvoGuB7ETEWeBGY\nU2IWSdqrlVYGmfk0jWGxJUkl8xPIkiTLQJJkGUiSsAwkSVgGkiQsA0kSloEkCctAkoRlIEnCMpB2\nMrfjjp6RSUfzOkZinWXkVDksA0mSZSBJsgwkSVgGkiQsA0kSloEkCctAkoRlIEnCMpAkUXIZRMQ+\nEbE0IhaVmUOS9nZlbxlcC6wqOYMk7fVKK4OImArMBhz4RJJKVuaWwVeB64AsMYMkCRhTxkoj4k+B\n9Zm5PCJqQOxq3s7Ozp7btVqNWq3W6njay3SPynnbvCv2qAxV+LnUHvV6nXq9PqxllFIGwGnABREx\nGxgPHBgRf5+Zl/adsXcZSJJ21veNcldX16CXUcpuosz8YmYemZkfAC4EFvdXBJKk9ij7bCJJUgWU\ntZuoR2b+DPhZ2TkkaW/mloEkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnCMpAkYRlIkhjFZTC3446e\nURmHM4/UDkN5LbbjtVvFv5GRyFTFn6vqRm0ZSJJGjmUgSbIMJEmWgSQJy0CShGUgScIykCRhGUiS\nsAwkSZRUBhExNSIWR8SzEbEyIq4pI4ckqWFMSevdDvxNZi6PiAOApyLiwcx8vqQ8krRXK2XLIDNf\ny8zlxe0twHPA4WVkkSRV4JhBREwHPgL8stwkkrT3Kms3EQDFLqK7gWuLLYSddHZ2AnDfw0s5/Mij\n+NHC/96yPN2jHN4274ohz9PMMvr7nsHMP9rtSaNJdv/uRup3OJjXT995h/LaG66h/M0MNvdI/F2O\nhCo837tSr9ep1+vDWkZpZRARY2gUwXcz895dzdddBht/v+f8ByJJI6lWq1Gr1Xrud3V1DXoZZe4m\n+g6wKjO/VmIGSRLlnVp6GnAxcFZELIuIpRFxfhlZJEkl7SbKzF8A+5axbknSzko/m0iSVD7LQJJk\nGUiSLANJEpaBJAnLQJKEZSBJwjKQJGEZSJIoedTSqitrtMRWjoY42BFD+5u/HaOsDpRzuI83O4/e\nrdnntQojefY2kn9Tw3ndVGmk077cMpAkWQaSJMtAkoRlIEnCMpAkYRlIkrAMJElYBpIkSiyDiDg/\nIp6PiNURcX1ZOSRJJZVBROwD3AacBxwDfCYiPlxGlpHw23UvlB2hKaMlZ71eLzvCgEbLc2nOkTVa\ncg5FWVsGJwG/ysy1mfk28L+AT5SUZdhGywtktOS0DEaOOUfWaMk5FGWVweHAS73uv1xMkySVwAPI\nkiQiM9u/0ohTgM7MPL+43wFkZn65z3ztDydJe4DMjMHMX1YZ7Au8AJwNvAo8DnwmM59rexhJUjnX\nM8jMdyJiLvAgjV1Vd1oEklSeUrYMJEnVUskDyFX+QFpE3BkR6yNiRa9pkyLiwYh4ISIeiIiDSs44\nNSIWR8SzEbEyIq6paM79IuKXEbGsyHlzFXMWmfaJiKURsaiqGQEiYk1EPF08p48X0yqVNSIOiogf\nRMRzxWv05ApmnFk8h0uLf1+PiGuqlrPI+tcR8UxErIiI70XEuKHkrFwZjIIPpC2gka23DuDhzDwK\nWAzc0PZU77Yd+JvMPAb4I+Cq4jmsVM7M3Ab8cWYeD3wE+JOIOImK5SxcC6zqdb+KGQF2ALXMPD4z\nTyqmVS3r14D7MvNo4DjgeSqWMTNXF8/hLOAEYCvwIyqWMyLeD1wNzMrMY2ns+v8MQ8mZmZX6Ak4B\n/qHX/Q7g+rJz9ck4DVjR6/7zwJTi9vuA58vO2Cfvj4FzqpwTmAA8CXy0ajmBqcBDQA1YVOXfOfBP\nwCF9plUmKzAR+E0/0yuTsZ9s5wKPVDEn8H5gLTCpKIJFQ/1br9yWAaPzA2nvzcz1AJn5GvDekvP0\niIjpNN51P0bjxVGpnMXul2XAa8BDmfkE1cv5VeA6oPcBtqpl7JbAQxHxRER0X3W9SllnABsjYkGx\nC+b2iJhQsYx9fRpYWNyuVM7MfAW4BVgH/BZ4PTMfZgg5q1gGe4JKHJWPiAOAu4FrM3MLO+cqPWdm\n7sjGbqKpwEkRcQwVyhkRfwqsz8zlwO7O2y79uSyclo1dG7Np7B48gwo9nzTevc4Cvlnk3Epj679K\nGXtExFjgAuAHxaRK5YyIg2kM5TONxlbCeyLi4n5yDZizimXwW+DIXvenFtOqbH1ETAGIiPcBG0rO\nQ0SMoVEE383Me4vJlcvZLTPfAOrA+VQr52nABRHxIvB94KyI+C7wWoUy9sjMV4t//5nG7sGTqNbz\n+TLwUmY+Wdz/IY1yqFLG3v4EeCozNxb3q5bzHODFzNyUme/QOK5xKkPIWcUyeAL4UERMi4hxwIU0\n9oNVSfDud4mLgMuK258F7u37DSX4DrAqM7/Wa1qlckbEod1nOUTEeODjwHNUKGdmfjEzj8zMD9B4\nLS7OzEuA/0NFMnaLiAnF1iAR8R4a+7pXUq3ncz3wUkTMLCadDTxLhTL28RkabwK6VS3nOuCUiNg/\nIoLG87mKoeQs++DMLg6KnE/jE8q/AjrKztMn20LgFWBb8YuYQ+PgzcNF5geBg0vOeBrwDrAcWAYs\nLZ7TyRXL+YdFtuXACuDGYnqlcvbKeyb/dgC5chlp7I/v/p2v7P7bqVpWGmcQPVFkvQc4qGoZi5wT\ngH8GDuw1rYo5b6bxJmoFcBcwdig5/dCZJKmSu4kkSW1mGUiSLANJkmUgScIykCRhGUiSsAwkSVgG\nkiQsA2mXIuJHxeifK7tHAI2Iy4sLhjxWjLj59WL6oRFxd3Gxnl9GxKnlppcGx08gS7sQEQdn5u8i\nYn8awyecB/yCxpDgW4AlwPLMvCYivkdjJM5HI+II4IHM/HelhZcGaUzZAaQK+08R8RfF7anAJUA9\nM18HiIgfAH9QPH4OcHQxWBjAARExITP/pa2JpSGyDKR+RMSZwFnAyZm5LSKW0BgM7OhdfUsx79vt\nyiiNJI8ZSP07CNhcFMGHaVyO9QDgY8UF3ccA/6HX/A/SuE4yABFxXFvTSsNkGUj9ux8YGxHPAn8L\n/CONC7P8LfA48AiN6w2/Xsx/LXBiRDwdEc8An2t/ZGnoPIAsDUJEvCczt0bEvjSuKnVn/tuV5KRR\nyy0DaXA6I6L74jEvWgTaU7hlIElyy0CSZBlIkrAMJElYBpIkLANJEpaBJAn4/85+D7RwYsPwAAAA\nAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFj9JREFUeJzt3XuQnXWd5/H3BwiQKJcAJSKBEHVA1h0VVGAQ9QwqMpkZ\nHGdrFaFQGKV0Si47s+satAo6Ze0UTsmKtykFkXJc49aKjGQtRhChXdBBEAIEucTLEEA0DBsEk1nD\n7bt/nJNM2+mkT3fnnOfp5P2q6so5z3n6OZ8+fTqf89x+T6oKSdKObaemA0iSmmcZSJIsA0mSZSBJ\nwjKQJGEZSJIYcBkkuSzJmiR3jZt+dpJ7k6xMcuEgM0iSJrfLgJd/OfAZ4O83TkjSAf4U+P2qeibJ\nfgPOIEmaxEDXDKrqJuDxcZP/Eriwqp7pzfPYIDNIkibXxD6DQ4E3JLk5yQ1JXtNABknSGIPeTLSl\n55xfVcckeS3wv4AXN5BDktTTRBk8BFwJUFW3Jnkuyb5V9X/Hz5jEgZMkaRqqKlOZfxibidL72uib\nwPEASQ4F5kxUBBtVVeu/LrjggsYzjP364Icv3fQ1Uc6xj4+fZxiZJnvOtr2eszWjOXfcnNMx0DWD\nJMuADrBvkgeBC4AvAZcnWQlsAN49yAySpMkNtAyq6pQtPHTaIJ9XkjQ1noG8DXQ6naYj9MWc285s\nyAjm3NZmS87psAy2gdnyBjHntjMbMoI5t7XZknM6mjiaSJIAOOSQQ1i9enXTMWathQsX8sADD2yT\nZVkGkhqzevXqaR/9IkimdPToVrmZSJJkGUiSLANJEpaBJA3cGWecwfnnn990jK1yB7KkVjlryRcH\nuvzPXvi+gS5/tnLNQJJkGUjSlixatIhPfOITvPKVr2SPPfbgzDPP5NFHH2Xx4sXsueeenHDCCTzx\nxBMAvOMd7+CAAw5g/vz5dDod7rnnni0u91vf+hZHHHEE8+fP57jjjmPlypWbHvv4xz/OggUL2HPP\nPTn88MO54YYbBv5zgmUgSVt15ZVX8t3vfpdVq1axfPlyFi9ezIUXXshjjz3Gs88+y6c//WkAFi9e\nzM9+9jMeffRRjjzySE499dQJl7dixQre+973cumll7J27Vre//73c9JJJ/H000+zatUqPve5z3Hb\nbbfx5JNPcs0113DIIYcM5ee0DCRpK84++2z2228/DjjgAF7/+tdz9NFH84pXvIJdd92Vt7/97axY\nsQKA008/nXnz5jFnzhzOP/987rzzTn7zm99strxLL72UD3zgA7zmNa8hCaeddhq77bYbN998Mzvv\nvDNPPfUUd999N8888wwHH3wwixYtGsrPaRlI0lbsv//+m27PnTt3s/vr1q3jueeeY8mSJbz0pS9l\n7733ZtGiRSThscc2v8T76tWrueiii9hnn33YZ599mD9/Pg8//DCPPPIIL3nJS7j44osZGRlh//33\n55RTTuGXv/zlUH5Oy0CSZmjZsmUsX76c66+/nl//+tc88MADW7zQzEEHHcRHP/pR1q5dy9q1a3n8\n8cdZt24d73znOwE4+eSTufHGGzeN2bRkyZKh/AyWgSTN0Lp169h9992ZP38+69ev57zzztviuEFn\nnnkmn//857nlllsAWL9+PVdffTXr169n1apV3HDDDTz11FPsuuuuzJ07l512Gs5/055nIKlV2nQe\nwPj/0Lf0H/y73/1uvv3tb3PggQey77778rGPfYwvfOELE8776le/mksvvZSzzjqLn/70p8ydO5fj\njjuON77xjWzYsIElS5Zw3333MWfOHI499lguueSSbf5zTSRtHjEwSbU5X1uNPWlnoj+s8Sf1DOOP\nr4nnVPslcdTSGdjS69ebPqUhTd1MJEkabBkkuSzJmiR3TfDYf07yXJJ9BplBkjS5Qa8ZXA68dfzE\nJAuAtwBe4kiSWmCgZVBVNwGPT/DQJ4EPDfK5JUn9G/o+gyQnAQ9V1cpJZ5YkDcVQDy1NMhf4CN1N\nRJsmDzODJGlzwz7P4CXAIcCd6R6wuwC4LclRVfXoRN8wMjKy6Xan06HT6Qw+5Q5mOod9Tnb4qtSP\nhQsXbtOLuu9oFi5cCMDo6Cijo6MzWtYwyiC9L6rqbuCFmx5I/hk4sqom2q8A/G4ZSNq+PPDAA01H\n2C6M/6C8dOnSKS9j0IeWLgN+ABya5MEkZ4ybpXAzkSQ1bqBrBlV1yiSPv3iQzy9J6o9nIEuSLANJ\nkmUgScIykCRhGUiSsAwkSVgGkiQsA0kSloEkieEPVKdZahgD0zn4ndQc1wwkSZaBJMkykCRhGUiS\nsAwkSVgGkiQsA0kSloEkCctAksSAyyDJZUnWJLlrzLS/TXJvkjuSfCPJnoPMIEma3KDXDC4H3jpu\n2rXAy6vqVcBPgPMGnEGSNImBlkFV3QQ8Pm7adVX1XO/uzcCCQWaQJE2u6X0GfwH8Y8MZJGmH19io\npUk+CjxdVcu2Nt/IyMim251Oh06nM9hgs5CjfUo7ttHRUUZHR2e0jEbKIMnpwGLg+MnmHVsGkqTN\njf+gvHTp0ikvYxhlkN5X905yIvAh4A1VtWEIzy9JmsSgDy1dBvwAODTJg0nOAD4DPB/4TpLbk/zd\nIDNIkiY30DWDqjplgsmXD/I5JUlT1/TRRJKkFrAMJEmWgSTJMpAkYRlIkrAMJElYBpIkLANJEpaB\nJIkGRy2VmuAIr9LEXDOQJFkGkiTLQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRIDLoMklyVZk+Su\nMdPmJ7k2yf1Jrkmy1yAzSJImN+g1g8uBt46btgS4rqoOA64HzhtwBknSJAZaBlV1E/D4uMlvA77c\nu/1l4M8GmUGSNLkm9hm8oKrWAFTVr4AXNJBBkjRGG0Ytra09ODIysul2p9Oh0+kMOE67jB1lE6Y3\n0uYwRuqcznM4gqi0bYyOjjI6OjqjZTRRBmuS7F9Va5K8EHh0azOPLQNJ0ubGf1BeunTplJcxjM1E\n6X1ttBw4vXf7PcBVQ8ggSdqKQR9augz4AXBokgeTnAFcCLwlyf3Am3r3JUkNGuhmoqo6ZQsPvXmQ\nzytJmhrPQJYkWQaSJMtAkoRlIEnCMpAkYRlIkuizDJIs6meaJGl26nfN4BsTTLtiWwaRJDVnqyed\nJXkZ8HJgryR/PuahPYHdBxlMkjQ8k52BfBjwJ8DewJ+Omf4b4MxBhVLzZsOIohON6DobcktttNUy\nqKqrgKuS/EFV/dOQMkmShqzfsYl+muQjwCFjv6eq/mIQoSRJw9VvGVwF3AhcBzw7uDiSpCb0Wwbz\nqurDA00iSWpMv4eWfivJ4oEmkSQ1pt8yOJduIfy/JE8m+U2SJwcZTJI0PH1tJqqqPQYdRJLUnL7K\nIMkbJppeVf9n28aRJDWh3x3IHxpze3fgKOA24PhtnkiSNHT9biYae/YxSQ4CLp7JEyf5K+C9wHPA\nSuCMqnpqJsuUJE3PdIewfhg4fLpPmuRFwNnAkVX1CrqldPJ0lydJmpl+9xl8Bqje3Z2AVwG3z/C5\ndwael+Q5YB7wyAyXJ0mapn73GfxozO1ngK9V1fen+6RV9UiSi4AHgX8Frq2q66a7PEnSzPS7z+DL\nSXYFDu1Nun8mT5pkb+BtwELgCeCKJKdU1bLx846MjGy63el06HQ6M3lqzWLjRymV1DU6Osro6OiM\nltHvZqIO8GXgASDAQUneM4NDS98M/Lyq1vaWfyVwLLDVMpAkbW78B+WlS5dOeRn9bia6CDihqu4H\nSHIo8DXg1VN+xq4HgWOS7A5sAN4E3DrNZUmSZqjfo4nmbCwCgKpaBcyZ7pNW1S10L5u5AriT7trG\nJdNdniRpZvregZzki8D/6N0/ld/dqTxlVbUUmPq6jCRpm+u3DP4S+CBwTu/+jcDfDSSRJGno+j2a\naAPw33tfkqTtTF/7DJL8SZIVSdY6hLUkbX/63Ux0MfDnwMqqqslmliTNLv0eTfQQcLdFIEnbp37X\nDP4rcHWS79E9LwCAqnIfgiRtB/otg/8GrKN7LYNdBxdHktSEfsvgRVX17weaRJLUmH73GVyd5ISB\nJpEkNWYqJ539lyQbgKfpDh9RVbXnwJJphzd2lNLPXvi+RpYxfqTUfpaxLXIPY5nSWP2edLZHkn2A\n36O730CStB3pdwjr9wHnAguAO4BjgB/QHW1UkjTL9bvP4FzgtcDqqvpD4Ai6F6WRJG0H+i2D31bV\nbwGS7FZV9wGHDS6WJGmY+t2B/HDvUpXfBL6T5HFg9eBiSZKGqd8dyG/v3RxJcgOwF/DtgaWSJA1V\nv2sGm1TV9wYRRJLUnH73GUiStmOWgSSpuTJIsleSrye5N8mPkxzdVBZJ2tFNeZ/BNvQp4Oqq+o9J\ndgHmNZhFknZojZRBkj2B11fV6QBV9QzgZTQlqSFNbSZaBDyW5PIktye5JMnchrJI0g6vqc1EuwBH\nAh+sqh8luRhYAlwwfsaRkZFNtzudDp1OZ0gR22k6o2g2YXzO7YkjiKptRkdHGR0dndEymiqDh4GH\nqupHvftXAB+eaMaxZSBJ2tz4D8pLly6d8jIa2UxUVWuAh5Ic2pv0JuCeJrJIkpo9mugc4KtJ5gA/\nB85oMIsk7dAaK4OqupPusNiSpIZ5BrIkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnCMpAkYRlIkmh2\nOAqpdYYx2mpTI89OdbTV2TJCrrYN1wwkSZaBJMkykCRhGUiSsAwkSVgGkiQsA0kSloEkCctAkkTD\nZZBkpyS3J1neZA5J2tE1vWZwLnBPwxkkaYfXWBkkWQAsBgY/GIwkaauaXDP4JPAhoBrMIEmioVFL\nk/wxsKaq7kjSAbKleUdGRjbd7nQ6dDqdQcfTDmSqI3nOphxt+dk0eKOjo4yOjs5oGU0NYf064KQk\ni4G5wB5J/r6q3j1+xrFlIEna3PgPykuXLp3yMhrZTFRVH6mqg6vqxcDJwPUTFYEkaTiaPppIktQC\njV/prKq+B3yv6RyStCNzzUCSZBlIkiwDSRKWgSQJy0CShGUgScIykCRhGUiSsAwkSbTgDOTpmmxE\nRkdsVFuMfS9O53sG9f5t69/ITHONf73b9LO1mWsGkiTLQJJkGUiSsAwkSVgGkiQsA0kSloEkCctA\nkoRlIEmioTJIsiDJ9Ul+nGRlknOayCFJ6mpqOIpngL+uqjuSPB+4Lcm1VXVfQ3kkaYfWyJpBVf2q\nqu7o3V4H3Asc2EQWSVIL9hkkOQR4FfDDZpNI0o6r0VFLe5uIrgDO7a0hbGZkZISrr7sdgAMPPowD\nDz6ssVEcp/L4luaZ6jK3Rzfdci9nLfkiN91yL8cddXjTcaZtop9jpr/Dfl+byUZCHdZ7aap/M9PJ\n3YYRitvyem/J6Ogoo6OjM1pGY2WQZBe6RfCVqrpqS/ONjIzw2G+nPgSwJO0oOp0OnU5n0/2lS5dO\neRlNbib6EnBPVX2qwQySJJo7tPR1wKnA8UlWJLk9yYlNZJEkNbSZqKq+D+zcxHNLkjbX+NFEkqTm\nWQaSJMtAkmQZSJKwDCRJWAaSJCwDSRKWgSQJy0CSRMOjlrZdE6MlDnIExumMFjr+e4Yx4uhkz3HT\nLff+zv0tzTPZMraHkVOHaex7c+z7Yezr18ZReKczmvCW9PPe6ydHW16bsVwzkCRZBpIky0CShGUg\nScIykCRhGUiSsAwkSVgGkiQaLIMkJya5L8mqJB9uKockqaEySLIT8FngrcDLgXcleVkTWbaFXzx4\nf9MR+rLu8YeajtCX2ZBztvzOzbltzYb35nQ1tWZwFPCTqlpdVU8D/xN4W0NZZmzWvJF/PTveyLMh\n52z5nZtz25oN783paqoMDgTGvqoP96ZJkhrgDmRJEqmq4T9pcgwwUlUn9u4vAaqqPj5uvuGHk6Tt\nQFVlKvM3VQY7A/cDbwJ+CdwCvKuq7t3qN0qSBqKR6xlU1bNJzgKupbup6jKLQJKa08iagSSpXVq5\nA7nNJ6QluSzJmiR3jZk2P8m1Se5Pck2SvRrOuCDJ9Ul+nGRlknNamnO3JD9MsqKX84I25uxl2inJ\n7UmWtzUjQJIHktzZe01v6U1rVdYkeyX5epJ7e+/Ro1uY8dDea3h7798nkpzTtpy9rH+V5O4kdyX5\napJdp5OzdWUwC05Iu5xutrGWANdV1WHA9cB5Q0/1u54B/rqqXg78AfDB3mvYqpxVtQH4w6o6AngV\n8EdJjqJlOXvOBe4Zc7+NGQGeAzpVdURVHdWb1rasnwKurqrDgVcC99GyjFW1qvcaHgm8GlgP/AMt\ny5nkRcDZwJFV9Qq6m/7fxXRyVlWrvoBjgH8cc38J8OGmc43LuBC4a8z9+4D9e7dfCNzXdMZxeb8J\nvLnNOYF5wI+A17YtJ7AA+A7QAZa3+XcO/DOw77hprckK7An8bILprck4QbYTgBvbmBN4EbAamN8r\nguXT/Vtv3ZoBs/OEtBdU1RqAqvoV8IKG82yS5BC6n7pvpvvmaFXO3uaXFcCvgO9U1a20L+cngQ8B\nY3ewtS3jRgV8J8mtSTZedb1NWRcBjyW5vLcJ5pIk81qWcbx3Ast6t1uVs6oeAS4CHgR+ATxRVdcx\njZxtLIPtQSv2yid5PnAFcG5VrWPzXI3nrKrnqruZaAFwVJKX06KcSf4YWFNVdwBbO2678dey53XV\n3bSxmO7mwdfToteT7qfXI4HP9XKup7v236aMmySZA5wEfL03qVU5k+xNdyifhXTXEp6X5NQJck2a\ns41l8Avg4DH3F/SmtdmaJPsDJHkh8GjDeUiyC90i+EpVXdWb3LqcG1XVk8AocCLtyvk64KQkPwe+\nBhyf5CvAr1qUcZOq+mXv33+hu3nwKNr1ej4MPFRVP+rd/wbdcmhTxrH+CLitqh7r3W9bzjcDP6+q\ntVX1LN39GscyjZxtLINbgZcmWZhkV+BkutvB2iT87qfE5cDpvdvvAa4a/w0N+BJwT1V9asy0VuVM\nst/GoxySzAXeAtxLi3JW1Ueq6uCqejHd9+L1VXUa8L9pScaNkszrrQ2S5Hl0t3WvpF2v5xrgoSSH\n9ia9CfgxLco4zrvofgjYqG05HwSOSbJ7ktB9Pe9hOjmb3jmzhZ0iJ9I9Q/knwJKm84zLtgx4BNjQ\n+0WcQXfnzXW9zNcCezec8XXAs8AdwArg9t5ruk/Lcv5+L9sdwF3AR3vTW5VzTN438m87kFuXke72\n+I2/85Ub/3balpXuEUS39rJeCezVtoy9nPOAfwH2GDOtjTkvoPsh6i7gy8Cc6eT0pDNJUis3E0mS\nhswykCRZBpIky0CShGUgScIykCRhGUiSsAwkSVgG0hYl+Yfe6J8rN44AmuS9vQuG3NwbcfPTven7\nJbmid7GeHyY5ttn00tR4BrK0BUn2rqpfJ9md7vAJbwW+T3dI8HXADcAdVXVOkq/SHYnzB0kOAq6p\nqn/XWHhpinZpOoDUYv8pyZ/1bi8ATgNGq+oJgCRfB36v9/ibgcN7g4UBPD/JvKr616EmlqbJMpAm\nkOSNwPHA0VW1IckNdAcDO3xL39Kb9+lhZZS2JfcZSBPbC3i8VwQvo3s51ucDb+hd0H0X4D+Mmf9a\nutdJBiDJK4eaVpohy0Ca2LeBOUl+DPwN8E90L8zyN8AtwI10rzf8RG/+c4HXJLkzyd3A+4cfWZo+\ndyBLU5DkeVW1PsnOdK8qdVn925XkpFnLNQNpakaSbLx4zM8tAm0vXDOQJLlmIEmyDCRJWAaSJCwD\nSRKWgSQJy0CSBPx/qP4x1n7Ra2UAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2612,7 +2620,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2622,7 +2630,7 @@ "source": [ "male_not = males[males.Survived == 0]\n", "hist = thinkstats2.Hist(male_not.Age)\n", - "thinkplot.Hist(hist, label='males')\n", + "thinkplot.Hist(hist, label='males', width=.8)\n", "thinkplot.Show(xlabel='age', ylabel='amount')" ] }, @@ -2635,16 +2643,16 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFPVJREFUeJzt3X2QXXV9x/H3NwloAiREGFCTELQtCLTVQI0IRa6ggdqK\ntf2jEccqFuhgIqHUNCv9g10cEREEK40zGspYC3RGrE2sogGTGx9AAUkIAoEQJECAQBJ5UgxGvv3j\nnl2XzSa5+3Dv2bP7fs3cyb1nz57f59xs8tnzcM+JzESSNLaNKzuAJKl8loEkyTKQJFkGkiQsA0kS\nloEkiRaXQURcHRGbI2JtP1/754h4OSJe08oMkqQ9a/WWwTXAKX0nRsR04N3AxhaPL0lqQkvLIDN/\nBPyyny9dASxs5diSpOa1/ZhBRJwGPJqZd7d7bElS/ya0c7CImAhcQGMXUc/kdmaQJO2srWUA/AFw\nKHBXRAQwHfhZRMzOzKf6zhwRXjhJkgYhMwf0i3Y7dhNF8SAzf56Zr83MN2bmG4DHgFn9FUG3zKzs\n48ILLyw9w0jIP2/RVyqbvervvfnHZv7BaPWppdcBtwCHRcQjEXFGn1kSdxNJUulaupsoM0/fw9ff\n2MrxJUnN8RPILVSr1cqOMCRVzl/l7GD+slU9/2DEYPcvtUNE5EjOp+bM71jCVZecWXYMacyICHKA\nB5DbfTaRpFHu0EMPZeNGLy7QDjNnzuThhx8elmVZBpKG1caNGwd9RosGpnGG/vDwmIEkyTKQJFkG\nkiQsA0ljyAMPPMCsWbOYMmUKV111VdvGHTduHA899FDbxhsMDyBLaqn5HUtauvyBnLZ86aWXctJJ\nJ7F69eoWJtrZcB7obRW3DCSNGRs3buSoo45q+7hVOLvKMpA0Jpx88smsXLmSefPmMXnyZNavX88n\nPvEJZs6cyete9zo+9rGPsX37dgBWrVrFjBkz+NznPsfBBx/MtGnTWLp0KTfeeCOHH344Bx54IJ/5\nzGd6ln377bdz3HHHMXXqVKZNm8bHP/5xduzY0W+Ol156aZfjbt26lfe+971MnTqVAw44gBNPPLH1\nb0zBMpA0Jnz/+9/nhBNOYPHixTz33HMsXryYBx98kLVr1/Lggw+yadMmLrroop75n3zySV566SUe\nf/xxurq6OOuss7j22mtZvXo1P/jBD/jUpz7V8+G68ePHc+WVV7Jt2zZuvfVWVqxYweLFi/vNsWjR\nol2Oe/nllzNjxgy2bt3KU089xcUXX9z6N6ZgGUgaU7p32XzlK1/hiiuuYMqUKeyzzz50dHRw/fXX\n98y39957c8EFFzB+/Hjmzp3Lli1bOO+885g0aRJHHnkkRx55JHfddRcARx99NLNnzyYiOOSQQzj7\n7LNZtWpVv+Pvbty99tqLJ554gl/84heMHz+e448/vsXvxu95AFnSmPP000/z61//mmOOOaZn2ssv\nv/yKffsHHHBAz4HfiRMnAnDQQQf1fH3ixIm88MILAKxfv57zzz+fO+64gxdffJEdO3a8YtnNjrtw\n4UI6OzuZM2cOEcFZZ53FokWLhnHNd80tA0ljzoEHHsikSZO455572LZtG9u2beOZZ57h2WefHdTy\nzjnnHI444gg2bNjAM888w6c//el+Dxrvadx9992Xyy67jA0bNrBs2TI+//nPs3LlyiGta7MsA0lj\nTvdv3eeddx5PP/00AJs2bWL58uWDWt7zzz/P5MmTmTRpEuvWreNLX/rSoMb99re/zYYNGwDYb7/9\nmDBhAuPGtee/aXcTSWqpkXT58t7n+19yySVcdNFFHHvssWzdupVp06ZxzjnnMGfOnD1+b9/Xl112\nGWeffTaXXnops2bNYu7cuaxYsaLfeT/72c/S1dXV77jr169n/vz5bNmyhalTpzJv3ry2nVHk/QzU\nct7PYGwprqVfdowxYVfv9WDuZ+BuIkmSZSBJsgwkSVgGkiQsA0kSLS6DiLg6IjZHxNpe0y6NiPsi\nYk1EfCMiJrcygyRpz1q9ZXANcEqfacuBozLzLcB64JMtziCpjWbOnElE+GjDY+bMmcP299bSD51l\n5o8iYmafaTf3evkT4G9bmUFSez388MNlR9AglH3M4KPAjSVnkKQxr7TLUUTEvwK/zczrdjdfZ2dn\nz/NarUatVmttMEmqmHq9Tr1eH9IyWn45imI30bcy8097TfsIcBZwUmZu3833ejmKUcDLUUjtNZjL\nUbRjyyCKR+NFxKnAQuAduysCSVL7tPrU0uuAW4DDIuKRiDgD+CKwL3BTRNwZEf3fG06S1DatPpvo\n9H4mX9PKMSVJA1f22USSpBHAMpAkWQaSJMtAkoRlIEnCMpAkYRlIkrAMJElYBpIkLANJEpaBJAnL\nQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGUgScIykCRhGUiSaHEZRMTVEbE5Itb2\nmjY1IpZHxP0R8b2ImNLKDJKkPWv1lsE1wCl9pnUAN2fm4cAK4JMtziBJ2oOWlkFm/gj4ZZ/J7wO+\nWjz/KvDXrcwgSdqzMo4ZHJSZmwEy80ngoBIySJJ6mVB2ACB398XOzs6e57VajVqt1uI4Goj5HUu4\n6pIzy44hjWn1ep16vT6kZZRRBpsj4uDM3BwRrwWe2t3MvctAkrSzvr8od3V1DXgZ7dhNFMWj2zLg\nI8XzDwNL25BBkrQbrT619DrgFuCwiHgkIs4ALgHeHRH3AycXryVJJWrpbqLMPH0XX3pXK8eVJA2M\nn0CWJFkGkiTLQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGWgUWp+x5KyI0iVYhlI\nkiwDSZJlIEnCMpAkYRlIkrAMJElYBpIkLANJEpaBJAnLQJKEZSBJosQyiIh/ioifR8TaiLg2IvYu\nK4skjXWllEFEvB74OHB0Zv4pMAGYW0YWSVLjP+GyjAf2iYiXgUnA4yVmkaQxraktg4h4QzPTmpWZ\njwOXA48Am4BnMvPmwS5PkjQ0zW4ZfAM4us+0G4BjBjNoROwPvA+YCTwL3BARp2fmdX3n7ezs7Hle\nq9Wo1WqDGVK9zO9YwlWXnFl2jErzPdRIUq/XqdfrQ1rGbssgIt4EHAVMiYi/6fWlycCrhzDuu4CH\nMnNbMc7/AMcBuy0DSdLO+v6i3NXVNeBl7GnL4HDgr4D9gff2mv48cNaAR/u9R4BjI+LVwHbgZOD2\nISxPkjQEuy2DzFwKLI2It2fmrcM1aGbeFhE3AKuB3xZ/fnm4li9JGphmjxk8GBEXAIf2/p7M/Ohg\nB87MLmDg2zKSpGHXbBksBX4I3Az8rnVxJEllaLYMJmXmopYmkSSVptlPIP9fRLynpUkkSaVptgwW\n0CiEFyPiuYh4PiKea2UwSVL7NLWbKDP3a3UQSVJ5miqDiHhHf9Mz8wfDG0eSVIZmDyAv7PX81cBs\n4GfAScOeSJLUds3uJur96WMiYgZwZUsSSZLabrD3M3gMOGI4g0iSytPsMYMvAlm8HAe8BbizVaEk\nSe3V7DGDO3o93wFcn5k/bkEeSVIJmtpNlJlfBa6ncdD4LuC2VoZSe83vWFJ2hFHB91FV1uxuohrw\nVeBhIIAZEfFhTy2VpNGh2d1ElwNzMvN+gIg4jMaWwqDudCZJGlmaPZtor+4iAMjMB4C9WhNJktRu\nTR9AjoglwH8Vrz/IKw8qS5IqrNkyOAeYB5xbvP4hsLgliSRJbdfsJ5C3A58vHpKkUaapYwYR8VcR\nsToitnkJa0kafZrdTXQl8DfA3ZmZe5pZklQtzZ5N9Cjwc4tAkkanZrcM/gX4TkSsArZ3T8xMjyFI\n0ijQbBl8GniBxr0M9m5dHElSGZotg9dn5h8P58ARMQVYAvwx8DLw0cz86XCOIUlqTrPHDL4TEXOG\neewvAN/JzCOANwP3DfPyJUlNarYMzgG+GxEvDseppRExGTghM68ByMwdmempqpJUkmY/dLZfRLwG\n+CMaxw2G6g3Aloi4hsZWwR3Agsx8cRiWLUkaoGYvYX0msACYDqwBjgVuAU4ewrhHA/My846IuBLo\nAC7sO2NnZ2fP81qtRq1WG+SQ0p7N71jCVZecWXYMaUDq9Tr1en1Iy2j2APIC4K3ATzLznRHxJuDi\nIYz7GPBoZnZf7O4GYFF/M/YuA0nSzvr+otzV1TXgZTR7zOA3mfkbgIh4VWauAw4f8GiFzNwMPFrc\nFwEaWxj3DnZ5kqShaXbL4LGI2B/4X+CmiPglsHGIY58LXBsRewEPAWcMcXmSpEFq9gDy+4unnRGx\nEpgCfHcoA2fmXTR2PUmSStbslkGPzFzViiCSpPI0e8xAkjSKWQaSJMtAkmQZSJKwDCRJWAaSJCwD\nSRKWgSQJy0CShGUgSWIMlcH8jiVlR2i5/tax6uvdN/9Q1rFK70WVsmp0GDNlIEnaNctAkmQZSJIs\nA0kSloEkCctAkoRlIEnCMpAkYRlIkrAMJElYBpIkSi6DiBgXEXdGxLIyc0jSWFf2lsEC4N6SM0jS\nmFdaGUTEdOA9gJdnlKSSlbllcAWwEMgSM0iSKKkMIuIvgc2ZuQaI4tGvzs7Onke9Xh+2DFW/XnwZ\n+ZsZs+rva3+Gc51G4z0n+jMa12kkq9frr/i/cjAmDG+kph0PnBYR7wEmAvtFxH9m5t/3nXGwKyZJ\nY0WtVqNWq/W87urqGvAyStkyyMwLMvOQzHwjMBdY0V8RSJLao+yziSRJI0BZu4l6ZOYqYFXZOSRp\nLHPLQJJkGUiSLANJEpaBJAnLQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRKWQSWMlWvDj5X1HC5D\neb8G+70j9T4aZSxrtLEMJEmWgSTJMpAkYRlIkrAMJElYBpIkLANJEpaBJAnLQJKEZSBJwjKQJFFS\nGUTE9IhYERH3RMTdEXFuGTkkSQ0TShp3B3B+Zq6JiH2Bn0XE8sxcV1IeSRrTStkyyMwnM3NN8fwF\n4D5gWhlZJEkj4JhBRBwKvAX4ablJJGnsKrUMil1ENwALii2EnXR2dtLZ2cnsPz+N95++cKevj8br\nk4/GdeprJKzj/I4lIyJHs0bqPQhGaq4ylLVO9Xq95//Kzs7OQS2jrGMGRMQEGkXwtcxcuqv5ulds\ny29G3w+OJA2HWq1GrVbred3V1TXgZZS5ZfAfwL2Z+YUSM0iSKO/U0uOBDwInRcTqiLgzIk4tI4sk\nqaTdRJn5Y2B8GWNLknZW+tlEkqTyWQaSJMtAkmQZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGUgScIy\nkCQxSstgOK+v3uw0Vdto+TsdzvUoY1nNzNfffShGatYqGZVlIEkaGMtAkmQZSJIsA0kSloEkCctA\nkoRlIEnCMpAkYRlIkrAMJEmUWAYRcWpErIuIByJiUVk5JEkllUFEjAOuAk4BjgI+EBFvKiNLK9Xr\n9bIjDEmV82965P6yIwyJ+ctV5Z/9wSpry2A2sD4zN2bmb4H/Bt5XUpaWqfoPVJXzV/0/I/OXq8o/\n+4NVVhlMAx7t9fqxYpokqQQeQJYkEZnZ/kEjjgU6M/PU4nUHkJn52T7ztT+cJI0CmRkDmb+sMhgP\n3A+cDDwB3AZ8IDPva3sYSRITyhg0M38XEfOB5TR2VV1tEUhSeUrZMpAkjSwj8gByFT+QFhFXR8Tm\niFjba9rUiFgeEfdHxPciYkqZGXclIqZHxIqIuCci7o6Ic4vpVcn/qoj4aUSsLvJfWEyvRH5ofPYm\nIu6MiGXF68pkB4iIhyPiruLv4LZiWiXWISKmRMTXI+K+4t/A2yqU/bDiPb+z+PPZiDh3MPlHXBlU\n+ANp19DI3FsHcHNmHg6sAD7Z9lTN2QGcn5lHAW8H5hXveSXyZ+Z24J2ZOQt4C/AXETGbiuQvLADu\n7fW6StkBXgZqmTkrM2cX06qyDl8AvpOZRwBvBtZRkeyZ+UDxnh8NHAP8Cvgmg8mfmSPqARwL3Njr\ndQewqOxcTWafCazt9XodcHDx/LXAurIzNrke/wu8q4r5gUnAHcBbq5IfmA7cBNSAZVX82QF+ARzQ\nZ9qIXwdgMrChn+kjPns/mecAPxxs/hG3ZcDo+kDaQZm5GSAznwQOKjnPHkXEoTR+u/4JjR+mSuQv\ndrOsBp4EbsrM26lO/iuAhUDvA3hVyd4tgZsi4vaIOLOYVoV1eAOwJSKuKXa1fDkiJlGN7H39HXBd\n8XzA+UdiGYxmI/pofUTsC9wALMjMF9g574jNn5kvZ2M30XRgdkQcRQXyR8RfApszcw2wu/PCR1z2\nPo7Pxq6K99DYzXgCFXj/aZxReTTw70X+X9HYG1GF7D0iYi/gNODrxaQB5x+JZbAJOKTX6+nFtCra\nHBEHA0TEa4GnSs6zSxExgUYRfC0zlxaTK5O/W2Y+B9SBU6lG/uOB0yLiIeB64KSI+BrwZAWy98jM\nJ4o/n6axm3E21Xj/HwMezcw7itffoFEOVcje218AP8vMLcXrAecfiWVwO/CHETEzIvYG5gLLSs7U\nrOCVv90tAz5SPP8wsLTvN4wg/wHcm5lf6DWtEvkj4sDusyUiYiLwbuA+KpA/My/IzEMy8400ftZX\nZOaHgG8xwrN3i4hJxVYlEbEPjX3Xd1ON938z8GhEHFZMOhm4hwpk7+MDNH6Z6Dbw/GUf9NjFgZBT\naXxCeT3QUXaeJjNfBzwObAceAc4ApgI3F+uyHNi/7Jy7yH488DtgDbAauLP4O3hNRfL/SZF5DbAW\n+NdieiXy91qPE/n9AeTKZKex3737Z+fu7n+zVVkHGmcQ3V6sw/8AU6qSvcg/CXga2K/XtAHn90Nn\nkqQRuZtIktRmloEkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnCMpB2KSK+WVyF8+7uK3FGxD8UNwz5\nSXGFy38rph8YETcUN9n5aUQcV256aWD8BLK0CxGxf2Y+ExGvpnG5glOAH9O4xPcLwEpgTWaeGxHX\n0rjy5S0RMQP4XmYeWVp4aYAmlB1AGsHOi4i/Lp5PBz4E1DPzWYCI+DrwR8XX3wUcERHdFyrcNyIm\nZeav25pYGiTLQOpHRJwInAS8LTO3R8RKGldCPWJX31LM+9t2ZZSGk8cMpP5NAX5ZFMGbaNyOdV/g\nHcUN1CcAf9tr/uU07mMMQES8ua1ppSGyDKT+fRfYKyLuAS4GbqVxI5SLgduAH9K47++zxfwLgD+L\niLsi4ufAP7Y/sjR4HkCWBiAi9snMX0XEeOCbwNX5+zvDSZXlloE0MJ0R0X0Tl4csAo0WbhlIktwy\nkCRZBpIkLANJEpaBJAnLQJKEZSBJAv4fGZv3LvlIvBgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFRpJREFUeJzt3X20VXWdx/H3F9ACESRdWgFizqShTYVOZDrmSQ3tuak/\nhmo1ZaPOMkwcJweyP7zXVmamaZNDa5Xmahp11soeoEkLDQ5lWmqCmIoiJioq8pBPZRj5nT/Ovrfr\n5QLnPpyz7+a+X2vdxdn77rv35xwOfO5+OL8dmYkkaWQbVXYASVL5LANJkmUgSbIMJElYBpIkLANJ\nEi0ug4i4IiLWR8TKPr737xHxYkS8opUZJEk71+o9gyuBE3rPjIgpwDuAtS3eviSpCS0tg8y8Cfh9\nH9+6BDi7lduWJDWv7ecMIuJ9wCOZeVe7ty1J6tuYdm4sIsYC59A4RNQ9u50ZJEnbamsZAH8DHADc\nGREBTAF+ExEzM/PJ3gtHhAMnSdIAZGa/ftFux2GiKL7IzN9m5isz88DMfA3wKDCjryLokpmV/Tr3\n3HNLz1B2/jnzvvmSryplr/prb/6Rm38gWn1p6dXAzcBBEfFwRJzUa5HEw0SSVLqWHibKzI/s5PsH\ntnL7kqTm+AnkFqrVamVHGJQq569ydjB/2aqefyBioMeX2iEicjjn086dPv/yl0xfdsHJJSWRRo6I\nIPt5ArndVxNJ2sUdcMABrF3r4ALtMG3aNB566KEhWZdlIGlIrV27dsBXtKh/GlfoDw3PGUiSLANJ\nkmUgScIykDSC3H///cyYMYOJEydy2WWXtW27o0aN4sEHH2zb9gbCE8iSWqr35cVDrT+XK1944YUc\ne+yxLF++vIWJtjWUJ3pbxT0DSSPG2rVrOfTQQ9u+3SpcXWUZSBoRjjvuOJYuXcqcOXOYMGECq1ev\n5jOf+QzTpk3jVa96FZ/61KfYsmULAMuWLWPq1Kl8+ctfZr/99mPy5MksXLiQ66+/noMPPph99tmH\nL37xi93rvu222zjyyCOZNGkSkydP5tOf/jRbt27tM8cLL7yw3e1u2rSJ9773vUyaNIm9996bY445\npvUvTMEykDQi/OxnP+Poo49mwYIFPPPMMyxYsIAHHniAlStX8sADD7Bu3TrOO++87uWfeOIJXnjh\nBR577DE6Ozs55ZRTuOqqq1i+fDk///nP+fznP9/94brRo0dz6aWXsnnzZm655RaWLFnCggUL+swx\nb9687W734osvZurUqWzatIknn3yS888/v/UvTMEykDSidB2y+eY3v8kll1zCxIkT2WOPPZg/fz7X\nXHNN93K7774755xzDqNHj2b27Nls3LiRM888k3HjxnHIIYdwyCGHcOeddwJw2GGHMXPmTCKC/fff\nn1NPPZVly5b1uf0dbXe33Xbj8ccf53e/+x2jR4/mqKOOavGr8VeeQJY04mzYsIE//vGPHH744d3z\nXnzxxZcc29977727T/yOHTsWgH333bf7+2PHjuW5554DYPXq1Zx11lncfvvtPP/882zduvUl6252\nu2effTYdHR3MmjWLiOCUU05h3rx5Q/jMt889A0kjzj777MO4ceO4++672bx5M5s3b+app57i6aef\nHtD6TjvtNKZPn86aNWt46qmn+MIXvtDnSeOdbXf8+PFcdNFFrFmzhkWLFvGVr3yFpUuXDuq5Nssy\nkDTidP3WfeaZZ7JhwwYA1q1bx+LFiwe0vmeffZYJEyYwbtw4Vq1axde//vUBbffHP/4xa9asAWDP\nPfdkzJgxjBrVnv+mPUwkqaWG07DlPa/3v+CCCzjvvPM44ogj2LRpE5MnT+a0005j1qxZO/3Z3tMX\nXXQRp556KhdeeCEzZsxg9uzZLFmypM9lv/SlL9HZ2dnndlevXs3pp5/Oxo0bmTRpEnPmzGnbFUXe\nz0At5f0MRp5iLP2yY4wI23utB3I/Aw8TSZIsA0mSZSBJwjKQJGEZSJJocRlExBURsT4iVvaYd2FE\n3BsRKyLiexExoZUZJEk71+o9gyuBE3rNWwwcmplvAlYDn21xBkltNG3aNCLCrzZ8TZs2bcj+3lr6\nobPMvCkipvWad2OPyV8BH2plBknt9dBDD5UdQQNQ9jmDTwLXl5xBkka80oajiIjPAX/OzKt3tFxH\nR0f341qtRq1Wa20wSaqYer1OvV4f1DpaPhxFcZjoR5n5hh7zPgGcAhybmVt28LMOR1FxDkchtd9A\nhqNox55BFF+NiYgTgbOBt+2oCCRJ7dPqS0uvBm4GDoqIhyPiJOBrwHjghoi4IyL6vjecJKltWn01\n0Uf6mH1lK7cpSeq/sq8mkiQNA5aBJMkykCRZBpIkLANJEpaBJAnLQJKEZSBJwjKQJGEZSJKwDCRJ\nWAaSJCwDSRKWgSQJy0CShGUgScIykCRhGUiSsAwkSVgGkiQsA0kSloEkCctAkkSLyyAiroiI9RGx\nsse8SRGxOCLui4ifRsTEVmaQJO1cq/cMrgRO6DVvPnBjZh4MLAE+2+IMkqSdaGkZZOZNwO97zX4/\n8O3i8beBD7QygyRp58o4Z7BvZq4HyMwngH1LyCBJ6mFM2QGA3NE3Ozo6uh/XajVqtVqL46gZp8+/\n/CXTl11wcklJJNXrder1+qDWUUYZrI+I/TJzfUS8EnhyRwv3LANJ0rZ6/6Lc2dnZ73W04zBRFF9d\nFgGfKB5/HFjYhgySpB1o9aWlVwM3AwdFxMMRcRJwAfCOiLgPOK6YliSVqKWHiTLzI9v51vGt3K4k\nqX/8BLIkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnCMpAkYRlIkrAMJElYBpIkhsf9DKQh1fNeC95n\nQWqOewaSJMtAkmQZSJKwDCRJWAaSJCwDSRKWgSQJy0CShGUgScIykCRhGUiSKLEMIuLfIuK3EbEy\nIq6KiN3LyiJJI10pZRARrwY+DRyWmW+gMWDe7DKySJLKHbV0NLBHRLwIjAMeKzGLJI1oTe0ZRMRr\nmpnXrMx8DLgYeBhYBzyVmTcOdH2SpMFpds/ge8BhveZdCxw+kI1GxF7A+4FpwNPAtRHxkcy8uvey\nHR0d3Y9rtRq1Wm0gmxQvHecfHOt/IHwNNRzV63Xq9fqg1rHDMoiI1wGHAhMj4oM9vjUBePkgtns8\n8GBmbi62833gSGCHZSBJ2lbvX5Q7Ozv7vY6d7RkcDLwH2At4b4/5zwKn9Htrf/UwcEREvBzYAhwH\n3DaI9UmSBmGHZZCZC4GFEfHWzLxlqDaambdGxLXAcuDPxZ/fGKr1S5L6p9lzBg9ExDnAAT1/JjM/\nOdANZ2Yn0P99GUnSkGu2DBYCvwBuBP7SujiSpDI0WwbjMnNeS5NIkkrT7CeQ/y8i3tXSJJKk0jRb\nBnNpFMLzEfFMRDwbEc+0MpgkqX2aOkyUmXu2OogkqTxNlUFEvK2v+Zn586GNI0kqQ7MnkM/u8fjl\nwEzgN8CxQ55IktR2zR4m6vnpYyJiKnBpSxJJktpuoPczeBSYPpRBJEnlafacwdeALCZHAW8C7mhV\nKElSezV7zuD2Ho+3Atdk5i9bkEeSVIJmzxl8u7hH8UHFrPtaF0nt5Pj8g+drqF1Bs4eJasC3gYeA\nAKZGxMe9tFSSdg3NHia6GJiVmfcBRMRBwDUM8E5nkqThpdmriXbrKgKAzLwf2K01kSRJ7db0CeSI\nuBz4n2L6o7z0pLIkqcKaLYPTgDnAGcX0L4AFLUkkSWq7Zq8m2gJ8pfiSJO1imjpnEBHviYjlEbHZ\nIawladfT7GGiS4EPAndlZu5sYUlStTR7NdEjwG8tAknaNTW7Z/AfwHURsQzY0jUzMz2HIEm7gGbL\n4AvAczTuZbB76+JIksrQbBm8OjNfP5QbjoiJwOXA64EXgU9m5q+HchuSpOY0e87guoiYNcTb/ipw\nXWZOB94I3DvE65ckNanZMjgN+ElEPD8Ul5ZGxATg6My8EiAzt2aml6pKUkma/dDZnhHxCuC1NM4b\nDNZrgI0RcSWNvYLbgbmZ+fwQrFuS1E/NDmF9MjAXmAKsAI4AbgaOG8R2DwPmZObtEXEpMB84t/eC\nHR0d3Y9rtRq1Wm2Am5R2zPsSqKrq9Tr1en1Q62j2BPJc4M3ArzLz7RHxOuD8QWz3UeCRzOwa7O5a\nYF5fC/YsA0nStnr/otzZ2dnvdTR7zuBPmfkngIh4WWauAg7u99YKmbkeeKS4LwI09jDuGej6JEmD\n0+yewaMRsRfwQ+CGiPg9sHaQ2z4DuCoidgMeBE4a5PokSQPU7AnkfywedkTEUmAi8JPBbDgz76Rx\n6EmSVLJm9wy6ZeayVgSRJJWn2XMGkqRdmGUgSbIMJEmWgSQJy0CShGUgScIykCRhGUiSsAwkSVgG\nkiQGMBxF1YyUMep7Ps/LLji58s+7r/zNzmtmXcNVlbJq1+KegSTJMpAkWQaSJCwDSRKWgSQJy0CS\nhGUgScIykCRhGUiSsAwkSVgGkiRKLoOIGBURd0TEojJzSNJIV/aewVzgnpIzSNKIV1oZRMQU4F3A\n5TtbVpLUWmXuGVwCnA1kiRkkSZR0P4OIeDewPjNXREQNiO0t29HR0f24VqtRq9UGvf2qjxnf7vzN\nbq/qr2tfet8nYqjW1bW+oVz/cLArvgeqoF6vU6/XB7WOsm5ucxTwvoh4FzAW2DMi/jsz/7n3gj3L\nQJK0rd6/KHd2dvZ7HaUcJsrMczJz/8w8EJgNLOmrCCRJ7VH21USSpGGg9HsgZ+YyYFnZOSRpJHPP\nQJJkGUiSLANJEpaBJAnLQJKEZSBJwjKQJGEZSJKwDCRJWAaSJCwDSRLDYGwi7dhIGB9+JDzHoTbQ\n12wwr3W7770wlO8L32M7556BJMkykCRZBpIkLANJEpaBJAnLQJKEZSBJwjKQJGEZSJKwDCRJWAaS\nJEoqg4iYEhFLIuLuiLgrIs4oI4ckqaGsgeq2Amdl5oqIGA/8JiIWZ+aqkvJI0ohWyp5BZj6RmSuK\nx88B9wKTy8giSRoG5wwi4gDgTcCvy00iSSNXqfczKA4RXQvMLfYQttHR0cF1N97Bw+s2MH6vqZx4\nwiygMR55u8dXb7WRMub6cPh7q9JrXca9C1q9/iq9/s0o+/nU63Xq9fqg1lFaGUTEGBpF8J3MXLi9\n5To6Otj4p8t54dZ72xdOkiqkVqtRq9W6pzs7O/u9jjIPE30LuCczv1piBkkS5V1aehTwUeDYiFge\nEXdExIllZJEklXSYKDN/CYwuY9uSpG2VfjWRJKl8loEkyTKQJFkGkiQsA0kSloEkCctAkoRlIEnC\nMpAkYRlIkrAMJEmUfD+DoTbU46v3Hne/7DHLNfRuKoZGP33+5dx06738w8zpJScauN7vz6Fc12De\n682uq5n7XOzs3+mOfrYZQ5m1atwzkCRZBpIky0CShGUgScIykCRhGUiSsAwkSVgGkiQsA0kSloEk\niRLLICJOjIhVEXF/RMwrK4ckqaQyiIhRwGXACcChwIcj4nVlZGmler1edoRBqXL+dQ/fV3aEQTF/\nuaqefyDK2jOYCazOzLWZ+Wfgf4H3l5SlZar8nylUO3/V/zGbv1xVzz8QZZXBZOCRHtOPFvMkSSXw\nBLIkicjM9m804gigIzNPLKbnA5mZX+q1XPvDSdIuIDOjP8uXVQajgfuA44DHgVuBD2fmvW0PI0kq\n505nmfmXiDgdWEzjUNUVFoEklaeUPQNJ0vAyLE8gV/EDaRFxRUSsj4iVPeZNiojFEXFfRPw0IiaW\nmXF7ImJKRCyJiLsj4q6IOKOYX5X8L4uIX0fE8iL/ucX8SuSHxmdvIuKOiFhUTFcmO0BEPBQRdxZ/\nB7cW8yrxHCJiYkR8NyLuLf4NvKVC2Q8qXvM7ij+fjogzBpJ/2JVBhT+QdiWNzD3NB27MzIOBJcBn\n256qOVuBszLzUOCtwJziNa9E/szcArw9M2cAbwLeGREzqUj+wlzgnh7TVcoO8CJQy8wZmTmzmFeV\n5/BV4LrMnA68EVhFRbJn5v3Fa34YcDjwB+AHDCR/Zg6rL+AI4Poe0/OBeWXnajL7NGBlj+lVwH7F\n41cCq8rO2OTz+CFwfBXzA+OA24E3VyU/MAW4AagBi6r43gF+B+zda96wfw7ABGBNH/OHffY+Ms8C\nfjHQ/MNuz4Bd6wNp+2bmeoDMfALYt+Q8OxURB9D47fpXNN5MlchfHGZZDjwB3JCZt1Gd/JcAZwM9\nT+BVJXuXBG6IiNsi4uRiXhWew2uAjRFxZXGo5RsRMY5qZO/tn4Cri8f9zj8cy2BXNqzP1kfEeOBa\nYG5mPse2eYdt/sx8MRuHiaYAMyPiUCqQPyLeDazPzBXAjq4LH3bZezkqG4cq3kXjMOPRVOD1p3FF\n5WHAfxX5/0DjaEQVsneLiN2A9wHfLWb1O/9wLIN1wP49pqcU86pofUTsBxARrwSeLDnPdkXEGBpF\n8J3MXFjMrkz+Lpn5DFAHTqQa+Y8C3hcRDwLXAMdGxHeAJyqQvVtmPl78uYHGYcaZVOP1fxR4JDNv\nL6a/R6McqpC9p3cCv8nMjcV0v/MPxzK4DfjbiJgWEbsDs4FFJWdqVvDS3+4WAZ8oHn8cWNj7B4aR\nbwH3ZOZXe8yrRP6I2KfraomIGAu8A7iXCuTPzHMyc//MPJDGe31JZn4M+BHDPHuXiBhX7FUSEXvQ\nOHZ9F9V4/dcDj0TEQcWs44C7qUD2Xj5M45eJLv3PX/ZJj+2cCDmRxieUVwPzy87TZOargceALcDD\nwEnAJODG4rksBvYqO+d2sh8F/AVYASwH7ij+Dl5Rkfx/V2ReAawEPlfMr0T+Hs/jGP56Arky2Wkc\nd+9679zV9W+2Ks+BxhVEtxXP4fvAxKpkL/KPAzYAe/aY1+/8fuhMkjQsDxNJktrMMpAkWQaSJMtA\nkoRlIEnCMpAkYRlIkrAMJElYBtJ2RcQPilE47+oaiTMi/qW4YcivihEu/7OYv09EXFvcZOfXEXFk\nueml/vETyNJ2RMRemflURLycxnAFJwC/pDHE93PAUmBFZp4REVfRGPny5oiYCvw0Mw8pLbzUT2PK\nDiANY2dGxAeKx1OAjwH1zHwaICK+C7y2+P7xwPSI6BqocHxEjMvMP7Y1sTRAloHUh4g4BjgWeEtm\nbomIpTRGQp2+vR8plv1zuzJKQ8lzBlLfJgK/L4rgdTRuxzoeeFtxA/UxwId6LL+Yxn2MAYiIN7Y1\nrTRIloHUt58Au0XE3cD5wC00boRyPnAr8Asa9/19ulh+LvD3EXFnRPwW+Nf2R5YGzhPIUj9ExB6Z\n+YeIGA38ALgi/3pnOKmy3DOQ+qcjIrpu4vKgRaBdhXsGkiT3DCRJloEkCctAkoRlIEnCMpAkYRlI\nkoD/Bxt6N6bAABY5AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2653,7 +2661,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2662,7 +2670,7 @@ ], "source": [ "hist = thinkstats2.Hist(female_sur.Age)\n", - "thinkplot.Hist(hist, label='females')\n", + "thinkplot.Hist(hist, label='females', width=.8)\n", "thinkplot.Show(xlabel='age', ylabel='amount')" ] }, @@ -2675,7 +2683,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 10, "metadata": { "collapsed": false }, @@ -2684,7 +2692,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEPCAYAAABBUX+lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEvFJREFUeJzt3X+wVOV9x/H3F1ADIoRANRYQk2k0YjsRbYiRMd5oQqyJ\naZvOdEg7aZpW7BCIODYW6j/ea0aDxl9pKZmpmoxNjU1jxmAbTTSBi4kxCUb8ERVFFKJGUEFRokGJ\n3/6xC73ABfZe9uzl7vN+zdzh7Llnz/N9dpcPD885e05kJpKk9jdkoAuQJLWGgS9JhTDwJakQBr4k\nFcLAl6RCGPiSVIhhVTcQEWuATcCbwBuZObXqNiVJu6o88KkFfUdmvtiCtiRJu9GKKZ1oUTuSpD1o\nRRAncEdELI+ImS1oT5LUi1ZM6UzLzGcj4veoBf8jmfnjFrQrSeqh8sDPzGfrfz4fETcDU4EdAj8i\nvKCPJPVRZkZftq90SiciRkTEyPrywcB04Je9bZuZbflz4YUXDngNffmZPe8aZs+7pm371+7vn/0r\np3/9UfUI/zDg5voIfhhwQ2beXnGbkqReVBr4mfkkcFyVbUiSGuPpkhXr6OgY6BIqZf8GN/tXlujv\nXFBTi4jI/aEOwZz51wKwcMFZA1yJpD2JCLKPB21bcVqmpDZz5JFHsnbt2oEuowiTJk1izZo1TdmX\ngS+pz9auXdvvM0XUNxF9GsTvkXP4klQIA1+SCmHgS1IhDHxJbeexxx5jypQpjB49moULF7as3SFD\nhvDEE0+0rL2+8qCtpKbYdkpvVfpyqvBll13GqaeeyooVKyqsaFfNPMBaBUf4ktrO2rVrOfbYY1ve\n7v5+5pKBL6mtnHbaaSxdupTZs2czatQoVq1axec//3kmTZrE4Ycfzmc/+1m2bNkCwLJly5g4cSJf\n+tKXOOywwxg/fjyLFy/mtttu4+ijj2bcuHF88Ytf3L7v5cuXc9JJJzFmzBjGjx/P5z73ObZu3dpr\nHa+//vpu292wYQNnnnkmY8aMYezYsZxyyinVvzAY+JLazA9/+ENOPvlkFi1axMsvv8yiRYt4/PHH\neeCBB3j88cd55plnuOiii7Zvv27dOl5//XV+/etf09XVxcyZM7nhhhtYsWIFd955J1/4whe2f8ls\n6NChXH311WzcuJG7776bJUuWsGjRol7rmDdv3m7bveKKK5g4cSIbNmzgueee45JLLqn+hcHAl9Sm\ntk2vXHPNNVx11VWMHj2agw8+mPnz53PjjTdu3+7AAw/kggsuYOjQocyYMYMXXniBc889lxEjRjB5\n8mQmT57M/fffD8Dxxx/P1KlTiQiOOOIIzj77bJYtW9Zr+3tq94ADDuDZZ5/lySefZOjQoUybNq3i\nV6PGg7aS2tbzzz/Pq6++ygknnLB93ZtvvrnDXPvYsWO3H2wdPnw4AIceeuj23w8fPpzNmzcDsGrV\nKs477zzuueceXnvtNbZu3brDvhtt9/zzz6ezs5Pp06cTEcycOZN58+Y1see9c4QvqW2NGzeOESNG\n8NBDD7Fx40Y2btzISy+9xKZNm/q1v1mzZnHMMcewevVqXnrpJS6++OJeD9Turd2RI0dy+eWXs3r1\nam655RauvPJKli5duk99bYSBL6ltbRs9n3vuuTz//PMAPPPMM9x+e//uw/TKK68watQoRowYwcqV\nK/nKV77Sr3a/+93vsnr1agAOOeQQhg0bxpAh1cexUzqSmmJ/uqR2z/PhFyxYwEUXXcSJJ57Ihg0b\nGD9+PLNmzWL69Ol7fe7Ojy+//HLOPvtsLrvsMqZMmcKMGTNYsmRJr9teeumldHV19druqlWrmDNn\nDi+88AJjxoxh9uzZLTlTx+vhawdeD1+NqF+LfaDLKMLuXuv+XA/fKR1JKoSBL0mFMPAlqRAGviQV\nwsCXpEIY+JJUCM/Dl9RnkyZN2u+v/d4uJk2a1LR9GfiS+mzNmjUDXYL6wSkdSSqEgS9JhTDwJakQ\nBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYVoSeBHxJCIuDcibmlFe5KkXbVqhD8XeLhF\nbUmSelF54EfEBOAM4Nqq25Ik7V4rRvhXAecD3uJekgZQpZdHjoiPAusz876I6AB2ewHtzs7O7csd\nHR10dHTs8Ps58///PwgLF5zV3EKbYFt9+2Ntkga/7u5uuru792kfVV8Pfxrw8Yg4AxgOHBIR/5GZ\nf7Pzhj0DX5K0o50Hwl1dXX3eR6VTOpl5QWYekZnvBGYAS3oLe0lS9TwPX5IK0bJbHGbmMmBZq9qT\nJO3IEb4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+S\nCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqEgS9JhTDwJakQ\nBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klSIYVXuPCIO\nAu4EDqy3dVNmdlXZpiSpd5UGfmZuiYgPZuarETEUuCsibsvMn1fZriRpV5VP6WTmq/XFg6j9A5NV\ntylJ2lXlgR8RQyJiBbAOuCMzl1fdpiRpV60Y4b+ZmVOACcD7ImJy1W1KknZV6Rx+T5n5ckQsBU4H\nHt75952dnduXOzo66OjoaFVpaqI586/dvrxwwVmV7LvZ+1X1qvxclKK7u5vu7u592kfVZ+mMA97I\nzE0RMRz4MLCgt217Br4kaUc7D4S7uvp+wmPVI/zDgesjYgi16aNvZuatFbcpSepF1adlPggcX2Ub\nkqTG+E1bSSpEQ4EfEe9oZJ0kaf/V6Aj/272su6mZhUiSqrXHOfyIeDdwLDA6Ij7R41ejgLdUWZgk\nqbn2dtD2aOBjwFuBM3usfwWYWVVRkqTm22PgZ+ZiYHFEvD8z725RTZKkCjR6WubjEXEBcGTP52Tm\n31VRlCSp+RoN/MXAj4AfAL+rrhxJUlUaDfwRmTmv0kokSZVq9LTM/42IMyqtRJJUqUYDfy610H8t\nIl6OiFci4uUqC5MkNVdDUzqZeUjVhUiSqtVQ4EfEB3pbn5l3NrccSVJVGj1oe36P5bcAU4FfAKc2\nvSJJUiUandLp+S1bImIicHUlFUmSKtHfyyM/DRzTzEIkSdVqdA7/X4GsPxwCHAfcW1VRkqTma3QO\n/54ey1uBGzPzrgrqkSRVpNE5/Osj4kDgqPqqR6srSZJUhUandDqA64E1QAATI+LTnpYpSYNHo1M6\nVwDTM/NRgIg4CrgROKGqwiRJzdXoWToHbAt7gMx8DDigmpIkSVVo+KBtRFwL/Gf98V+z44FcSdJ+\nrtHAnwXMBs6pP/4RsKiSiiRJlWj0LJ0twJX1H0nSINTQHH5EfCwiVkTERi+PLEmDU6NTOlcDnwAe\nzMzc28aSpP1Po2fpPAX80rCXpMGr0RH+PwG3RsQyYMu2lZnpnL4kDRKNBv7FwGZq18I/sLpyJElV\naTTwfz8z/7DSSiRJlWp0Dv/WiJheaSWSpEo1GvizgO9FxGuelilJg1OjX7w6JCLeBryL2jy+JGmQ\nafTyyGcBc4EJwH3AicBPgNOqK02S1EyNTunMBd4LrM3MDwJTgE2VVSVJarpGA/+3mflbgIg4KDNX\nAkfv7UkRMSEilkTEQxHxYEScs7fnSJKq0ehpmU9HxFuB7wB3RMSLwNoGnrcVOC8z74uIkcAvIuL2\n+j8YkqQWavSg7Z/XFzsjYikwGvheA89bB6yrL2+OiEeA8YCBL0kt1ugIf7vMXNafhiLiSOA44Gf9\neb4kad80Ooe/T+rTOTcBczNzcyvalCTtqM8j/L6KiGHUwv7rmbl4d9t1dnZuX+7o6KCjo6Pq0rSP\n5sy/FoCFC85qeNtGtq9q257b99x2d/voy7b7s6reJ7VWd3c33d3d+7SPygMf+CrwcGZ+eU8b9Qx8\nSdKOdh4Id3V19XkflU7pRMQ0ajc8P7V+x6x7I+L0KtuUJPWu0hF+Zt4FDK2yDUlSY1py0FaSNPAM\nfEkqhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCX\npEIY+JJUCANfkgph4EtSIQx8SSqEgS9JhTDwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkq\nhIEvSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRCVBn5EXBcR6yPi\ngSrbkSTtXdUj/K8BH6m4DUlSAyoN/Mz8MfBilW1IkhrjHL4kFWLYQBewTWdn5/bljo4OOjo6Gnre\nnPnXbl9euOCsfrW9bR+NPL8/2+68fV/2sbf99rS7/fXWXjNet2bY19eiVfvd3WteVXt704z3tJmf\nw2Z+vne3j770b3/5fPemv7V1d3fT3d29T23vl4EvSdrRzgPhrq6uPu+jFVM6Uf+RJA2gqk/L/Abw\nE+CoiPhVRHymyvYkSbtX6ZROZv5VlfuXJDXOs3QkqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8\nSSqEgS9JhTDwJakQBr4kFcLAl6RCGPiSVAgDX5IKYeBLUiEMfEkqhIEvSYUw8CWpEAa+JBXCwJek\nQhj4klQIA1+SCmHgS1IhDHxJKoSBL0mFMPAlqRAGviQVwsCXpEIY+JJUCANfkgph4EtSIQx8SSqE\ngS9JhTDwJakQBr4kFcLAl6RCVB74EXF6RKyMiMciYl7V7UmSeldp4EfEEGAh8BHgWOCTEfHuKtvc\n3zzzq0cHuoRK2b/Bzf6VpeoR/lRgVWauzcw3gP8C/rTiNvcr7f6Bs3+Dm/0rS9WBPx54qsfjp+vr\nJEkt5kFbSSpEZGZ1O484EejMzNPrj+cDmZmX7rRddUVIUpvKzOjL9lUH/lDgUeA04Fng58AnM/OR\nyhqVJPVqWJU7z8zfRcQc4HZq00fXGfaSNDAqHeFLkvYfA3rQtt2+lBUR10XE+oh4oMe6MRFxe0Q8\nGhHfj4jRA1njvoiICRGxJCIeiogHI+Kc+vpB38eIOCgifhYRK+p9u7C+ftD3raeIGBIR90bELfXH\nbdO/iFgTEffX38Of19e1U/9GR8S3IuKR+t/B9/W1fwMW+G36payvUetPT/OBH2Tm0cAS4J9bXlXz\nbAXOy8xjgfcDs+vv2aDvY2ZuAT6YmVOA44A/iYiptEHfdjIXeLjH43bq35tAR2ZOycyp9XXt1L8v\nA7dm5jHAe4CV9LV/mTkgP8CJwG09Hs8H5g1UPU3s1yTggR6PVwKH1ZffDqwc6Bqb2NfvAB9qtz4C\nI4B7gPe2U9+ACcAdQAdwS31dO/XvSWDsTuvaon/AKGB1L+v71L+BnNIp5UtZh2bmeoDMXAccOsD1\nNEVEHEltJPxTah+4Qd/H+nTHCmAdcEdmLqdN+lZ3FXA+0PPAXTv1L4E7ImJ5RJxVX9cu/XsH8EJE\nfK0+JffvETGCPvbPL1613qA/Sh4RI4GbgLmZuZld+zQo+5iZb2ZtSmcCMDUijqVN+hYRHwXWZ+Z9\nwJ7O3R6U/aublpnHA2dQm248mTZ5/6idUXk88G/1Pv6G2qxIn/o3kIH/DHBEj8cT6uvazfqIOAwg\nIt4OPDfA9eyTiBhGLey/npmL66vbqo+Z+TLQDZxO+/RtGvDxiHgCuBE4NSK+Dqxrk/6Rmc/W/3ye\n2nTjVNrn/XsaeCoz76k//ja1fwD61L+BDPzlwB9ExKSIOBCYAdwygPU0S7DjCOoW4G/ry58GFu/8\nhEHmq8DDmfnlHusGfR8jYty2MxwiYjjwYeAR2qBvAJl5QWYekZnvpPZ3bUlmfgr4H9qgfxExov4/\nTyLiYGA68CDt8/6tB56KiKPqq04DHqKP/RvQ8/Aj4nRqR563fSlrwYAV0wQR8Q1qB8TGAuuBC6mN\nNL4FTATWAn+ZmS8NVI37IiKmAXdS+4uU9Z8LqH2D+r8ZxH2MiD8Crqf2WRwCfDMzL46ItzHI+7az\niDgF+MfM/Hi79C8i3gHcTO0zOQy4ITMXtEv/ACLiPcC1wAHAE8BngKH0oX9+8UqSCuFBW0kqhIEv\nSYUw8CWpEAa+JBXCwJekQhj4klQIA1+SCmHgS1IhDHwVLSJurl9d8cFtV1iMiL+v31Dip/WrEv5L\nff24iLipfqOUn0XESQNbvdQ3ftNWRYuIt2bmSxHxFmrXd/oIcBe1Sz9vBpYC92XmORFxA7WrFf4k\nIiYC38/MyQNWvNRHld7EXBoEzo2IP6svTwA+BXRn5iaAiPgW8K767z8EHBMR2y6ONzIiRmTmqy2t\nWOonA1/Fql9E7FTgfZm5JSKWUrtC5jG7e0p92zdaVaPUTM7hq2SjgRfrYf9uarfdHAl8oH7D6GHA\nX/TY/nZq94QFtl+9UBo0DHyV7HvAARHxEHAJcDe1G01cQu2Szz+idp/UTfXt5wJ/HBH3R8QvgX9o\nfclS/3nQVtpJRBycmb+JiKHUrrF+XY+7e0mDliN8aVed9ZuZPwg8YdirXTjCl6RCOMKXpEIY+JJU\nCANfkgph4EtSIQx8SSqEgS9Jhfg/ZmaGjfWlz/oAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2693,7 +2701,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2723,7 +2731,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 11, "metadata": { "collapsed": false }, @@ -2732,7 +2740,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHFtJREFUeJzt3X+cVXW97/HXe0Al5DcdBgMO1MUfhKVwr6SVuTFT6FZ6\nTD1pmmne9MAYUpcAuzV4qgdyudkv5ZinJLRS0R4FJ03Qi2OKPwaukOAQB1QQpxgz+aFlysjn/rEX\nuJ0ZZm2GWXtvnPfz8dgP1qz9XWt99sxi3rPWd631VURgZmbWnqpyF2BmZpXPYWFmZqkcFmZmlsph\nYWZmqRwWZmaWymFhZmapMg0LSYdJelzSKklrJNUm8/tLWippvaQlkvoWLDNT0gZJ6ySdnmV9ZmZW\nHGV9n4WknhHxN0ndgOXAl4BPA3+JiP8taTrQPyJmSHov8HPgBGAocD9wZPhmEDOzssr8NFRE/C2Z\nPAzoDgRwJrAgmb8AOCuZ/hRwe0Q0R8QmYAMwLusazcysfZmHhaQqSauArcB9EbECqI6IJoCI2AoM\nSpoPAbYULN6YzDMzszIqxZHF7ogYQ/600jhJo8kfXbylWdZ1mJlZx3Uv1YYiYqekOmAC0CSpOiKa\nJA0GXkiaNQLDChYbmsx7C0kOFzOzDogIdWS5rK+GeueeK50kvQP4GLAOWAx8Pml2MbAomV4MfEbS\noZLeDYwE6ttad0RU3Ku2trbsNbgm19QV63JNxb0ORNZHFkcACyRVkQ+mOyLiHkmPAQslXQpsBs4D\niIgGSQuBBmAXMCkO9BOamdkByzQsImINMLaN+S8Bp+1jmdnA7CzrMjOz/eM7uDtRLpcrdwmtuKbi\nuKbiVWJdril7md+UlwVJPjtlZrafJBEd7OAu2dVQZtZ1jRgxgs2bN5e7jC5j+PDhbNq0qVPX6SML\nM8tc8hdtucvoMvb1/T6QIwv3WZiZWSqHhZmZpXJYmJlZKoeFmVkHPPjggwwbNiy94duEr4Yys7Ko\nmfHjTNd//bWXFd12xIgRvPDCC3Tv3p3DDz+cCRMmcMMNN9CzZ892l5M61FfcIXfeeSff+973WL16\nNR/4wAdYtmxZybYNPrIwM0MSd999Nzt37uSJJ55g5cqVfOtb3yp3WW8xcOBApk6dysyZM8uyfYeF\nmRnsvdT0iCOOYOLEiaxduxaAbdu2cemllzJkyBAGDhzI2Wef3ebyc+bMYeTIkfTp04djjz2WX//6\n13vfe/rpp8nlcvTr149BgwZx/vnn731v6tSpVFdX07dvX4477jgaGhraXP+pp57KOeecwxFHHNFZ\nH3m/+DSUmVmBLVu2cM8993DOOecAcOGFF9KnTx/WrVvH4YcfziOPPNLmciNHjmT58uVUV1dz5513\ncuGFF/L0009TXV3N17/+dc444wzq6up4/fXXWblyJQBLly7l4YcfZuPGjfTu3Zv169fTr1+/kn3W\n/eEjCzMz4KyzzmLAgAF85CMfYfz48cycOZOtW7eyZMkSfvSjH9GnTx+6devGySef3Obyn/70p6mu\nrgbg3HPP5cgjj6S+Pj/CwiGHHMLmzZtpbGzk0EMP5YMf/ODe+S+//DINDQ1EBEcfffTedVQah4WZ\nGbBo0SJeeuklnn32WX74wx9y2GGHsWXLFgYMGECfPn1Sl7/lllsYM2YM/fv3p3///jz11FO8+OKL\nAMydO5fdu3czbtw43ve+9zF//nwAxo8fT01NDZMnT6a6uporrriCV155JdPP2VEOCzMzaPPxGMOG\nDeOll15i586d7S773HPP8cUvfpF58+axbds2tm3bxujRo/euc9CgQdx00000NjZy4403MmnSJJ55\n5hkAampqWLlyJQ0NDaxfv565c+d2/ofrBA4LM7N9GDx4MBMnTmTSpEls376d5uZmHnrooVbt/vrX\nv1JVVcU73/lOdu/ezfz58/d2kAPcddddNDbmR4ju168fVVVVVFVVsXLlSurr62lubuYd73gHPXr0\noKqq7V/Lu3fv5rXXXmPXrl288cYbvPbaazQ3N2fzwdvgDm4zK4v9uQ8ia+3dL3Hrrbdy1VVXccwx\nx7Br1y7Gjx/fqt9i1KhRfOUrX+HEE0+kW7dufO5zn+PDH/7w3vdXrFjBVVddxc6dO6muruYHP/gB\nI0aM4JlnnmHq1Kk8++yz9OjRgzPOOINp06bts45LLrlkb609e/bk4osv5uabb+6E70A6P3XWzDLn\np86WVhZPne3yRxbXrd1Y7hIy9eVjR5a7BDN7G3CfhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaVy\nWJiZWSqHhZmZpXJYmJl1gIdVNTMrga/NX5Hp+r99yQlFtz0YhlWdNm0aixYtoqmpiSFDhjBz5kwu\nuuiikm0/0yMLSUMlLZP0lKQ1kq5M5tdKel7SE8lrQsEyMyVtkLRO0ulZ1mdmBgfHsKq9evXi7rvv\nZseOHfz0pz9lypQpPPbYYyXbftanoZqBL0fEaOAkoEbSMcl710XE2OR1L4CkUcB5wChgIjBPpYxu\nM+uyKn1Y1draWo488kgAxo0bx8knn8yjjz7aKZ+9GJmehoqIrcDWZPoVSeuAIcnbbYXAmcDtEdEM\nbJK0ARgHPJ5lnWZmexwMw6q++uqrrFixgsmTJ3feB09Rsg5uSSOA43nzF3+NpNWSfiypbzJvCLCl\nYLFG3gwXM7PMHEzDql5xxRWMGTOG008v3Zn6koSFpF7AXcCUiHgFmAe8JyKOJ3/k8Z1S1GFmti8H\ny7Cq06ZNo6GhgTvuuOPAP/R+yPxqKEndyQfFrRGxCCAi/lzQ5N+B/0imG4HCa9GGJvNamTVr1t7p\nXC5HLpfrtJrNrOtJG1a1vcDYM6zqAw88wEknnQTAmDFjWg2rCrB8+XJOO+00TjnlFN7znvdQU1ND\nTU0NL774Iueeey5z587lmmuuaXM7tbW1LFmyhN/97nf06tUr9TPV1dVRV1eX2q4Ypbh09magISK+\nv2eGpMFJfwbA2cCe8QcXAz+X9F3yp59GAvVtrbQwLMzMslA4rOr1119Pr169ePTRR1udimo5rOqC\nBQtaDat60kknMWTIkFbDqu7evZuxY8emDqs6e/ZsbrvtNh5++OGi+jWg9R/S+wqhYmQaFpI+BHwW\nWCNpFRDA1cAFko4HdgObgMsBIqJB0kKgAdgFTPKQeGZvT/tzH0TWDoZhVb/2ta9x2GGHMXLkSCIC\nSVx99dXMmDGjc74JKbr8sKoeKc8sex5WtbSyGFbVj/swM7NUDgszM0vlsDAzs1QOCzMzS+WwMDOz\nVA4LMzNL5bAwM7NUDgszM0vlsDAz6wAPq2pmVgJZPz1hf55ecDAMqzp9+nRuu+02duzYwYABA7j8\n8stL9qgP8JGFmdlBMazqF77wBRoaGtixYwePPPIIP/vZz94yGl/WHBZmZlT+sKpHHXXU3seS7969\nm6qqKjZuLN2z7RwWZmYF9gyrOnbsWCA/rOqrr77KunXreOGFF5g6dWqby+0ZVnXnzp3U1tZy4YUX\n0tTUBLB3WNXt27fz/PPPc+WVVwJvHVZ1x44dLFy4kIEDB+6ztjlz5tC7d2+GDRvG3/72Ny644IJO\n/vT75rAwM+PgGFZ1+vTpvPzyy6xatYqLLrqIvn377rNtZ3NYmJlx8AyrCnDcccfRo0cPvvGNbxzY\nh94PDgszM9KHVW3PnmFV582bx7Zt29i2bRujR49uNaxqY2MjN954I5MmTeKZZ54BoKamhpUrV9LQ\n0MD69euZO3duUfU2NzfvXUcpOCzMzPahcFjV7du309zczEMPPdSqXcthVefPn99qWNXGxkaAVsOq\n1tfX09zc3O6wqhHBTTfdxPbt2wGor6/nhhtu4LTTTsvok7fm+yzMrCwqaRTHg2FY1V/96ldcffXV\nvP7667zrXe9iypQpTJ48uXO+AUXwsKoeVtUscx5WtbQ8rKqZmZWFw8LMzFI5LMzMLJXDwszMUjks\nzMwslcPCzMxS+T4LM8vc8OHDSzr2Q1c3fPjwTl+nw8LMMrdp06Zyl2AHyKehzMwslcPCzMxSZRoW\nkoZKWibpKUlrJH0pmd9f0lJJ6yUtkdS3YJmZkjZIWifp9CzrMzOz4mR9ZNEMfDkiRgMnAZMlHQPM\nAO6PiKOBZcBMAEnvBc4DRgETgXlyr5iZWdllGhYRsTUiVifTrwDrgKHAmcCCpNkC4Kxk+lPA7RHR\nHBGbgA3AuCxrNDOzdCXrs5A0AjgeeAyojogmyAcKMChpNgTYUrBYYzLPzMzKqCSXzkrqBdwFTImI\nVyS1fHbufj+7eNasWXunc7kcuVzuQEo0M3vbqauro66urlPWlfl4FpK6A78BfhsR30/mrQNyEdEk\naTDwQESMkjQDiIiYk7S7F6iNiMdbrNPjWRTJ41mY2R6VPp7FzUDDnqBILAY+n0xfDCwqmP8ZSYdK\nejcwEqgvQY1mZtaOTE9DSfoQ8FlgjaRV5E83XQ3MARZKuhTYTP4KKCKiQdJCoAHYBUzqtEMIMzPr\nsEzDIiKWA9328XabI41HxGxgdmZFmZnZfvMd3GZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFm\nZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWqqiwSEat\nS51nZmZvT8UeWfyyjXl3dWYhZmZWudodKU/SMcBooK+kswve6gP0yLIwMzOrHGnDqh4NfALoB3yy\nYP7LwP/IqigzM6ss7YZFRCwCFkk6KSIeLVFNZmZWYdKOLPbYKOlqYEThMhFxaRZFmZlZZSk2LBYB\nDwH3A29kV46ZmVWiYsOiZ0RMz7QSMzOrWMVeOvsbSR/PtBIzM6tYxYbFFPKB8aqknZJelrQzy8LM\nzKxyFHUaKiJ6Z12ImZlVrqLCQtJH2pofEb/r3HLMzKwSFdvBPa1gugcwDvh/wKmdXpGZmVWcovos\nIuKTBa+PAccC29KWk/QTSU2SniyYVyvpeUlPJK8JBe/NlLRB0jpJp3fkA5mZWefr6CPKnwdGFdFu\nPnBGG/Ovi4ixyeteAEmjgPOS9U4E5klSB+szM7NOVGyfxQ+BSL6sAo4HnkhbLiIeljS8rVW2Me9M\n4PaIaAY2SdpA/nTX48XUaGZm2Sm2z2JlwXQzcFtELD+A7dZIuihZ71ciYgcwBCh8/lRjMs/MzMqs\n2EtnF0g6FDgqmbX+ALY5D/jXiAhJ3wK+A1y2vyuZNWvW3ulcLkculzuAkszM3n7q6uqoq6vrlHUp\nItIbSTlgAbCJ/CmkYcDFxVw6m5yG+o+IeH9770maAUREzEneuxeojYhWp6EkRTF1F+O6tRs7ZT2V\n6svHjix3CWZWISQRER3qCy62g/s7wOkRcUpEfIR8p/V3i62Pgj4KSYML3jsbWJtMLwY+I+nQZMjW\nkUB9kdswM7MMFdtncUhE7D31FBH/KemQtIUk/QLIAQMlPQfUAuMlHQ/sJn+kcnmyzgZJC4EGYBcw\nqdMOH8zM7IAUexrqZvK/3H+WzPos0K1c41n4NFTxfBrKzPY4kNNQxR5Z/AswGfhS8vVD5Duqzcys\nCyj2aqjXgOuSl5mZdTFFdXBL+oSkVZJe8iPKzcy6nmJPQ32P/JVLa9zpbGbW9RR76ewWYK2Dwsys\nayr2yOKrwD2SHgRe2zMzItyHYWbWBRQbFt8GXiE/lsWh2ZVjZmaVqNiweFdEHJtpJWZmVrGK7bO4\nx4MRmZl1XcWGxb8A90p61ZfOmpl1PcXelNdb0gDgSPL9FmZm1oUUO1LeZcAUYCiwGjgReAT4aHal\nmZlZpSj2NNQU4ARgc0SMB8YAOzKryszMKkqxYfH3iPg7gKTDIuIPwNHZlWVmZpWk2Etnn5fUD/g1\ncJ+kbcDm7MoyM7NKUmwH9z8lk7MkPQD0Be7NrCozM6soxR5Z7BURD2ZRiJlZR9XM+HG5S8jU9dde\nVu4Siu6zMDOzLsxhYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFh\nZmapHBZmZpYq07CQ9BNJTZKeLJjXX9JSSeslLZHUt+C9mZI2SFrnMb/NzCpH1kcW84EzWsybAdwf\nEUcDy4CZAJLeC5wHjAImAvMkKeP6zMysCJmGRUQ8DGxrMftMYEEyvQA4K5n+FHB7RDRHxCZgAzAu\ny/rMzKw45eizGBQRTQARsRUYlMwfAmwpaNeYzDMzszLb7/EsMhAdWWjWrFl7p3O5HLlcrpPKMTN7\ne6irq6Ourq5T1lWOsGiSVB0RTZIGAy8k8xuBYQXthibz2lQYFmZm1lrLP6SvueaaDq+rFKehlLz2\nWAx8Ppm+GFhUMP8zkg6V9G5gJFBfgvrMzCxFpkcWkn4B5ICBkp4DaoFrgTslXQpsJn8FFBHRIGkh\n0ADsAiZFRIdOUZmZWefKNCwi4oJ9vHXaPtrPBmZnV5GZmXWE7+A2M7NUDgszM0vlsDAzs1SVcJ9F\nl1K//s8l3d7XVrS8gT5b377khJJuz8xKw0cWZmaWymFhZmapHBZmZpbKfRZmXcB1azeWuwQ7yDks\nzKzTlfpCjq07Divp9o7t+1pJt1cJfBrKzMxSOSzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwslcPC\nzMxSOSzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwslcPCzMxS+amzb3PL6/9Q0u3VrP99Sbd3/bWX\nlXR7Zl2VjyzMzCyVw8LMzFI5LMzMLJXDwszMUjkszMwsVdmuhpK0CdgB7AZ2RcQ4Sf2BO4DhwCbg\nvIjYUa4azcwsr5xHFruBXESMiYhxybwZwP0RcTSwDJhZturMzGyvcoaF2tj+mcCCZHoBcFZJKzIz\nszaVMywCuE/SCkl77qyqjogmgIjYCgwqW3VmZrZXOe/g/lBE/EnSPwBLJa0nHyCFWn5tZmZlULaw\niIg/Jf/+WdKvgXFAk6TqiGiSNBh4YV/Lz5o1a+90Lpcjl8tlW7CZ2UGmrq6Ourq6TllXWcJCUk+g\nKiJekXQ4cDpwDbAY+DwwB7gYWLSvdRSGhZmZtdbyD+lrrrmmw+sq15FFNfArSZHU8POIWCppJbBQ\n0qXAZuC8MtVnZmYFyhIWEfEscHwb818CTit9RWZm1h7fwW1mZqkcFmZmlsphYWZmqRwWZmaWymFh\nZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZm\nqRwWZmaWymFhZmapHBZmZpbKYWFmZqkcFmZmlsphYWZmqRwWZmaWymFhZmapHBZmZpbKYWFmZqkc\nFmZmlsphYWZmqRwWZmaWqiLDQtIESX+Q9J+Sppe7HjOzrq7iwkJSFXA9cAYwGjhf0jHlrao4G1c8\nXu4SWtneuK7cJbTS+Nz6cpfQSl1dXblLaKUSawLv58WqxP38QFRcWADjgA0RsTkidgG3A2eWuaai\nPF2J/4n+6P9ExajEX8yVWBN4Py9WJe7nB6ISw2IIsKXg6+eTeWZmViaVGBZmZlZhFBHlruEtJJ0I\nzIqICcnXM4CIiDkFbSqraDOzg0REqCPLVWJYdAPWAx8F/gTUA+dHROWdlDQz6yK6l7uAliLiDUk1\nwFLyp8l+4qAwMyuvijuyMDOzynNQdHBL6i9pqaT1kpZI6ttO2ypJT0haXO6aJA2VtEzSU5LWSPpS\nRrWk3sQo6QeSNkhaLen4LOrY37okXSDp98nrYUnvK3dNBe1OkLRL0tmVUJOknKRVktZKeqDcNUnq\nI2lxsj+tkfT5EtT0E0lNkp5sp01J9/O0msq0j6d+n5J2+7ePR0TFv4A5wFeT6enAte20nQr8DFhc\n7pqAwcDxyXQv8n0xx3RyHVXARmA4cAiwuuU2gInA3cn0B4DHSvAzK6auE4G+yfSErOsqpqaCdv8X\n+A1wdrlrAvoCTwFDkq/fWQE1zQRm76kH+AvQPeO6PgwcDzy5j/fLsZ+n1VTSfbyYmgp+xvu1jx8U\nRxbkb8pbkEwvAM5qq5GkocDHgR9XQk0RsTUiVifTrwDr6Px7Roq5ifFM4JakjseBvpKqO7mO/a4r\nIh6LiB3Jl4+R/f00xd7weSVwF/BCxvUUW9MFwC8johEgIl6sgJoC6J1M9wb+EhHNWRYVEQ8D29pp\nUvL9PK2mMuzjxXyfoAP7+MESFoMiognyv4CBQfto911gGvkduVJqAkDSCPJp39m3vxZzE2PLNo1t\ntOls+3tz5WXAbzOtqIiaJL0LOCsi/g3o0CWGnV0TcBQwQNIDklZIuqgCaroeeK+kPwK/B6ZkXFMx\nyrGf749S7OOpOrqPV8zVUJLuAwr/ChD5X/r/q43mrcJA0n8HmiJitaQcnfAf/UBrKlhPL/IpPiU5\nwrACksYDl5A/fC6375E/rbhHKQIjTXdgLHAqcDjwqKRHI2JjGWs6A1gVEadK+i/AfZLe7/27bW+H\nfbxiwiIiPrav95LOmuqIaJI0mLYPnT4EfErSx4F3AL0l3RIRnytjTUjqTj4obo2IRR2tpR2NwD8W\nfD00mdeyzbCUNuWoC0nvB24CJkRE2qFzKWr6b8DtkkT+XPxESbsiIqsLJoqp6XngxYj4O/B3Sb8D\njiPfr1Cumi4BZgNExNOSngWOAVZmVFMxyrGfpyrxPl6Mju3jWXe2dFKHzRxgejLdbgd30uYUStPB\nnVoT+XOo12VYRzfe7Iw8lHxn5KgWbT7Omx1/J1KaTrZi6vpHYANwYon2o9SaWrSfT/Yd3MV8n44B\n7kva9gTWAO8tc003ALXJdDX50z8DSvAzHAGs2cd7Jd/Pi6ippPt4MTW1aFf0Pl6y4g/wgw8A7id/\nNdFSoF8y/wjgN220L0VYpNZE/mjnjeQ/2yrgCfJ/XXR2LROSOjYAM5J5lwNfLGhzffIL4PfA2BL9\n3NqtC/h38lfRPJF8f+rLXVOLtjdnHRb78fP7n+SviHoSuLLcNSX7+ZKknifJP2Uh65p+AfwReA14\njvzRTVn387SayrSPp36fCtoWvY/7pjwzM0t1sFwNZWZmZeSwMDOzVA4LMzNL5bAwM7NUDgszM0vl\nsDAzs1QOC7NOJumTkr7aSet6uTPWY3agfJ+FWQdI6hYRb5RgOzsjok/W2zFL4yML69Ik9ZT0m2Rg\noSclnSfpWUkDkvf/657BhiTVSrpF0kPArZIelTSqYF0PSBor6WJJP0wGCNrUYlvPSeom6T2Sfps8\nRfZBSUclbUZIeiQZLOebpf1umO2bw8K6uglAY0SMiYj3A/fS+gnChV+PAj4aEReQH+fhnwGSh0kO\njogn9iwTETuBVZJOSeZ9Arg3OSK5CaiJiBPIP1b/35I23wduiIjjgD915gc1OxAOC+vq1gAfkzRb\n0oeTX/DtPbJ5cUS8nkzfCXw6mT6P/NOFW1pIEijAZ4A7JB0OfBC4U9Iq4Ee8+Sj8D5EPIYBbO/KB\nzLJQMY8oNyuHiNggaSz5J5Z+U9IyYBdv/iHVo8Uify1Y9o+S/pKMq/zP5B/W1tJi4NuS+pMfk2IZ\n+SF2t0XE2LZK4s0jmUoYS8MM8JGFdXGSjgBejYhfAP+H/C/0TeSf+Q9vHjnsyx3AV4E+EbG25ZsR\n8VfyYzx8n/zTiCMiXgaelXROQR3vTyaXA+cn05/t0Icyy4DDwrq69wH1yemgbwDfBP4V+L6keiBt\nXOlfkj+quKOdNneQ/8V/e8G8zwJfkLRa0lrgU8n8q4DJkn5P/jHgZhXBl86amVkqH1mYmVkqh4WZ\nmaVyWJiZWSqHhZmZpXJYmJlZKoeFmZmlcliYmVkqh4WZmaX6/4zO+YAcs2bUAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2741,7 +2749,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2768,7 +2776,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 12, "metadata": { "collapsed": false }, @@ -2791,7 +2799,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtwXOd5HvDnXSwuiwtxIUDwTvAGXgECoAxKoWzBjlVL\ndh25tieO67itOx6rHnms1J3YqWLXnCZ21CadWoqTyG6cjOzaEm2lkmU7bmNHQiQ7I5AUCF7AG3i/\nASRBAARxIa5v/9izu2eXC+4usLtnz/me3wxGu4uDxacz4IuD7zzf+4mqgoiIvMXn9ACIiCj9WNyJ\niDyIxZ2IyINY3ImIPIjFnYjIg1jciYg8KGFxF5FCEekQkYMickREvjrHcc+KSI+IdIlIU/qHSkRE\nyfInOkBVJ0Tk3ao6JiJ5AH4tIj9X1X2hY0TkUQDrVXWjiOwC8ByA+zM3bCIiupekpmVUdcx6WIjg\nL4TYlU+PAfiudWwHgHIRqU3XIImIKDVJFXcR8YnIQQB9AH6hqvtjDlkB4JLt+RXrNSIickCyV+6z\nqtoMYCWAXSKyNbPDIiKihUg4526nqsMi8jqARwAcs33qCoBVtucrrdeiiAgb2RARzYOqSirHJyzu\nIlINYEpVb4lIAMDDAJ6OOexVAE8A2Csi9wMYUtVrcwwwlfFhanoG7/pg3IBOVk0UlGK0JHIbQXQW\nFUPnkNLZtrnU8wZWbXxXegbncm49FyMj5ZiZDv4TKikZRkHhxILf8+KpN7G6/p0Lfh8vcNO5+PXP\nvp7R9xdJvdJIomIrIg0AnkdwCscHYK+qfk1EHgegqvpt67hvInhFPwrgU6raGee91K1dKP/0h4fx\nq+6+qNf2fLIFzRuq5/V+e/bswZ49e9IwMvdz67nY+3I39r7cDQB4aPcaPPn4rgW/p1vPRSbwXESI\nSPqv3FX1CICWOK9/K+b551L5xm4yOT2Dt3v673p938kb8y7u5H47dywLF/euI9cwO6vw+eb7txxR\nenGFahKOnh/E+OQ0ACA/L3LK9p28kfI0U0hbW1s6huYJbj0X6+oqUVZaCAC4NXwH5y4OLfg93Xou\nMoHnYmFY3JOw78SN8OOHd65AaSAfANB/6w7O9t6e13vyBzfCrefC5xM0NywNPz94uHfB7+nWc5EJ\nPBcLw+KewOysouPE9fDz39hai50bI1Mx+07eiPdlZIjmxkhx7zzUd48jibKLxT2BM73DGLgdTEGU\nBvKxdU0Fdm2uCX/eXvjJPE0NtYCVmTp5+iZGRiadHRCRhcU9AXvxfkd9DfJ8PrRsqA7PvZ/ru43r\nQ+NODY8cVr6oCOvXVgIIxnwPdcdNABNlHYt7Ah22+fZW64o9UOjHdusfNADs59SM0XbusM+7c2qG\ncgOL+z30DYzh4vURAEC+34fm9YvDn9u1eUn4MadmzNbcuCz8+ODhvnknqIjSicX9Huw3S3esq0Kg\nMLIs4B2bIvPuR88PYmR8Kqtjo9yxcV0VSksKAACDt8Zx/uIth0dExOJ+T28dj1yRt25aEvW56kVF\n2LB8EQBgZlZx8PTNrI6NcofPJ9ixPdKaIh2RSKKFYnGfw/DoJI5bi1JEIvPtdq2bmJqhoJYdkamZ\nTs67Uw5gcZ/DgZ5+zFpzp5tWVqDSWolo12qbd3+7px9T07NZGx/lFvtipuOn+jE6xkgkOYvFfQ72\nK/F4V+0AUFdbitqKAABgbGIaxy4MZmVslHsqyouwri4SiTzczb/kyFks7nFMTM1EzaHviplvDxGR\nqBurb3FqxmjRrQg4NUPOYnGP49CZm5iYmgEALF9cjJU1JXMea1+tupBGYuR+0fPuvfxZIEexuMfR\nYYtA2vPs8WxdU4mSokgjsfPXRjI6Nspd9eurUFIcjEQODI7j4mVGIsk5LO4xZmcVB2zF/f4Exd2f\n54tqJGaPT5JZ8vJ8UZFIpmbISSzuMU5dvoWh0WDSoaKkAPUryxN+TfTUDIu7yTjvTrmCxT2G/abo\nfZtqktpZp2VjNfx5wePO9t5G/607GRsf5bbmHdGRyPE7XLlMzmBxj2FvObBrU/wIZKziQj8a6qrC\nz7mgyVxVFQHUra4AAMzMzDISSY5hcbe5fGMUV/pHAQCF+XnYYWsUloh9QRM38DBbS2N0aobICSzu\nNh22+fLmDYtRmJ+X9NfaFzodPT+AUf45biz77kzsEklOYXG3se+VmigCGat6URHWLws2EpueUXT2\nsJGYqTZtWIxAKB57cwyXrgw7PCIyEYu7ZWhkAicvBxuF+URwny3emCz71XsHUzPG8vt9MV0imZqh\n7GNxtwRXlwYfb1ldgUVWf+5U2K/2O3v6MT3DRmKmauHuTOQwFndL9JRMcimZWHW1pVhiNRIbvTON\n7vNsJGYqe9792KkbjERS1rG4AxifmEbX2cgceWuK8+0hsY3EOpiaMdbiqmKsthbATU/P4ugx/ixQ\ndrG4Azh45ma4F/vqJaVYVlU87/eyZ+P3nbjOpITBWmypGUYiKdtY3JGeKZmQbXWVKCkK7rV6g43E\njMaNs8lJxhf3mdlZ7D81/whkLH+eDy22pA1Xq5prc/1iFFm/6K/3j+Jq322HR0QmMb64H784hJHx\n4M2uqrLCcFZ9Ieybe9j/KiCz5Pvz0LjV1iXyEFMzlD3GF/cOW/FtTbJRWCItGxeHG4md6R1G/zAb\niZmqOWrencWdssfo4q6q6Dhu3yt1YVMyISVF+dhuayTGq3dz2W+qHjtxAxMT0w6OhkxidHG/cH0E\n14bGAQCBAj8a1lam7b1bY1IzZKaa6hKsWhGc6puansFR/qKnLDG6uNuvqHdurEaBP/lGYYnYi/uR\n8wMY4xWbsZobbF0iDzESSdlhdHG3J1laFxiBjFVTEcC6ZWUAQo3E+tP6/uQe9g08OO9O2WJsce8f\nvoPTV4Pd+vJ8ErUParq02lIzHfxz3Fhb6qtRWBiMRF67PoJeRiIpC4wt7vYpme11lSgN5Kf9e9gX\nRL3NRmLGKsjPQ8NWW1M5Xr1TFhhc3CNTMgtduDSXtUvLUFNeBAAYvTOFYxfYSMxUbEVA2WZkcR+9\nM4Uj5wfCz1uT3Cs1VXc1EuPUjLHsrQiOHruByckZB0dDJjCyuHf23MT0TLDPx7plZaix2vRmgv2v\ngv0nb7C/iKFqa0qwfGnwBvvU9Ay6+YueMszI4m7fJcl+0zMTtq2pRHHoZtrQOBuJGaxlBzfOpuwx\nrrhPTc9GxRLv35LZ4p7v90UlcbigyVxR8+7sM0MZZlxx774wiNE7wQVFSyoCqKstzfj3tGfo93ED\nD2Nt3VyDgvzgQrnea7fRd51/xVHmGFfcoxYubaqByMIbhSXSsqEaeVZDstNX2UjMVAX5edhu+0uR\ne6tSJhlV3FU16sp5oRtzJKs0kI/tdZG+Nft59W4sbpxN2WJUcT/bexv9t4JXzSVF+di6Jn2NwhKx\nd5zk1Iy5WmyRyMPHrmNyipFIygyjirs9JXNffTX8edn7349qJHZ2AONsJGakpbWlWFYbjEROTk7j\n+Cn2HKLMSFjdRGSliLwmIt0ickREPh/nmIdEZEhEOq2PL2dmuAvTcTz7UzIhSyoCWBvKOc/MovM0\n/1GbqrnRvjsTI5GUGclcuk4D+IKqbgPwAIAnRGRznOPeUNUW6+OP0zrKNLg2OI7z14INm/LzfGjZ\nkP5GYYkwNUNA9NQM590pUxIWd1XtU9Uu6/EIgOMAVsQ5NPOxkwWwp2Qa1lUhYC0syib73qoHTrGR\nmKm2b1mCfGvvgMtXh3G9f9ThEZEXpTTpLCJ1AJoAdMT59AMi0iUiPxORrWkYW1rZr5Tvz1CjsETW\nLSvD4kXBRmIj41M4dnHIkXGQswoK8rB9a+SvOF69UyYkffkqIqUAXgLwpHUFb/c2gNWqOiYijwJ4\nBUB9vPfZs2dP+HFbWxva2tpSHHLqbo9Poft8pCPjffXZn5IBgo3Edm2uwd/vuwQguFq1cW1Vgq8i\nL2puWBou6p2HevG+96x3eESUS9rb29He3r6g95BkGlmJiB/ATwH8XFWfSeL4cwB2qupAzOvqROOs\n1w9dxTf+z1EAwMYV5fizz+zK+hhCDp7ux57vdQIAaisC+NbvPZiVhVSUW6723cbnvvhzAEBRkR/P\n/+Vj4akaolgiAlVNqVAkOy3zNwCOzVXYRaTW9rgVwV8aA/GOdYK91W62UzKxttdVIVAQaSR2gUvQ\njbSsthS1NSUAgDt3pnH8JNNTlF7JRCF3A/gEgPeIyEEr6viIiDwuIp+xDvuoiBwVkYMAvgHgYxkc\nc0omp2dw0BY7zNTGHMm6u5EYUzMmEpGoLpFdRzjvTumVTFrm16qap6pNqtpsRR3/r6p+S1W/bR3z\nF6q63fr8b6hqvBuujjh8dgB3rI0RllUVY5V1teQkeySyg10ijdXUEGlF8Da7RFKaeX6FamwvmVyY\n327ZGN1I7CYbiRmpYcsS+P3Bf4KXrtxC/80xh0dEXuLp4j47q1HTHq0OT8mElAXysW0NG4mZrqjI\nj622thTcOJvSydPFvefqLQyOTAAAFhUXYMuqCodHFGH/RdPB4m6snZx3pwzxdHG395Jp3VQDn8/5\nKZkQNhIjIHre/dDRa5ie5qplSg9PF/d99r1SHY5AxqqtDKCu1t5I7KbDIyInrFxehprFwZv843em\ncJI/B5Qmni3uV2+O4tKNYM+OAr8PTesWOzyiu+2KaiTG1IyJRATNjfbUDLtEUnp4trjbFy41rV+M\nwoLcW/1nn3c/cKofM7P8k9xEnHenTPBscd9ny487vXBpLutjG4ldYCMxE23fWoM8a+OY8xeHMDA4\n7vCIyAs8WdyHRiZw/FKwUIo41ygsERGJurHKHu9mChTlY+umyM8ou0RSOniyuB841Y9Qf7ItqypQ\nUVro7IDuIWoDjxPX4URjNXJes20Dj87DnHenhfNkcbcv6c+VhUtz2V5XGW4k1jc4jovXuXGDiVoa\noyORM9zIhRbIc8V9YnIGXWcicTKnu0AmUuDPQ8vGSJKHqRkzrVqxCFWVAQDA2DgjkbRwnivuXWdv\nYtJaCLKqpgTLFzvfKCyRVtv2ex3sEmkkEYlKzXDenRbKc8U9qpfMptyekgnZWV8Nn9XQrOfKLTYS\nM5Q9797JvDstkKeK++ys3tUF0g3KAvnYVhdpJHbgFDduMFHjttpwi4xzF4cwOMRf8jR/niruxy8N\nYXhsEgBQWVqIjSvKHR5R8uyRSPZ4N1NxIB+bbRu5cEETLYSnivu+E9G9ZHKpUVgi9oVWh8+xkZip\n7LszMRJJC+GZ4q6qUTcj7VfCblBbGcCa2lIAwNT0LA6eYVrCRIxEUrp4prhfujGK3oHgTjZFBXlo\nXFfl8IhSt8t2A5h7q5ppzapyVFYEI5Ejo5PoOZsz+8yTy3imuNunZJo3VKPAn3uNwhKxr1bdf+oG\nG4kZSETQbOvxzkgkzZdnivtbJ9yXkom1ftkiVJUFWyWMjE/h+EU2EjNRyw5bJJLFnebJE8X95vAd\n9Fy5BQDwieC+encWd58vppEYp2aM1LitNryR+5lzAxi6xUgkpc4Txd2eC99WV4myQL6Do1mY2L1V\n2UjMPKUlBdGRyKO8eqfUeaK4v2WPQLosJROrYa2tkdjAWHg3KTJLc2Nt+DHn3Wk+XF/cxyemccSW\nKMjVjTmSVeDPQ/MGWyMxLmgyUktjdJ+Z2Vn+BUepcX1x7zzdjykrC1xXW4Zaq7Oem9lTMx3cwMNI\na9dUoKLc2qVrdBKnGYmkFLm+uNsXLu3a4u4pmZD76mvCjcROXb6FgdsTDo+Isi1242ymZihVri7u\n0zOzUTdTd7mkC2QiZYF8bF1TEX6+n1fvRmLenRbC1cX92IVBjN6ZAgBUlxdh3bIyh0eUPvZ7B9zA\nw0xN25eGI5E9ZwcwzL/gKAWuLu6xvWRC/xC8wJ76OXSWjcRMVFpagPr1oTYaikNHrzk6HnIX1xZ3\n1dje7d6YkglZWlWM1UsijcS6zrKRmImiukRyAw9KgWuL+/lrI7g+NA4AKCnyY9uaygRf4T72Ngpc\nrWqmqHn3I4xEUvJcW9zfOh6Zh27ZWI18v2v/V+Zk3yaQjcTMtK6uEuWLgpHI4dsTOHt+0OERkVu4\ntiLabzJ6JSUTa8PyRai0GondHpvCiUu3HB4RZZvPJ2jablutyt2ZKEmuLO43hsZxtvc2AMCfJ9hZ\nX53gK9zp7kZiTM2YiBtn03y4srjbb6Q21FWhuNDv4GgyK3pvVTYSM1FTw1IA1qK2MwMYGZl0dkDk\nCq4s7h1Re6V6c0ompHFdFYoKghuP9A6M4XI/G4mZZlFZITZaO4upKrtEUlJcV9xHxqdw1HZTqdWl\nG3MkK9hILDLt1MHUjJHsUzOcd6dkuK64v93TjxkrDrZh+SJUW0kCL9vFeXfj2TfOZpdISobrivu+\nE95duDSX++qrI43ErtzC4AiXoZtmw7oqlJYUAACGbt3BeW7BSAm4qrhPTs/g7Z5IozCvT8mElBUX\nYMvqYCMxVTYSM5HPF9slkqkZujdXFfej5wcxPhnssVJbEcAaa3m+CbhalaLm3Q+zzwzdm6uKe4dt\nVequLUs81SgsEXsqqOvsTdyZZCMx0zRtjxT3Ez39GBllJJLm5priPjsb2yjMjCmZkGVVxVhdY2sk\ndoY785imorwI69dGIpGHu3n1TnNzTXE/0zsc3pGoNJAfnoM2SetmpmZM1xK1WpWRSJqba4q7feHS\nO+prkOdzzdDTxl7c95/qZxzOQLF5d65Yprm4pkJGbcxh2JRMyMbl5agsDTYSGx6bxIlLjMOZpn79\n4nAkcnBoHBfYTI7mkLC4i8hKEXlNRLpF5IiIfH6O454VkR4R6RKRpnQOsndgDBevjwAA8v0+NK9f\nnM63dw2fT/AOe68ZRiKN4/MJdti6RHLjbJpLMlfu0wC+oKrbADwA4AkR2Ww/QEQeBbBeVTcCeBzA\nc+kcpH1+uWndYgQ83CgskV2cdzdeSyN3Z6LEElZJVe0D0Gc9HhGR4wBWADhhO+wxAN+1jukQkXIR\nqVXVtNzO55RMROO6KhTm52FiagZXb47hl51XsKg43+lhURbNBvwYQXCu/fCpG3jrwGUj70HlisZt\nS1CYgxecKY1IROoANAHoiPnUCgCXbM+vWK8tuLgPj07iuLXUWiS6Ba6Jgo3EFod3ovrzH3c7PCJy\nws2CPExMzgCq+Mqzv0YZzFnzkWv+6n98ALU1Li7uIlIK4CUAT6rqyHy/4Z49e8KP29ra0NbWds/j\nD/T0Y9ZKBGxaWYEK64aiyR7ctjRqm0EyT0lJASYmg3sI9wHwQxFggfeM9vZ2tLe3L+g9JJkolYj4\nAfwUwM9V9Zk4n38OwOuqutd6fgLAQ7HTMiKiqUa3Lt0Ywetdvdh38jre3bQcH3lwbUpf70Wqir97\n8xy33TPYzMws/vlQL4asVaoFeT68a3UlSvLzHB6ZeT777+9DZUVmu9OKCFQ1pd/eyRb37wLoV9Uv\nzPH59wN4QlU/ICL3A/iGqt4f57iUi7vd7KzC5+PVCREA9A2M4ff/1z4MjwUL/MrqEjz96VaUBXgP\nxmsyUtxFZDeANwAcAaDWx1MA1gBQVf22ddw3ATwCYBTAp1S1M857Lai4E1G0ExeH8OXnD2BqehYA\n0LC2Cl/93Rbk+3mD1UsyduWeLizuROn35pE+/NlLh8PP39u8Ap97bKtRjfW8bj7Fnb/eiVzunQ1L\n8bu/uSH8/JcHr+Dv3jzn4IgoF7C4E3nAR9+5Fr/ZtDz8/Hv/eBpvcq9Vo7G4E3mAiOCzH9yKBqsl\nMAA888pRnOB2fMZicSfyiHy/D1/62A6sqC4BEOz7/7UXutA3MObwyMgJLO5EHlIWyMd/+UQzFhUH\nO0cOj03ij75/ELfHpxweGWUbizuRxyytKsYffrwpHIe83D+K/7b3UDguSWZgcSfyoM2rK/Dkh7aH\nnx85N4Dnfnqcm3sYhMWdyKPiRSRfYkTSGCzuRB4WG5H834xIGoPFncjDGJE0F4s7kceFIpIrGZE0\nCos7kQHKAvn4SkxE8r8yIulpLO5EhoiNSF5hRNLTWNyJDBIvIvlXPznGiKQHsbgTGSY2IvmPXVcZ\nkfQgFnciAzEi6X0s7kQGYkTS+1jciQw1V0SylxFJT2BxJzJYKCJZXsIukl7D4k5kuKVVxXjqdxiR\n9BoWdyJiRNKDWNyJCAAjkl7D4k5EYR9951q8t3lF+Dkjku7F4k5EYSKC//AvtzAi6QEs7kQUhRFJ\nb2BxJ6K7MCLpfizuRBRXvIjk0y92MSLpEizuRDSn2Ijk0fODjEi6BIs7Ed0TI5LuxOJORAkxIuk+\nLO5ElBAjku7D4k5ESWFE0l1Y3IkoaYxIugeLOxGlhBFJd2BxJ6KUbV5dgd/7V9ERyb9kRDKnsLgT\n0bw8uH0pPmmLSL7GiGROYXEnonn7CCOSOYvFnYjmLRSRbGREMuewuBPRguT7ffgiI5I5h8WdiBaM\nEcncw+JORGnBiGRuYXEnorRhRDJ3sLgTUVoxIpkbWNyJKO3iRSTfONLr4IjMw+JORGkXLyL57Cvd\nOH5x0MFRmYXFnYgyIl5E8usvHGJEMktY3IkoYxiRdE7C4i4i3xGRayJyeI7PPyQiQyLSaX18Of3D\nJCK3YkTSGclcuf8tgPclOOYNVW2xPv44DeMiIg9hRDL7EhZ3Vf0VgER3QSQ9wyEir4oXkfzRG4xI\nZkq65twfEJEuEfmZiGxN03sSkcfERiS//xojkpniT8N7vA1gtaqOicijAF4BUD/XwXv27Ak/bmtr\nQ1tbWxqGQERuICL47Ae34PrQOA6fGwAAPPtyN2rKi7BldaXDo8sd7e3taG9vX9B7SDJzXiKyBsBP\nVLUxiWPPAdipqgNxPqecYyOi2+NT+IO/3ofL/aMAgLLifPz3T+/C8sXFDo8sN4kIVDWl6e9kp2UE\nc8yri0it7XErgr8w7irsREQhsRHJ22NT+KPvdzIimUbJRCF/AOCfAdSLyEUR+ZSIPC4in7EO+aiI\nHBWRgwC+AeBjGRwvEXlEbETy6s0xRiTTKKlpmbR9M07LEFGMXx3tw5/+KLKM5j1Ny/H5D22DCEN4\nIZmcliEiyghGJDODxZ2IHMeIZPqxuBOR40IRyaguki+zi+RCsLgTUU7w5/nwpY/twKoaq4vkTHCj\n7as32UVyPljciShnlAby8ZVPtDAimQYs7kSUU2orA/jDj0dHJP/kBUYkU8XiTkQ5Z9OqCvzHD0e6\nSHZfGMRfvMoukqlgcSeinLR721J88r0bw89fP8SIZCpY3IkoZ33kwTq8t4URyflgcSeinCUi+Gzs\nRtsvd+PYBUYkE2FxJ6KcFi8i+fUXGZFMhMWdiHIeI5KpY3EnIldgRDI1LO5E5BqMSCaPxZ2IXCVe\nRPKH/3TWwRHlJhZ3InKd2IjkD14/g386zIikHYs7EblOKCK5Y10kIvnnrzAiacfiTkSu5M/z4Yu/\nzYjkXFjcici1GJGcG4s7EbkaI5LxsbgTkesxInk3Fnci8gRGJKOxuBORZzAiGcHiTkSewYhkBIs7\nEXkKI5JBLO5E5DmMSLK4E5FHzRWRnJyecXhk2cHiTkSeZXJEksWdiDwtNiLZfqjXiIgkizsReZ6J\nEUkWdyLyPBMjkizuRGQE0yKSLO5EZIw5I5Jjkw6PLP1Y3InIKHEjki8e8lxEksWdiIwTjEg2hJ97\nMSLJ4k5ERtq9rRb/5uHoiOReD0UkWdyJyFgf3h0dkXzBQxFJFnciMpaXI5Is7kRkNK9GJFncich4\nXoxIsrgTEcF7EUkWdyIii5cikizuREQ2XolIsrgTEcWIF5FsP+SuiCSLOxFRjHgRyW/+uBvdLopI\nsrgTEcURikiurikFEIxI/smLXbh6c9ThkSUnYXEXke+IyDUROXyPY54VkR4R6RKRpvQOkYjIGaWB\nfHz5E82oiIpIHnRFRDKZK/e/BfC+uT4pIo8CWK+qGwE8DuC5NI3N09rb250eQs7guYjguYjIlXNR\nWxnAU//afRHJhMVdVX8F4F4TTY8B+K51bAeAchGpTc/wvCtXfnBzAc9FBM9FRC6di00r3ReRTMec\n+woAl2zPr1ivERF5htsikryhSkSUpA/vrsPDLolISjJ/VojIGgA/UdXGOJ97DsDrqrrXen4CwEOq\nei3Osbn7NwwRUQ5TVUnleH+Sx4n1Ec+rAJ4AsFdE7gcwFK+wz2dwREQ0PwmLu4j8AEAbgMUichHA\nVwEUAFBV/baq/r2IvF9ETgMYBfCpTA6YiIgSS2pahoiI3CVrN1RF5BEROSEip0TkS9n6vrkg3kIw\nEakUkX8QkZMi8v9EpNzJMWaDiKwUkddEpFtEjojI563XTTwXhSLSISIHrXPxVet1485FiIj4RKRT\nRF61nht5LkTkvIgcsn429lmvpXwuslLcRcQH4JsILobaBuDjIrI5G987R8RbCPYHAH6pqpsAvAbg\nP2d9VNk3DeALqroNwAMAnrB+Dow7F6o6AeDdqtoMoAnAoyLSCgPPhc2TAI7Znpt6LmYBtKlqs6q2\nWq+lfC6ydeXeCqBHVS+o6hSAFxFc/GSEORaCPQbgeevx8wA+lNVBOUBV+1S1y3o8AuA4gJUw8FwA\ngKqG9nErRPD+l8LQcyEiKwG8H8Bf21428lwgGF6Jrc0pn4tsFffYhU6XwYVOS0KpIlXtA7DE4fFk\nlYjUIXjF+haAWhPPhTUNcRBAH4BfqOp+GHouAPxPAL+P4C+4EFPPhQL4hYjsF5FPW6+lfC6SjUJS\n5hlzZ1tESgG8BOBJVR2Js/7BiHOhqrMAmkVkEYCXRWQb7v5/9/y5EJEPALimql0i0naPQz1/Liy7\nVbVXRGoA/IOInMQ8fi6ydeV+BcBq2/OV1msmuxbqwSMiSwFcd3g8WSEifgQL+/dU9cfWy0aeixBV\nHQbQDuARmHkudgP4LRE5C+AFAO8Rke8B6DPwXEBVe63/3gDwCoLT2in/XGSruO8HsEFE1ohIAYDf\nQXDxk0liF4K9CuDfWY//LYAfx36BR/0NgGOq+oztNePOhYhUhxIPIhIA8DCC9yCMOxeq+pSqrlbV\ndQjWhtf57mugAAAAw0lEQVRU9ZMAfgLDzoWIFFt/2UJESgD8CwBHMI+fi6zl3EXkEQDPIPgL5Tuq\n+nRWvnEOsC8EA3ANwYVgrwD4EYBVAC4A+G1VHXJqjNkgIrsBvIHgD6taH08B2AfghzDrXDQgeGPM\nZ33sVdWviUgVDDsXdiLyEID/pKq/ZeK5EJG1AF5G8N+GH8D3VfXp+ZwLLmIiIvIgdoUkIvIgFnci\nIg9icSci8iAWdyIiD2JxJyLyIBZ3IiIPYnEnIvIgFnciIg/6/9ntD8Xxb3j7AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2823,7 +2831,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 13, "metadata": { "collapsed": false }, @@ -2844,9 +2852,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcW+f1P/DPkYTYGwzGGGNsPBg2xnthkrYZTZukSZNm\nOOvbkXzrtNmzduI4oxlOs/tN06b5Jc4erZNmtUkdG9vxBgw23sZ4gtl7SOj5/SFxucJgJJB0h877\n9fIrPOICJxdxdPXc5zyHhBBgjDGmLwalA2CMMeZ5nNwZY0yHOLkzxpgOcXJnjDEd4uTOGGM6xMmd\nMcZ0aNDkTkSBRLSFiIqIqJSIHh7guBeJ6AARFRNRjudDZYwx5irTYAcIITqJ6BwhRBsRGQFsJKKv\nhBBbe44hogsBjBNCpBPRbACvApjjvbAZY4ydjUvTMkKINseHgbC/IPStfLoEwFuOY7cAiCSiBE8F\nyRhjzD0uJXciMhBREYBKAN8IIbb1OWQUgGOy8QnHY4wxxhTg6pW7TQgxDUAygNlElOHdsBhjjA3H\noHPuckKIJiL6DsAFAMpknzoBYLRsnOx4zAkR8UY2jDE2BEIIcuf4QZM7EcUBsAghGokoGMCPADzZ\n57DPACwB8AERzQHQIISoGiBAl4Pr7rZhwU8ecvl4X2oPikZ7cAwAIMDShtDW0259/fEDa5Gcnu/S\nsZaAELSGjgAAGGwWRDYehVu/ZZU7dqAAo9PzXDq2KXwUrKYgaRzSVo2gziZvheZz7pwLAOjqCkR7\nW5g0Nge2IySkBaSDJ8jR/euRMmGh0mEM2cYvnvDY96Ih/EJpsGRLRNkA3oR9CscA4AMhxONEdDMA\nIYR4zXHcy7Bf0bcCuEkIUdjP9xJ62IVSCIHfvrQRJ2vt95nvvXIK5mcmuvU9li9fjuXLl7t0bKel\nGzc8vQ7tXVYAwMrfzEb6qEi3fp6auXouOru6cc2Ta2Dt7n0O5abH4eHFuV6MzrfceV70eOv9nVj9\n5T5pfOWlmbjqskwPR+Z7QzkXekVEnr9yF0KUAjjjr0cI8Zc+41vd+cFadvBkk5TYg80mzJgQ79Wf\nFxhgxJzJI/DdzpMAgILSSl0ld1ftPdbglNgBoPRwHdo7rQgOdGuGUVcWXzkF9Q0dWPd9BQDgw9W7\nER0VhPPPHadwZExJXKE6BAWlldLHcyaPQGCA0e3vkZ+f79bxi6b0vjNYX1oJm03774B6uHouSo/U\nnfGYpduG4sO1Ho5IOe4+LwDAYCAs+dVM5GT3Pkdee7MQW3eccdtLU4ZyLlgvTu5ustkE1u/qTe7y\npOsOd5+4U9JiEBVqBgDUt3SitPzMRKdVrp6LksO9/88p8b3zzNv31Xg6JMUMNaGZTAbc87u5GDfW\nfh9ICIFnX9mMPfu1e244uQ8PJ3c3lZbXob65EwAQFWrGlLQYn/xco8GA+Vm9LyTydw/+oL3TigMn\nem+c3nBeuvTx9v3VunonM1TBQQH4w50LkDDC/sJnsXbjj89twNHjjQpHxpTAyd1N8qS6ICsRRoPv\nTuEi2dvuTXuq0GXt9tnPVlrZ0QbYHDfjxyaGI3d8nPROpqG1CwdOcAIDgKjIIDx8Tx4iI+wrilpa\nu/DoyvWorWsb5CuZ3nByd0OXtRvfl/Wu8Mwb4pTMUE1IjkRCVDAAoLXDih0HtPuW213yaajssTEw\nGMjpRva2/dVKhKVKiQlh+MNdCxAUZL/JXFvXhhXPrEdLS5fCkTFf4uTuhu37a9DWaV+OmBgTggk+\nXrFCRE4vKAUl/jM145TcU6MBADMmxkmPbd3HyV1u/NgY3Pu7eTAY7Kvnjp1oxB+f34gui/+82/N3\nnNzdIJ+SWZSdOKTCguHKyx4pfbxtf7X0YqNnLe0WHD7VDAAwECFjjD2556TFIsBofwpXVLXgdEO7\nYjGqUU52Im799UxpvGd/NZ7/vy18f8JPcHJ3UUu7Bdtlb/0XZvt2SqZHyogwjE0MBwBYrDZs3uNe\nZawWlVXUS/PtaSPDERYcAAAIDjQhW3ZDextfvZ8hf34qrr9qqjTevP04/raqyK1KcaZNnNxdtHnP\naVisNgD2BDNathTP1/Ky5VMzpxSLw1dKj9RLH2ePdV6dNFM+787JvV+XXDgBPzl/gjT++r8H8cm/\n9igYEfMFTu4uKijtTaKLZFMjSlgoWxK583AdGlo6FYzG+/reTJWbOaF33n3XkXq0+8E0lbuICDde\nPRXzZ/fu7ffux7vw33XlCkbFvI2TuwvqmjtR4kgwRMAChaZkesRHBUvzzjYhsGF3v3u06UJzWxfK\nK2Xz7SlRTp+PjwrunabqtqHokH6qVT3JYCD87jezMCWjt4fOn/++HduLTyoYFfMmTu4u2LCrEj1T\nlFmpMYiLCDr7F/jAIj+ZmpFPyaSPiuh3Dxn51Mx2npoZkDnAiHtvm4dUxwukEAIrX9qE/Qf5BVGP\nOLm7YJ0seeYpfNXeY15GAoyOZW77jjeiUqdFKmebkukxc6IsuR+o4dUgZxESHIBld+dhRFwoAKDL\n0o3Hnl2PE6f0s20ys+PkPoiTta04eNL+xA8wGjA3Qx2tYSNCzZg2PlYay/e70ZNd5b1X7lMGSO7j\nkyIQHRYIAGhs7cJ+Lrc/q+ioIDx0bx7CHeespbULK55ej7p6XkqqJ5zcB7FOViiUmx6HcMcyPDWQ\nr3lfV3JKd8vbGlo6cbS6BQBgMhImjY7q9ziDgTBddmOVq1UHl5QYjqV3LYDZbJ/mqq5txWPPrkdr\nG1ex6gUn97MQQjivkvHxdgODmTUxXtpu+Fh1K45UtSgckWeVyq7aJyRHIdA88NbKs2RTM1yt6pr0\ncbG493dzpWK8I0cb8NQL33MVq05wcj8LXzflcFdwoAmzJvXGtE5nN1bl+7dnj40+67FT02IQYLI/\nnY+ebkEVTzG4JHfqSCz55QxpvGvPabz4l61830IHOLmfhXy7gbkZQ2vK4W3yNfcFOmvi4byfzNm3\nVg4ym5xuuPLUjOvOzRuLa3+eLY2/33oMb7xTrLtpPn/DyX0ANpvAellyV8sqmb6mjY9FeIj9PkBt\nUwfKjtYP8hXaUNPUIb1rCjAZMHH04Ju0yadmuFrVPZf9dBIu/OF4afzFNwec+rIy7eHkPoDS8jrU\nt/i+KYe7TEYD5stW8OiliYf8qn3y6CiYTYO/a5Kvd991pM4vNlXzFCLCLxdPw9yZydJjqz4owXcb\njigXFBsWTu4DULIph7vypvROzWzcXSXtgaNl8iWQA61v7ysuMkiqVrV2CxRxcY5bDAbCbbfMRobs\nHdArf9uGwp36upfjL9SbsRSkdFMOd00eHYW4SEfnnXYLinVQgu9cvHT2m6lyPDUzPOYAI+6/fT5S\nku3TYDabwDMvb8LBw/rp2esvOLn3Q+mmHO4yGMhpM7F1pdq+0qqqb0eVY2/2wAAjxie5fv7l1ao7\nuFp1SMJCzVh290LExYYAADo7rXjs2fU45djjh2kDJ/d+qKEph7sWyaZmtu6t1vTuiPKr9owxUdIS\nR1eMG9lbrdrUxtWqQxUbE4Jld+chzNGntqm5EyueKUBDY4fCkTFXcXLvo29TjjyFt/d1VWpCGFIc\ne8x3Wro1XcjjvL7dvRvZ9t6q3H7PE0aPisCDdy6A2bEEuKq6FY+tXI/2DovCkTFXcHLvQ96UY9zI\nCCTHhyockWvO6K+q0akZIYRTZepg69v7w/PunjMpPQ53LemtYj1cUY+nXvgeFitXsaodJ/c+5ElR\nrWvbByKfdy86WIumVu3tE3Kqrg21Tfa3/sFmE8Ylhbv9PaamxfZWq1ZztepwzcxNwi03TZfGJbur\n8Mpft/P9DJXj5C6jtqYc7kqMCcFExyqHbptwWvGjFfKr9szUqCEtQQ00GzFVVpfAUzPD96P8NFx1\nWZY0LthUgVUflCgYERsMJ3cZNTblcJd8zfs6DRY0yW+mDrTFrytmTRwhfbxtn/6biPvCFZdMxo/O\nSZPGn361D599xVWsasXJXUaNTTnctSAzAQbH/GhZRT2qG7QzJWGfbx/6zVQ5+RbAuyvquVrVA4gI\nN98wHbNyR0mP/b/3dmL9pqMKRsUGwsndQa1NOdwVFRboNCWhpSYex2ta0eC4TxAWHIDUBPfn23vE\nRQQhbaS8WrXGIzH6O4OBcOdv52BSeu+L54uvbcVOHffx1SpO7g5qbsrhLvnUjJb2mimRVUFmjomG\nwTC8+oKZvMe7V5jNRjx4xwKMHhUBAOjutuGpFzbi8BF9bFqnF5zcof6mHO6aM3mEtFqkvLIZR09r\no4mHvBn2cKZkesg3EuNqVc8KCzNj2d15iIkOBgB0dFjx6Mr1qNTIc80fcHKH+ptyuCsk0OSU2LSw\n5t1mE9h1xDM3U3uMGxmB6HB7tWpzmwV7jzUM+3uyXnGxIXjonjyEhtirWBubOrDimQI0NnEVqxpw\ncoc2mnK4y6mgqaRS9Y0XKk63oLnNXvkYGWpGyojhF48ZDOT0IsdTM56XkhyJB+6YjwDHlsyVVS14\n7NkNXMWqAn6f3Ps25ZDv0aJl09PjEBpkb35c1dCOfcfUvceKfJVMVmq0x/bzmSlbNbOduzN5RcbE\neNzx29nS7+xQeR1WvrwJVh1sPa1lfp/c+zblcGd7WTUzm4xOK37UvlOkp5ZA9iWvVj1W3YpTdW0e\n+96s15wZyfjNDbnSuKikEn/++3bVv2PUM79P7lpqyuGuRbK1+ht3V6Hbps4rKZtNYHfF8PaTGUig\n2YictFhpzHvNeM/5547DFZdkSOO1G47gnY92KRiRf9NPJhuCvk059DIl0yMrNUa6odjY2oWdKm24\ncLiyGa0d9iKj6PBAjIoL8ej3ly+J5KkZ77rqskz8IG+sNP7H53vwxX8OKBiR//Lr5N63KUe6Y92u\nXvRt4lFQos41705TMqkxHt8/X74F8K4j9Wjlm31eQ0S45abpmJGTJD32+tvF2LjlmIJR+Se/Tu5a\nbMrhLvk2Cpv3nEanRX1btQ61pZ6rYiOCMD7JUXBj496q3mY0GnDXkjmYMK5nOkzghb9swa49vMeP\nL/ltcm9pt2D7Pu015XDX+KQIJDnapbV3WVU3LWHttqGsonf9uSdvpsrJaxe2qewc6FFgoAkP3rkA\nST0Ny602/PG5jThylGsNfMVvk/vmPadh6dZeUw53EZHTC9c6lU3NHDrZhPYu+9RYXGQQEh0Vj542\ny2nevUa1N5f1JCI8EMvuyUN0pP132t5hwaPPrMfpmlaFI/MPfpvc9bTdwGDkUzOFB2rQ3K6eOee+\nW/x6a2osbWQ4Yhw3l1vaLdir8nX/epEQH4qldy9EcJB9r6b6xnaseLoAzY7lx8x7/DK51zZ1ODXl\nmJ+l7+Q+Ki5UmnO2dNuwWUVzn57eT2YgROS0aoaXRPrO2DFRuP/2+TA56g1OVjbj8Wc3oJO3YfYq\nv0zuG3dXab4ph7vkV+8FJeooaLJYbShzWt/u3QIy+VYEnNx9KztjBG67eTYA+zuz/Ydq8ewrm9Hd\nzdNj3uKXyV3elENva9sHMj8rET0zHqVH6qQ+pUraf6IRXY4S9cToYMRHeWe+vceUtBiYHVePx2ta\npc3imG/Mnz0av1ycI423F5/Eq2/s4CpWLxk0uRNRMhGtIaLdRFRKRL/v55hFRNRARIWOf0u9E+7w\nnahxbsoxZ/KIQb5CH+IigpDlqPwUwv7uRWlO+8l4cUqmR2CAETnjeqtV1bZyyB9cdF46fvaTSdL4\nvwXl+OCfuxWMSL9cuXK3ArhTCJEJYC6AJUQ0qZ/jCoQQuY5/j3k0Sg+Sr23XelMOd8mnZtapYGrG\nU/1S3TGDd4lU3OIrsrFo/hhp/OHqMvx7zSEFI9KnQZO7EKJSCFHs+LgFwB4Ao/o5VPUVQEIIv5yS\n6TE3IwEmo/3XZN/DXrklaV3Wbuw73rtixZs3U+XkN1XLKurRoqKVQ/6CiLDklzMxTbZK7bU3C7F5\n+3EFo9Ift+bciSgVQA6ALf18ei4RFRPRF0SU0c/nFXfwZJO0K6C9KUfcIF+hL+HBAZgu632p5Jr3\nvccaYXHMt4+KC5WWKXpbTHggV6uqgMlkwN23zsW4sT1ThQLP/XkLyvjdlMeYXD2QiMIAfAzgNscV\nvNwOAClCiDYiuhDAagAT+vs+y5cvlz7Oz89Hfn6+myEPnXxKZp5OmnK4Ky97JLbstf8BFZSewlX5\naYpsu1B6WL6fjG+3WZ45MV6677JtfzUWZut7KaxaBQcFYOldC/DAo2tQWdUCi7Ubf3xuIx5feg5S\nkiOVDk9Ra9euxdq1a4f1PciVO9VEZALwOYCvhBAvuHB8OYDpQoi6Po8Lpe6M22wC//NsgbR3+yPX\nT3e6ueYvOru6ccMz66Sq0GdvniNdyfrS/a9vxR5HKfo9V0zBAh/WGhw+1YQ7Xt0MAAgLDsBb9y7S\n1VbPWlN5ugUPrFgjteeLiQ7Gkw/9AHGxnt0dVMuICEIIt67CXH1G/x1A2UCJnYgSZB/Pgv1FQ1X7\ny+q1KYe7As1GzJ7cO++sxI3Vji4rDpzonW/P8vGV+9jEcMQ6ahta2i3SiwxTRuKIMCy9eyGCHJ3D\n6urb8ejKArS0dCkcmba5shRyPoBrAZxLREWOpY4XENHNRPQbx2E/J6JdRFQE4HkAv/BizEMin5JZ\nmK2vphzukt9IXr+rEjabb99N7TnaAGu3/WemjAhDVJhv5tt7EJFT+71t+2t8+vPZmcalRuO+38+D\n0ejomnWiCU88vwFdXerbxVQrXFkts1EIYRRC5AghpjmWOn4thPiLEOI1xzGvCCGyHJ+fJ4To74ar\nYvo25dDrDpCumpoWg8hQe8f6+uZO7Dri2zdZpeW+2XLgbHgrAvWZmpWI3/16pjTeu78Gf/rzZp9f\nfOiFX1y+6r0ph7uMBgPmZ8r7q/p21UyJl/dvd8WUtBjphvqJmlZFl4WyXnnzxuDGq6dK462FJ/CX\nN7mKdSj8Irk7r23XZ1MOdy2SvXvZVFaFLqtv3v62dVpxyLFShQhS1ayvmU1GTE3r/dl89a4eF184\nERdfMFEaf/PdYXz06R4FI9Im3Sf3lnYLdsjmVBf5+ZRMj4mjI5Hg2MultcOKwgO+We9dVlEPm+Mq\nbGxiuKIVwvKpGa5WVZfrr5qChXNTpPH7/9iFb9YeVjAi7dF9cpc35RifFIFRcfpsyuEuIkKerEJQ\nvr+9N/Xtl6ok+VYEZRUNqtrn3t8ZDIRbfz0TUzJ6pw9ffWMHthWeVDAqbdF9cpdPyeRxsYoT+Y3l\nrfuqpfsS3qSGm6k95NWqNiFQdJBXzahJgMmI+26fh7Qx9vsyQgg8+8om7D3AvydX6Dq51zZ1oPSI\n/zTlcFfKiDCkJth7XFqsNmzxchOP5nYLDlfa59sNRMgYE+XVn+eKWTw1o2rBQQFYevdCJDjaYHZZ\nuvHEnzbguOO+DRuYrpO7vClHtp805XCXfGpmnZenZnYfqZd+H2kjwxEapPyOnLMm9W75XHigFlZu\nHqE6UZFBWHZPHiJ62iS2dmHFMwWoq29XODJ103Vyd5qS8bMdIF21UPZuZuehOjR4sbel0xa/acpO\nyfRITQhDXKT9Rb+1g6tV1SopMRxL71qIwEB7FWtNbRtWPFOAllauYh2IbpN736Ycc/2kKYe7RkQF\nIyPFPj1iE8KrTTxKj8jXt6sjudurVbmgSQvGp8XgnlvnwmCwL2U+erwRTz6/EV0WrmLtj26Tu3yK\nYfqEOIT5UVMOd8nf1RR4qaCpsbULFVX2zUSNBsLk0crPt/dwqlbl7kyqljt1JJb8qreKtWxfNV54\ndQtXsfZDl8ldCIEC2V7l/r7dwGDmZyTA6Lga2nusAZV1nu8tKt/iIH1UJIIDXd5t2uuyx0YjyGyv\nVj1Z28bVqip3zoJULL5yijTetO04Xn+7iKtY+9Blcpc35QgJ9L+mHO6KCDU7bX+8fpfnr96dl0Cq\na0dOe7Vq7///1r189a52P7toIi76Ubo0/urbg/jn53sVjEh9dJnc5TdS5072z6Yc7pK/uykoqfT4\nVZAS/VLdwUsitYWIcNO1OZg3a7T02NsflWJNQbmCUamL7pK7zSawXjZvzKtkXDN7UjzMJvvT4Wh1\nC45U9W22NXR1zZ04XmOf6ggwGjBRRfPtPWZMiEPPlkN7jnK1qhYYDITf3zwLmZN6X5hfeX07Cncq\n3/xdDXSX3EvL69DgWB4VFWpW5VWiGgUHmjBbtubbk9sRyOfbJyRHqvKdVFRYINJH2Vu72YRAIVdB\naoI5wIj7b5+PMY4LBiEEnn5pEw4c4t64ukvu8imZhdmJ0rIpNjinJh6lnmviUXJYfUsg+8NLIrUp\nNMSMZXcvRHyso4q1y4rHnt2Ak5XNCkemLF0l905LN74v6y2h51Uy7skZFystGa1u7MCeY54p6Ck9\not6bqXLyJZGFB2u4WlVDYqKD8dC9CxHmaELT3NKJFU8XoL6hQ+HIlKOr5L59f43U+HkkN+VwW4DJ\nuYlHgQf6q9Y0dkhLK80mAyaouKu9c7WqFWVcraopo0ZG4A93LYTZMe13uqYVj60sQJuf3j/RVXKX\nzxPncVOOIZHvnLlhdxUs1uFdvcpXyUxOiYLZpL759h5E5LRqhqdmtGfi+Fjcdetc6W+//GgDnn7h\ne1h81IxGTXST3Lkph2dkpEQj1rHBWku7BTsPD+/GlNP+7Sqeb+8xo8+8OxfGaM/MaUn47f/MkMYl\nZVV46bVtflfFqpvkvombcniEwUBOV+/rSoZe0CSEcO6XqnBzDlfIq1VP1bXhRI3nq3WZ9/1g0Vhc\nfXmWNN6w+SjefH+nghH5nm6SewE35fAY+aqZLXtPo6NraE08qurbUd1ov6EVZDZivAbugZhNRqdq\n3a37vLvHPfOen188GeefO04a/+vr/fj0y30KRuRbukjufZtyLOCmHMOSmhCG0Y7mCJ2W7iFXbMpX\nyWSMiYbJqI2nm9OSyP283l2riAi/vj4Xc2YkS4+9+f5OrNtYoWBUvqONv7ZBbNhV6dSUI5abcgwL\nEZ2xHcFQOPdLVe8SyL7k1ap7uVpV0wwGwu3/OxuTZS/YL/11K4q9tPupmugiuRfwdgMet1A2tVV4\nsAbNbe41RRBCaO5mao+osEBMkFWr7uCrd00zBxjxwO3zMdoxLWizCTz90vc4KHt+6pHmkzs35fCO\nkTEh0pr0bptwKg5zxcnaNtQ127s6hQaZMG6k+ufb5eQFTdt5j3fNCwsz46F78hATHQwA6Oiw4vFn\nN6DSg3soqY3mkzs35fAe+dTMOjcLmuRX7ZljojW3DQRXq+pPbEwIHronT6pibWzqwCPPFKChUZ9V\nrJpO7n2bciziKRmPWpCVAINj8nl3RT1q3PgjcN6/XTtTMj3GjAjDiCj7VV5rhxVlFfWDfAXTgpTk\nSDxwxwIEOIrpqk634PE/bUB7h/7uq2g6uR844dyUY3o6N+XwpOiwQKdG1q7uFCmEcNoJUovJnYic\nmrzwqhn9mDwhDncumSNVsR4qr8MzL22CdZjV2Gqj6eQuTzbclMM75DUDrvZXPVbdKm27HB4SgDEj\nwrwSm7fN7NPAg6tV9WP29FH4zQ250ri4tBKv/G2brn7Hmk3ufZty8JSMd8yZPAIBjiYe5ZXNOHp6\n8BtQ8qrUrNQYzc2398hKjUaw2d7rtbKuTWo4wvTh/HPH4cpLM6Xxuu8rsOrDUgUj8izNJveSPk05\ntPjWXwtCgwKc9ltZ78LVu1bXt/dlNhmRM763WpU3EtOfX/wsAz/KT5PGq7/Yi8//vV/BiDxHs8m9\ngJty+Izz1Myps751tdkEdh3R9s1UuZnyeXdO7rpDRPjNDbmYMS1Jeuzv7+zEhs1HFYzKMzSZ3Ps2\n5eApGe+aMSEOoUGO6Yn6duw/0TjgsRWnW9DiqOiMCjVL2xho1fR0WbXqsUa3i7mY+hmNBtz12zmY\nKL1LE3jxta0o2V2laFzDpcnk3rcpx/gkbRXIaI3ZZMTcyfImHgNPzfStStX6nvpRYYGYmGzvz2kT\nAtu5t6ouBQaa8OCdCzDKUWxntdrw5AsbUV6h3YYtmkzu8lUyi6aM1HwC0QKnJh67KtFt63/ZmFb6\npbqDp2b8Q3hYIJbdsxDRUb1VrI+uLEBVtTZvpGsuuTf3acrB2/v6RvbYGESHBQIAGlq7nJJ4j26b\nDbsrtNEv1R0zJ/ZuaVF4oHbY3amYeo2IC8VD9yxEiKPSvaGxAyueLkCTYysNLdFcct/MTTkUYTCQ\n02Zi/a15P3yqGW2d9umy2IggjIwJ8Vl83pQyIhQJjqu59i6uVtW7MaOj8MAdC2ByLAE+VdWMx5/d\ngI6OofU1UIrmkrt8lQzfSPUt+bukTWWn0Wlx7kvpPN8erZvpMiLCDHlvVd5ITPcyJ8Xj9ltmA7A/\nhw8crsXKl7VVxaqp5F7TpynH/MyEQb6CedL4pAjpary9y4rtfUry5c05tNBSzx19G2frqZKR9W/e\nrNH41XU50riw5BRefWOHZn73mkruG7kph6KICHlTnNe897B225ymK/RyM7VH5hhZtWp9O45p9CYb\nc8+Pf5SOy386WRqvWV+Odz/epWBErtNUcl/HO0AqLi+r97zv2F8jrWk/eKIJHV32aZqEqGAkOPbN\n1osAkwHT5NWqPDXjN675eRbOWZgqjT/51x589e1B5QJykWaS+/HqVhw61duUYw435VBEcnyo1HjD\n0m3D5j32YrJSje8C6YqZfaZmmH8gIvzvTTOQK7ug/OtbRdi07biCUQ1OM8m9YFfvFMCMifHclENB\nfbcjAJxvpmbpZAlkX/Jq1X3HGtHUytWq/sJkMuDuW+divLQFtsDz/7cFu/eq90VeE8ldCOE0JcNr\n25W1IDtRSnIl5XWoqm9H2dHeSj69XrlHhpqdqlV3cLWqXwkKMuEPdy7AyIRwAIDF2o0/PrcBFcfU\nWcWqieR+4EQTKmVNOeRNFJjvxUUEIXOM/epcCOD1r/dJhT0jY0IQp+Mb3X33eGf+JTIiCA/dm4eo\nSPtzvK3dgkdXrke1CreD1kRyl6/KmJeRALOJm3IoTd5fdcve3k3c5J2b9Ei+JLLoIFer+qOE+FAs\nvWshghzQFqSzAAAUIElEQVSb6dXVt+PRlevR0qKuabpBkzsRJRPRGiLaTUSlRPT7AY57kYgOEFEx\nEeX0d8xQdNtsTnuI85SMOszLTIDJeGaRkt7Wt/c1Ot65WnU3V6v6pbTUaNx323wYjfYUevxkEx7/\n03p0dXUP8pW+48qVuxXAnUKITABzASwhoknyA4joQgDjhBDpAG4G8KqnAiwtr5eackSHBep2Pldr\nwoMDkDv+zOkxvd5M7UFEPDXDAABTMxNw282zpPG+g7VY+comdHer492cabADhBCVACodH7cQ0R4A\nowDslR12CYC3HMdsIaJIIkoQQgx7Q+R13JRDtfKyRzolt9HxodLmYno2a2I8Pt9ib+awde9p5Cg8\nFZUyIgyJOtnHR2sWzElBfUMH3ni3GACwvegkXnurELfcOF3x7TcGTe5yRJQKIAfAlj6fGgXgmGx8\nwvHYsJJ7p6Ubm2RNOXhKRl1mTYxHsNkk7a3vL++qMsZEIyTQhLZOK6obO/D4e8WKxhNgNOCBq3Mw\nPZ0XGijhpxdMQH1DO1Z/uQ8A8M13hxEdGYyrLssc5Cu9y+XkTkRhAD4GcJsQYvAuyQNYvny59HF+\nfj7y8/MHPFbelCMplptyqE2g2Yj5mQn4tugEAPhNcgkwGTBrUjzW7jw1+ME+YOm24akPduKxG2dg\nQnKk0uH4pcVXTkF9QwfWfV8BAFi74QguvnCCtHWwu9auXYu1a9cOKyZyZRMcIjIB+BzAV0KIF/r5\n/KsAvhNCfOAY7wWwqO+0DBEJdzbdqWnswHc7T2JdySnMz0zE1eeMc/lrmW80t3Xh3e8OIT4yCD+b\nn6r4W1FfaWjpxHvfHUJtk7L7fB881YR6x17jESFmPPWrmUiK5W2wlWCxduOJP21EY1MHlt2dh+go\nzy0JJiIIIdz643I1ub8FoEYIcecAn/8xgCVCiIuIaA6A54UQc/o5zq3k3kMIAWu3QIBJEys3GfOZ\nEzWtuO/1rWhus+/xkxAVjKd+Pcsv7n2oUXuHBUJgyFfsA/FKciei+QAKAJQCEI5/DwIYA0AIIV5z\nHPcygAsAtAK4SQhR2M/3GlJyZ4wNbN/xBix9Yzu6HGvu00aG44mbZiI40K1bakzFvHbl7imc3Bnz\njm37qvHEe8WwOf6+pqbFYNm1ufxuVyeGktz5N8+YDsycGI8lF2dI452H6/Di6t2w2fhiyl9xcmdM\nJ36YOwqLfzBeGheUnsKb3+xXMCKmJE7ujOnIzxeOxY9njZbGq7+vwOqNR5QLiCmGkztjOkJE+PWF\nkzA3o7e/8Bv/2e9U6c38Ayd3xnTGYCDceXmWtC0zALy4eheKD9UqGBXzNU7ujOmQ2WTEg1fnIGVE\nGADA2i3w5Ps7cehkk8KRMV/h5M6YToUFB+Dh63IR52gs0d5lxYq3C3HK0fiG6Rsnd8Z0LC4iCA8v\nzpV6Dje0duGRVYVoaFF22wTmfZzcGdO5lBFhWHpNjlTQdKquDY++U4T2TqvCkTFv4uTOmB+YnBKN\ne66YAoNjY7eDJ5vw1Ic7YVVJYwnmeZzcGfMTsyeNwC0/mSyNiw7W4uVPy8BbgugTJ3fG/Mj5M5Jx\nVX7v1tnf7TyJVd8eVDAi5i2c3BnzM1flp+G86cnS+JMN5fjX5qMKRsS8gZM7Y36GiHDLTyZhlqzR\n9+tf78WGXZUKRsU8jZM7Y37IaDDg7p9PwaTRUQAAIYDn/7ELJeV1CkfGPIWTO2N+KtBsxNJrp2F0\nvL0tn6Xbhj++V4zyymaFI2OewMmdMT8WHhyAhxfnIibc3pavrdOKR94uRFV9u8KRseHi5M6Yn4uP\nCsbD1+UiNMjelq++uROPvF2IptYuhSNjw8HJnTGG1IRwPHh1bxXriZpWPPpuETq6uIpVqzi5M8YA\nAFmpMbjz8mw4ilix/3gjnvmoBN02rmLVIk7ujDHJvIwE/PrCSdJ4+/4a/PmzPVzFqkGc3BljTi6a\nnYIr8sZK42+LTuDdNYcUjIgNBSd3xtgZrj13PH6QkySNPyw4jC+3HlMwIuYuTu6MsTMQEX57cQam\np8dJj7325R58X1alYFTMHZzcGWP9MhkNuPfKKUgfFQnAXsX6p09KsbuiXuHImCs4uTPGBhRkNuGh\na6chKTYEAGCx2vD4u8WoqGpRODI2GE7ujLGzigg1Y/l10xEdZq9ibe2w4JG3C1HT2KFwZOxsOLkz\nxgaVEG2vYg0226tYa5s6sHzVDjS3WxSOjA2EkztjzCVjE8Px4NVTYTLaq5yOVbfi8XeL0GnpVjgy\n1h9O7owxl01Ji8XtP8uWxnuONuDZj7mKVY04uTPG3LIwOxG/vGCiNN6ytxp/+WIvV7GqDCd3xpjb\nLp47Bj+bnyqN/739OD5Yd1i5gNgZOLkzxobk+h+mI3/qSGn83neH8O/txxWMiMlxcmeMDYnBQLj1\n4kxMGxcrPfbq53uwde9pBaNiPTi5M8aGLMBkwH2/mIrxSREAAJsQePqjEuw92qBwZIyTO2NsWIID\nTVh27TQkxvRWsT76bhGOVXMVq5I4uTPGhi0qLBDLr8tFVKgZANDSbsHyVYWoaeIqVqVwcmeMecTI\nmBAsW5yLILMRAFDT2IEVbxeihatYFcHJnTHmMeOTInD/L6bCaLBXsVZUteCJ94rRZeUqVl/j5M4Y\n86hp4+Pwu0szpfHuino898ku2Gxc5ORLnNwZYx53ztQk3HjeBGn8fVkV/voVV7H6Eid3xphXXDpv\nDC6eO0Yaf7n1GD5ZX65gRP6FkztjzCuICDedNwELsxKlx1b99yD+W3RCwaj8Byd3xpjXGAyE3/8s\nE1PGxkiPvfxpGbbvr1YwKv/AyZ0x5lVmkxEPXJ2DsYnhABxVrB+WYN9xrmL1Jk7ujDGvCwk04aHF\nuUiICgYAdFq68eg7RThZ26pwZPrFyZ0x5hMx4YFYfn0uIkLsVazNbRYsf6sQdc2dCkemT4MmdyJ6\nnYiqiKhkgM8vIqIGIip0/Fvq+TAZY3qQFBuKpdfmIDDAXsVa1dCOFW8XorWDq1g9zZUr9zcAnD/I\nMQVCiFzHv8c8EBdjTKcmJkfh3iunwED2KtbyymY8+f5OrmL1sEGTuxBiA4D6QQ4jz4TDGPMHMybE\n49ZLMqRxSXkdXvznbq5i9SBPzbnPJaJiIvqCiDIGP5wx5u9+MG0UrvvBeGm8flcl3vjPfq5i9RCT\nB77HDgApQog2IroQwGoAEwY6ePny5dLH+fn5yM/P90AIjDEtunzhWNQ2d+LLrccAAJ9tqkBMeKBT\nf1Z/tHbtWqxdu3ZY34NceZUkojEA/iWEmOLCseUApgsh6vr5nOBXZcaYnM0m8MxHJfi+rEp67PbL\nsnDO1CQFo1IXIoIQwq3pb1enZQgDzKsTUYLs41mwv2CckdgZY6w/BgPhjsuzkDkmWnrspdW7UXSw\nRsGotG/QK3ciehdAPoBYAFUAHgZgBiCEEK8R0RIA/wvAAqAdwB1CiC0DfC++cmeM9aul3YIH/r4N\nR0/b2/MFmY147MYZSB8VqXBkyhvKlbtL0zKewsmdMXY2NU0duO9vW1HTaG/PFxlqxpO/nIWk2BCF\nI1OWN6dlGGPM6+IigrD8ulyEBQcAABpbu/DI24VoaOEqVndxcmeMqcro+DAsu2YaAkz29FRZ14ZH\n3ylCe6dV4ci0hZM7Y0x1JqVE4d4reqtYD55swlMf7ITFalM4Mu3g5M4YU6VZk0bglp9MlsZFh2rx\n0qdcxeoqTu6MMdU6f0Yyrj5nnDReV3IKb317QMGItIOTO2NM1X6xKA3nz0iWxv/ceASfbapQMCJt\n4OTOGFM1IsItF03G7EkjpMde/3of1pdWKhiV+nFyZ4ypnsFAuOvn2ZicEiU99vw/S7HzUK2CUakb\nJ3fGmCYEBhjxh2umYXR8KADA2i3wx/d3oryyWeHI1ImTO2NMM8KDA/Dw4lzERgQBANq7rHhkVSGq\n6tsVjkx9OLkzxjQlPioYDy/ORWiQfcfy+pZOLF+1A42tXQpHpi6c3BljmjMmIQwPXp0jVbGerLVX\nsXZ0cRVrD07ujDFNykqNwZ2XZ8NRxIoDJxrx9IclsHZzFSvAyZ0xpmHzMhJw80W9Vaw7DtTgz5+V\ncas+cHJnjGnchTNH48q8NGn83+KTeGfNQQUjUgdO7owxzbvm3HH44bRR0vijgnJ8seWoghEpj5M7\nY0zziAi/vXgyZk6Ilx7761d7sXF31Vm+St84uTPGdMFoMOCeK6ZgYrK9LZ8QwHOflKK03D9bOnNy\nZ4zpRqDZiKXXTJPa8lm6bXjivWK/rGLl5M4Y05WIUDOWXzcd0WGBAIC2TitWvF2I0w3+VcXKyZ0x\npjsJ0cF4+LpchATaq1jrmjvxyKpCNLf5TxUrJ3fGmC6NTQzHA1fnIMBoT3PHa1rx2LvF6OzqVjgy\n3+DkzhjTrSljY3D7ZVlSFeveYw1Y+XEJum36r2Ll5M4Y07UFWYn45QWTpPHWfdV49fO9uq9i5eTO\nGNO9n85JwWULUqXxf3Ycx/trDysXkA9wcmeM+YXrf5iOc6YmSeP31x7Cv7cfVzAi7+LkzhjzC0SE\nWy/JwLTxsdJjr36+B5v3nFYwKu/h5M4Y8xsmowH3XTkV45MiAAA2IbDy4xKUVdQrHJnncXJnjPmV\n4EATll07DSNjHFWsVhsee7cYR0+3KByZZ3FyZ4z5naiwQCy/LhdRoWYAQGuHBctXFaKmqUPhyDyH\nkztjzC8lxoRg2eJcBJvtVay1TR145K1CNLdbFI7MMzi5M8b81vikCNx/1VQYDfYqp6PVLXjivWJ0\nWrRfxcrJnTHm13LGxeL3l2ZJ47KKevzpk1LYbNoucuLkzhjze/lTR+Km8yZI4817TuMvX+zRdBUr\nJ3fGGANw6fxUXDJ3jDT+evtxfFRQrmBEw8PJnTHGHG48bwIWZidK43fWHMS3hScUjGjoOLkzxpiD\nwUC47dIsTE2LkR575bMybNtXrWBUQ8PJnTHGZAJMBtx/VQ7SRoYDsFexPv3hTuw71qBwZO7h5M4Y\nY32EBJrw0OJcJEQFAwC6rDaseKcIx6tbFY7MdZzcGWOsH9FhgVh+fS4iQuxVrC3tFjzydiFqNVLF\nysmdMcYGkBQbimXXTkNggBEAcLqhHSveLkJrh/qrWDm5M8bYWUxIjsR9v5gKg6NX35GqZjzxXjG6\nrOquYuXkzhhjg5ieHoffXZopjXcdqcfz/9il6ipWTu6MMeaCc3OScN0P06Xxxt1V+NvX+1RbxcrJ\nnTHGXHT5glRcNDtFGn+x5Sj+sfGIcgGdBSd3xhhzERHhVxdMxPzMBOmxt745gDXFJxWMqn+DJnci\nep2Iqoio5CzHvEhEB4iomIhyPBsiY4yph8FAuP2yLGSlRkuPvbR6N3YcqFEwqjO5cuX+BoDzB/ok\nEV0IYJwQIh3AzQBe9VBsurZ27VqlQ1ANPhe9+Fz0UvO5MJuMePDqHKQm9FaxPvXBThw40ahwZL0G\nTe5CiA0AztY99hIAbzmO3QIgkogSznI8g7qfuL7G56IXn4teaj8XoUEBeGjxNMRHBgEAOi3dePSd\nIpysVUcVqyfm3EcBOCYbn3A8xhhjuhYbEYTl101HWHAAAKCxtQvL3ypEfUunwpHxDVXGGBuW5PhQ\nLLtmGswmezqtamjHircL0d5pVTQucmWNJhGNAfAvIcSUfj73KoDvhBAfOMZ7ASwSQlT1c6w6F4Qy\nxpjKCSHIneNNLh5Hjn/9+QzAEgAfENEcAA39JfahBMcYY2xoBk3uRPQugHwAsUR0FMDDAMwAhBDi\nNSHEl0T0YyI6CKAVwE3eDJgxxtjgXJqWYYwxpi0+u6FKRBcQ0V4i2k9E9/nq56pBf4VgRBRNRP8h\non1E9G8iilQyRl8gomQiWkNEu4molIh+73jcH89FIBFtIaIix7l42PG4352LHkRkIKJCIvrMMfbL\nc0FER4hop+O5sdXxmNvnwifJnYgMAF6GvRgqE8DVRDTJFz9bJforBLsfwLdCiIkA1gB4wOdR+Z4V\nwJ1CiEwAcwEscTwP/O5cCCE6AZwjhJgGIAfAhUQ0C354LmRuA1AmG/vrubAByBdCTBNCzHI85va5\n8NWV+ywAB4QQFUIIC4D3YS9+8gsDFIJdAuBNx8dvArjUp0EpQAhRKYQodnzcAmAPgGT44bkAACFE\nm+PDQNjvfwn46bkgomQAPwbwN9nDfnkuYF+80jc3u30ufJXc+xY6HQcXOo3oWVUkhKgEMELheHyK\niFJhv2LdDCDBH8+FYxqiCEAlgG+EENvgp+cCwHMA7oH9Ba6Hv54LAeAbItpGRL9yPOb2uXB1KSTz\nPr+5s01EYQA+BnCbEKKln/oHvzgXQggbgGlEFAHgn0SUiTP/33V/LojoIgBVQohiIso/y6G6PxcO\n84UQp4goHsB/iGgfhvC88NWV+wkAKbJxsuMxf1bVswcPESUCOK1wPD5BRCbYE/sqIcSnjof98lz0\nEEI0AVgL4AL457mYD+BiIjoM4D0A5xLRKgCVfnguIIQ45fhvNYDVsE9ru/288FVy3wZgPBGNISIz\ngKtgL37yJ30LwT4DcKPj4xsAfNr3C3Tq7wDKhBAvyB7zu3NBRHE9Kx6IKBjAj2C/B+F350II8aAQ\nIkUIkQZ7blgjhLgOwL/gZ+eCiEIc72xBRKEAzgNQiiE8L3y2zp2ILgDwAuwvKK8LIZ70yQ9WAXkh\nGIAq2AvBVgP4CMBoABUArhRCNCgVoy8Q0XwABbA/WYXj34MAtgL4EP51LrJhvzFmcPz7QAjxOBHF\nwM/OhRwRLQJwlxDiYn88F0Q0FsA/Yf/bMAF4Rwjx5FDOBRcxMcaYDvGukIwxpkOc3BljTIc4uTPG\nmA5xcmeMMR3i5M4YYzrEyZ0xxnSIkztjjOkQJ3fGGNOh/w+U1us/zrPSmQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3WeUZFd1L/D/rhy6OuccpqdnRhIogJAQRi1QmiGI54ex\ncSDYgIwVWI+XvbwW88FvLS9/sVF4CGHAiIexABtE0CghDSKOZGVpZno65zSdqiun8z7U7Vu3ajpU\ndVfVTfu31izVqb7dfXS7evetfc8+m4QQYIwxZiwWtSfAGGOs+Di4M8aYAXFwZ4wxA+LgzhhjBsTB\nnTHGDIiDO2OMGdCewZ2InER0hoheIaI3iOhLOxx3HxENE9GrRHRl8afKGGMsX7a9DhBCRInoJiFE\niIisAH5NRKeEEC9sHUNExwH0CSH6iehdAB4CcF3pps0YY2w3eaVlhBAh6aET6T8IuZVPdwB4RDr2\nDIAqImoq1iQZY4wVJq/gTkQWInoFwAKAp4UQL+Yc0gZgWjGelZ5jjDGmgnyv3FNCiKsAtAN4FxEd\nK+20GGOMHcSeOXclIYSfiJ4DcDuAs4oPzQLoUIzbpeeyEBFvZMMYY/sghKBCjt8zuBNRPYC4EGKD\niNwAbgHwdzmH/RjAXQAeJaLrAKwLIRZ3mGDek0sKgQ9976W8jy+nhsooGqtiAIDNsBVza66CPn/o\ne1/DwMc+m9exFa4k2mojAIBowoKReQ+Agn7Omjb8/YfR/wefy+vY7sYQvM6kPJ5bc2It4CjV1Mqu\nkHMBAElbCglHQh5bE1bYolaQAV4fF37wVRz+6J1qT2PffvZH1xTtaxEV/vPM58q9BcC3iMiCdBrn\nUSHE40R0JwAhhHhYGp8gohEAQQCfLngm27AS4fE/fEcxvlRRCSHw6Njr2IinA+7NrYfQV1lX0Nc4\n+ebjOPnRa/M6NpFK4ZGRlxFPpYPa37zzKBrdFYVNWsNOnvspTubxc46nkvjnCy8hpbiff1NHNU50\nDJRyemWV77lQ+veJOTw1uySPP9jRjA92Nhd7amV38nwrThYxQJpNPksh3wBw9TbPfzVnfHcR56Vp\ny5GgHNjtFiu6KmpK+v1sFgt6KmpwwX8RADDiXzFUcM/XYjiQFdgBYC7kRyyVhMNiVWlW6vtIVws2\nYnGcWV4DAPx0egGVDjve21zYBQczFq5Q3YcR/4r8uKeiBjZL4adxcHCwoOMPVdXLj0f9K0gZaB/+\nfM/FXMh/yXNJkcJscKPIM1JPoa8LALAQ4ROHOnGsplJ+7rtjM3htRd/nZT/ngmVwcC9QSgiMbq7K\nY2XQLUShL9w2TyXcVjsAIJSMbxvo9Crv4B7M/D/XONzy48nAerGnpJr9BjSrhfC5gS50VXgApFOH\nX7swiVF/sIizKy8O7gfDwb1AcyE/Qon0jVS31Y42T+Uen1EcFiL0VdbKY+W7BzOIpZJYimQC1bsa\nO+XHU4F1Q72T2S+X1Yq7jvagweUEkL5X8+C5ccyFIirPjKmBg3uBlEG1r7IOln3cxd6vQ5WZdwnj\nm6tIpFJl+95qWwhtQkj59jqnBx3eKvmdTDgZx3JEv1eoxVTpsOPeY73w2aV3eYkE7j87hrVoTOWZ\nsXLj4F6ARCqFcWVKpsAVMgfV6PLCZ09flcVSSUwHjZOO2IsyDdXqqYSFCJ0V1fJzk4E1NaalSQ1u\nJ+4+1gOnNX2TeS0aw/1nxxCMJ/b4TGYkHNwLMBVcR0xajlhpd6HR5S3r9yeirD8oZkrN5AZ3AOjK\nCu7m+UOXj64KD+4c6JbfWc6FIvjK+QnETfRuz+w4uBdgZCMTTA9V1u2rsOCglMF9MrCOWDK5y9HG\nEE0mcDGS3ruOQGjx+AAAbd4qWCn9El6NhrAZj6o2Ry06VuPDJw5lCsdH/AF848IU358wCQ7ueYom\nE5hSpEHKnZLZUuv0oM6ZXhGRFCmMB1b3+Az9m1fk2+tdHjit6fIMh8UqX8UDfPW+nesaa/H73a3y\n+JWVdTw6NltQpTjTJw7ueRrfXENSpN/S1ju9qHG69/iM0jFbama7lMyWLs677+mW1ga8v7VBHv9i\n4SKemFna5TOYEXBwz5MyiKp11b5FudXBbNCPUCKu4mxKb7fgrrypOh/alO+JsAwiwn/ubsU76jOV\n1I9NzePXi8a/MDAzDu55CCZicoAhUMH7yBSbz+5EizuddxYQGDPw1XskmcBKNJNvb5by7Vt8dmdW\nmmrGQNWqxWQhwif7O3CkOnP+/t/oDN5YNU4xHMvGwT0Po/5VOefb4vGhwq7+LoRmSc0or9obXd5t\n95BR7u0zxXn3HdktFtw50I12bzqlKITAw0MTGN/kGgEj4uCehxFpwy5A/ZTMlh5fLSzStq6LkQD8\nMWNWISq3HGj1bl8NrMy7c7Xq7tw2K+451os6V/oCJZ5K4YFz41gIG/P1Y2Yc3PewHovI1Y9WsqDH\nV7vHZ5SH22ZHu7dKHhv16n23fPuWepcXHkW16lI4UJa56VWVw457j/Whwp5edRSMJ3DfW2NYjxr7\n3o3ZcHDfg/KqvcNbBZe1oOZVJZWbmjHa8rZQIo61WBgAYAGhaYdtjnOrVadMVLm7X01uJ+462guH\ndatOIIYHzo0hnOAb0kbBwX0XQohLCpe0pMtXA5tUxLMWC8s3Ho1CedXe5K6AfZc925V598lNDu75\n6PF58LmBbrkYbyYYxkPnx7mK1SA4uO+i3E05CuWwWNGtmJPRUjP5pGS2tHkrM9WqsRD8Ma5Wzcfl\nNZX4s75MFevQRgD/PMxVrEbAwX0XxWjKUWqHqrJTM0b6pcznZuoWe0616hQXNOXt3U21uKOrRR6/\ndHEd3x+fM1yaz2y0F600IiUERpWFS/tsylFq7Yr7AMFEDAvhTZVnVByBeEx+12QlCxpde7cV5I3E\n9u/2tkYMtmRe48/NL+PpuWUVZ8QOioP7DuZCfoSS6dUD5WzKUSgrWdDrM14TD2VKptldkde7JmVw\nnwv5TbGpWrEQET7W04ar6zLn8N8n5vC7JePvXWRUHNx3oGZTjkIpb/SO+VflPXD0rJB8+5YKRbVq\nCoKrVQtkIcKnD3eivyrzLumRkWm8ucZVrHrEwX0bajflKFST24cKW7ooJZpKGCKo7Se4AzmrZjjv\nXjC7xYLPH+lGm1TFmhICXxuaxMSmsVZimQEH922o3ZSjUOn+qoobqxv6Ts34Y1F5b3YbWdDgzv/8\nZ1WrBjcMdYO5XDw2G+4+2oNap3TBkEziwXNjWArzCiQ94eC+DS005SiU8t3FRGBN17sjKq/aWzw+\neYljPpTVqhGuVt23GqcD9xzrhceWvlm/GU/gvrNj8Me4ilUvOLjn0EpTjkLVOT2ocaTfSidECpOb\n+k1J7DclA1xarcqrZvavxePCXUd7YJduZl+MRPHAuXFE+Ea1LnBwz6GlphyFMEp/VSHEgYI7wHn3\nYuqr9OIzA13yu9epQAhfPT+BBFexah4H9xxaaspRKOV8Z4IbCOuwicdGPIpgIgYgXZhUv4/7Hcpq\n1bVYmKtVD+jttVX4k752eXxufROPjEzz/QyN4+CuoLWmHIWqdLjQJBX7pCCyVvzohbIqtcXt29cS\nVLvFmlWXwFfvB/eepjp8qLNZHr+wvIYfTs6rOCO2Fw7uClpsylEovadmlCmZtj22HNhNdmqG8+7F\ncKK9Cb/XnHl9PT27hGdmuRerVnFwV9BiU45C9VbWgaQmHvPhTXlJoR4UI9++Jbu3KlerFgMR4eO9\n7Xh7XaaPwA8m5vDiMr8z0iIO7hKtNuUolMdmz7riHdXR1ft6LIKwtOWD02JDrVRtuh8Vdgfqnel8\nfQoC07zHe1FYiPAX/V3oq8zcC/nn4SmcWzfGnkZGwsFdouWmHIXSa2pmNmd9+0G3fOCNxErDYbXg\nr470oMXjAgAkhcBD5ycwFeAqVi3h4A7tN+UoVE9FrbxaZCUawqpOmnhkbfFbhI3alKmZ6SD3Vi0m\nr92Ge471olpRxXr/2XEsR/STBjQ6Du7QflOOQjms1qyrVj1cvaeEwHy4ODdTt9S7vPBIe+5Ekgks\ncrVqUdU6Hbj3WC88tnSHrM14HPedHcNmPKHyzBjAwR2APppyFEpv/VXXomFEkumg4Lba5Wrbg7AQ\nocurTM3wjb9ia/W48PkjPfLvzHI4igfOjnEVqwboP4odUG5Tjn6NNuUoVIe3Gg7L1hVVVPNXrbn7\nyRRrP5+sxtmcdy+J/qoK/MXhTvlnNhkI4WtDk0imtH1BYXSmD+65TTmKkevVAptFX008Zou0BDJX\nbrXqRixStK/NMq6qq8bHe9vk8Vtrfnx7dFrz7xiNzPTBXU9NOQqV1cRjc1WzNxRTQmC+RMHdbrGi\n3avsrcpX76Xy3uZ6nOhokse/W1rFY1MLKs7I3Ewd3HObcvTrfJVMrhZPpXxDMZyMY1ajTTxWIiF5\ni2KPzYFqh6uoX7/Ty9Wq5fKhjmbc0JT5PXpiZhHPzXMvVjWYOrjnNuVo0HhTjkJZiNCng9RMdlVq\n8fLtW7pyqlWjSV7NUSpEhD/ua8cVtZl3S98bn8NLF/mParmZOrjrsSlHoZSpmfHAmia3ai3WlgM7\n8dod8h9u7q1aelYifPZwN3p86XMuhMA3h6dwYUPbN/WNxrTBXa9NOQrV4PKiyp5Oc8RTSc0tB0yK\nFObDmdL1Ut3Q5gYe5eWwWnDX0R40udOvvUQqhf97bhwzwbDKMzMP0wZ3vTblKBQR4VCVdrcjuBgJ\nIS6lxipsDlTanSX5PsrCtKkAV6uWQ4XdhnuO9aDKsdX2MIn7z45hJRJTeWbmYNrgPpK1tt2YV+1b\nDvky/3/TwQ25WEgLclMypUqN1Ts98Eo3l6OpBBbDvNFVOdS7nLj7WC9c1nTNxUYsXcUa4CrWkjNl\ncA/Gs5ty9PqMHdyrnW4555wUKUxoqIlH1n4yRdhyYCfEvVVV0+F14/NHu+Uq1sVwBA+eG0csqb37\nP0ZiyuA+uqn/phyF0uJOkUmRwkIZ8u1beJdI9QxU+fCp/kwV6/hmEF+7MIEkp8dKxpTBXbm9r9HW\ntu+k15dp4jEX2kQwrn7ecykcQEK671Fpd8JXonz7ljZPFWxSteo6V6uW3Tvqq/GxnlZ5/MaqH/8y\nOsNVrCWyZ3AnonYiepaI3iKiN4jo3m2OuZGI1onoZenf35Rmuge3Hg1nNeXo1mlTjkJV2B1o8fgA\nAAICoxpIzcyFynfVDqS3ZGjzZroI8dV7+d3U0oDb2jNVrL9eXMFPpxdVnJFx5XPlngDwRSHEZQCu\nB3AXER3Z5rjnhRBXS//+tqizLKKRzUxKQu9NOQqVnZq5uMuR5VHq9e3byU7NaGtZqFl8pLMZ1zVm\nLqp+Nr2A5xfUfz0azZ7BXQixIIR4VXocAHAOQNs2h2q+Aii3KUd/pTF2gMxXj68WFunHtBwJYl3F\ntEQilcraqbKUN1OVlDdVF0KbXK2qAiLCn/V14LKazM/8u2OzeGWF30kVU0E5dyLqBnAlgDPbfPh6\nInqViH5GRMeKMLeiy23KofxFNwOX1Zb1/6zm1ftiOCDXGVQ7XPIyxVLz2rKrVae5WlUVVgvhswNd\n6KpI98kVQuDrF6Yw4ucq1mLJOydBRBUAfgDgC9IVvNJLADqFECEiOg7gRwAOb/d1Tp48KT8eHBzE\n4OBggVPeP+UqkV5frSGachTqUGUdJqR0xMjGCq6pa1Nl2wU1UjJbuipq5PsuU4F1w1Yna53LasXd\nx3rx928MYzkclatY/9sV/Wj1FHfzOL05ffo0Tp8+faCvQfncqSYiG4CfAjglhPhyHsePA7hGCLGa\n87xQ6854Sgh8Z+QVee/2D3QcQbvi5ppZxFNJfHvkFbkq9Pe7LkeDu/wbpj02eVZeBnlz6yH0lTHA\nXowE8W8TbwIAnBYbPtF/taG2etab5UgUf//6CDbj6d/NaqcD/+OKQ6h1Gn+Jcr6ICEKIgl6k+V66\nfgPA2Z0COxE1KR5fi/QfDfWXYygYtSlHoewWK7oVpfjDKqRm4qkklhT59pYy/yzqcqpVF7haVVUN\nLifuOdYDp1TFuh6N4f6zYwhyFeuB5LMU8gYAfwLgfUT0irTU8XYiupOIPicd9lEiepOIXgHwjwD+\nsIRz3hdlSuaQwZpyFEq5tn9UhSYeC+EAUlIRWa3DA4/NXtbvT0RZq2a4gYf6Ois8+Msj3bBKv5fz\noQi+cp6rWA8in9UyvxZCWIUQVwohrpKWOj4hhPiqEOJh6ZgHhRCXSx9/txBiuxuuqsltymH2HGub\ntwpuazqghhKxrC5I5ZC95YCvrN97i3IjMV4SqQ1Hq334ZH+nPB7xB/H14Une5G2fTHFH0ehNOQpl\nIVK1v6qaN1OV3zdTrRpRdVkoy7i2oQYf7c5Usb62soHvjnEV636YIrhnr203ZlOOQuX2Vy1XE49Y\nMimvVCFQ2fPtW3KrVaf46l0zbm5rxM2tjfL4lwsreHyGq1gLZfjgbpamHIVqclfIe7nEUklMB8uT\nd54Pb8qbttU5PapWCPNGYtr1+90teGdDJnX2k6kF/GpRGxve6YXhg7uyKUeDy4tqgzblKBQRqbJT\nZG6/VDV1ZvVW3dTUPvdmZyHCJw914Eh15jXyndEZvLbKRWf5MnxwV1Zh8lV7NuX5mAysI5ZMlvx7\nlmv/9nwoq1UF91bVHJvFgr880o1ORRXrPw1NYtQfVHlm+mDo4J5uypFew2yGphyFqnV6UOdM/+Ik\nRUquXC2VSDKBlWgIQPrn0exW98odyFk1s8l5d61xWa24+2gP6l3pFGI8lcKD58axEOIb4HsxdHBX\nNuVoNUlTjkKVc6fI+ZBf/nnUuzxwamBHTmXefTq4IafwmHZUOuy451gvfPb06yWUSOC+s2NYj8ZV\nnpm2GTq4c0pmb8qy/5mgH6FE6X5hlPu3t2mkQrjO6UFFVm9V3rhKi5rcTtx1tFeuYl2NxnD/uTGE\nEnyfZCeGDe65TTl6TNKUo1A+u1NOjwgIjJWwiYcW1rfnSvdW5dSMHnT7PPjsQJdcXT4bDOMr5ycQ\nL9MyXr0xbHBXrv7o9FZrIgWgVeVIzYQTcaxK+XYLCE0qr5RR4iWR+nF5TSU+cahDHg9vBPDNC1Nc\nxboNQwZ3IcQle8mwnfUqmngshgPwl6BaU3nV3uD2wmGxFv177FerpxJ2Ss9nI87Vqlp3XWMt/lNX\npor15ZV1fG98lqtYcxgyuCubcjhM2JSjUG6bPWv741KseS93v9RCpKtVM3Pi1Iz23drWgJtaGuTx\n6fmLeHJ2ScUZaY8hg7syOPWYtClHoXILmop9FaS8ctfKzVSl7I3EODWjdUSEP+hpxTX1mQu3H03O\n4zeLmtppXFWGi3opTsnsS5evRt5Iay0Wxmo0XLSvHUzEsB5Lfz0rWdCkgfXtuTorqkFSamohzNWq\nemAhwqf6O3G4qkJ+7tuj03hzrby7nGqV4YL7XMiPMDflKJjDYs26ei3mjdV5RUqm0VWhyXdSHps9\nq1p1mq/edcFuseDzR3rQ5k1vKyKEwMNDExjfDKk8M/Vp77fsgLgpx/71VylTM8Vr4jGrKOtXa//2\nfPCqGX1y26y452iv3JYvlkzhwXNjWAxHVZ6ZugwV3BOpVNY6bU7JFKbdWwWnJb1kNJCIYrFI7ee0\nfDNVqTOrWnWdq1V1pNppx72X9cIrVbEG4gncd3YUGzHzVrEaKrhPBdblxs9V3JSjYFayoLeyuE08\nAvEo/NLKJRtZ0Oiq2OMz1KOsVo2lklgIcbWqnjS7XbjraA/sUtpvJRLDA2fHEE6UfkM8LTJUcM9N\nyXBTjsIp3+2M+lcPfPWqvGpvcvs0mW/fku6tyu339KzX58VnB7rk3/3pYBhfHZooWzMaLdHub1qB\nuClHcTS7ffAq9lqZCR5s5YGW9m/PR2dO42wujNGft9VW4U/72uXx+fVNfGtk2nRVrIYJ7uObq9yU\nowgslzTx2P+qGSEEZoPa209mN1ytagw3NNXhw50t8vjF5TX828ScijMqP8MEd17bXjzK8zexuSbf\nxyjUZjyKQCK9YsFOVjS4tX8PxGaxZFXrcmpGv463N+K9zfXy+Odzy3jaRFWshgjuuU05+rgpx4HU\nOT2ocaTf+SREat/LApUpmWaPD1bSx8stNzXD9ImI8Ee9bbiqLvPz/LeJOZxZNscfbH38tu1hdHMl\nqymHl5tyHMil/VX3l5rJXgKp/Xz7luxq1QBXq+qYhQh/frgThyozq7S+NTyFs2vFWearZYYI7pyS\nKT5lE4/pwEbBAU4Iocn92/PhsdnRyNWqhpGuYu1Gi8cFIL1FyVeHJjAZMHYVq+6DOzflKI0qh0te\nk56CwJi/sA2ZNmIRBBMxAOmtDep1VnPQydWqhuK123DvsV5US1Ws0WQSD5wdx7KBq1h1H9y5KUfp\n5O4UWQjlVXuLp1J320Ao17tztaox1DgduPdYLzy2dIzYjMdx39kx+A1axarr4H5JU44qTskUU19l\nrZx7ng/7EYjnf5Wjly0HdlLrdMNncwLYqlY1fo7WDFo96SrWrWK65UgUD54bRyRpvCpWXQf3S5py\neLkpRzF5bI6svdfzvXq/NN+un5upW9K9VTk1Y0R9lV585nCminUyEMLDQ5NIpoxV5KTr4M5NOUpv\nP6mZtVhY3nbZZbWh1ukpydxKLXeXSK5WNY4r66rw8d5MFevZNT8eGZky1M9Yt9GQm3KUR7evRl6f\nvhINyU2udzOnqEptcesv376lxVMJu9Tr1c/Vqobz3uY6fLCjWR6fWV7DDyfnVZxRcek2uHNTjvJw\nWm1Z6a7RPFbNZOXbvfr9udgsFrR7uFrVyD7Q0YT3NGUuDJ+aXcLP55ZVnFHx6Da4c1OO8jlUlV3Q\ntNtb15QB8u1K3MDD2IgIH+9rx9tqM3/EfzAxhxcNUMWqy+DOTTnKq9NbDYecnohiSaor2M5qNIRo\nKl3w5Lba5W0M9KpDUa26yNWqhmQlwmcOd6HXJxWuCYFvjUzj/Lq+V0jpMrhzU47yslmyi8N2u7Ga\nuwRS73vqe2x2NLoz1aq814wxOawW/NXRHjS701WsiVQKXzk/gelg8RrFl5sug3vu2na9BxA9yG7i\nsbLj3thzIUW/VIPcB+EGHuZQYbfhnmO9qHbYAaSrWO8/O4aLEX1WseouuEdym3LwDpBl0eqphMea\nftGHk3HMhi5t4pESAvMGuZmq1JXVW3WDq1UNrM7lwD3HeuG2SWnIWLqKNRDXXzpOd8F9gptyqMJC\nlLWZ2MjGpTtFXowEEZPSZV6bA1V2Z9nmV0o1Djd80v9LPJXM+gPGjKfN68bnj2SqWJfC6SrWqM6q\nWHUX3LNXydTvciQrNmVqZjywdklfytxdII2SLkv3VuU93s3kcFUF/ry/U34Nj28G8TWdVbHqKrgH\nLmnKwTtAllODy4sqe/qGUzyVvCTI6X0/md3k5t2NVMnItnd1fTX+sKdNHr+55sd3Rqd187PXVXAf\n46Ycqrq0iUfmXVRSpLI21zJacG/x+BTVqlGsxfS7ioLlb7ClHsfbm+Txb5ZW8eOpBRVnlD9dBffh\nDU7JqE2Zd58KriMqrfteDgcRF+mcpM/uRKXDGPn2LVayoEPRW5VTM+bx4c5mXN+YyRKcmlnE6fn9\nN44vF90E97VoGBejyqYcNXt8BiuFGqcb9c70uu+kSGF8M700UK9dlwrBu0SaExHhT/s6cHlN5nX9\n6PgsXl7R9mtAN8F9lJtyaMZ2qRkj59u3dHqzq1XDCWM2eWCXsloInx3oQrcvvcOpEALfuDCFCxsB\nlWe2M10EdyEEhrkph2b0VdbJQW4u5Ic/FsVC2PjB3Z1TrTod3NjjM5iROK1W3HW0F43udMoxXcU6\njlmNVrHqIrgvR4Lwc1MOzaiwO9AibQgmIPDbpUm59qDK7kKFgW90c7WqufmkXqyVUhVrOJHE/efG\nsRqNqTyzS+kiuHNTDu1RpmYmFEHOKFWpO+FqVVbvcuLuoz1wWtOrp9ajMdx3dgxBjVWx7hkliaid\niJ4loreI6A0iuneH4+4jomEiepWIrizWBLkphzb1+GphwaVFSkZNyWzhalUGAJ0VHvzlkW5YpSKn\nhVAED54bRyypnT/2+VwCJwB8UQhxGYDrAdxFREeUBxDRcQB9Qoh+AHcCeKhYE1Q25fBwUw7NcFlt\n6Ki4ND2m9/3b95KuVuXUDAOOVvvwqf5OeTy2GcQ/XZhEUiNFTnsuORFCLABYkB4HiOgcgDYA5xWH\n3QHgEemYM0RURURNQojFg05wWLGHSR835dCUQ5V1WcGtxuGGx2bcfPuWropqvLmWLmSZ2FxHm0fd\nAF/rdKPS4VJ1Dmb1zoYa+OMJfH98FgDw+uoG/nVsBn/c26769hsFrSckom4AVwI4k/OhNgDTivGs\n9NyBgnsilcK4InhwSkZbuiqqYbdY5b31zfKuqsXjg8NiRSyVRCARxZOzF1Sdj5UsuLWtP2sdPiuf\n97c2YCMWx1OzSwCAXy6soMpuxwc7m/f4zNLKO7gTUQWAHwD4ghBi34s7T548KT8eHBzE4ODgjsdy\nUw5ts1us6PXVYmgj3XNyuzSNEVnJgq6KGgz7tVGlmBQpPD07jA91HkWju0Lt6ZjSR7pasBGL44zU\nnu+3y6t4f2uDvHVwoU6fPo3Tp08faE6UzyY4RGQD8FMAp4QQX97m4w8BeE4I8ag0Pg/gxty0DBGJ\nQjbdCcSjuLBxESP+FfRW1uId9e15fy4rj0gygf9YnkGF3YG317ao/la0XEKJOF66OINgQt0lcMuR\nEELSHFxWO+7oOoZqTtGoIpFK4cFz49iMJ3DPsV5UScsli4GIIIQo6Jcr3+D+CICLQogv7vDxEwDu\nEkJ8gIiuA/CPQojrtjmuoOC+RQiBFASsxEsgGVNaj4bx2NRZuberz+7ER7qOmeLehxZFkkkIgX1f\nse+kJMGdiG4A8DyANwAI6d9fA+gCIIQQD0vHPQDgdgBBAJ8WQry8zdfaV3BnjO1sMRzAT6fOISGt\nua93evGhrqNyU3OmfyW7ci8WDu6MlcZkYA1PzgzLW2K3eapwvOMwv9s1iP0Ed/7JM2YAXRU1eG9z\njzyeDW2AzpaZAAAPqElEQVTg9PzYjo3MmfFxcGfMII5UN+CdikUHI/4VnFme3uUzmJFxcGfMQK6q\na8Vl1ZnOQa+vzuO1lXkVZ8TUwsGdMQMhIry7qQs9FZnOQb9bnsqq9GbmwMGdMYOxEOF9rX1ocWcq\nhk/Pj2GG9583FQ7ujBmQzWLBbe39qHWkOwelIPDU7DCWI0GVZ8bKhYM7YwbltNpwvGMAFVJBUzyV\nxKnpIWzEIirPjJUDB3fGDKzC7sDxjgE4LeltpMLJOE5NDyHE/V8Nj4M7YwZX6/Tg9vZMQdNGPIIn\nZoYQkzblY8bEwZ0xE2j2+HBz6yG5sflyJIhnZoe5TaCBcXBnzCS6fTV4T1O3PJ4ObuD5+XHwliDG\nxMGdMRM5VtOIa+rb5PEF/0W8sDyj4oxYqXBwZ8xkrqlrw9GqRnn86uoc3lhdUHFGrBQ4uDNmMkSE\n9zR3ZzX6/u3SFEb9KyrOihUbB3fGTMhChPe39qFJassnIPDc/Bhmg36VZ8aKhYM7YyZlt1hxe/sA\nahxuAOlerE/NXsBFrmI1BA7ujJmYS6pi9UpVrLFUEqdmLsAfi6o8M3ZQHNwZMzmf3Ynj7QNyW75Q\nIoZTM+cR5ipWXePgzhhDncuD2xRVrOuxCJ6YuYA4V7HqFgd3xhgAoNVTife19slVrEuRAJ6ZHeFW\nfTrFwZ0xJuv11eLdTV3yeCq4jucXuIpVjzi4M8ayXF7ThKvqWuXx0MYy/uPirIozYvvBwZ0xdol3\n1rdjoKpBHr+8Mou31hZVnBErFAd3xtgliAi/19yNTm+1/NyvFycxtrmq4qxYITi4M8a2ZSULbm47\nhEZXpor12blRzIe4ilUPOLgzxnaUrmI9jCq7C0C6ivXJmWGsRkMqz4zthYM7Y2xXbpsdJzqOwGO1\nAwCiqQQenx5CIM5VrFrGwZ0xtqdKhxPHOwZgl6pYg4kYHp8eQiSZUHlmbCcc3Bljeal3eXFbWz8s\nUpHTWiyMJ2cuIJHiVn1axMGdMZa3Nm8Vbmrtk8cL4U38fI6rWLWIgztjrCCHKuvw7sZMFetEYA2/\nWpzgKlaN4eDOGCvYFbXNeHttizw+t76El1fmVJwRy8XBnTG2L9c2dKC/sl4e/8fFGZxbX1JxRkyJ\ngztjbF8sRLixpQft3ir5uV8uTGBic03FWbEtHNwZY/tmJQtuaetHg8sLIF3F+szcCBZCmyrPjHFw\nZ4wdiEPqxVqpqGJ9YuYC1qJhlWdmbhzcGWMH5rHZcaJjAO6sKtbzCMRjKs/MvDi4M8aKosrhwvH2\nAdgpXcUaSMRwamYIUa5iVQUHd8ZY0TS4vbilPVPFuhoN4cmZYa5iVQEHd8ZYUXV4q3BjS688ng/7\n8dz8KFexlhkHd8ZY0R2uqsd1DZ3yeGxzFb9ZnOQq1jLi4M4YK4m31TbjippmefzW+iJeXZ1XcUbm\nwsGdMVYSRITrGjvR56uTn3theRpD68sqzso8OLgzxkrGQoTBll60eSrl536xMI6pwLqKszIHDu6M\nsZKyWSy4te0w6pweAOkq1qdnh7EYDqg8M2Pj4M4YKzmH1YrjHQPw2Z0AgIRI4YmZIazHIirPzLg4\nuDPGysJrc+BExxG4pCrWSDJdxRpMcBVrKewZ3Ino60S0SESv7/DxG4lonYhelv79TfGnyRgzgmqH\nC7e3H4aN0qFnMx7FqWmuYi2FfK7cvwngtj2OeV4IcbX072+LMC/GmEE1uStwS1s/SKpiXYmG8PQs\nV7EW257BXQjxKwB7bdBMxZkOY8wMOiuqcWNzjzyeDflxen6Mq1iLqFg59+uJ6FUi+hkRHSvS12SM\nGdhAdQOubeiQx6ObK/jd0hRXsRaJrQhf4yUAnUKIEBEdB/AjAId3OvjkyZPy48HBQQwODhZhCowx\nPbqytgXBeAxvrS8CAN5YW4DX5sDb61r2+ExjO336NE6fPn2gr0H5/JUkoi4APxFCvC2PY8cBXCOE\nWN3mY4L/KjPGlFJC4OdzIxjbzISMm1r6cLiqfpfPMhcighCioPR3vmkZwg55dSJqUjy+Fuk/GJcE\ndsYY246FCDe19KHFrahinR/DdHBDxVnp355X7kT0LwAGAdQBWATwJQAOAEII8TAR3QXg8wDiAMIA\n/osQ4swOX4uv3Blj24omE/jx5DmsxkIAADtZ8cHOI2h0V6g8M/Xt58o9r7RMsXBwZ4ztJhCP4bHJ\ntxCQCpvcVjvu6DqGKodL5Zmpq5RpGcYYK7kKe7qK1WlJr/UIJ+N4fHoIoURc5ZnpDwd3xpim1Djd\nuL39MKxSFas/HsETM0OIpZIqz0xfOLgzxjSn2ePDza2H5CrW5UgQT88OIym4ijVfHNwZY5rU7avB\n7zV3y+OZ4AZ+MT/OVax54uDOGNOso9WNeEd9uzwe9l/EC8vTKs5IPzi4M8Y07eq6VhytbpTHr63O\n4/XVBRVnpA8c3BljmkZEeE9TN7orauTnfrs0iRH/ioqz0j4O7owxzbMQ4f2th9Ds9snPPTc3ihmu\nYt0RB3fGmC7YLBbc1n4YNQ43ACAFgadmh3ExElR5ZtrEwZ0xphsuqw3HOwbgtTkAAPFUEqemh+CP\nRVWemfZwcGeM6YrP7sSJjgE4LFYAQCgZx+PT5xHmKtYsHNwZY7pT6/TgNkUV60Y8gidmLiDOVawy\nDu6MMV1q9VTifa19chXrUiSAZ2ZHuIpVwsGdMaZbvb5a3NDUJY+nguv45cIEt+oDB3fGmM5dVtOE\nq+va5PHQxjJevDij4oy0gYM7Y0z33lHfhoGqBnn8ysoc3lxbVHFG6uPgzhjTPSLCe5t70FVRLT/3\nm8VJjPnN2/GTgztjzBC2qlibXOm2fAICz86PYi7kV3lm6uDgzhgzDLvFitvaD6PKnm7LlxQpPDlz\nASuRkMozKz8O7owxQ3Hb7DjRcQQeqx0AEEslcWpmCJtxc1WxcnBnjBlOpcOJ44oq1mAihsenhxBJ\nJlSeWflwcGeMGVK9y4tb2zJVrOuxMJ6YGTJNFSsHd8aYYbV5K3FTS69cxboYDuDnc6OmaNXHwZ0x\nZmh9lXW4vrFTHk8G1vArE1SxcnBnjBneFbXNuLK2RR6f21jCSyuzKs6o9Di4M8ZM4dqGDhyurJfH\nL12cxdm1JRVnVFoc3BljpkBEeG9LDzq8VfJzv1qcwPimMatYObgzxkzDShbc3NaPBpcXQLqK9edz\no5gPbao8s+Lj4M4YMxWHxYrb2wcuqWJdjRqripWDO2PMdDw2O050DMAtVbFGUwk8Pj2EQDym8syK\nh4M7Y8yUKh0uHG8fgD2rivW8YapYObgzxkyrwe3FrW39sEhFTmuxMJ6auYBESv+t+ji4M8ZMrd1b\nhcGWXnk8H97EswaoYuXgzhgzvf6qelzXkKliHQ+s4teL+q5i5eDOGGMA3l7XgrfVNMvjs+tLeGVl\nTsUZHQwHd8YYk7yrsROHfHXy+MWLMzi/vqzijPaPgztjjEksRBhs7UWbJ1PF+vzCOCYDayrOan84\nuDPGmIKVLLi1rR/1zkwV6zOzI1gMB1SeWWE4uDPGWA6H1YrjHYfhszsBAAmRwqnpIaxFwyrPLH8c\n3BljbBsemwMnOo7ApahiPTU9hKBOqlg5uDPG2A6qHS4cbz8Mm9SqbzMRxamZIUR1UMXKwZ0xxnbR\n6K7ALW39cqu+lWgIT80Oa76KlYM7Y4ztobOiGje29MjjuZAfz81ru4qVgztjjOVhoKoB1zZ0yOOx\nzVX8dmlSs1WsHNwZYyxPV9a24PKaJnn85toiXludV3FGO+PgzhhjeSIiXN/YhV5frfzcmeVpDG1o\nr4p1z+BORF8nokUien2XY+4jomEiepWIrizuFBljTDssRLippQ+tnkr5uV/Mj2MqsK7irC6Vz5X7\nNwHcttMHieg4gD4hRD+AOwE8VKS5Gdrp06fVnoJm8LnI4HORoeVzYbOkq1jrnB4A6SrWp2eHsaSh\nKtY9g7sQ4lcAdttY4Q4Aj0jHngFQRURNuxzPoO0Xbrnxucjgc5Gh9XPhtNpwvH0AFbZMFesTMxew\nHouoPLO0YuTc2wBMK8az0nOMMWZoXrsDJzoG4LTYAADhZByPT59HKKF+FSvfUGWMsQOocbpxu7KK\nNR7FqekLiKWSqs6L8lmjSURdAH4ihHjbNh97CMBzQohHpfF5ADcKIRa3OVabC0IZY0zjhBBUyPG2\nPI8j6d92fgzgLgCPEtF1ANa3C+z7mRxjjLH92TO4E9G/ABgEUEdEUwC+BMABQAghHhZCPE5EJ4ho\nBEAQwKdLOWHGGGN7yystwxhjTF/KdkOViG4novNEdIGI/me5vq8WbFcIRkQ1RPQUEQ0R0ZNEVLXb\n1zACImonomeJ6C0ieoOI7pWeN+O5cBLRGSJ6RToXX5KeN9252EJEFiJ6mYh+LI1NeS6IaIKIXpNe\nGy9IzxV8LsoS3InIAuABpIuhLgPwcSI6Uo7vrRHbFYL9LwDPCCEGADwL4H+XfVbllwDwRSHEZQCu\nB3CX9Dow3bkQQkQB3CSEuArAlQCOE9G1MOG5UPgCgLOKsVnPRQrAoBDiKiHEtdJzBZ+Lcl25Xwtg\nWAgxKYSIA/hXpIufTGGHQrA7AHxLevwtAB8p66RUIIRYEEK8Kj0OADgHoB0mPBcAIIQISQ+dSN//\nEjDpuSCidgAnAPyT4mlTngukF6/kxuaCz0W5gntuodMMuNCpcWtVkRBiAUCjyvMpKyLqRvqK9XcA\nmsx4LqQ0xCsAFgA8LYR4ESY9FwD+AcB/R/oP3BazngsB4GkiepGIPiM9V/C5yHcpJCs909zZJqIK\nAD8A8AUhRGCb+gdTnAshRArAVURUCeCHRHQZLv1/N/y5IKIPAFgUQrxKRIO7HGr4cyG5QQgxT0QN\nAJ4ioiHs43VRriv3WQCdinG79JyZLW7twUNEzQCWVJ5PWRCRDenA/m0hxGPS06Y8F1uEEH4ApwHc\nDnOeixsAfJiIxgB8F8D7iOjbABZMeC4ghJiX/rsM4EdIp7ULfl2UK7i/COAQEXURkQPAHyFd/GQm\nuYVgPwbwKenxJwE8lvsJBvUNAGeFEF9WPGe6c0FE9VsrHojIDeAWpO9BmO5cCCH+WgjRKYToRTo2\nPCuE+DMAP4HJzgUReaR3tiAiL4BbAbyBfbwuyrbOnYhuB/BlpP+gfF0I8Xdl+cYaoCwEA7CIdCHY\njwB8H0AHgEkAHxNCaGtD6CIjohsAPI/0i1VI//4awAsAvgdznYsrkL4xZpH+PSqE+D9EVAuTnQsl\nIroRwH8VQnzYjOeCiHoA/BDp3w0bgO8IIf5uP+eCi5gYY8yAeFdIxhgzIA7ujDFmQBzcGWPMgDi4\nM8aYAXFwZ4wxA+LgzhhjBsTBnTHGDIiDO2OMGdD/B7c/zHxR6pWGAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2871,7 +2879,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 14, "metadata": { "collapsed": false }, @@ -2892,9 +2900,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XOV5L/DfM/umzdr3zbvNvm+2SkoC2UiTNMnN0hTa\nQgIOuU1Smob0WjRJC71Nm8UQICFcSEpDmoWQUFogYMwSHINtgm15ka3FWm3J2mbf3vvHOZo5M9Y2\n0pk5M+c838+HT3TkGenNkebRmfc87+8lIQQYY4zpi0nrATDGGFMfF3fGGNMhLu6MMaZDXNwZY0yH\nuLgzxpgOcXFnjDEdWrS4E5GdiHYT0T4iepuIts/zuO8Q0TEi2k9E56s/VMYYY0tlWewBQogQEf2R\nEMJPRGYArxLRM0KI388+hohuANAuhFhDRJcBeADA5dkbNmOMsYUsaVpGCOGXP7RD+oOQvvLpRgCP\nyY/dDaCEiKrVGiRjjLHMLKm4E5GJiPYBGAHwnBBiT9pD6gGcVBwPyp9jjDGmgaVeuceFEBcAaABw\nGRFtzO6wGGOMrcSic+5KQohpInoRwPUADin+aRBAo+K4Qf5cCiLiIBvGGFsGIQRl8vhFizsRVQCI\nCCGmiMgJ4DoA96Q97CkAtwN4goguBzAphBidZ4CZjC9FOBbHwExg2c+fy7fv+QY+/+W7VP2aasjG\nuH7RP4zDUzMAgPc21OCa6vKMnn/vN76Gv73r71Ud00rxmJZmqWMSAL6/bwCvnJwAABAId13dhisa\nSrMyrs7OTnR2dmblay9XPo6JKKO6DmBpV+61AB4lIhOkaZwnhBD/RUS3AhBCiIfk43cTUTcAH4Cb\nMh7JEtjMJrSVulX9mmUOm+pfUw3ZGNelwTJ0z3gBAH1+Pz7gqs3o+S6rGeUum6pjWike09JkMqYv\nXNaC8UAEXWNeCAj88+96cM+1a7GuPP9eJ2x+S2mFfBvAhXN8/sG0420qjotlweayosTHx6Z9CMVi\nsJvNGo6I5SO7xYSvXt2GLz1/BMPeEMKxOP5h13F887p1qPHYtR4eWyLDr1Dt6OjQeghzysa4Vtlt\nqHM5AADReBxHpryaj2mleExLk+mYSh1W3L11NYps0vXfZCiCzl3dmAlFNR1XLuTjmJaDcrlZBxEJ\n3hxEW7/oHcKzg6cAAFtqKvDx9gaNR8Ty2cHTXtz14lFE4tLr9pyqInxt62pYzYa/LswpIsr4hir/\nhAxmc1lx4uODk9MrusHN9G9TpQdfuKwlcfz2qRl8Z08f/94UAC7uBtNe5E7Ms48HwxgJhDQeEct3\nW5pX4dPnJtckvtB7Bo8fHNZwRGwpuLgbjNlE2FiavLF6cGJaw9GwQvGnG6rxrraKxPHjB4bxfM+4\nhiNii+HibkCbFF0zByZnNBwJKxREhNsubsKFNclpve/8vg9vjfLFQb7i4m5AmxRX7semvAjGYhqO\nhhUKi4nw5Svb0FLiBADEhMA3XjmBvil1FxYydXBxN6Ayuw317uQL9MhkZi2RzLjcNjM6t67GKocV\nAOCLxND5UjcmAhGNR8bScXE3KGXXzIFJfmvNlq7SZUPn1tVwWKTyccofxt0vH0cwyu8A8wkXd4NS\nTs0cmJjh1jaWkfYyF758ZRtMcubJsTM+/N/f9SLOv0d5g4u7QbUXueG0SC2RE6EwhrklkmXokroS\n3HphMgz29cFJPLxvQMMRMSUu7gZlNhE2lCiv3nlqhmXuvWsq8cH1yU3Xnjx6Ck8dPaXhiNgsLu4G\npmyJ5H53tlw3nVePKxWRwA/tHcDrA5MajogBXNwNTXlT9di0DwG+IcaWwUSEL13eivVyJPBsTPDR\ncZ/GIzM2Lu4GVmKzolFuiYwLkdjIg7FM2S0m/P017ahxS5HAoVgcd+86jlEf38vRChd3g0tpiZzg\n4s6Wb86Y4JeOwxtWNyaYLQ0Xd4NLTYnklki2Mg3FDtx1dRusJqlFsn86gH989QQisbjGIzMeLu4G\n11LkgktuiZwMhTHoD2o8Ilbozqkqwv++tCVx/NboDHa80c8XDjnGxd3gzETYWKq4euepGaaCjpZV\n+LNz6hLHz/eM4ycHRzQckfFwcWdpKZHcEsnU8ZGNNbiutTxx/OMDQ3ihl2OCc4WLO0uJIujmlkim\nEiLCtkuacX518p3ht3f34Q+n+N1hLnBxZyi2WdHkcQEAhBDo4ox3phKLifCVq9rQVCy13EaFwDde\nPo5+jgnOOi7uDACwuYyjCFh2uG1m3L11NcrkmGBvJIbOXccxGeSY4Gzi4s4AAJtKuSWSZU+V24bt\nW9phN0slZ9QXwt27jiMY5RbJbOHizgAArUUuuCzS4pOpcAQD3BLJVLZmlRt/e2VrIib46Bkfvvl6\nD8cEZwkXdwZAygfZxFMzLMsuqy/FLRc0JI5fG5jED/cPajgi/eLizhKUXTOcEsmy5X1rq/An65Ix\nwb88Mopfc0yw6ri4s4RNZcUg+S3z8Rk/fBHOBGHZcfP5aTHB+wawe5BjgtXExZ0lFFktaPZILWtC\nCHRN8cbZLDtMRPji5a1Yu0qKCY4LgXtf68GxMxwTrBYu7izF5pQoAp6aYdnjsJiwfUs7qtNigk/5\nwhqPTB+4uLMUm9IigLmTgWVTqcOKzi3t8Fjl/XyDEWx/qRu+MK+SXiku7ixFs8cJj1VqiZyJRDDg\n45WELLuaSpy465p2WCg1Jjga5wuLleDizlKYiFK6ZngDD5YL51YV4fOXNSeO949OY8eePl5MtwJc\n3NlZUqdmeN6d5ca1LeX45OZkTPBzPeP46SGOCV4uLu7sLBtLixItkT1ebolkufOxTTX4Y0VM8GNv\nD2Fn7xkNR1S4uLizs3isFrQoUiIPcUokyxEiwraLm3BedXJq8Fu/78XbHBOcMS7ubE4cRcC0YjWb\nUmKCI3GBb7xyAgPTnHeUCS7ubE7KfvdDk9wSyXLLY7Ogc2s7Su1STPBMOIrtL3VzTHAGuLizOTV5\nnCiyyi+sSBT9Xm6JZLlV7banxASP+EL42svHEeKY4CXh4s7mdFZKJO+tyjSwtlyKCSZIN/gPj/vw\nLxwTvCRc3Nm8UlMi+YYW08Zl9aW45cLUmOBH3uKY4MVwcWfzUrZE9nr98HJLJNPI+9dW4ca1VYnj\nXxwexdPHTms4ovzHxZ3Ny221oFXREnmQWyKZhv7yggZcXp+MCX5g70nsGZrScET5jYs7W9A5ZZwS\nyfKDiQh/c0UL1ihigu957QSOT/g1Hll+4uLOFqS8qXqQWyKZxhwWMzq3tKPKZQMABKNxdL7UjdN+\njglOx8WdLajB7USxTWqJ9EWi6PPyVRLTVqnDis6tq+GWY4LPBCPofKkb/gjHBCtxcWcL4pRIlo+a\nS5y46+q2RExw71QA/8QxwSkWLe5E1EBELxDRQSJ6m4jumOMxW4lokoj2yv99NTvDZVrYzCmRLA+d\nV12MOy5NxgTvHZnG/W/0c0ywzLKEx0QBfEEIsZ+IPADeJKJnhRCH0x63SwjxfvWHyLS2odQDIoIQ\nAn1eP6bDkcRUDWNaekdrOUZ8ITx+YBgA8D8nxlDjseMjG2s0Hpn2Fr1yF0KMCCH2yx97AXQBqJ/j\noaTy2FiecFksaC9yJ445JZLlk49vqsW1LasSx4/+YRC7+jgmOKM5dyJqAXA+gN1z/PMVRLSfiJ4m\noo0qjI3lkdSUSC7uLH8QEe64pBnnViV/R/91dy8OnvZqOCrtLWVaBgAgT8n8DMDn5St4pTcBNAkh\n/ER0A4AnAayd6+t0dnYmPu7o6EBHR0eGQ2Za2FxWjF/1SW99Z1MiTcRv1lh+mI0J/tLzRzAwE0Qk\nLvC1l4/jm9etQ32RQ+vhZWznzp3YuXPnir4GLeXmAxFZAPwGwDNCiG8v4fE9AC4SQpxJ+7zgmx2F\nSQiBv3vjECbDUuTq35yzBu3F7kWexVhujXhD+OJzRzAZkn5Paz12/Msfr0Opo7DvEcn3vDK6mlrq\ntMwPARyar7ATUbXi40sh/dHgSS8dISLeW5XlvRqPHf9nSztsckzwsDeEr79ywpAxwUtphbwKwCcA\nXEtE++RWx+uJ6FYiukV+2IeJ6AAR7QPwLQAfzeKYmUbSV6sylo/Wlbtx5xXJmOCuMS/+dXev4VZX\nL2laRrVvxtMyBS0QjeGLvz+QeJHce8kmlHBLJMtTTx4Zxff3DSSOP7S+Gjef37DAM/JXNqdlGIPT\nYk6ZZ+eWSJbPblxbhfetScYE//zwKJ7pNk5MMBd3lpFzeN6dFQgiwi0XNuCyupLE5+5/8yTeGDZG\nTDAXd5YRZc5M1+QMYjzNxvKYiQh3XtmK1WXSvgRxIXDPqz04YYCYYC7uLCN1LgdK7VLcqj8aQ8+M\nT+MRMbYwh8WM7VtWo1KOCQ5EY7h713GM6TwmmIs7ywgRYTPvrcoKzCqnFXdvXQ2XRYoJHguE0blL\n3zHBXNxZxpQpkW/zvDsrELMxwWZ5ZXXPZAD36DgmmIs7y9j6Uk/iBTLgCyRWAzKW786vKcbnLmlK\nHL85Mo0H3tRnTDAXd5Yxh9mM1cWexPHBSb56Z4XjurYKfGxTbeL4meNj+PnhUQ1HlB1c3NmypKxW\n5Xl3VmA+uTk1JviRtwaxq19fiSlc3NmyKOfdD03OIKbTeUumT0SEz13SjM2VyYuUf3u9D4d0FBPM\nxZ0tS63TjlVyS2QwFsNxbolkBcZmNuGrV7ehQY4EDsfj+IeXj2NoJqjxyNTBxZ0tCxHx3qqs4BXZ\nLbh762qU2KWtLWbCUWx/qRtToajGI1s5Lu5s2TglkulBjceO7VtWw2aSyuGQN4Svv3wc4VhhxwRz\ncWfLtq7EA4v8ghj0BTAR0veKP6Zf68rd+NIVLYmY4ENjXvxbgccEc3Fnyya1RCZTIvnqnRWyqxrL\n8Bfn1yeOd/VP4Ed/GNJwRCvDxZ2tiDKKgOfdWaH7wLoqvHdNZeL4p10j+O/jYxqOaPm4uLMVUd5U\n7Zr0Ihov7HlKZmxEhFsuaMSlipjg+97ox5sFGBPMxZ2tSLXTjnKH1BIZ4pZIpgNmE+HOK1rRrogJ\n/qdXe9AzWVgxwVzc2YpIKZHJq3dercr0wGk1Y/s17SkxwZ0vFVZMMBd3tmLKlkhOiWR6Ue6yoXNL\nakzw3buOI1AgMcFc3NmKKVsih/1BnOGWSKYTLaVOfEURE3xi0o97XuspiLgNLu5sxexmM9YoWiIP\n8NQM05ELaoqx7eJkTPAbw1P43psn8z4mmIs7U4Wya+YgT80wnXlnewU+urEmcfzM8dP4xeFTGo5o\ncVzcmSqUxf3wlBcRbolkOvOpc+rQ0ZyMCf7hWwN45eSEhiNaGBd3pooqhw2VDjsAqSWye5pbIpm+\nEBE+f2kzNlUmN6r55u960TWWnzHBXNyZKogopWuGV6syPZJigttRnxYTPDwT0nhkZ+PizlSTMu/O\nOTNMp4rtFty9ZTWK5Zjg6VAU23d1YzrPYoK5uDPVrC1OtkSO+IMYC+bf1QxjaqgtsuP/XNOeiAke\nnAni66/kV0wwF3emGpvZhHUlio2zuSWS6diGCg++eEVL4vjgaS++tbsvb2KCubgzVW3mDTyYgVzd\nWIabz2tIHL/UfwY/fjs/YoK5uDNVbSpVtkTOcEsk070Prq/Cu1cnY4KfODSCZ09oHxPMxZ2pqspp\nR5VTaokMx+LcEsl0j4jwmQsbcXFtMiZ4x55+7BvRtmOMiztTHW+czYzGbCJ8+cpWtJVKMcExIfCP\nr5xA72RAszFxcWeq25SyOxPPuzNjcFrN2L6lHRVOKSbYH42hc1c3xjWKCebizlS3tsQDq9wiNhoI\n4jS3RDKDqHDZ0Lm1HU45Jvi0P4x/eFmbmGAu7kx1VhO3RDLjai114e+uaoVJjgnunvDj3t/lPiaY\nizvLCp53Z0Z2UW0JblfEBO8ZmsKDe3MbE8zFnWWFst/9yJQ3r1buMZYL17dX4CMbkjHBT3efxpNH\nchcTzMWdZUWFw44apxSuFInHcXQ6P5PzGMumT51bhy1NZYnjh/cP4tUcxQRzcWdZo0yJ5Hl3ZkQm\nIvz1ZS3YWCHdgxIQ+Jff9eLIePbXf3BxZ1mTMu8+yfPuzJhsZhO+ek1qTPDdu7ox4s1uFxkXd5Y1\nq4vdsJvllrBACKMBbolkxlRit6BzSzuKbFJM8FQoiu0vdWMmizHBXNxZ1pzdEslX78y46oocKTHB\nAzNBfP2VE1lrNuDizrKKUyIZS9pY6cFfX96cOD5wegbf+X1fVlokubizrFKmRHJLJGPAlqZVuOm8\n+sTxi31n8OMDw6p/Hy7uLKvKHTbUuqQbSVFuiWQMAPCh9dW4ob0icfyTg8N4TuWYYC7uLOuUV++8\nWpUxKSb4sxc14SJFTPB39/Rjv4oxwYsWdyJqIKIXiOggEb1NRHfM87jvENExItpPROerNkJW8JTz\n7gcmZnK6BJuxfGU2Ef4uLSb4G6+cQN+UOjHBS7lyjwL4ghBiE4ArANxOROuVDyCiGwC0CyHWALgV\nwAOqjI7pgrIlciwYwiinRDIGIBkTXO60ApBigre/1I2JQGTFX5syvYoioicBfFcI8VvF5x4A8KIQ\n4gn5uAtAhxBiNO25YiVXbZF4DIM+flu/Eg6zBVVOTyKxLle+d7gHb41PAQA6aiuwQZH5zpLiQmAm\nEoDH4oDZpM2sqQmE1iIXPFaLJt/fiE5M+HHnb48iEJWigVeXuXDvO9bCIUcHExGEEBm9aDMq7kTU\nAmAngM1CCK/i878G8E9CiNfk4+cB3CmE2Jv2/BUV96lwED858dayn88km8uqcVV1S06/566RcTx+\n/GROv2ch8lh8sJsjiMbNmIp4AOT2j/CsIqsVd56zGpXyloks+94YnsLdu44jLtfIy+pK8NVr2mEi\nWlZxX/KfZiLyAPgZgM8rC3umOjs7Ex93dHSgo6NjuV+KLdORyTFcVtkESw6vDM8pK4KZCDGeb58X\nIQ67WXo7bjHFYKEYokKbq+eZSAQ7unpw5zmr4eYr+Jy4uLYEt13UiB1v9GP80Bt4/Od7Mf50Bcrk\nKZtMLenKnYgsAH4D4BkhxLfn+Pf0aZnDALaqPS3ji4bx8kjPsp9vdCN+L0JxabnzexrXo8Fdssgz\n1LVvfBK7T09wgZ9HKOaDP5JMDHRYiuG0FC/wDPUJARye8iIal9YjrCnx4I6NbYmdtVj2/XD/AH7b\ncwbbt7RjbbkbQBanZYjoMQBjQogvzPPv7wZwuxDiPUR0OYBvCSEun+NxKyrubGVeHe3FgQnp7+25\nZTW4orp5kWewXHrm5BH0+yYTx5UONz7Ysjnn49g7NomHjvQmji+pLMPNa5pAOb5PY1RxITAZjGKV\n4op9OcV9Ka2QVwH4BIBriWgfEe0louuJ6FYiugUAhBD/BaCHiLoBPAjgtkwGwXKj0V2a+LjfN6Xh\nSFi6cDyGQX9qs8BY0A9/dOVdE5m6sKIUH2ypSxzvOT2Bp/pHcj4OozIRpRT25Vp0Mk0I8SoA8xIe\nt23Fo2FZVecqhplMiIk4JsMBTIdDKLbxDbN8MOibQkykRjMICAz4prC2pGKeZ2XPdXWVGAuGsWtE\nWjX5zMAoKhw2XFVdnvOxsOXhiTQDsZhMqHcl53BPKqYAmLb6vMmfhcOcvObq92rzMyIifLStHpsU\nmfz/fnwAXRz+VjC4uBtMoyc5NcPFPT/EhUgp7pdWNiY+HvBNJVrjcs1MhL9a14wGtxOANM4HD/di\n0KfOCkqWXVzcDaZR0SEz6JtOdEUw7YwGvAjGpLl1l8WGdSWVcFtsAIBQPIpTAe3C1hxmM27f0IpS\nuzSeYCyGHV09mArn/l4AywwXd4MpsTlQYpVTGkUcwwF+m621Pm+y/bHZUwoTUcof4ZMa3/wus9uw\nbUNrIkJiIhTGfV09CMZimo6LLYyLuwE1KadmNJrTZUmpxb0MQOr0mVbz7koNbiduWdecaIfs9/rx\n8NE+zaaM2OK4uBtQvhUOI5sMBTAZDgIALJS84d3gKoFJjh4YC/ngj4Y1G+OsTWXF+HhbQ+L47TPT\n+GnPIKd85iku7gZU6yyChaQf/VQkiCm5uLDcU95IbXCXJCIhbGYzalzJcLWT3vxYl3BNTTne1VCd\nON45PIYXhtXdZIKpg4u7AVlMJtS7lS2R+VE4jEg5JdMiT8nMUs679+dRZ9ONTTW4uCI51p/1DmHf\neP6Mj0m4uBtUympVnprRRCAawYjcCUOglHshQOq9ES1bItOZiPDpNY1oL5ZyT4QQ+OHRfvTM+DQe\nGVPi4m5QyuI+5OeWSC30+yYhIBXsaqcHTkvqkvMymxMeuSUyHI9hNI86m6wmEz67vjURCRyJx3F/\nVw/GeCOWvMHF3aCKbXaU2qTFKTERx5CfN0HJtb6Z5Dum5rSrdkBaJZp68zu/ps88Vgu2bWhLRALP\nRKLYcagHvkhU45ExgIu7oTWl9FLz1EwuReNxDCjudTSnzbfPanLn94riaqcdt61vTdwIHgkE8eCR\nXkT4naDmuLgbWEoUQZ5dFerdkH8aESEtAiqxOlBqc8z5uDp3caIlcjzkhzeifUtkuvZiN/58TVPi\n+OiUFz/uPsktkhrj4m5gNc4iWEladTgVCSb6rVn29Sq7ZIrK5s1Kt5nMqC2AsLeLK0rxJ83JmODd\npyfwm5OjCzyDZRsXdwOzmEyoU7ZEctdMTsSFSOlQmmu+XanJo5g+y+N3WO+sr8Q1NclI4KdPjuB3\np85oOCJj4+JucPk+p6tHY0EffPKKU4fZgmpn0YKPV3Y2DfjPzn3PF0SEj7U1pMQE/6j7JMcEa4SL\nu8E1Kq4Kh/wziMQ5DCrblKtSm9xSUNhCSm0OFFlnWw5jGPFrlxK5GDMR/nJtM+oVMcEPHenFkJ+n\n/HKNi7vBFVntKEtpieSrrGxLCQormrtLRomICuodltNixrYNrSi1SX37gWgMOw6d4JjgHOPizjgl\nModmIiGMh/wAADOZ0KBoR11IoYW9ldltuH1jWyIm+EwojPu7ehDimOCc4eLO0jbOnuQWtizqm0le\ntde5imEzLbo9sfzYIpjlsLeJcAAzkfxfCdroduKvFDHBfV4/Hj7anzcxCnrHxZ2hxuWBVS4yM5EQ\np0RmUa/iqrtlkS4ZJavJjLo8TIlczOayYvwvRUzwH85M4T97hjQckXFwcWfS9IBLmUBYGIWj0IRi\nUQwrYh6a5lmVOp/0d1iFYktNOd5ZX5U4fnH4NH47dFrDERkDF3cGILVrhufds+OkbwpxOSis0uGG\nx2rL6PnKefehAtv/9gPNtbiwIjn+n/UO4a1xvojIJi7uDEDqVeFwYAZhbolU3Vzb6WWiVLH/bUTE\nMJJHKZGLMRHhz1c3oa0oGRP8g6N96J3xazwy/eLizgAAHqsNq+wuAHJLpI9TItUUE/GUefLFVqXO\np9C6ZpRsZhM+u6EVlY5kTPB9HBOcNVzcWQKnRGbPiH8GobgUheux2FEu/yHNVGOB/4yKrBZs29gG\nl2U2JjiCHV098Ec5JlhtXNxZQnpKJLdEqqcvLUtmvqCwxdS5ihP7306Gg5guwM6maqcdt21oScYE\n+4N48HBvQd1DKARc3FlCtdOT6LueiYYwEQ5oPCJ9EEKclQK5XBaTCXWKlMhC7WxaXezBp1c3Jo6P\nTHnx4+MDfEGhIi7uLMFMJtS7CiOBsJAoFx1ZTWbUuhYOCltMo05WFF9SWYYbm2sTx6+fOoOnBzgm\nWC1c3FmKlHjZApzTzUe9ilWpTe7SxErT5VLeGyn0/W+vr6/CVdXJmODf9I/gdY4JVgUXd5YipSXS\nzy2Rakifb1+pYlty56Zoge9/S0T4eFsDNpQm3838qPskjk7lb/JloeDizlK4rbZEJ0ccAoMFOqeb\nL3zRME4FpUJFSN3weiUaCyglcjFmE+GWdS2JmOCYEHjgcA+GOSZ4Rbi4s7OkpERycV8RZS96rasI\nDrNFla/bpLP9b50WM27f0IoSOSbYH41hR9cJTHNM8LJxcWdnUfZS93s5JXIlVroqdT563P92ld2G\n2ze0JmKCx4Nh3NfVg3CscO8paImLOztLtbMo0RLpi4a5JXKZIvEYBhQrfTNJgVyMXve/bfK4zo4J\nPtbHMcHLwMWdncVElLKJRKEtc88XA77kfqerbC4UyzdB1VJIuzNlYnNZMT7aWp84fmt8Cj/v5Zjg\nTHFxZ3NKLRyFP6erhZQumSL1rtpn6Xn/247aClyniAn+7dBpvDjMMcGZ4OLO5qQsHCP+GYR5e7SM\nxIVIecej5nz7LL3vf/snzbW4oDz5R/GnPUN46wxfaCwVF3c2J5fFhgq7FM8ah8CAn19UmTgV8CIQ\nkzo9nGYrKh3urHwfPe9/ayLCTWua0KqICX74aB/6vBwTvBRc3Nm8eAOP5UvtkimFaZlBYYvR+/63\nNrMJn13fggo5Jjgck2KCx4NhjUeW/7i4s3mlz7vrrXBkU1+Wp2Rmpe9/q4eWyHTFNiu2bWxNxARP\nhyPY0XWCY4IXwcWdzavK6YHdJL2gfNEwzoS4JXIpJsPBRPuohUwpnUdqS9//Vk9dM0o1Tgc+sz4Z\nEzzsD+KhI30FnauTbVzc2bzOaonUaeFQW58iKKzBXZIoSNminD7r18Fq1fmsLfHgzxQxwYcnZ/A4\nxwTPi4s7W5DelrnnQq6mZGalhr1N6zrs7dLKMtzYlIwJfu3UGTwzcErDEeUvLu5sQcor95HADEIx\nnudcSDAWTWxcTaCUP47Z4kkLe9P7/rfXN1ThyqpVieOn+oc5JngOXNzZglyWZBufgMCgzgvHSvV7\nJyEgTRNUOd1wWaw5+b7pXTN6RkT4RHsj1nNM8IK4uLNFNRmocKyUcmOOlhxMycxqSmtb1fs8tNlE\nuHVdC2pdUqSDFBPcixGOCU5YtLgT0cNENEpEf5jn37cS0SQR7ZX/+6r6w2RaSt/WTe+FY7mi8TgG\nFFENuZhvn6UMe/MaJOzNaTHjcxvbUJyICY7iuxwTnLCUK/dHALxrkcfsEkJcKP/3dRXGxfJIpcOd\nyCH3xyIYD/EKwbkM+acREdLNzBJrcrekXDBq2NtsTLDNLJWy8WAY3zvcyzHBWEJxF0K8AmBikYdl\nZ/kdywvlI00aAAARJ0lEQVRGLRyZSt9Oj7K0KnU+Rg17a/a48BdrkzHBPTM+PHKs3/AxwWrNuV9B\nRPuJ6Gki2qjS12R5xKiFY6mEEKmRA0W5m5KZZeSwt/NWlaTEBO8bn8Qveoc1HJH21Njz600ATUII\nPxHdAOBJAGvne3BnZ2fi446ODnR0dKgwBJZtDe4SEAgCAqMBL4KxqGpbxunBWMgPX1TKO7GbLKhx\nFi3yDPXNhr2NhXyJsLe2olWLP1EnOmorcDoYwm+HpGjg54dOocJhQ0dthcYjy9zOnTuxc+fOFX0N\nWsrNMSJqBvBrIcS5S3hsD4CLhBBnNZ4SkeCbcYXrl70HE5s9v6NuNVYXl2s8ovzxxukBvDk+CABY\nU1yBa+vaNRnHntMD2CuPY31JJbbWtmkyDq3EhcBDR3qxf1x6d0lE+Oz6Fpy7KnsRELlARBBCZDTP\nt9RpGcI88+pEVK34+FJIfzB4RYEOcUrk/Hq92rRAplPuf2vEsDcTEW5e04yWImlRlxQT3I9+A8YE\nL6UV8nEArwFYS0T9RHQTEd1KRLfID/kwER0gon0AvgXgo1kcL9NQ+ry70W9YzZqJhBIdRGYyocGj\n3VVietibETubbGYTblvfinKHDQAQisVwX1cPzoSMFRO8lG6Zjwsh6oQQdiFEkxDiESHEg0KIh+R/\nv08IsVkIcYEQ4kohxO7sD5tpocLhhtMs9RQHYhGMB41XOOai7JKpcyX7zbVgIjrr6t2Iim1WbNvQ\nBpdF+llMhSPYcegEAlHj3GTmFapsyTglcm6pG3NoNyUzS7nozMhtq7UuBz6zvhVmuUVyyB/EQ0d6\nEYsb4x0nF3eWkZSUSC7uCMWiKUFd+VDcZzubACQ6m4xqbYkHn1LEBHdNzuDxE8aICebizjKiLByn\nAj5DFw4AGPBNIS4HhVXY3fBYbRqPaK6wN2NOzcy6vGoV3ttUkzh+dXQc/22AmGAu7iwjDrMFVc5k\n4RgweOFIWZValP1436VK3cCD32G9p6Ealytign/VP4w9pxdbeF/YuLizjKXEyxq4cMREPOX/v5Yt\nkOm4sykVEeGT7Q1YV5JcXPZo90kc03FMMBd3ljEuHJLRgBehuDQt5bYkN8zIBxUONxzc2ZTCYjLh\n1vXNiZjgaDyO7x3uxUhAnzHBXNxZxsodrkRLZDAWwVjQp/GItJGe3Z7roLCFpLdEcmeTxGWx4PYN\nrSiyJmOCdxzqwUxEf/eOuLizjHHhyI+gsMVwZ9PcKhz2lJjgsWAI3+vq0V1MMBd3tiyNBt84eyIc\nwHQkBACwmsyo1SAobDHpnU2BKG9iMaulKDUm+MSMD/9PZzHBXNzZsigLx+mg8QqHskum0V0Ciyn/\nXkrc2bSw81aV4E9b6hLHe8cn8WSffmKC8+83khUEh9mCaqcHgFQ4jLbMvW8mv1alzodz+Bd2bV0l\nrq2rTBw/O3gKu0bGNByReri4s2VLzTAxzpyuPxrGKfkmMoFS5rbzTSN3Ni3qwy11OE8RCfwfJwZx\nYGJ6gWcUBi7ubNma0ubdjVI4+r2TEPKq1BpnUV5vWsKdTYszEeHmtU1o9iRjgr9/pK/gY4K5uLNl\nK7e74LLIsarxKE4bpHD0Khcu5WGXjJKJUt9ZGLGzaSnsZjNu29CKVfZkTPD9XT2YKOCYYC7ubNko\nPV7WAKtVI/FYyo3J5jyekpnVyJubL0mJzYptG9vglGOCJ8MR7OjqKdiYYC7ubEWUN+yMcFU46JtG\nTEj90GU2J0psDo1HtLh6RWfTWNAPv8E6mzJR53Lg1nUtiZjgQV8A3z/aV5AxwVzc2YrUu4tTWiL1\nXjjyLbt9KRxmC2oUnU3cErmw9aVF+KQiJvjQxHRBxgRzcWcrYjdbUKNYwKPnwhEXIjUFsgCmZGbx\nBh6ZuaJqFd7bmBoT/D+DhRUTzMWdrZhR4mVPBbwIxKR3Jk6zFVXy1XAhUM67D3BL5JK8p7Eal1Um\n35092VdYMcFc3NmKKefd9Vw40q/aTXkUFLaYcrsLbkVn06mAfqNu1UJE+NTqRqwtSf4Rf7T7JLqn\nC+PccXFnK7bK7jRE4SjE+fZZ6Z1NRrj5rQaLyYRb17WgxpmMCb6/qxejgZDGI1scF3e2YkYoHFPh\nICbCAQCAmUyodxdrPKLMGT3sbbncVgu2bUyLCe46AW+exwRzcWeq0HvhUE7JNLhLYDWZNRzN8jS4\nSmCabYkM+eCLFu4CnVyrcNhx24ZWWOWAuNOBEO7v6kEknr8xwVzcmSrSC4dfZ4UjdUqmcLpklGxm\nM2pcyc4mPf4RzqbWAosJ5uLOVKHnwhGMRTHsnwEgBYUV2ny7klHD3tRyfnkJPqyICX5zLH9jgrm4\nM9Xodd5dGRRW5XDDZbFqPKLlU+bM6LmzKZuura1AR21F4liKCR7XcERz4+LOVKPXwpHv2+lloszm\nhEfubArHYxgNzGg8osJDRPhIaz3OTYkJHsi7mGAu7kw1ZbZkS6ReCkc0Hk/Z5KJQ59tnEVHaalX9\nTJ/lkokIf7G2CU1pMcEnfQGNR5bExZ2phtLiZfWw889wYAaRuJQKWGy1o8zm1HhEK5e6O5N+ps9y\nzW424/a0mOD78igmmIs7U5Xe4mXTt9OjAlqVOp86d3Gis2k85Ic3kh/FqBDNxgQ7zHJMcCiM+7p6\nEIxpHxPMxZ2pqt5dopvCIYRAr2K+Pd835lgqm8mMWldyERZfva9MncuBW9e3JOIoBnwBfP9IH2Ia\n33Pi4s5UJRUOZUpk4RaO8ZA/sdDHbkpuCK4HTR7lJiuFP32mtQ2lRfhEe0Pi+ODENH6icUwwF3em\nOuWmzIV8w0551d7kKYWZ9PNyUf6MBvxTiQ1I2PJdVV2OdzdWJ45fHhnHc0OnNRuPfn5bWd5QRgAP\nFnDh6JspzOz2pSi1OVBktQOQtg4c8esz7C3X3tdYg0sVMcG/6B3Cm2PavHvl4s5UV2ZzosgiFQ6p\nJbLwCoc3EsZYSNrw2wRKudLVAyLirpksmI0JXqOICX7kWD+OT+d+83gu7kx1Ui91YXfNKBcu1bmL\nYTMXXlDYYnh3puywmkz4zLoWVCtigr93uAenchwTzMWdZUWju7D73Qs5u32p6lxFifsIE+EAZiL5\nn1FeKJIxwRYAgDeS+5hgLu4sK+rdxYnCcSbkh7eACkc4FsOgL7mUXG/z7bOsJjPqUsLe+OpdTZVy\nTLBFjgk+FQjhgcO5iwnm4s6ywmoyo1axcXYhXb0P+KYQl4PCyu2uxI1HPUrpbCqgn1GhaC1y4+a1\nTYnFb93TPjx67GROcpe4uLOsKdQ53ZSFSzqdkpml/BkN+qYQzePNJwrVheWl+FBzbeL4jbEJ/Lp/\nJOvfl4s7y5omt7IlcrogWiLjQqT8ISr0FMjFlNocKLHKN/5EHCM6CHvLR++oq8TWmmRM8DMDo3hl\nNLsxwVzcWdaUnNVLnf+FYyQwg1BcuunltthQYXdpPKLsK9R3WIWEiPCRtnpsLkvGPvz78QEcmsje\na4KLO8uas3up839OV49BYYvh3Zlyw0yEv1zXjEa3lCwqhMCDR3oxmKWYYC7uLKsK6apQCgrT76rU\n+dS5imGRO5smw0FMh4Maj0i/HGYzbt/QhjJFTPB3u3owGYqo/r24uLOsKqRe6slwENMRqbBJbYLF\nizxDHywmU8r/V+6aya5SuxXbNrTCrogJ3tF1QvWYYC7uLKvO7qXO38KhXLjU4CpJ9CcbgfIdFve7\nZ1+924nPpMUE/0DlmOBFf3uJ6GEiGiWiPyzwmO8Q0TEi2k9E56s2OqYLqb3U+Vs49JjdvlTKzqYh\n/zS3ROZAekzwgYlpPHFiULWY4KVcmjwC4F3z/SMR3QCgXQixBsCtAB5QZWQ5snPnTq2HMKd8HNdy\nx6S8KhzyqVs41DpP/mgEpwJSuBMhdbtArcakpsXGVGxzoFTeQjAq4hjy52az50I8V2q6qrocNzQk\nY4J3jYzheZVighct7kKIVwBMLPCQGwE8Jj92N4ASIqpe4PF5JR9/uYD8HNdyx6TspY6ImKq91Gqd\np37vJIS8KrXGWQSH2aL5mNS0lDFp0TVTqOdKTe9rqsElipjgn/cOYe/4ys//8n+Dk+oBnFQcD8qf\nG1XhazOdaPSUYGpCuln52mgfim3qLOnvnh7Dfw8cWfHXORNMtqMZpUsmXZOnFG9PSCsnj02N5+Tm\nt1o/PzVpMaZaJ9DoDmMyLO389cTxgxjwVuL9zWuX/TXVKO6MLarRXYoDE9Lf+4lwABNhdXp7J8NB\n9Kl8A1Dvq1LnU+MsgpXMiIgYQvGo6ud1Ltn4+a2UVmNaZRcIx2OIxqV3kLtPn8IV1c2odCzvQoiW\nMnlPRM0Afi2EOHeOf3sAwItCiCfk48MAtgohzrpyJyJtd4xljLECJYTIaEXdUq/cSf5vLk8BuB3A\nE0R0OYDJuQr7cgbHGGNseRYt7kT0OIAOAOVE1A9gOwAbACGEeEgI8V9E9G4i6gbgA3BTNgfMGGNs\ncUualmGMMVZYcrYEj4iuJ6LDRHSUiP42V993IUTUS0RvEdE+Ivq9RmM4a5EYEZUR0bNEdISI/oeI\nShb6Gjkc13YiGiCivfJ/1+dwPA1E9AIRHSSit4noDvnzmp6rOcb1OfnzWp4rOxHtln+v3yai7fLn\nNTtXC4xJs/OkGJtJ/t5Pycf58PozyedqdkwZn6ecXLkTkQnAUQDvADAEYA+AjwkhDmf9my88rhMA\nLhJCLNTHn+0xXA3AC+Cx2RvWRHQvgHEhxD/LfwjLhBBfzoNxbQcwI4T411yORf7eNQBqhBD7icgD\n4E1IayxugobnaoFxfRQanSt5XC4hhJ+IzABeBXAHgA9B23M115hugIbnSR7XXwO4CECxEOL9efL6\nSx9Txq+9XF25XwrgmBCiTwgRAfATSC8ArRE0zteZZ5HYjQAelT9+FMAHcjooLLh4TZOb4kKIESHE\nfvljL4AuAA3Q+FzNM656+Z81ayAQQvjlD+2Q7q0JaH+u5hoToOF5IqIGAO8G8APFpzU9T/OMCcjw\nPOWqsKUvdBpA8gWgJQHgOSLaQ0R/pfVgFKpmO46EECMAqjQej9I2OUPoB1q8XQUAImoBcD6A1wFU\n58u5Uoxrt/wpzc7V7Nt6ACMAnhNC7IHG52qeMQHa/k79G4C/QfIPDaD979RcYwIyPE/Gib2b21VC\niAsh/ZW8XZ6KyEf5ctf7fgBtQojzIb1AtZie8QD4GYDPy1fK6edGk3M1x7g0PVdCiLgQ4gJI724u\nJaJN0PhczTGmjdDwPBHRewCMyu+8Froqztl5WmBMGZ+nXBX3QQBNiuMG+XOaEkIMy/97GsAvIU0f\n5YNRkvN55DndUxqPB4B0nkTyJs33AVySy+9PRBZIBfRHQohfyZ/W/FzNNS6tz9UsIcQ0gJ0Arkce\nnKv0MWl8nq4C8H753tt/ALiWiH4EYETD8zTXmB5bznnKVXHfA2A1ETUTkQ3AxyAtftIMEbnkqy0Q\nkRvAOwEc0Go4SP0r/RSAP5c//jSAX6U/IUdSxiX/os/6IHJ/vn4I4JAQ4tuKz+XDuTprXFqeKyKq\nmH3bTkROANdBuheg2bmaZ0yHtTxPQoivCCGahBBtkGrSC0KITwH4NTQ6T/OM6c+Wc55yki0jhIgR\n0TYAz0L6g/KwEKIrF997AdUAfklSJIIFwL8LIZ7N9SBo7kVi9wD4TyK6GUAfgI/kybj+iKS8/jiA\nXkgRz7kaz1UAPgHgbXneVgD4CoB7AfxUq3O1wLg+rtW5AlAL4FG5S80E4Al5seHr0O5czTemxzQ8\nT/O5Bxr+Ts3jnzM9T7yIiTHGdMjoN1QZY0yXuLgzxpgOcXFnjDEd4uLOGGM6xMWdMcZ0iIs7Y4zp\nEBd3xhjTIS7ujDGmQ/8fFq3GYjKIqOcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4XFd9//H3dzRaLcm7vEiW5N2WE6/x7gQ3FEhSGloK\nZWnLD3go4QchgbAWAnEIS4AASX5AA4XwJLRAKNCwhRJKcInteN93y7ZkWfK+al/P7487y52xtpHu\nzJnl+3qePMwZjUZfrqWvrs4993PEGINSSqn04rNdgFJKKe9pc1dKqTSkzV0ppdKQNnellEpD2tyV\nUioNaXNXSqk0NGBzF5FcEdkiIrtEZJ+IPNTH654UkWMisltEFnpfqlJKqcHyD/QCY0y7iPyFMaZF\nRLKAjSLyO2PM1uBrROROYLoxZqaILAeeAlbEr2yllFL9GdS0jDGmJfAwF+cXQvSdT28Ang28dgsw\nUkQmeFWkUkqp2AyquYuIT0R2AWeBPxhjtkW9pBSoc43rA88ppZSyYLBn7j3GmEVAGbBcRKriW5ZS\nSqnhGHDO3c0Yc11E/gTcARx0fagemOIalwWeiyAiGmSjlFJDYIyRWF4/YHMXkXFApzHmmojkA68B\nHo162a+ADwDPicgK4Kox5lwfBcZSX4SuLsP5Sx1D/vzefO2rj/CRj33G0/f0QjzqevSLWWzc6Pyx\ndv+Hunnb23ti+vzPPfwIn30ouY6V1jQ4sdR0puUk1zouhsblhXMZmTM2LnWtW7eOdevWxeW9hyoZ\naxKJqa8DgztznwQ8IyI+nGmc54wxL4jIPYAxxnw3ML5LRKqBZuBdMVcymGL9wuQJuZ6+Z1Gh3/P3\n9EI86lr7Kti00Xm8dbOPd/xjbJ+fJX6yfcl1rLSmwYmlprIRM+nsaaelqxGAuuYjZPtupsBfFM8S\nlccGsxRyH7C4l+e/EzW+18O6VBysXh1+vGMHtLZCfr69elRy8kkWFYVVHL++h46eNozpobbxINOL\nF5CTlWe7PDVIGX+H6tq1a22X0Kt41DVhAkyf7jzu7ITt2+3XNFxa0+DEWpPfl01l0TyyxDn/6zKd\n1DQdoKun02pdiZCMNQ2FJHKzDhExujmIXU8+Cc8+6zx+05vgk5+0W49Kbs2d1zjZuB8TuLVlhH8k\nlUXz8EnGnxcmlIjEfEFV/4UyjHtqZtMm0N+1qj8jskdSNmJWaNzcdY365mPDWhihEkObe4ZZsAAK\nCpzHDQ1QU2O1HJUCRuWOZ0J+RWh8teMC59vq+vkMlQy0uWcYvx9WuFJ/Nm2yV4tKHePzyhidG04U\nOd96iivtva52VklCm3sGWrUq/HjjRnt1qNQhIpQWTKcwe1ToudPN1TR1XrVYleqPNvcM5G7uO3dC\nS0vfr1UqSMRH+Yg55GUF5vUw1DYdoq1bv4GSkTb3DFRSAjNnOo+7umBbdAycUn3I8vmpKJqH35cD\nQI/ppqbxAJ093t45roZPm3uGcq+a0akZFYscXy6VhVWh5ZCdPe3UNh2kx3Rbrky5aXPPUNHz7rqy\nTcUi319I+Yg5oXFrVxN1TUd0iWQS0eaeoebPh8JC5/G5c3DypN16VOopyhnD5ILpofH1zsucbdVv\npGShzT1D+f2wfHl4vGGDvVpU6hqbN4lxeeF9eS62NXCxrcFiRSpIm3sGi75bVamhmJhfSbErEvhM\nywmud1yyWJECbe4ZzT3vvmsXNDfbq0WlLhFhyohZEZHAdc1HQpHByg5t7hls3DiYPdt53N0NW7fa\nrUelLicmeC45PicSuCcQE9zR3Wa5ssylzT3D6ZJI5RW/L4fKoqqomOCDdPd0Wa4sM2lzz3CaEqm8\nlJtVQEXhXAQnnba9u4Xa5kP0mNi2dFTDp809w910ExQFpkrPn4fqarv1qNTnxATPDI2bO6/R0FKt\na+ATTJt7hsvKgpUrw2NdNaO8MCq3JCIm+Er7eS5oTHBCaXNXmhKp4iI6Jvhc6ymutJ+3WFFm0eau\nIpr77t3Q1GSvFpU+wjHBI0PP1Tcfo6nzmsWqMoc2d8WYMTB3rvO4pwe2bLFbj0ofTkzwXHIDMcEG\nw6mmgxoTnADa3BWgSyJV/GT5/FQWVuH3ZQPQbbqpbTxAl8YEx5U2dwVETs3okkjltZysvIiY4I6e\ndmo0JjiutLkrwFkSWVzsPL54EY4ds1uPSj/5/iKmjJgdGrd2NVHXfFSXSMaJNncFgM8XuSRSp2ZU\nPBTnjGVywbTQ+HrHJY0JjhNt7ipE591VIozNm8y4vMmh8cW2Bi5pTLDntLmrkJUrQZy7xtm7F65f\nt1uPSl8T86dGxAQ3tJzgesdlixWlH23uKmT0aKiqch7rkkgVT8GY4Hx/Yei5uubDtGpMsGe0uasI\nuoGHShSfZFFZWEWOLxdwYoJrmjQm2Cva3FWE6Hn3Hg3zU3Hk9+VQUTSPLMkCoKtHY4K9os1dRZg7\nF0aNch5fvgxHj9qtR6W/vKwCygurImKCTzUfwmhM8LBoc1cRfD4NElOJV5g9klJXTHBT5zXqW47r\nGvhh0OaubqDNXdkwOreECfnlofGV9nNcaDttsaLUps1d3WDFivCSyP37dUmkSpzxeVMYnVsSGp9r\nreWqxgQPiTZ3dYNRo5w4AnAuqG7ebLcelTlEhMkFMxjhigk+3XyMZo0Jjpk2d9Ur99TMhg326lCZ\nxyc+KqJigmubDtGuMcEx0eaueuVeEvnKK7okUiVWKCZYgjHBXdQ0HqSrp9NyZalDm7vq1Zw5ziYe\nAFeuwOHDdutRmScnK4+KIndMcBu1GhM8aNrcVa80JVIlg4KomOCWrkaNCR4kbe6qT5oSqZJBcc5Y\nJt0QE1xjr6AUoc1d9WnFCucMHuDAAbh61W49KnONy5vM2IiY4HoutZ2xWFHy0+au+lRcHF4SaYxz\nYVUpWyblT6U4e0xo3NBynEaNCe6TNnfVrzVrwo81JVLZJCJMKZwdERN8qvkwrV1NFqtKXtrcVb+i\nN87WJZHKpmBMcHZ0THBPu+XKko82d9WvWbNgbGDDnGvX4OBBu/Uo5fflUFk0D18oJriD2sYDdBuN\nCXbT5q76pSmRKhnlZRVQUTg3FBPc1t3CqabDGhPsMmBzF5EyEXlJRA6IyD4Rua+X17xKRK6KyM7A\nfw/Gp1xlgy6JVMmoMHsUpSNmhMZNnVc1JtjFP4jXdAEPGGN2i0ghsENEXjTGRN+z+GdjzN3el6hs\nW77cOYPv6XGmZS5fDt+9qpRNo3Mn0NHTzvnWU4ATE5zjy6Mkf4rlyuwb8MzdGHPWGLM78LgJOASU\n9vJS8bg2lSSKimDBgvBYUyJVMinJm8KonPGhsRMTfMFiRckhpjl3EakEFgJbevnwShHZLSK/FZEq\nD2pTSURTIlWyEhFKR8xkhN8dE3w042OCBzMtA0BgSuZnwP2BM3i3HUC5MaZFRO4Engdm9fY+69at\nCz1eu3Yta9eujbFkZcPq1fCtbzmPN292pmh8ejleJQmf+CgvnMOJxr20d7eGYoKnFy8gNyvfdnkx\nW79+PevXrx/We8hgLj6IiB/4DfA7Y8wTg3j9SWCJMeZy1PNGL3akJmPgrrvgQuCv3aefhvnz7dak\nVLSO7jaOX99Dl3GigXN8eUwvXoDfl225suEREYwxMU19D/bc62ngYF+NXUQmuB4vw/mlofcFpxER\nXRKpkl8wJlg0JnhQSyFXA/8A3C4iuwJLHe8QkXtE5L2Bl71JRPaLyC7gceAtcaxZWeJeEqlRBCpZ\n9RYTfLr5WMYtkRzUtIxnX0ynZVJaUxO8+tXQHTgJ+v3vw3evKpVsLrbVc6blZGg8Lq+USQVTLVY0\ndPGcllGKwsLIJZGaEqmS2djcyYzNnRQaX2yr53IGxQRrc1cxcadE6ry7SmYiwqSCaRS5YoLrW47T\n2JkZlwO1uauYuC+qbt4cnqJRKhmJCOWFs8nPcsUENx3JiJhgbe4qJtOnQ0mJ87ixEfbts1uPUgPx\nSRYVRe6Y4G5qmw7SmeYxwdrcVUxEdNWMSj3ZUTHBnT0d1DQeTOuYYG3uKmbu5q5RBCpVBGOCCcUE\nN6d1TLA2dxWzZcvAHwiuOHo0fNeqUsmuMHsUZVExwQ0tJ9JyDbw2dxWzggJYtCg81iWRKpWMzp0Q\nEQl8uf0sF9vqLVYUH9rc1ZBoFIFKZSV55RExwWdba7jakV5/gmpzV0PinnffvBm60ve6lEpD4Zjg\n4tBzp5uO0tx53WJV3tLmroZk6lSYONF53NwMe/farUepWDkxwXNDkcBOTPBB2rtbLVfmDW3uakii\nl0Tq1IxKRX5fNpWF8/CLEwncbbqoaTxAV0+n5cqGT5u7GjJd767SQSgmOLBEMhwTnNpLJLW5qyG7\n5RbIDuyBcOwYnD9vtx6lhqrAX8SUwuiY4KMpvURSm7sasuglkXr2rlLZyJxxEZHA1zoucq611mJF\nw6PNXQ2LzrurdBIdE3yh7TSX289arGjotLmrYXE39y1boDP1r0OpDNZrTHBzNY2dVyxWNTTa3NWw\nVFTA5MnO45YW2LPHbj1KDZeIMKVwNnlZI0LPnWo6TGtXs8WqYqfNXQ2LpkSqdJQlWVQWVZHtywGC\nMcEHUiomWJu7GjZ3FIGmRKp0ke3LpbKwt5jg1NihRpu7GrZbboEc5wSHEyfgbGpef1LqBnn+EZQX\nzsEdE1zXdDgllkhqc1fDlp8PixeHxzo1o9JJUfZoSkdMD40bO6/Q0HI86Ru8NnflCV0SqdLZmNyJ\njM8rC41TISZYm7vyhLu5b90KHR32alEqHibkV9wQE3yt46LFivqnzV15YsoUKAuc2LS2wu7ddutR\nymu9xQTXNR2huSs5Y4K1uStPiOgGHir9BWOCc7LygEBMcGNyxgRrc1eeWbMm/Fgvqqp0FYwJzhJn\nI+Fu00VNU/LFBGtzV55ZsiS8JPLkSWhosFuPUvGSm5UfGRPc3cappkNJFROszV15JjfXWfMepGfv\nKp2N8BdHxAQ3d11Pqphgbe7KUxpFoDLJyJxxTMyvDI2TKSZYm7vylPuiqi6JVJlgXF4pY3InhsZO\nTPA5ixU5tLkrT02ZAuXlzuO2Nti1y249SsWbiDC5YDpF2aNDzyVDTLA2d+U5vVtVZRonJniOKybY\ncKrpMG0WY4K1uSvP6Xp3lYl6iwmusRgTrM1deW7JEmflDEBtLdQndwSHUp7J9uVSERUTXGspJlib\nu/JcTg4sXRoe69m7yiT5oZhgR6ulmGBt7ioudN5dZTInJnhGaOzEBJ9IaIPX5q7iwt3ct2+H9tTZ\nnUwpT9wYE3yGS+2Ju21bm7uKi8mTobLSedzeDjt2WC1HKSsm5FcwMmdcaHym5WTCYoK1uau4ca+a\n0btVVSYSEcpGzKLAXxR6rq7pCC1djXH/2trcVdy4UyJ13l1lKp/4qCisuiEmuKO7Lb5fN67vrjLa\nwoXO/qoAdXVw6pTdepSyJTomuMt0xj0mWJu7ipvoJZE6NaMyWW5WPhWF4Zjg9u7WuMYEa3NXcaUp\nkUqFjcgupqxwVmjc3HWd+uZjcVkiqc1dxZX7our27U6YmFKZbFTO+IiY4KsdFzjf5v2cpTZ3FVeT\nJsG0ac7jjg5dEqkU3BgTfL61jisexwRrc1dxp0FiSkXqLSb4dHM1TZ1XPfsaAzZ3ESkTkZdE5ICI\n7BOR+/p43ZMickxEdovIQs8qVCkvOoogSXYhU8qq3mKCa5sO0dbd4sn7D+bMvQt4wBgzD1gJfEBE\n5rhfICJ3AtONMTOBe4CnPKlOpYWFC6GgwHlcX69LIpUKCsYE+90xwY0H6OwZ/hZm/oFeYIw5C5wN\nPG4SkUNAKXDY9bI3AM8GXrNFREaKyARjjKeTSK1tHezYc9zLt8w4I4sLmDd7Cj5f4mbksrNh2TJY\nv94ZP/ccrFiRsC+fUrq7uznVUE/phInk5ORYqcHng5tuglGjrHz5jJPty6WysIoTjfvoMd109rRT\n23iQacU3h6KDh2LA5u4mIpXAQmBL1IdKgTrXuD7wnKfN/dKVRj7xuR96+ZYZ6e/+eiUPvO+vE/o1\nV60KN/ef/tT5T93obNNPaO44QG5WKaXF/xcRO5fFxoyBp5+GsrKBX6uGL99fSHnhbGoaDwLQ2t3E\nqaYjVBTORUSG9J6Dbu4iUgj8DLjfGNM0pK8GrFu3LvR47dq1rF27dqhvpYbot3/Ywb3vvpOcnJh+\ntw/LmjXg90NXV8K+ZMrp6rlOc8cBANq762nvrifPP8VKLZcvw/33ww9+AMXFVkrIOEXZYygtmE59\ny3G2bdjF9o27GZ07IbSzU6xkMIvnRcQP/Ab4nTHmiV4+/hTwJ2PMc4HxYeBV0dMyImKGs1j/4uXr\nfPn/PT/kz890+w7V0tjYCsDjX3g3SxfOGOAzvPWnP8ELL2iD78uJ+q3sOhz+/p479dVUTXt1Qmsw\nBrZudZatAixeDN/8pnO3sUqMMy0nudp+noqiqlDgmIhgjInpFH6wzf1Z4KIx5oE+Pn4X8AFjzF+J\nyArgcWPMDbOqw23uani+/tSv+fmvXwHgLX+7hvvec5flipTbRx56hs3bj4TGc2aW8f3H35/wOv74\nR/jEJ8LjO+6ARx6BIc4OqBgZY+gynRFn7ENp7oNZCrka+AfgdhHZJSI7ReQOEblHRN4bKOYF4KSI\nVAPfARL/HakGtPKW2aHHr2w70s8rVaK1tLazY2/kYoHD1fVcvjrkGdAhe/WrnSmZoP/+b3hK178l\njIgMeSrGbTCrZTYCA16yNcbcO+xqVFwtvnkq2Tl+Oju6OHX6Ag1nLzN54hjbZSlg265qOjui5quM\nYevOY9xx+6KE1/OP/winT8PPf+6Mv/99KC2Fu+9OeClqiPQO1QySm5vNkvnTQ+NXth+1WI1y27Dl\nUOhxcVFB6PEmS39hicDHPx55d/EXvuDMx6vUoM09w6y8JZxIt3mHNvdk0NPTw8at4Sb+vne+LvR4\n665j9PTEJxJ2IFlZ8OijMCvwLdPdDR/7GBzXW01Sgjb3DLPC1dy37z5OR/RUgEq4fYdOce16MwBj\nxxTx169dwrixzvrDxsZWDhyp6+/T46qgAB5/HEpKnHFzM9x3H1xMzDagahi0uWeYskljKSt1Nuzt\n6Ohk1/6TlitSG7aEb/Zes3wuPp+PFUvCv4RtT5+VlMATT4QjJM6dgw99CFq8iUBRcaLNPQO5p2Ze\n2a6rZmx72TXfvnqZE9uUbP9GM2fCl7/sRBMAHD4Mn/40WJoxUoOgzT0DRSyJ1IuqVtWevkDd6QsA\n5ObmcMsC54L30kUz8GU5P55Hqxu4dKXRWo1BK1fCv/xLePzyy/DYY5rymay0uWegRTdNJTfXWUd7\nuv4ip89cslxR5trompJZtngGubnZAIwoyGNBVWXoY5uT5Jfw3/4tvPOd4fFPfwo//rG1clQ/tLln\noJwcP0sWTAuNk6VxZCL3Eshbl8+N+Fjk1Ezy/Bu9//3w2teGx9/4hhMtoZKLNvcM5b5gZ2stdaa7\neq2ZvYcC4fYirFo6O+Lj7umzrbuO0d2dHBPcPh+sWwcLFjhjY+DBB2H/fqtlqSja3DOU+6xw574T\ntLd3WqwmM23adgQTuCJ589xyRo8qjPj41IoSSsaPBKC5uY19h2oTXmNfcnLga1+DKYHQyvZ2+PCH\noaHBbl0qTJt7hpo8cQzlZeMB6OzoYuc+XRKZaP1NyYCTMZLMF79HjXKWSI50fv9w5YqzBv76dbt1\nKYc29wy2cqm7cejUTCJ1dHSxZeex0HhNL80dkm9JZLTycvj618ORwDU1zl2sHcPfJU4Nkzb3DKZR\nBPbs2HuCtjanA5aVjqO8bFyvr1uyYDpZfie37/jJs5y/eC1hNQ7WggXw8MPh8Y4d8PnP6xJJ27S5\nZ7AFVZXk5TmnXPUNlzhVr/eUJ8rLmw+GHt+6vO+t1Aryc1l0U2VonKy/hF/zGvjgB8PjF16A737X\nXj1Km3tGc5ZEhlMik7VxpBsnKMwdOTCn39evSOJ5d7d3vAPe+Mbw+N/+DX7zG3v1ZDpt7hlulc67\nJ9yR6gYuXnKuOhYXFXDz3Ip+X7/K1dy37aqmszM5w95EnB2c3DHBjzyiMcG2aHPPcO717rv2nQzN\nA6v4ca+SWbV0NllZ/f8YlpeNY9KE0QC0traz92DyLImMlpUFX/qSk0UDTkzwxz8OJ07YrSsTaXPP\ncBNLRlFZ7uS5dnZ0sWOv/hTG2wbXlMytK3pfJeMmIikzNQMwYoSzRHK8s9KWpiZn275LmnKRUNrc\nVcRaap13j68z565QfeIMAP5sP8sWzxzU5yX7ksho0THBZ844Nzm1ttqtK5Noc1eRjWPbEYyuYYsb\nd3b7kvnTKMjPHdTnLZk/jewcZ8vjmlPnOXv+alzq89KsWc5OTsGY4IMHNSY4kbS5K+ZXVZAfaDJn\nzl3RJZFxtGGLawnkIKZkgvLyclh089TQOFX+wlq1Cj75yfD4z392bnpS8afNXZGd7WfpohmhcbLP\n6aaqpua2iJiH4MYcg+WePkulsLc3vtFZJhn0k59oTHAiaHNXQOSqmc0pMKebijbvOEpPINlx9oxS\nSsaNjOnz3f9GO/ak1v63994Lf/mX4fHXvw7/+7/26skE2twVEDnvvmt/DS2t7RarSU/uJZAD3bjU\nm/LScZROHgtAW1sHew7WeFVa3Pl8TkTB/PnO2Bj41KeceXgVH9rcFQAl40YyrXIiAF2dXezUJZGe\n6urqjpjuunVF1ZDeJ1WnZgByc52Y4LIyZ9ze7my0rTHB8aHNXYVEr5pR3tl9oIamJmcd4ITxo5gx\ndeKQ3sc9NZOK10ZGj4Ynn4TiYmd8+bKzBr7R/haxaUebuwqJXO9+TJdEesg9JbN6+Zw+g8IGsvjm\nqeTkOPus1p2+QP3Zy57Ul0jBmOBs5/8GJ086McGdul+Mp7S5q5Cb55ZTUOAsiTx7/go1p85brig9\nGGPYsNm1MccQp2QAcnOzWTw/vP9tqv6FtXBhZEzw9u0aE+w1be4qxO/PYunC8JLIVFlLnexO1p7n\nzLkrAORHRfgORbJunB2r174WPvCB8Pi3v4Xvfc9ePelGm7uKELk7U+o2jmTysuvGpZW3zCI72z+s\n93P/G+3cm9r7377znfA3fxMef+c7TpNXw6fNXUVwX7DbfUCXRHrh5YgpmcHfldqX0oljmBLY/7aj\nozOl978Vce5gXbEi/Nwjjzi7Oanh0eauIowfW8yMaZMA6O7qZvvu45YrSm0XL1/n0NHTAIjPF/HL\nczhSLUisP36/k0EzIzAj2NUFH/2oc6FVDZ02d3UDTYn0zsat4ca76KZKiosKPHlf9yYr6fBvVFjo\npEiOC2wl29joLJG8nHqLgZKGNnd1gxVLwjG0mzQlclgil0AOf0omKB33v50wwWnw+fnOuKHBucmp\nrc1uXalKm7u6wc1zKxgxIg+ACxevcbJWl0QORWtbB9t2V4fGXsy3B0Xvf5vqUzNBs2ffGBP84IMa\nEzwU2tzVDbKyfCxbFD57T5fGkWjbdlXTGQj3mloxgdKJYzx9/3Sbmglavdq5qSlo/Xp4/HFr5aQs\nbe6qV+myltom95SMl2ftQem8/+2b3wz/9E/h8Y9+BM89Z6+eVKTNXfVqhau57zlYQ3OLTnzGoqen\nh42uvVLXeDjfHpTu+99+8INw++3h8de+5mz2oQZHm7vq1djRRcyaMRmAnu4etu2qHuAzlNuBI3Vc\nvdYMwOhRhcydWRqXr7NqaTg6ON3+wvL5nDXvN9/sjHt6nJjgQ4f6/zzl0Oau+pTqCYQ2uW9cWrN8\nDj5ffH7U3CubNm9Pv5VNwZjg0sDvxrY2ZwXNmTN260oF2txVn9wX7Lbs1JTIWLg3wo7HlEzQDfvf\nnk79JZHRxoyJjAm+dEljggdDm7vq07zZUygqchYdX7h4jeM1Zy1XlBpO1V+kts5ZPpqTkx0Rxua1\n7Gw/y1z7325K05VNFRXw2GPhmOATJ+ATn9CY4P5oc1d98vmil0Tq1MxgbHStklm2eAa5udlx/Xru\ni9/pvP/t4sXw0EPh8dat8KUvaUxwX7S5q36tjGgc2twHwz0lc2scp2SCIpZEpvn+t3fcAe9/f3j8\nq1/B00/bqyeZaXNX/Vq+xL0kspbGwFZxqnfXrrew52CtMxBh1bLYN8KOVcm4kUwPbNvX3dXNjj3p\nHfb2rnfB3XeHx//6r/DCC/bqSVba3FW/xowqZM5MZ0dj09OjKZEDeGX7EUzgXvmb5kxhzKjChHxd\nd9hbuk+fiThLIpctCz/3uc/Bzp32akpG2tzVgNIpXjbe/vxKeGOOREzJBEX/G6X7yia/H77yFZgW\n2HEwGBNcU2O1rKQyYHMXke+LyDkR2dvHx18lIldFZGfgvwe9L1PZtCIqiiDdG8dQdXR0sWXnsdA4\nnksgo7nD3s5fyIywt8JCZ4nk2LHO+Pp1uO8+jQkOGsyZ+w+A1w3wmj8bYxYH/vu8B3WpJFI1qyyU\nQ375SiPHTugdJL3ZsfdEKN+ldPJYKqaMT9jXztSwt4kTnVCxPOf3Gg0N8MAD0J6+15QHbcDmbozZ\nAFwZ4GXiTTkqGfl8PpYvybzGESt3UNia5XMRSeyPRaaGvc2dC1/8YjgmeP9++MxnNCbYqzn3lSKy\nW0R+KyJVHr2nSiKZdMFuKIwxEUFhiZxvD8rksLfbbnPm3INeesmZsslkw9uG3bEDKDfGtIjIncDz\nQJ8bRa5bty70eO3ataxdu9aDElS8LV8801mmYAz7D9dxvbHFsy3j0sHR4w1cuHgNgKKifOZXVSS8\nhmDY29HqhlDY29rVNyW8Dlv+/u/h9GknHhjg3/8dJk92nk8169evZ/369cN6j2E3d2NMk+vx70Tk\n2yIyxhjT62UNd3NXqWPUyBFUzSrj4JE6TE8PW3dV85e3zbddVtJwB4WtWjqHrCw7C9FW3jKbo9UN\ngPMXViY1dwiHiv3pT874scdg0iS49Va7dcUq+sT34Ycfjvk9BvsdKPQxry4iE1yPlwHSV2NXqc19\nJ6TerRrpZffGHBamZIIi7ijekXkrm4IxwfPmOeNgTPDhw/1/XjoazFLIHwGbgFkickpE3iUi94jI\newMveZNuR6/gAAAQRklEQVSI7BeRXcDjwFviWK+yKLpx9GT6FauAs+evUh1YQeTP9kdcfE40d9jb\nxUvXqT6ZeWFveXnwjW84UzIAra3OGf3ZDDsUg1kt83ZjzGRjTK4xptwY8wNjzHeMMd8NfPxbxpib\njDGLjDGrjDFb4l+2smHOzFJGjRwBwJWrTRw9rksiIXKVzOL5UykIRPDa4PP5WL5YbzobMwaeeAKK\nipzxxYtOTHBTU/+fl070DlU1aM6SSG0c0Ta4t9NbZm9KJihTl0RGmzrVmXP3B64sHj/uxAR3ddmt\nK1G0uauYRE/NZLqm5jZ2uvYujcdG2LFaFlzZBOw7dIrrjS2WK7JnyRL47GfD4y1bMicmWJu7ismy\nRTORwN0i+w/Xce165jYOgC07jtLd1Q3ArBmTKRk30nJFTthbcM9W06P73951F9xzT3j8y1/CD35g\nr55E0eauYjKyuIB5s52USIxh665j/X9Cmku2KZkgveks0nveA69/fXj87W/D739vr55E0OauYqYb\nZzu6urrZtC183SEZpmSCdGVTJBH49Kdh6dLwc+vWwa5d1kqKO23uKmbus8LN2zO3cew9WEtTYPOS\n8eNGMnPaJMsVhc2ZWcrIYl3Z5JadHRkT3NkJH/kI1NbarStetLmrmM2aPonRgU0orl1v5vCxessV\n2fGy5aCw/vh8vqioZl3ZBM7SyMcfd5ZKQjgm+MpA0YgpSJu7ipnP58v4qRljDBtckQPJNCUTpCub\nejd5cmRMcH29cwafbjHB2tzVkGT6WWHNqfM0nHVSNvLzc1l001TLFd0oemXT1WvNlitKHlVVTkxw\n8I+tvXudJZPpNMOozV0NybJFM0KN49Cxeq5czaBb/4icklmxZBY5OV4ErHpLVzb177bbnDP2oD/+\nEb75TXv1eE2buxqS4qICbpozxRkYE7G9XCbYsMW1BHL5HIuV9C/i4veOzPo3Goy3vhXe9rbw+Nln\n4ec/t1ePl7S5qyHL1DndS1caOXCkDgDx+Vi1dPYAn2FPdJJnpq5s6s+HPwyvelV4/OUvw8aN9urx\nijZ3NWSRZ4WZ0zg2bTsSun99QVVFUm9aoiubBubzwec/78zDgzPv/slPwpEUv5SkzV0N2cxpkxg7\nxonda2xs5eDR05YrSgz3xhy3rkzuXSV9Pp8GiQ1Cfr4TEzwpcKtCMCb4/Hm7dQ2HNnc1ZCKScRt4\ntLV1RFyYTOb59iD3v5H7jloVaexYJya40PlDhwsXnJjg5hRdZKTNXQ1LpmWYbN9znM4OJzO2sryE\nskljLVc0sKWulU2Hq+u5nGErm2IxbRp89avhmOBjx5wpmlSMCdbmroblloXTw43j2Om0bxzuKZk1\nFrfTi0VxUQHz55Y7A2PYmmErm2K1dCk8+GB4/Mor8OijqRcTrM1dDUtRYT4LqipC4y1pvGqmp6eH\njVtTYwlkNPdNZzo1M7DXvx7e+97w+Pnn4Zln7NUzFNrc1bCtyJALdgeO1IVu1ho9qpB5s6dYrmjw\n3NNnW3cdy5iVTcPxz//sZMEHffOb8OKL9uqJlTZ3NWzu1Rhbdx2juzs9G4f7xqXVy+bg86XOj8+M\nqRMZN7YYcFY2Bdfpq76JwGc+4+zmFLRuHezeba2kmKTOd6dKWtMrJzI+sAORsyQyPRuHeyPsZAwK\n60/0yiadmhmc7GznAmtlpTPu6IAHHoBTp6yWNSja3NWwOY1jZmicjo2jruESNaecRc/ZOX5uWTDd\nckWxy9Q7ioeruBiefDIyJvj+++HqVbt1DUSbu/JExHr3NGwc7gupyxbNJC8vx2I1Q7N00Qx8Wc6P\n/NHqBi5evm65otQxebJzk1NurjOuq3PO4Ds67NbVH23uyhPRjePSlUbLFXlrQ8QSyNRZJeM2oiCP\nBVWVoXEm3HTmpXnz4AtfiIwJfuih5I0J1uauPJHOjeN6Ywu7D9Q4A5GUWd/em8ipGV3vHqu1a52g\nsaA//AG+9S1r5fRLm7vyTLpmmGzadgQTOD2bN3sKYwJBXKkoeklkuq5siqe3vQ3e8pbw+Jln4Be/\nsFdPX7S5K8+ka+NIlez2wZhaUULJeGdlU3NzG/sOpenu0HEk4mzycdtt4ecefRQ2bbJXU2+0uSvP\nTK0oCS2JTJfG0dHRFXGB+NYUnpIBZ2VTpuUBxYPP58y/zw18OwRjgo8m0eHU5q48IyIRG1ekw5zu\nrv0naW11dk6ePHEMleUllisavpUZvv+tV4IxwRMnOuOWluSKCdbmrjzlXhKZDo0jIihsxVwkuFQi\nhS1ZMJ0sfxYAx0+e5fzFa5YrSl3jxjlr4EeMcMbnzzsNvqXFbl2gzV157JaF4cZRfeJMSjcOY0zk\nXakpPiUTVJCfy6KbKkPjdLwvIZGCMcFZzrc9R486UzTd3Xbr0uauPFWQn8vCeZWhcSpvnH3sxBku\nBH45FRXlM9+VfpnqVui8u6eWLYNPfzo83rTJ2YvVZkywNnfluYg53RSOInBPyay8ZTb+wF8k6WCV\nq7lv21VNZ2cK7kaRZO6+G97znvD4F7+AH/7QXj3a3JXn3PPu23ZX09Vl+e/TIdqw1TXfviy1l0BG\nKy8bx6QJowFobW1n78HUX9mUDO65B+68Mzx+8kn4n/+xU4s2d+W5yvISJpY4jaOlpZ19h1IgQi/K\n+YvXOFrdAECWPysisz4diIhOzcRBMCZ48eLwc5/9rBNVkGja3JXn0iEl0j0ls3j+NEYU5FmsJj50\nSWR85OTAY49BReASTTAmuC7BSdja3FVcrIxY7556Z4XpPCUTtGT+NLJznJ2ga06d58y5K5YrSh/B\nmODRzh+wXL3qxARfS+DiMW3uKi6WLJiOP9tpHCdqznLuQpKHX7s0t7SxY8+J0DiVg8L6k5eXw6Kb\np4bGqfhLOJmVljo3OeUE0qFPnXJiCxIVE6zNXcVFfl5O1Frq1FkSuXVnNd2Bi8Azpk1iYskoyxXF\nj0YRxNdNN8HnPx+OCd6929mqLxExwdrcVdxEXrBLnTndl9PwxqW+uFc2bd99nI4OXRLptdtvd+5a\nDXrxRXjqqfh/XW3uKm7cF+y27z6eEmupu7t72LQtnAKZanulxqq8dBylk8cC0N7eEc6tV556+9vh\nzW8Oj59+Gp5/Pr5fU5u7ipvy0si11HtSYC313oO1NDa2AjB+3EhmTZ9suaL4W5mif2GlEhH46Edh\nzZrwc1/8ImzeHL+vqc1dxY2IRK6aSYE5XfeUzOplc9IiKGwgkWFvyf9vlKqyspyGPjvwI9HTAx//\nOFRXx+fraXNXcZVKKZHGmMgUyDSfbw9afPNUcnKyAag7fYH6s5ctV5S+Cgrg8cdhwgRn3NIC990H\nFy54/7W0uau4il5LffZ88i6JrK27QMOZSwDk5+eyZP40yxUlRm5uNksWhP+/pnIeUCoYPx6eeMJp\n9ODEBN9/v/cxwdrcVVyl0lpqd7zvskUzyAn8UsoEOjWTWDNm3BgT/C//4m1M8IDNXUS+LyLnRKTP\ndAQReVJEjonIbhFZ6F15Kh24L9glcxSBe779tpVVFitJPPe1kZ17T9De3mmxmsywfDl86lPh8caN\nTsP3KiZ4MGfuPwBe19cHReROYLoxZiZwD5CAFZzeWb9+ve0SepWMdQ21JvdZ4Y493q6l9uo4Xb7a\nxP7DTviH+HwRv5Bs1eSlgWoqnTiG8rLxAHR0dLJz38kEVJWax8pLb3gDvPvd4fHPfgb/8R/evPeA\nzd0YswHoL3TiDcCzgdduAUaKyARvyou/ZPzmguSsa6g1uddSt7V1sOdgjfWaom3aejh0yrSgqoKR\nxQXWa/LSYGpaYSFILFWPlZfe9z54nev0+fHH4aWXhv++XkwqlgLuvLP6wHPnPHhvlSZWLJnFzxte\nAeAbT/2G0kljPHnfjev30Pzws8N+nxM14W/XNcvTMyhsIKuWzuanz28E4MX1uxMSJObVv5+XbNTU\nkwXd+eHNtd95L7zlzaP46sN3D/k9M+eKkbJq5S2z+fmvneZeW3ee2jpvtoivq7/onHV7aHWGLIGM\ntqCqkry8HNraOmhsbPX8uPYmHv9+w2WrppwR0CWBYLFO+PF/TuBD73UCyIZCzCBm70WkAvi1MWZ+\nLx97CviTMea5wPgw8CpjzA1n7iJicUdBpZRKXcaYmO6oG+yZuwT+682vgA8Az4nICuBqb419KMUp\npZQamgGbu4j8CFgLjBWRU8BDQA5gjDHfNca8ICJ3iUg10Ay8K54FK6WUGtigpmWUUkqlloTdoSoi\nd4jIYRE5KiKfSNTX7Y+I1IjIHhHZJSJbLdVww01iIjJaRF4UkSMi8nsRGZkkdT0kIqdFZGfgvzsS\nWE+ZiLwkIgdEZJ+I3Bd43uqx6qWuDwaet3msckVkS+D7ep+IPBR43tqx6qcma8fJVZsv8LV/FRgn\nw8+fL3CsgjXFfJwScuYuIj7gKPBqoAHYBrzVGGP1MrmInACWGGOsbR4pImuAJuDZ4AVrEfkycMkY\n85XAL8LRxphPJkFdDwGNxpivJ7KWwNeeCEw0xuwWkUJgB849Fu/C4rHqp663YOlYBeoqMMa0iEgW\nsBG4D/g77B6r3mq6E4vHKVDXh4ElQLEx5u4k+fmLrinmn71EnbkvA44ZY2qNMZ3AT3B+AGwTLOfr\n9HGT2BuAZwKPnwH+JqFF0e/Na1YuihtjzhpjdgceNwGHgDIsH6s+6gouXrO2gMAYE4yhysW5tmaw\nf6x6qwksHicRKQPuAr7netrqceqjJojxOCWqsUXf6HSa8A+ATQb4g4hsE5F/tl2MS0lwxZEx5ixQ\nYrket3sDGULfs/HnKoCIVAILgc3AhGQ5Vq66tgSesnasgn/WA2eBPxhjtmH5WPVRE9j9nvoG8DHC\nv2jA/vdUbzVBjMcp01MhVxtjFuP8lvxAYCoiGSXLVe9vA9OMMQtxfkBtTM8UAj8D7g+cKUcfGyvH\nqpe6rB4rY0yPMWYRzl83y0RkHpaPVS81VWHxOInIXwHnAn959XdWnLDj1E9NMR+nRDX3eqDcNS4L\nPGeVMeZM4H8vAP+FM32UDM5JIJ8nMKfrze2cw2SMuWDCF2n+DViayK8vIn6cBvpDY8wvA09bP1a9\n1WX7WAUZY64D64E7SIJjFV2T5eO0Grg7cO3tx8DtIvJD4KzF49RbTc8O5TglqrlvA2aISIWI5ABv\nxbn5yRoRKQicbSEiI4DXAvttlUPkb+lfAe8MPP4/wC+jPyFBIuoKfKMHvZHEH6+ngYPGmCdczyXD\nsbqhLpvHSkTGBf9sF5F84DU41wKsHas+ajps8zgZYz5ljCk3xkzD6UkvGWP+Cfg1lo5THzW9YyjH\nKSHZMsaYbhG5F3gR5xfK940xhwb4tHibAPyXOJEIfuA/jDEvJroI6f0msUeB/xSRdwO1wN8nSV1/\nIU5efw9QgxPxnKh6VgP/AOwLzNsa4FPAl4Gf2jpW/dT1dlvHCpgEPBNYpeYDngvcbLgZe8eqr5qe\ntXic+vIoFr+n+vCVWI+T3sSklFJpKNMvqCqlVFrS5q6UUmlIm7tSSqUhbe5KKZWGtLkrpVQa0uau\nlFJpSJu7UkqlIW3uSimVhv4/pGTCmBzsgnoAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2926,7 +2934,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 15, "metadata": { "collapsed": false }, @@ -2935,7 +2943,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEACAYAAABRQBpkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnWlsZNd15/+nqrgVtyabS5PNJnvfZLllJW4vcmJ6iSw5\nE0uDTBRlEI1txRhgbMMCPAnc8mAg+UPGcYDA8SDjwQR2DDlw7CjxItmxZbUgMY5tWZKjXd3qZrd6\nZTfZzX0naznz4dTVe6+quBSryCqS/x9AsN6rV6/Ou/XeOfeec+65oqoghBCyuQkVWwBCCCHFh8aA\nEEIIjQEhhBAaA0IIIaAxIIQQAhoDQgghKJAxEJF6EfknETkpIq+JyDtEpEFEHheRUyLyUxGp9x1/\nv4j0po6/tRAyEEIIWTmFGhl8BcCPVfUQgCMAXgdwDMATqnoAwJMA7gcAETkM4C4AhwDcDuCrIiIF\nkoMQQsgKyNsYiEgdgN9S1W8AgKrGVXUMwB0AHkod9hCAO1OvPwLgO6njzgPoBXA0XzkIIYSsnEKM\nDHYBGBSRb4jI8yLytyISBdCqqgMAoKr9AFpSx28HcMn3+b7UPkIIIUWiEMYgAuBmAP9HVW8GMAVz\nEaXXuWDdC0IIKVEiBTjHZQCXVPXXqe3vwozBgIi0quqAiGwDcC31fh+AHb7Pd6T2ZSAiNCCEELIC\nVDWnWGzeI4OUK+iSiOxP7foAgNcAPArgY6l9HwXwSOr1owDuFpFyEdkFYC+AZxc5f8n/PfDAA0WX\nYSPISDkpZ6n/rRc5V0IhRgYA8BkA3xKRMgBvAPg4gDCAh0XkXgAXYBlEUNUTIvIwgBMAYgA+qSuV\nnhBCSEEoiDFQ1ZcAvD3LWx9c4PgvAvhiIb6bEEJI/nAGcgHo7u4utghLsh5kBChnoaGchWW9yLkS\npJQ9NCJCDxIhhOSIiEBzDCAXKmZACCGrxs6dO3HhwoVii1FydHV14fz58wU5F0cGhJCSJ9XTLbYY\nJcdC7bKSkQFjBoQQQmgMCCGE0BgQQggBjQEhhBDQGBBCSF7s3LkT0WgUdXV1qK2tRV1dHfr7+4st\nVs4wtZQQsqEZHQWmpoDqamDLlsKfX0TwL//yL3jf+9634nMkk0mEQsXtm3NkQAhZtyQSwOAgcO0a\nEItlvn/+PHD2LNDfb/9Xa6pCenqnquIP/uAP0NbWhsbGRrz//e/H66+//ub799xzDz796U/j9ttv\nR21tLX7+859jbm4On/3sZ9HZ2Ym2tjZ8+tOfxvz8/OoInAUaA0LIuiQWA06cMAV/6RLw6qvA9LT3\n/twcMDQU/MzgIODXr6rA5cvASy/Z569fL5x8v/d7v4ezZ8+iv78fb3nLW3DPPfcE3v/2t7+NL3zh\nC5iYmMA73/lO/Omf/ikuXLiAV199Fb29vTh//jz+/M//vHACLQEnnRFCSp5sk6uuXAGuXg0et2UL\nsGePvZ6aAnyd8Tc5dAiIRu311at2Hj/79gF1dcuXbdeuXRgaGkIkYl737u5ufO973wscMzg4iJaW\nFkxNTaGqqgr33HMPKioq8LWvfQ2AjSSi0ShOnz6NHTtsuZef//znuPfee3H69OkFv7uQk84YMyCE\nrEuyeVD8+6JRoKLCRgiOykrPEADAyEjmOUZGcjMGAPDII48EYgbJZBLHjh3Dd7/7XQwNDUFEICIY\nHBx8U9m7/wDQ39+Pubk5HDlyJHCOtYwj0BgQQtYlW7ZkuoH8AWIRYO9ecyFNT1sAeceO4PFlZcDM\nTHBfeXnusqT3zr/5zW/iscceQ09PD3bs2IGhoSE0NzcHjhPxOu6tra2oqKjAqVOn0NzcnLsABYAx\nA0LIumTLFqCjwxR6OAy0tgLbtgWPqaw0t8+RI2YYKiqC77e1Af7Od3k50NSUv2wTExOoqKhAQ0MD\npqam8PnPfz6g/NMJhUL4xCc+gfvuuw+Dg4MAgMuXL+P48eP5C7NMaAwIIeuW1lbgrW8FbrrJDMMi\n+jYrNTXA4cPA9u1AZ6e9LivL7RzZlPzHP/5xtLW1ob29HTfeeCPe8573LPmZv/qrv0JXVxeOHj2K\nLVu24LbbbsOZM2dyEyYPGEAmhJQ8rFqaHVYtJYQQUlBoDAghhNAYEFIKzM9nT5UkZK1gaikhRSSZ\nBM6ds/o5gOW379kTzHAhZC3gLUdIEbl2zTMEADA+bnV0CFlrCmIMROS8iLwkIi+IyLOpfQ0i8riI\nnBKRn4pIve/4+0WkV0ROisithZCBkPXI5OTy9hGy2hTKTZQE0K2q/sndxwA8oap/KSKfA3A/gGMi\nchjAXQAOAegA8ISI7GMOKdmMRKPA2FjmPhKkq6tr0Ulbm5Wurq6CnatQxkCQOcq4A8B7U68fAtAD\nMxAfAfAdVY0DOC8ivQCOAnimQLIQsm5obTXX0NSUbVdVZc6iJcD58+eLLcKGp1DGQAEcF5EEgP+n\nql8D0KqqAwCgqv0i0pI6djuAp32f7UvtI2TTEQ4DBw+aMVC1GbGEFINCGYNbVPWqiDQDeFxETsEM\nhJ8VuYEefPDBN193d3eju7t7pTISUrJUVxdbArKe6enpQU9PT17nKHg5ChF5AMAkgE/A4ggDIrIN\nwFOqekhEjgFQVf1S6vjHADygqhluIpajIISQ3ClKOQoRiYpITep1NYBbAbwC4FEAH0sd9lEAj6Re\nPwrgbhEpF5FdAPYCeDZfOQghhKycQriJWgF8X0Q0db5vqerjIvJrAA+LyL0ALsAyiKCqJ0TkYQAn\nAMQAfJLdf0IIKS6sWkoIIRsMVi0lhBCyImgMCCGE0BgQQgihMSCEEAIaA0IIIaAxIIQQAhoDQggh\noDEghBACGgNCCCGgMSCEEAIaA0IIIaAxIIQQAhoDQgghoDEghBACGgNCCCGgMSCEEAIaA0IIIaAx\nIIQQAhoDQgghoDEghBACGgNCCCGgMSCEEAIaA0IIISigMRCRkIg8LyKPprYbRORxETklIj8VkXrf\nsfeLSK+InBSRWwslAyGEkJVRyJHBfQBO+LaPAXhCVQ8AeBLA/QAgIocB3AXgEIDbAXxVRKSAchBC\nCMmRghgDEekA8GEAX/PtvgPAQ6nXDwG4M/X6IwC+o6pxVT0PoBfA0ULIQQghZGUUamTwZQB/BkB9\n+1pVdQAAVLUfQEtq/3YAl3zH9aX2EUIIKRKRfE8gIr8LYEBVXxSR7kUO1UXeW5AHH3zwzdfd3d3o\n7l7sKwghZPPR09ODnp6evM4hqivS0d4JRP4XgD8GEAdQBaAWwPcB/CaAblUdEJFtAJ5S1UMicgyA\nquqXUp9/DMADqvpMlnNrvvIRQshmQ0SgqjnFYvN2E6nq51W1U1V3A7gbwJOqeg+AHwL4WOqwjwJ4\nJPX6UQB3i0i5iOwCsBfAs/nKQQghZOXk7SZahL8A8LCI3AvgAiyDCKp6QkQehmUexQB8kt1/Qggp\nLnm7iVYTuokIISR3iuImIoQQsv6hMSCEEEJjQAghhMaAEEIIaAwIIYSAxoAQQghoDAghhIDGgBBC\nCGgMCCGEgMaAEEIIaAwIIYSAxoAQQghoDAghhIDGgBBCCGgMCCGEgMaAEEIIaAwIIYSAxoAQQgho\nDAghhIDGgBBCCGgMCCGEgMaAEEIIaAwIIYSgAMZARCpE5BkReUFEXhGRB1L7G0TkcRE5JSI/FZF6\n32fuF5FeETkpIrfmKwMhhJD8EFXN/yQiUVWdFpEwgF8A+AyA3wcwpKp/KSKfA9CgqsdE5DCAbwF4\nO4AOAE8A2KdZBBGRbLsJIYQsgohAVSWXzxTETaSq06mXFQAiABTAHQAeSu1/CMCdqdcfAfAdVY2r\n6nkAvQCOFkIOQgghK6MgxkBEQiLyAoB+AMdV9TkArao6AACq2g+gJXX4dgCXfB/vS+0jhBBSJCKF\nOImqJgG8TUTqAHxfRG6AjQ4Ch63k3A8++OCbr7u7u9Hd3b1CKQkhZGPS09ODnp6evM5RkJhB4IQi\n/xPANIBPAOhW1QER2QbgKVU9JCLHAKiqfil1/GMAHlDVZ7KcizEDQgjJkaLEDESkyWUKiUgVgN8B\ncBLAowA+ljrsowAeSb1+FMDdIlIuIrsA7AXwbL5yEEIIWTmFcBO1AXhIREIw4/KPqvpjEfkVgIdF\n5F4AFwDcBQCqekJEHgZwAkAMwCfZ/SeEkOJScDdRIaGbiBBCcqdoqaWEEELWNzQGhBBCaAwIIYTQ\nGBBCCEGBJp0RshTz88DoKBAKAQ0NQDi89GfGx4HpaaCmxv7SGR0FRkaASARoaQHicWBw0N5ragKq\nqwt7DYRsZJhNRFadyUmgtxdIJm27ogI4eNCU+EKcPw8MDXnbbW1Ae7u3ff06cPGitz0/bwbGGRkR\nYP/+7EaEkI0Os4lISXL1qmcIAGBuzuvBZ2N2NmgIAKC/H0gkvO2BgeD7167ZSMGhagaDELI8aAzI\nqjM/v7x9i72nam4g/3a2YxbbJoQsDI0BWXW2bFnePkdNTaYLqarK3EuOpqbg+w0NQF1dcF/6MYSQ\nhWHMgKw6qsClS8DwsAWQt22zgO9iTE3ZZ1wAuasraAwAcwMNDwNlZUBrKxCLea6h5ubFDQ4pDYaG\nvCSA1lYz+iR/VhIzoDEghBSFgQHg8mVvOxwGDh8GysuLJ9NGgQFkQsi6IT3An0jYSI8UBxoDQggh\nNAaEkOLQ3BzcDoeBxsbiyEI4A5kQUiRaWy347w8gM15QPBhAJmtCMgmMjVnvLz0FlOTO/LzN7K6q\nWnkGztSUTQCsrTWlTDYOKwkgc2RAVp2ZGeD0aW/SWDQKHDhgaaYkdwYHgQsXvO3WVqCjI7dznDvn\nBWtFgN27mYq72eHjSFadK1eCs4enpxcvR0EWJpkMpmMClqI5N7f8c0xOBrN23DwQsrmhMSCrzuzs\n8vaRpYnFgjWaHLm0Z7Zj5+eD9aPI5oPGgKw62WIEtbVrL8dGoKIicyZ2KJRbue5sbV9dTbfdZoc/\nP1kR8bi5e5YT329v9/zRrhxFQ8PqyldIZmcXL6y31uzeDVRW2uuyMmDXrsXLgadTUWHlPdxnolE7\nRzJpvylHCJsTZhORnOnvtziAqqUC7t69vJ5pImHByvXSA43HgTNnLOsGMAO2a5ddQykQj1t21krl\nUbXfJBKx9M4LF2w7HDZjsZ4MNgnCchRk1ZmZAfr6vBHB/Hwws2UxwuH1YwgAM3jOEACmMEsp8B2J\n5GeYROwcyaRnCAD7f/589tgE2bjk/WiKSIeIPCkir4nIKyLymdT+BhF5XEROichPRaTe95n7RaRX\nRE6KyK35ykDWDr9ydMzMbEzXQrZrzbZvvTMzk6n4k0kG+TcbheinxQF8VlVvAPAuAJ8SkYMAjgF4\nQlUPAHgSwP0AICKHAdwF4BCA2wF8VaRUBt5kKaLRzH2Vleurx79csl1rtn3rnWy/XyjkxSXI5iDv\nR1hV+1X1xdTrSQAnAXQAuAPAQ6nDHgJwZ+r1RwB8R1XjqnoeQC+Ao/nKQdaGaNQCwI5IxPzLG5H2\n9uDs3rq6jblgTjgMdHZ6BiEUAnbs8NaTJpuDgs5AFpGdAG4C8CsArao6AJjBEBG3nMl2AE/7PtaX\n2kfWCdu3W5Gx+XkzDhtxVABYps7hw+YaCoU29sIrW7cC9fXmMqqqyi07iWwMCvaTi0gNgH8GcJ+q\nTopIehrQitKCHnzwwTdfd3d3o7u7e6UikgJSXr55iorlksO/nolEOP9jvdLT04Oenp68zlGQ1FIR\niQD4EYCfqOpXUvtOAuhW1QER2QbgKVU9JCLHAKiqfil13GMAHlDVZ7Kcl6mlhBCSI8VMLf07ACec\nIUjxKICPpV5/FMAjvv13i0i5iOwCsBfAswWSgxBCyArIe2QgIrcA+BmAV2CuIAXweZiCfxjADgAX\nANylqqOpz9wP4E8AxGBupccXODdHBoQQkiMrGRlwBjIhhGwwOAOZEELIiqAxIIQQQmNACCGExoCQ\nvJmcBIaGbOGZjUwiYSukjY0tr3Q5WV9wniEheXD2LDA6aq9FgD17bCbvRiPbOtb797NkxUaCIwNC\nVsjYmGcIgI29lnBfH9ex3ujQGBCyQrItQp/LwvTric10rZsVuolWmVjMW0SE5M/8vLXlcovjJRJW\nm7+srPCyZFvbOdu+YjA6aj13EaClJf+aQ3V1mesblMq15svcnK3eNz9vLr6WlqU/sxGhilolEgng\n3DlzJYhYVcjOztJZMnG9MT0NvPGGPbjhsJVY3rp18c/09QEDA+a+qamx5TkLaRQqK618t3Oh1NSU\nRjnv0VGLZTjGxsy/X1Oz8nO2t1vHZmTEDHFrq7eu9XomkQBef91zgY2Pm1Ho6CiuXMWAxmCVuHrV\nHkLAlNHgoFW/3Ij18NeCc+c8t0QiYcs01tYuXDl1bMx6e47JSeDyZVvDuJA0NZlRSiZLJ5h6/Xpw\n291/+RiDcNiMaTJpHZqN0qkZGTHlPz5uxq6mxtqPxoAUjImJ7PtoDHInFst0UajaOgMLGYOF2n81\nECkdQ7AQhVLeG23tClXrWLj7a3DQ1uvYjGywn7Z0yLYQykZeHGU1iUSyu3cWW5ZxM7d/us9bhJ2Q\nhRAJZkkBmdubBRqDVaK9Pdhrra621cFI7ohYjMDfu21tXVy5NzYGA5yRSGkP/VXNBbPQdi7U1wP7\n9gENDdYOBw5sngV6ciWZBHbutLaqrQXa2paORW1UWLV0FVE110QolJ+/lhjxuPn+KyuXv1j71JR9\nrra2NF0cqhbLGBy011u32rVdvWqxkfp6U1a5ZqNNTHjZRM3Ndu3Xrtk5Gxs3RvC3EMzPA6++GpxR\n3dhY+NjSWsMS1oSsM65fBy5e9Lanp+3P79bJVTmNjQFnznjbsZj1gCsqvH07d27eHnA64+PAlSte\namlHR+nHgJZiJcaAAWRCisj4eHB7airTGKQfsxTp2UQjIzYiaGvz9l27RmPgqKvbOHMm8qEEB86E\nbB78vXXAAuXpGVLpxyxF+mBalYXlyNJwZECWhQtorvfhc6nR2mqTxNwciqYm8+/PzXkzp3NNdWxu\nDo4mGhpsZOCH2UUkHcYMyJJcuWIzeZNJCzzu3EmjUEiSSW+CYn29uXl6e80gtLdbZlCuAeT0chSh\nkP2GiYS5hxobC38dpHRgAJkUnPTSBoD1PDs7iyPPRmdyEjh1KrivocFm/xKyXBhAJgUnW/Ay14Dm\napBMWk2gkRHrNbe1mdJca8bHTQ6XibJjR36jpmxtu9yZ07Oz1hYsikhWAm8bsijZ8vmXk+M/OWmu\nj4oKc0kUOse/r88yYgBLnXzjDeDQIVt0Za2Yn7cUTjd4HRoyI5VPLz5b2y4VQJ6bs9HbzIy5hVpb\nN29JBbJyaAzIojQ1mZKbnrbtcNj82Itx7VpwkZfBQZsFW8jiZiMjmftGR1ffGExO2vUlk9mzdPyL\n3ayEhgZrLzcaCIWWnjl98aIZAsDk6e+3VMl8y1aTzUVBjIGIfB3AfwAwoKpvTe1rAPCPALoAnAdw\nl6qOpd67H8C9AOIA7lPVxwshByk8oRBw8KC5L9yM2KXcIFevBrenpmyUUMhZr2VlmWsOr8aaBX6m\np23pR2cAxse9oLojXxeNiJWbHh+3mdN1dUufc3Iy+z4aA5ILhRq8fwPAh9L2HQPwhKoeAPAkgPsB\nQEQOA7gLwCEAtwP4qshGKYi7MRExI9DYuLQhUM1MYwQKX/yrrS040qisXP0MmaGh4EigtjZzta+l\nRk3Lpa7Ormc5xiXbaGgt3WVkY1AQY6CqPweQPnC/A8BDqdcPAbgz9fojAL6jqnFVPQ+gF8DRQshB\nio9I5gggFCr8IvFbtliMoL3dMpsOHlz7dFcRKxPR1WXG6eDB4uTv79gRNBqNjYVvb7LxWc2YQYuq\nDgCAqvaLiCusux3A077j+lL7yAahq8sUswsgt7evjgunqmpty1I3NdmcCzdCqK+3YHExspj8RKPA\njTeaa6i8fPlF/NYD8/M27yIeNyNH19fqsZYB5BVNGHjwwQfffN3d3Y3u7u4CiUNWi3B46eUfR0a8\nJSm3bl0f686GQhYjcOsqJxLLy5KanLQYQGWlGY50p2gsBgwP2+uGhoUX7FlKto1WXycWA06e9FyM\ng4M2EuOEuUx6enrQ09OT1zkKNulMRLoA/NAXQD4JoFtVB0RkG4CnVPWQiBwDoKr6pdRxjwF4QFWf\nyXJOTjpbJ8zMWKC4unrp3vr4uM2w9dPVVfolEi5ftkydyUkzBjU15q7av3/hz1y7ZmmvblW21tbg\n8XNzwTV4w2HLvNosC/EsRn+/pRD7qaoCDh8ujjzriWJPOpPUn+NRAB8D8CUAHwXwiG//t0TkyzD3\n0F4AzxZQDrLGXL1q7hNHW9vigVTXC/YzNJS/MXDrRwDmTih0WkIsFlyLORy2uMVi8pw8aUbE9WlG\nRoBt27xe/MCAnc8v98CAlfzIhUTCzlFWtnEWssmWiLCSBX9UrQMSCtHNtBiFSi39BwDdALaKyEUA\nDwD4CwD/JCL3ArgAyyCCqp4QkYcBnAAQA/BJdv/XL/F4Zippf7+VrEiPE8zMmALNFujNN/gbi1na\np1vLtrLSetiFnI2bTAazhxKJzPRWP4mEtY3/7h4ft7kIzhhMTZmBcee5dm15yjwWs89WVdnrM2ds\nOxIxo7p79/pftL6x0XMlOnItuz03Z/fF/LxtV1dbradCJxuo2ohRdXU6ImtBQR4VVf3PC7z1wQWO\n/yKALxbiu0lxmZvLXjJ5ft4zBk5ZuYlr1dWe/x3wZs36SSRMMc7MmDumuXnxB6y/3zMEgL3u7w9O\n2JqctF767Kw9sJ2duQW2IxHL3PEHkLMpbnf94bAF0P1ptSLBGcXxeNCgJBKZ6arpDA3ZIu6u3YeH\n7S8Ws/MPDprSLMXVzBIJM1qVldljI1NTJj9gRq29HXjtNWtPl7WVfj7nuotG7X1/B8AtWpN+/vT7\nLR/icTM4buJfZaXJOjJi7zU0lOZvkQ5nIJO8iEYzJ4BFIsE8974+zxAA9kBu22avXQA53Ufe22vH\nAfZQTU0tvtqX3xBk2xeP2zmdARodNUWymL8/nbo6M0z+JUzTUzhHR01Rx+PWLm1t1rudmjIj0Noa\nzD6KRi147mZUb9my+BKpyaTN7vYb4JdesjYsK7P9IyNmSEtNAY2NWfzE/Qbp7sSJCfuN3LVdvRqc\n1DczY23pV+Rnz3outslJe+2PKWS7L5zSXi7JpMnikgDa2oIZWwMDwXNOTgK/+IXn9hweto5Hqa+B\nzsVtSF6ImEvCPRyVlcCePcFevFPqfuJxq5/T0ZFpCKamMj/jer4Lkc0X7N/nZgv7mZjI7pdeiIYG\nUwShkF1fY2Owp5pImMvHjQRiMRsd7N9vLqt9+4Abbgj2iOvrTZHv3Wt/TU1mdJxC9/dq3TkTCa8s\nxtiYyZLeNqW23rOqGUn/b3D1alBZX78eNHKuDLcf/7Y/1uJwiQyObIY117jBhQs2+pietvvw9Ong\ndaQbl7GxzPt3YCC37ywGHBmQvKmpMSWXSGT3xUajmT20xfziC0WQ3AI72RRdSwvwwgvmUhAB3vIW\n4OabvfezuYPC4dyVZnu7GQDVzM9OT2canFDIXAaVldm/q6nJlJorutfYaArHKZjLl81IuBhDebm9\n71cuZWVmVJybqKmp9FJ1091hjpkZryOR3nYimfeCv5OxkNvQv7+93drXGc2mptziDslkZh2sWMzO\n50Z4tbXeehSAyZx+f6+HqCiNASkYCwXltm83RekMwpYtiz+Q1dWmIPwGpKIimKLZ2Rl00Zw9awrS\nKf2rV+34PXtsu7bWFKq/RHR6SYvlIpL9c5WVmQosFDLZFzM627d7VUYHB4O9X1VzszljkEzaSMq5\n5tzIo7HRM1AtLaUx58C5rFzcp6IiGA8RCSrNpqagUs0Wk/EbufJyu5f8xQFraoIuynDYjGk8bt+3\nksBxNqPk/z1bWrxRA2DGP31kUOpp0wAXtyFryNSUPYzLmSEbi5lCn562B3xkJOgyCYVs1q0LFv74\nxzYycL3LUAj4jd8AbrvN+4yqKY7ZWVOWq5GCOTBgvXnAlEhnZ26K4MqVzOysSAQ4csRez88Dr7xi\nr2Mxe0/EFF4kkn0N5WJx9mymop6bM7ldNdZ0P/roqLmLAFOyFRU2anIzkNPjIMmkHe8CyC0thc8U\nunw5OBKrqrKU4vQOgXMPRiJ23/b327U2NKz9SK3Y8wzIJiYWswfABZSzkYvyLSvzVlOLxTJ9rsmk\n+YvdUH1qKuhmSCYze2ciq186wgWIp6ftenMtw7FlS6Yx8I+AysvtvFNT3rnLymzkU+g4gYtNVFTk\nXuJiejqznPfUlBnweNyuI5vS3rIlU+Evtqqeqp0vkbC/1eg7uriWCyAvlNnmz2KKRtff6nQ0BiRv\nrl/3MlxcmujsrFebqKMjv8JpbvWu2VlTMq7+jj9Fc9euYGAvHM594tZyuHbNWw9661Zz76QrhvLy\nlffOo1GT+8oVr1e5Y0fwmD17rL0nJ01JdXSYYRwZse/NNscjVyYmrGfvAuy5LnWarUqti/kUcnb1\nG294rr+JCftbbCLgStm6Nfc5DusNGgOSF4lEcIatKvDrX1vqqFPgZ89aQHelClLElOSrr3rfs3t3\n0De8axfw27/tLaqzY8fiqagrYWwsuGjPwIAZnfTcdz+qdpzrVW7bltkOo6Om1Nx1LKV4ysqCvc5s\niwndcEN+7pKLF4OZVtevm5tmsbTXRMK+OxYzN1x6ynE0uvSqbcshHjd3UzicuUzo9LRXFoXkBo0B\nyYvZ2aB7xpWE8NfiVzVFutI8a1V7yN2qazU1pmhmZrxe5tat1nOdmzPj0dVV+IJm2VYxGx1d3Bhc\nvOgFhCcmrB1uuMFz6QwPA8ePe0rz9GngAx/Ira3SXWiu8F0+7b1Qfv5CxiCZtBpL7nMDA+Ynn531\nPrfUim3Lob/fRk1ulTnnjvOzHmf/lgI0BiQvnDJ2E2+qqrIHifMJasbjllHjsjXGx03h7d3rff/U\nlL3vYgKu1lEhF3nJ5npZzB2TTJocfubng2mJr78e7D3H48CJE8B737t8ubLV68m1hk88borW9arL\nyzPnOCwLtUb7AAAZMUlEQVQ2KhgezjQgo6MWIygUs7PBwnUi5irzG4Pqai7ss1JoDNYY16MptUlB\nKyUU8nr+iYQpkKam4PXV1uYXMwiHvWCwm2cwOxsMFrp1iR3JpO0rZNygudmUu1OSodDio4KF8Pdc\n0xUusPjkumxs3RocHYRCuQfKXW0jwBSsM+izs3a+9vbFff3ZJu/lMqFvOWSbvNjcbDGquTmTr5Bl\nJjYbNAZrSF+fKShVy5jYudN6ZPPz1qNZj8PbmRkvhXJiwhR/ZaX5vmMx8xHnu+qWC9a++KI3z+DQ\noaDBWQtlVFZmpQ6Gh02mpdYeCIXMMLpUSSCzPbq67L7wG7al1oJIZ/t2c8mNjHglMMrLzYUiYkrS\nTZ5KJOze88udPmsXsOMOHLBriESWjj9s2ZJ5HY2Ndk84N1G+PfZscQAXQCf5Q2OwRoyM2DDcvz00\n5Cm0SMTcHust8OUKozmFNzhovbXDhwvns49ErOfX0uItKDM9Heypbt0anLDk9hWacDg3X/yOHWYc\nXQC5tTVo9HfutGs7c8YU6e7ddh/kgogFpl29p3jcSme7elBVVcEZwH19VhrDuX0Wm8m73IBvRYWd\n02VBbdniVZJ1bN/uybgSKivtHC5mEInkbjjJwtAYrBHZsh76+72skHjcgo3paXHxuPWuKiuXl5K3\n1pNdIpHM2izT0/mXjnaTzmZmTNE0NHhzByoqrMc9Pe0pq4YGUwz+CUulUKhNxGRJ/x1mZ82wlJXZ\n2skHDhTOfegm6zlcppGb/OYKr+3bZ9uVlZmzs+vqcp9bUFtr1wHY9b30knUOZmdtVKBqhjSfLKdt\n27wSHtHo+hxNlyo0BqvI8LA9DM6v7md2NtPFMD5uRbGmpqzXVllprpGJCTv24EHvAc7G/Lwd79aM\nrauzlM70Ymr9/XbOqirPpbAY/phAfX1Q0c/NWW/NBRArK21EMDe3eHDVndOVgk5Xgv61CSYmzL22\nfXuw/lF6r7WpKXO27/i4tUV9fWFmpk5PW/smEjbyyNUF5i/n7WrldHYuXOIiG4mE9Y79v+HYmN1r\nFRWZxdvi8cy8//RYxZ491sYugJxvJ2Juzu5l9z0zM7bvxhvz/x3cvBNSWNikq8TQkOXFDw97AT1/\nT6a2NtOHOjBgD/XMjL137px3zMwM8O//bj2jsjKvVwnYA+fy2U+d8hS3i0P4jcG5c547ZWrKFMcN\nNyysiBIJU8yup+lq4Ti5olEzJn4lnF7COp143OQcHvbiJwcOeMp9cjKYmSJi13r6tMlTVmYjqPTv\nSCSs3d1M47NnvWqlzo0RjXrlpReTLxz22mR+3n7DWMzkdoHqkREb2dXW2nsLjdyGhuyvutra0bWl\nqhmW2trMgG8yaX/ZlJ5/otXMjLXLxIQX7A2FLGbjPuvKQPjZssWbvVtWZp9Jd+G4zkx1tbm3Jidt\nRBGJZK82m60dAc+Az89bm7r2VbVRy/Xrdg91dBRvfeO5OS92t1GSO3KFxmCV6O21yVeuB1hbC9x6\nq2VluB72wIDnYw2FTDm7h3xkxPy+N97o9dzn5oBf/tJTvI2NpjBc/vulS15dHMBz17hiYZWVmX51\nVwZ4ocJmQ0NBl0Mi4fmcAbu2PXuA8+ftXBUV5q7J9kA5pXr1KvCjH9lnADNWf/iHnoshm2GanDT/\nu/sO19t1Cm92FnjqKS/9NBIxZTUx4VWRdDnp8bi9t2tXUKHNz1ubDwx4pbhPnbLfyP2Gra2egamr\nM4NfXW3fUVFhn/Gf88wZq5nkJknFYhZPicetLcJhuza/Mejv92r519aanP6FgtJdjidPmpGLRu0z\nsViwVMf27d5ymm5EU1YGvPyyyRGN2nf43ULnzlnnwxmY6mprH2dUTp8G3v/+hQ1COGzff+KEtbtz\nIbkF7svK7P/5894zcvUq8Fu/lXug2S0mVF6+MrfRxYueezESsd9wsTTajQqNwSpx9mywBzg+bj06\np8BjMXuwLl70lJRbAQqwBzCRCKZLDg0Fe/mnTwdXDBsfN8Xiv5EHB73ZrfG4GY50V0o2xe3cWtlW\n3UrfV1Nj7ii/cvYTj5sMExP2sD7zjGcIAFMCTz3lGYPqaq893OfLy03xOOXjJrc5hffqq8Gc/vPn\nTUG4WchjY2Yo3/1u256ZMYXX0eEVOTtzxvL+HU8/bQo/kTC5+/rMyFdW2ve79YZ37rTfMxo118jB\ng/b5ZNL85q69EglTyO56RKyHvn27yeJGSf5c+okJM/IutuTcSX6348xMsEZ/OGy9/L17g0FgV+a6\nrMxKfTump629nNyqJrcbnSWTwK9+ZXK6OMzIiDezPBtVVSaXP9Xz0iXP/RSL2QIwzn3nRkmXL+e2\n4ND4uMnuivZ1deUWK5qYCGZ7udidf4GczQKNQQGYnQWefdaUWnU1cNNNmf7sZNJ6mK7n3ttrf2Vl\n9t7wsCmSujpTHpWV3qQqF1jcujU4jB4ft16kU4hjY6YUams9xezvuUUitt+/JkA0GjQebujuFGu2\nIOJCfvKF/Lh9fdY2V67Yg3/unBdfcKSPWPbt85a9rK629kxPFfW38ciInf/KFU8WvysofV4CYEpk\nYsKT++mngz30y5dNXpeVNDhoBsplsLjYjotLVFfbb+aUaiKRORHLGbGtW711c48f93q0s7OeMnSu\nPv9IIBKxz/rLXHd2Bq8tEjEl7NpX1QzwG294WTgdHcH2d4X+XHwrPdV0bs6Mhl/RZsv7d0xO2neM\njHjxMX8PHrDXs7PBDLpsM58XQjW4mFA8bttvfevy4xLZVj3LdSW0jQKNQQH4xS9MCY2O2gPT22sl\nh7dts4fC9fL9Qblr16wHEol4Pu3hYa+mT0WFuUXe/W578Gtq7FyTk945ZmaCCri21vPXz89n90W3\ntpqranbWDEV6oHBgINhTmp42peFW2HJKdnDQHsa6uuzph3NzpsTcOgT/9m92rlDIc+W4Hq5z2fhJ\nr/kTDpuxdLjZxc4VNjVlvVe3EEk0CrzjHd7IqaHB2sS5syorrf22brX/Li/fGZ1w2KuEOTLizXZ1\npa+dP9+/TOPYmH3fnj3eaK+mxnOFuFm973iHV1v/7Fk7vzM4sZi5Al3ufCjkGRdHZ6ed2xWq27fP\nEgdGR00mN9Hu9dfte6anbdTjmJiw9266ydtXXu51EEIhy/pxC+4AJl91tX1HOGz3VvqEO5cUEItZ\n+4bD3ijUjY7992trazCwXVERXAZzKWZnMwPjsZhdWyJh1+RcZAuRLZV7M7qIABqDvHFpesPDXq38\nSMQUalubKQL3UPgfHud2cD0mwFPkiYT9b2y0/859MjdnriGXobF9u9fzAjw3iguS1tRk9pBqahZ/\n4NJ76IC37uupU3beZ57xen41NabI/SOWkRFzMwwNmTzPPms9Nv8kKLfcI2C9zQ98IHvbzs97qaQ1\nNWaE6uut3V57zbv2l1+2tnbyu9HL/v12HmdMnOtubMxe//KXJmd9vR13/Lgpy7IyMyCu5y/iue1O\nnLDXrq0doZB9h2ufyUn77NSUHRsKWTuNjXkTxK5dy1RIfX1mlGMxu+50t0ksZveaCxrX1AC33GLf\nVVZm98lzz9l3uBiNiym433NoyH6T+Xnv836OHrXfzbXF+94H/OxnJpeIBfD995Gq3Zuus+J+Z9fL\nFjHjMzXl3e9vf7vJfPmyHbt7d25zQ5wB87tSXU2kSMTaqbc3e5HEWMyLJbW3Wxu5uE8u1Vk3EjQG\neRIK2Y2WvkLVlSumYFymhlNszm1TVmYPpXN9JJOmnMrKPMU6MBDsSVVU2I3tFomZnbVet3OBTE/b\nfv9QPpGwh935lZe60Ssq7IF2K0MB5jY6dcoeWrf+bzJp+44csf3RqF1/Y6P10J9/3uSMRKzXOj7u\nuWSam23Rma4uU1y33GLv/exndi3bt5vMTz/txUmOHDEDc/q0jZ527rTvHB629n/5ZbtW5/oQMUXb\n2GhyuIli166Zkty5E/jWt7y1lcvK7LvcSCkU8lI1Z2ftfOXlXvzFlRXZscOOcbNsL12y1/399rnB\nQXNbANbD7++363AyumQCx9iYtW1NjRerePFFM0zuNxwf9zoEU1PW67/xRm8U+Morpuhdiun0tP2m\nbsTgAuhtbXaeaDQ4OgHsHnr/++0cFRWWDNHe7q3RUFVloxrXURkZCY5aXfscPuwtUFRRYd/nUmKT\nSeDJJ63jFImY4cslABwOW/tfvOgZmMrK4DPjFjRyv6tbi9m5QWtrzQi1tHgjmkIwPm4GJh731s4u\n9TkRNAYF4MYbrYfpqKnxyk74A2bxuN1syaQpp9/8TVNGbgKN83c7nMvC7/sW8YaxVVX2MLjhfF1d\nZl2bykrvgV0OLS3W43auEZeqeP26NwoZHfUevtFRU7gvveQFN3/1q+Dw/cKFoN97ctKOcYbwu98N\nGp++PlOArvf22mumuN0C9iKmQP1ujuvXg26zmRlTzO53SSZNBudGeuUVb9Tmair19VmbuvYdHPRS\nHkXsfLGYKZDJSZPt1VftnC4bq7HRjvGnUSaTnmupv9/a2LmJysq8DoObczE357lskklT9m97m9d2\nV68GjbqbmOiMSl9fsGPifkc/+/fbveGUnzNC/uMiEc/AXLtm53W/6+SkfYe7t7LVWHKdH3/cqrzc\nMzpPPmm/iRsZnTplSjOX8hJNTXbdbkZ6euE/IPj8uDRfx8SEteeOHYVbIW121ptRDniZYaVeNqNo\nxkBEbgPw1wBCAL6uql8qliz5cugQ8J732M3sVkI6eTIzlz0SsZx+wB6CwUFPecXj1hvbscMLrtbU\nLJ3z7J/dOj9vitM/bM517dXRUZPfred79aopu6oq+x+LmRLt7LRjpqbsWp2bJ5GwHqOrlwN4gUY3\nqpibCxq+ixftGOcOuX7dzunWL56dtZ5pZ6fnVjtxwpt1DJhCqa31DJLL1HFMTdnowS0UMz9v19rZ\n6bVxIhFUJK4uv8uIuXzZrqmmxguylpXZ++GwXXN/v3ed7vdxMRVX4yd95uyBAzbiU7W2PX48qJz9\nPXZXiiM9c8vvBnGZSk4ZhcPAO99p956bD+HP5nKyLXavJZNBAz8zE7y/6+uDWVBu32L4DZajvz93\npVlW5n1Xe3swtlRVFbwP/KMXR/okvXwZGclMVhgepjHIioiEAPwNgA8AuALgORF5RFVfX/yTpcuR\nI6ZEnY81FMpc/NvvY62rs4fTDSX9hepczzS9oNhSlJebYsmnHMXERNDVdP26t2ZwU5Pd1C6IWlvr\nBVKdchIJKq9w2JvI4953uev+tvFncKSXX3bB6/SF5v3te/CgV7IC8Go9OVxwuLnZq53j1hJ2MnR2\nej18t33woPd7Hj4czF5JJOw3bW72Jm25/4mEfefOnV5gf98+U04nT3rXUlZmSsL9zm5ugxt9xePB\n9EwXf/Ibk4aGYO979277nVz8pKHBrsV/nqGhoBJcKnC7e7fdVy5+0toavLeqquxa3eihvn5pl2R9\nfTBZAci/nlRTk8kyOuqNQvxtlW1eRKFLXmcbYRR6XebVoFgjg6MAelX1AgCIyHcA3AFg3RqDri7P\n1xsOW0/v4kUbXotYjzS9qNbu3V753bo6zx3jUhZXsjhJvmuvVlYGe0+uOBxgMt58s11Ta6u3jKG/\nFpGIGaTaWi9LZ2bGK/3sJl75S0unj15aWrxRAeAFvf2GsaHB3Gxu9NTSYrEHJ2s4HHQH1Neb/M7Q\nqgLvepcpLpeS291tvfsLF2x7xw47h1P+O3fapKgXXrA2aGryFKpztxw5YnJNT3s9+2jU67nW1dl3\nu1Fh+qLwkQjw4Q/b6GpuzhTqwEDwN7nhBjufyyZKz6vv6rJ7aGwsOJfBz7591oOdm7NzLaUQm5ut\nvVy8KhrNnKjoVmhzy58uxdvfbq4ilwTQ0VGYwnNunko2mputXdzvlmsG03JwJcX9rrOVlDpfa0RX\nYwXppb5U5PcBfEhV/2tq+48BHFXVz6Qdp8WQLx/8pQxcHrmbwbkemJ+3IK3rdTufryvbXF9vvcPe\nXi/rqavLlJfLIT9yxNphcNBzd/3gB2YcnaE8dMirPukCxG6iXkeHnftf/9UeXJeJ9cMfmhxVVcAH\nP2jKyCm8fftsJOAvVHfmjMnpSmC3t3s+5Zoa88MPD9ufc9G5Gdeuhn9zs/WIIxE7p6s+e+WKyehi\nEw0NNiJ417uWVqzuvnBKdSncIjkuc2g5axVMT3ulOZqa8g+MxuP2+zij1NRUGMXtFtVx2XNrhZtX\nUVOzOoFdd/+7Efpap6uKCFQ1pysreWPwwAMPvLnd3d2N7u7utRR1U+Jywl0JBn9apfMTu7VmGxpM\nUSYS9hnnEgHsQQiHTbHOz1smTmWlF6xzWVALlTRwZRXcLNW5OfN1t7V5PeyxMevdLXSO+Xk7jzPG\nToH7H043e9UpBb/cixGPewF+N6t4o+OC24vVdiJrT09PD3p6et7c/sIXvrBujME7ATyoqrelto8B\n0PQg8nocGRBCSLFZycigWPX5ngOwV0S6RKQcwN0AHi2SLIQQsukpSgBZVRMi8mkAj8NLLT1ZDFkI\nIYQUyU20XOgmIoSQ3FlPbiJCCCElBI0BIYQQGgNCCCE0BoQQQkBjQAghBDQGhBBCQGNACCEENAaE\nEEJAY0AIIQQ0BoQQQkBjQAghBDQGhBBCQGNACCEENAaEEEJAY0AIIQQ0BoQQQkBjQAghBDQGhBBC\nQGNACCEENAaEEEJAY0AIIQQ0BoQQQpCnMRCR/yQir4pIQkRuTnvvfhHpFZGTInKrb//NIvKyiJwW\nkb/O5/sJIYQUhnxHBq8A+I8A/tW/U0QOAbgLwCEAtwP4qohI6u3/C+BPVHU/gP0i8qE8ZSg6PT09\nxRZhSdaDjADlLDSUs7CsFzlXQl7GQFVPqWovAEl76w4A31HVuKqeB9AL4KiIbANQq6rPpY77JoA7\n85GhFFgPN8h6kBGgnIWGchaW9SLnSlitmMF2AJd8232pfdsBXPbtv5zaRwghpIhEljpARI4DaPXv\nAqAA/oeq/nC1BCOEELJ2iKrmfxKRpwD8d1V9PrV9DICq6pdS248BeADABQBPqeqh1P67AbxXVf/b\nAufNXzhCCNmEqGq6+35RlhwZ5ID/ix8F8C0R+TLMDbQXwLOqqiIyJiJHATwH4L8A+N8LnTDXiyGE\nELIy8k0tvVNELgF4J4AfichPAEBVTwB4GMAJAD8G8En1hiCfAvB1AKcB9KrqY/nIQAghJH8K4iYi\nhBCyvim5GcgrmchWLETkNhF5PTWB7nPFlschIl8XkQERedm3r0FEHheRUyLyUxGpL6aMKZk6RORJ\nEXlNRF4Rkc+UmqwiUiEiz4jICykZHyg1Gf2ISEhEnheRR1PbJSeniJwXkZdSbfpsCctZLyL/lNI3\nr4nIO0pNThHZn2rH51P/x0TkMyuRs+SMAVY2kW3NEZEQgL8B8CEANwD4IxE5WCx50vgGTC4/xwA8\noaoHADwJ4P41lyqTOIDPquoNAN4F4FOpNiwZWVV1DsD7VPVtAG4CcHsq5lUyMqZxH8w96yhFOZMA\nulX1bap6NLWvFOX8CoAfpxJejgB4HSUmp6qeTrXjzQB+A8AUgO9jJXKqakn+AXgKwM2+7WMAPufb\n/gmAdxRRvncC+MlC8hX7D0AXgJd9268DaE293gbg9WLLmEXmHwD4YKnKCiAK4NcA3l6KMgLoAHAc\nQDeAR0v1dwdwDsDWtH0lJSeAOgBns+wvKTnTZLsVwL+tVM5SHBksxEIT2YpFujylPoGuRVUHAEBV\n+wG0FFmeACKyE9bz/hXsJi4ZWVOulxcA9AM4rjaDvqRkTPFlAH8GmwfkKEU5FcBxEXlORD6R2ldq\ncu4CMCgi30i5YP5WRKIoPTn9/CGAf0i9zlnOQqaWLhtOZCsJSiZzQERqAPwzgPtUdTLL/JKiyqqq\nSQBvE5E6AN8XkRuyyFRUGUXkdwEMqOqLItK9yKGl8LvfoqpXRaQZwOMicgol1p4w3XgzgE+p6q9T\nafLHUHpyAgBEpAzARwC42GXOchbFGKjq76zgY30Advi2O1L7ikUfgE7fdrHlWYoBEWlV1YFUjahr\nxRYIAEQkAjMEf6+qj6R2l6SsqjouIj0AbkPpyXgLgI+IyIcBVAGoFZG/B9BfYnJCVa+m/l8XkR8A\nOIrSa8/LAC6p6q9T29+FGYNSk9NxO4B/V9XB1HbOcpa6myh9ItvdIlIuIruQmshWHLEA2KS5vSLS\nJSLlAO5OyVgqCDLb72Op1x8F8Ej6B4rE3wE4oapf8e0rGVlFpMllYohIFYDfAXASJSQjAKjq51W1\nU1V3w+7FJ1X1HgA/RAnJKSLR1EgQIlIN83O/gtJrzwEAl0Rkf2rXBwC8hhKT08cfAfi2bzt3OYsd\n9MgSBLkT5oufAXAVwSDt/QDOwB7GW0tA1tsAnIJVZT1WbHl8cv0DgCsA5gBcBPBxAA0AnkjJ+ziA\nLSUg5y0AEgBeBPACgOdTbdpYKrICuDEl14sAXoa5MlFKMmaR+b3wAsglJSfMF+9+71fcc1NqcqZk\nOgLr9L0I4HsA6ktUziiA67CK0G5fznJy0hkhhJCSdxMRQghZA2gMCCGE0BgQQgihMSCEEAIaA0II\nIaAxIIQQAhoDQgghoDEghBAC4P8DOqqUeTVxGSkAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2944,7 +2952,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2958,7 +2966,7 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 16, "metadata": { "collapsed": false }, @@ -2967,7 +2975,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEACAYAAACwB81wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlwZNd13r/TaKCx7zswAGY4nI2kKDESJZtyCbYcifIi\nKZWIoSthJDGqVEVWpIrilIdKpUj94dhKlctWKlEqLtkqyqWYpiy7SFsORdEk7CiiSGrnaMiZ4cwA\ng2UADPYdvd38cfrwvgYae2N9368Khe7Xr9+77/Z73z333HPPFeccCCGEHH0i+10AQgghewMFnxBC\nQgIFnxBCQgIFnxBCQgIFnxBCQgIFnxBCQkJeBF9EqkTk6yLymoj8TETeKSI1IvKsiFwSkW+JSFVg\n/0dE5Epm//flowyEEELWJ18W/hcB/K1z7iyAuwG8DuA8gOecc6cBPA/gEQAQkXMAHgBwFsAHAHxJ\nRCRP5SCEELIGOxZ8EakE8AvOua8AgHMu6ZybBvAhAI9ndnscwIczrz8I4InMfr0ArgC4d6flIIQQ\nsj75sPCPAxgTka+IyA9F5I9EpBRAk3NuBACcc8MAGjP7twHoD3x/MLONEELILpIPwY8CuAfA/3DO\n3QNgHurOWZmzgTkcCCFkH4nm4RgDAPqdc9/PvP8GVPBHRKTJOTciIs0ARjOfDwI4Fvh+e2bbKkSE\njQQhhGwD59yqsdEdW/gZt02/iJzKbHovgJ8BeBrAxzLbPgrgqczrpwE8KCJFInIcwEkAL69z/H39\ne/TRR/e9DAflj3XBumBdHI66WIt8WPgA8GkAXxORQgDXAHwcQAGAJ0XkYQB90MgcOOcuisiTAC4C\nSAD4pFuvhIQQQvJCXgTfOfcTAO/I8dEvr7H/7wL43XycmxBCyObgTNsN6O7u3u8iHBhYFx7WhYd1\n4TnodSEH2ZsiIvT2EELIFhERuByDtvny4RNCyK7R1dWFvr6+/S7GgaOzsxO9vb2b3p8WPiHkwJOx\nWPe7GAeOteplLQufPnxCCAkJFHxCCAkJFHxCCAkJFHxCCAkJFHxCCNkBXV1dKC0tRWVlJSoqKlBZ\nWYnh4eH9LlZOGJZJCDnSTE0B8/NAWRlQXZ3/44sIvvnNb+IXf/EXt32MdDqNSGT37W9a+ISQQ0sq\nBYyNAaOjQCKx+vPeXuDqVWB4WP/vVij/ytBI5xw+8pGPoKWlBbW1tfilX/olvP76629+/tBDD+FT\nn/oUPvCBD6CiogLf+c53sLy8jM9+9rPo6OhAS0sLPvWpTyEej+e1nBR8QsihJJEALl5UEe/vBy5c\nABYW/OfLy8D4ePZ3xsaAoIY6BwwMAD/5iX7/1q38le/Xf/3XcfXqVQwPD+POO+/EQw89lPX5n/3Z\nn+Hzn/88Zmdn8a53vQu/9Vu/hb6+Ply4cAFXrlxBb28vfud3fid/BQInXhFCDgG5JhgNDQE3b2bv\nV10N3Habvp6fBwJG9ZucPQuUlurrmzf1OEFuvx2orNx82Y4fP47x8XFEo+oh7+7uxl/+5V9m7TM2\nNobGxkbMz8+jpKQEDz30EGKxGL785S8D0B5BaWkpLl++jGPHdLmQ73znO3j44Ydx+fLlNc+91YlX\n9OETQg4lubwdwW2lpUAsppa+UVzsxR4AJidXH2NycmuCDwBPPfVUlg8/nU7j/Pnz+MY3voHx8XGI\nCEQEY2Njbwq6/QeA4eFhLC8v4+677846Rr79+hR8QsihpLp6tcsmOCgrApw8qe6ehQUdtD12LHv/\nwkJgcTF7W1HR1suy0sr+6le/imeeeQY9PT04duwYxsfH0dDQkLWfiDfAm5qaEIvFcOnSJTQ0NGy9\nAJuEPnxCyKGkuhpob1fRLigAmpqA5ubsfYqL1UVz990q/rFY9uctLUDQiC4qAurrd1622dlZxGIx\n1NTUYH5+Hp/73OeyBH4lkUgEn/jEJ/CZz3wGY2NjAICBgQF8+9vf3nlhgufJ69EIIWQPaWoC3vIW\n4K1vVfFfR1NzUl4OnDsHtLUBHR36urBwa8fIJeQf//jH0dLSgtbWVtx1111497vfveF3fv/3fx+d\nnZ249957UV1djfvvvx9vvPHG1gqzUVkP8qAoB20JIQCzZa4Fs2USQgjJCQWfEEJCAgWfhIpUClha\n0gk3gL5Opfa3TITsFQzLJKFhdBQYHATSaf1zTqM7IhGN1lgZ4UHIUYMWPgkFy8saj51O6/sbNzTP\nCqDbBgezp+UTchTJi+CLSK+I/EREfiQiL2e21YjIsyJySUS+JSJVgf0fEZErIvKaiLwvH2UgZD3m\n5/1r53SyTTwOJJN++9zc3peLkL0kXy6dNIBu51xwovJ5AM855/6riPw2gEcAnBeRcwAeAHAWQDuA\n50TkdsZfkt2kpMS/FtEJOOk0EA08AcEp9+Rg0dnZue7EpbDS2dm5pf3zJfiC1b2FDwF4T+b14wB6\noI3ABwE84ZxLAugVkSsA7gXwUp7KQsgqSkrUR2/rUrS1ZQ/WNjToJBxyMOk1/xvZEfkSfAfg2yKS\nAvC/nHNfBtDknBsBAOfcsIg0ZvZtA/Bi4LuDmW2E7CptbSrsS0uaV0VE3Tix2Oop94QcRfIl+Pc5\n526KSAOAZ0XkErQRCLItl81jjz325uvu7m50d3dvt4yEoKgoOznWVrMiEnIQ6enpQU9Pz4b75T21\ngog8CmAOwCegfv0REWkG8IJz7qyInAfgnHNfyOz/DIBHnXOrXDpMrUAIIVtn11IriEipiJRnXpcB\neB+AVwE8DeBjmd0+CuCpzOunATwoIkUichzASQAv77QchBBC1icfLp0mAH8lIi5zvK85554Vke8D\neFJEHgbQB43MgXPuoog8CeAigASAT9KMJ4SQ3YfZMgkh5IjBbJmEEBJyKPiEEBISKPiEEBISKPiE\nEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBIS\nKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiE\nEBIS8ib4IhIRkR+KyNOZ9zUi8qyIXBKRb4lIVWDfR0Tkioi8JiLvy1cZCCGErE0+LfzPALgYeH8e\nwHPOudMAngfwCACIyDkADwA4C+ADAL4kIpLHchBCCMlBXgRfRNoB/AqALwc2fwjA45nXjwP4cOb1\nBwE84ZxLOud6AVwBcG8+ykEIIWRt8mXh/wGA/wjABbY1OedGAMA5NwygMbO9DUB/YL/BzDZCCCG7\nSHSnBxCRXwUw4pz7sYh0r7OrW+ezNXnsscfefN3d3Y3u7vVOQQgh4aOnpwc9PT0b7ifObUuH/QFE\n/guAfwkgCaAEQAWAvwLwdgDdzrkREWkG8IJz7qyInAfgnHNfyHz/GQCPOudeynFst9PyEUJI2BAR\nOOdWjY3u2KXjnPucc67DOXcCwIMAnnfOPQTgrwF8LLPbRwE8lXn9NIAHRaRIRI4DOAng5Z2WgxBC\nyPrs2KWzDr8H4EkReRhAHzQyB865iyLyJDSiJwHgkzTjCSFk99mxS2c3oUuHEEK2zq65dAghhBwO\nKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiE\nEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBISKPiEEBIS\nKPiEEBISKPiEEBISKPiEEBISdiz4IhITkZdE5Eci8qqIPJrZXiMiz4rIJRH5lohUBb7ziIhcEZHX\nROR9Oy0DIYSQjRHn3M4PIlLqnFsQkQIA/w/ApwH8UwDjzrn/KiK/DaDGOXdeRM4B+BqAdwBoB/Ac\ngNtdjoKISK7NhBBC1kFE4JyTldvz4tJxzi1kXsYARAE4AB8C8Hhm++MAPpx5/UEATzjnks65XgBX\nANybj3IQQghZm7wIvohERORHAIYBfNs59wqAJufcCAA454YBNGZ2bwPQH/j6YGYbIYSQXSSaj4M4\n59IA3iYilQD+SkTugFr5Wbtt59iPPfbYm6+7u7vR3d29zVISQsjRpKenBz09PRvulxcfftYBRf4z\ngAUAnwDQ7ZwbEZFmAC84586KyHkAzjn3hcz+zwB41Dn3Uo5j0YdPCCFbZNd8+CJSbxE4IlIC4B8D\neA3A0wA+ltntowCeyrx+GsCDIlIkIscBnATw8k7LQQghZH3y4dJpAfC4iESgDcifO+f+VkS+B+BJ\nEXkYQB+ABwDAOXdRRJ4EcBFAAsAnacYTQsjuk3eXTj6hS4cQQrbOroZlEkIIOfhQ8AkhJCRQ8Akh\nJCRQ8AkhJCTkZeIVOXpMTQGTk0A0CjQ2ArHYfpeIHAVSKeDWLWBhASgvBxoaAFk1tEh2C0bpkFWM\njgL9geQX0Shw7hxQWLh/ZSJHg0uXgLk5/76mBjhxYv/Kc1RhlA7ZNKOj2e+TSWBiYn/KQo4OCwvZ\nYg9oLzIe35/yhBEKPllFrk4VO1pkp6TTubfz3to7KPhkFfX12e8jEaC2dn/KQo4O5eVASUn2tooK\njg/tJfThk5yMjmp3u7AQaG4GSku39v1UChgZAebn9btNTToWQMJNIgHcvOkHbVtagIKC/S7V0WMt\nHz4Fn+wKV64AMzP+fVkZcObM/pWHkDDBQVuyZywvZ4s9oJb+wkLu/QkhewMFnxBCQgIFn+SdWAyo\nrMzeVla29XEAQkh+oQ+f7Arp9OpBWw7OEbI3cNCWEEJCAgdtCSEk5FDwCSEkJFDwCSEkJFDwCSEk\nJFDwyb6TSmkWxWRyv0tCyNGG2U3IvjI1BVy/rmGcIkB7uy64QgjJP7Twyb7hHNDX59PmOgcMDDA/\nOiG7xY4FX0TaReR5EfmZiLwqIp/ObK8RkWdF5JKIfEtEqgLfeURErojIayLyvp2WgRxO4vHVbhzn\ngMXF/SkPIUedfFj4SQCfdc7dAeDnAPymiJwBcB7Ac8650wCeB/AIAIjIOQAPADgL4AMAviTCVS3D\nSFHR6mUTRZiCgZDdYseC75wbds79OPN6DsBrANoBfAjA45ndHgfw4czrDwJ4wjmXdM71ArgC4N6d\nloMcPkSAri6fJz8SATo6uHYuIbtFXgdtRaQLwFsBfA9Ak3NuBNBGQURsKK4NwIuBrw1mtpEQUlkJ\n3HUXsLSkSdeYb4eQ3SNvgi8i5QD+AsBnnHNzIrIyCc62kuI89thjb77u7u5Gd3f3dotIDiiRCN04\nhOyEnp4e9PT0bLhfXpKniUgUwN8A+D/OuS9mtr0GoNs5NyIizQBecM6dFZHzAJxz7guZ/Z4B8Khz\n7qUcx2XyNEII2SK7nTztTwBcNLHP8DSAj2VefxTAU4HtD4pIkYgcB3ASwMt5KgchhJA12LGFLyL3\nAfgHAK9C3TYOwOegIv4kgGMA+gA84JybynznEQD/GkAC6gJ6do1j08InhJAtwnz4hBASEpgPnxBC\nQg4FnxBCQgIFnxBCQgIFnxBCQgIFnxBCQgIFnxBCQgIFnxBCQgJXvNok6bTmbi8q2u+SkN0mkQCG\nhzUvf0UF0NSk+X4IOexQ8DfB8DBw86aKfmkpcOKEZnYkRw/ngMuXNXsnAMzOqvCfOLG/5SIkH9Bu\n2YD5eWBw0C/Dt7AA3Lixv2Uiu8fsrBd7Y3KSC6yTowEFfwPm5lZvm53d+3KQvYFrr5GjDAV/A4qL\nV28rKdn7cpC9obx89e9bW+tX5SLkMMPkaZvg+nVgYkJfFxQAJ0+qMBAlnVbL+KhYx8kkMDLiB20b\nG4/OtZFwwGyZO2RhQaM3ysu5DJ+RSgG9vcDUlNZJc7P+kd1ncVFdi6WlND7IatYSfHZUNwmX4FvN\nwICKPaDiPzio9VRZub/lOuqMjGjdG/X1QGfn/pWHHB7owyfbZmZmc9tI/kingaGh7G1jY6sjiwjJ\nBQWfbJtccxE4P2F3SSR8iHCQ5eW9Lws5fFDwDxnpdO4Hfj9oa8sezygrA+rq9q882yGV0slWh4VY\nbHXkWEEB/fhkc3DQ9pDgHNDfr913QIW1o2P/o0eSSWB6WsMWKyv3vzybJR7X6Ku5OS17W5v6wg8D\nS0s6WD4/r+Lf0aHRRIQYjNI55IyOquAHaW/XPC9k61y+vHoC3R135J53cVBx7vA0sGRvYZTOIWet\nAdKdCr75hMPke3cu92zpmZmDLfjJpP5ZGfdC7OfnNSJoaUl7cO3tQGHh7p+X7A4U/ENCLkHeiTg5\nB/T1AePj+r6sTGeU2lyDqqrtH/ugI6L1uXKg8yCL/eCghmM6pzOBb7tt9xvpVAq4ckX/Azr5MJEA\nTp3a3fOS3YOCf0hoblZfuYlUUdHOrPvxcS/2AHDpkvqybeJUYyNw7Nj2j3/QOXYMuHrVD9hWVx/c\n+QOzs5qx1ZifB77/faChQcW/uXl3rO6ZGS/2wbKkUpx8eFjJi+CLyB8D+DUAI865t2S21QD4cwCd\nAHoBPOCcm8589giAhwEkAXzGOfdsPspxlCksBM6d866dysqd5WgPJoVbWtIHOWgx3roFtLQc3Rwy\nVVXAXXdpfcZiBzvKZWUCv6Eh3VZcrL/bzIzeG/l28eT67QsKuDbAYSZfP91XALx/xbbzAJ5zzp0G\n8DyARwBARM4BeADAWQAfAPAlEQ49bYZIRC3R6uqdP3TBmcNmxQVdGs6ttu6OGoWFGu10kMUeyP6t\nkkkV+eBvtbSUO6vrTqmoWB3909zMgeLDTF4E3zn3HQCTKzZ/CMDjmdePA/hw5vUHATzhnEs653oB\nXAFwbz7KQTZPfb1/mEtL1TXQ0OA/Ly0N10DuQaaqSsdXDMtbFGS3RPj224Hjx7W3d+oUcyUddnaz\nw97onBsBAOfcsIg0Zra3AXgxsN9gZhvZQyIRfYAXFtSSP3dOBwYXFtTiPcr++8OIiW48rr2S6Wn/\n2W4mUBPJbmzI4WYvPbTbCqh/7LHH3nzd3d2N7u7uPBWHANnugttv373zjIzoIHFBgQ42V1fv3rl2\ninOaFM7SI+djUtP0tA62lpVtPwIqElG/+okTOsYyO6s9M87FID09Pejp6dlwv7xNvBKRTgB/HRi0\nfQ1At3NuRESaAbzgnDsrIucBOOfcFzL7PQPgUefcSzmOyYlXR4CV2R0B4MwZFb+DyNWrPgsoALS2\nqnW9Xfr6/AxpQF1nHR1bO8aNGyrygEZonTzJhXjI2qw18Sqf4+2S+TOeBvCxzOuPAngqsP1BESkS\nkeMATgJ4OY/lIAeMYPinYQvKHDQWFrLFHtCQyO3mL4rHs8UeAG7eVPfZ5OTm8vjMzHixt2OunHVN\nyGbIV1jm/wbQDaBORG4AeBTA7wH4uog8DKAPGpkD59xFEXkSwEUACQCfPCpmfDyuluzcnFpf7e20\nwtaK2c61zfIFjY+r77ipaWeW9XZIJFZvS6c1OqaoaOfHW1hQa91mzJaU6FhKJLJ25NX8/Oa2Bc+Z\nSOixdzuixhpChmoeDphLJ4+89po+0EZhIXDnnUfvYZid1essK1t7sHB+XhN8LS1pQ5hIeBdONAqc\nPesFNJXS/aemsi1ZQP3VNTX5v4ZkUhuX6WktR1ub+tbTaeDVV/Vzo6xMXVDbwTngwgWtA0DdO4mE\numQAbdyiUT13VRXQ1eXj353Tepmb0x5BkIqK3DNegzNyV7p+kkntVYhone508tTAgP5ezunAbkfH\n0bvXDyvMpbPLLC9niz2gD/bc3MGdwbmSZFIFuqRkbTHo71cL1a6ro0PFMohz6gdfWtJ6KSrSxq++\n3v83sZ+c1IYhndb/5eXZWSunpjYn+PG4/pWWbk50+vq862ZxUct7551eJAcG/KDtTiKWRHQwvL9f\nxbuoyIc2zs9rUrzaWhX76Wk9b1eX1tuVK35m9dycv7aiotxlmpvLnpEbj+t1njmjv8WlS74hGxrS\n7dvptQDaUI2MZL8vKtLxDnJwoeDniYICfbhXdkgOy0zVW7dUlJxTUenqWi208Tjwyivak0mndb9z\n54Bf+7Xsqf1LS+q3vnnTZ3RsblZhC0a8pNPaeJhbIBrVclRV+eNtZi7A4KAXumhU88ysF6boXHZY\nY3BbQ4Na9KdPb3zezVJc7COgamt9L8bcMsGy2kzqoaHsXD/l5VqH1dUq/LlcNeu5foaHs3stiYQK\n9nYbs5X1Z2XfD8G3XlBpKdNEbwQ7YHkiGtX8M0Hs4TzoJBJe7AEV4L6+1QOV8/Ne7G2/ixdXC01B\ngXcrAPp/eHh1ryGRyBah+nptREzoYjEV4PUGTBcWsq3aZFLLvh4iuRvivcgC2d6uoi/iQyqD0UrW\nwK3sLQJ6bWVla/vlc0U92f1nLqUgubZtllyJ5vYj+dzQEPD669ozunxZDQiyNofE/jwctLerhWGD\ntrvhe94NFhdX90xSKRWElVP4V4pNUKCNZDLbkgX0/cpUDebqsYHN4mJ1p3R06PZ0WhuYRELdR11d\nq0U5l1W7tOR7IGvR1qYuJGMn8fFbIRLRSVRdXVrnV674tAgFBd49Vl6+ep3ajSZXlZer0TE6qu8L\nC/3i5tXVq1NC72QuRGOjuuOsjIWFez/AnkxmN/aA3nNNTZwlvhYU/Dxjg2+HCXMRBEU/Gl390NTV\naZd9dFRFPhZTN4Mta3jrlrpx4nF9GM0XXVys51jZ2xFR8bt+XUW9oEC/U1enjdDFi37fmRm13G2w\n08glgiUlG/vx6+p0v+lpvY6amr3NESOif6dPa50tL2vdmk+9rS07R05d3dozXtNpvQ4RvyhOPJ7d\nG2hoyA4RbWzc2XKU0ai686an9b6pqtregO38vDYc0aj28LbiAk0kcoe1xuMU/LVglA4BoELQ36/i\nUVCgQpyr4bp6VVPzJhJq1d17r+47N6eDgoZF8jQ1qRB0dKwtMM6puMViXjRyTdYSAe65Z/X3b970\n4wWFherDP6iTuoLY4Lb5w6NR9fUHG8blZa2TtdxNS0vqygj2kk6fPhxjRxMT2tgbRUXaiGwleujC\nheweZjSqWVDDHi3EKB2yLvX1auWaRb7WA3PbbeommJpSl4AJy8pBvIoK/fzUKRXyVEpFPBLR96Oj\nKlLV1dpLsNDBsTH9m5vTv+AgXNBqGxzUHoWIiuH4uJapq+vwWHeTk9n1lkzqdQVTXNi1TE6qvzqR\n0Ia4tFR7QaOjWgf2ey0t+dTWB52V7ph4XH/HlWNh63HbbT5qrLSUoaEbQcEnb1JQ4K3LsTEVmcJC\ntdKDE8is+x0kV3hfSYkeb25OfdXptArWjRvaaESj+tnQkAr74qIKljUik5O+TOauAFTkLCd8IqE9\njpoaPcalS9povfvdW7v28XG1lFMpdRttJyvk9LReW0lJdjz9Wiwurt42NaV1b9lKbdGbwUHvnvnZ\nz7R30NrqZ9x2dfljrPT9G86pa0xE62q/0xwHB+yNrabkLinJb0TVUYeCT1YxPJw90WdqSrva68Vs\n19WpUFl0SSTiQ/Ru3vSRNtPTaslNTWmjMTSk3zl1ysfjnzihYtTR4ccJKiv9+UdHgR/8QBuEsTE9\n1unTvjfQ1wf8/M9v3tIbHweefdaLTV8f8J73+AZmM9y4Afzf/+t9yhcvAr/yK+uL/srxh7ExFetI\nRP8vLKjffmxMhbqz04ePmliXlenni4u+Uc417yMe1wbN3B8HwfVTW5sdy28TwnbCwoJP0hec70EU\nCv4mSKVUtObn1fLazZWglpf9IF5VlVrX9nBPT/vIl4aGtQeHZ2ZUFJ3zrpqtsHK2ayql/tb1rN5I\nRCfyTE2p5VZd7f3OwfQC5p+1BblnZ/1+kYgKwPKyilddnXbvV/Yment9GW3AcmLCNzBb/W0uXcq2\nLJ3TbVsR/J/8JHsAcWYGeOON9WfoVlVpnY6MaB3Nz/sonbExrZuKCr2e5WWt26oqP1YBaB3F4z4q\nqaEh91jJ8HC2r3tpSc+7ctLcXtLWpve29SRbWnYW2jk9nb1s5a1b2TO6CQV/U1y96kPazLd89mz+\nz5NKaUyxdXXn5vRh7ujwAmJMT6vrYaXom/vEmJnJT3qCzXT/17LQqqvVAk2nVcDGx7OtWxOoggIV\nbntABweBO+7Ifa5IRI9XXa0PdjBW//bbt+bHzRXnv1XXQi43Si6XzUra2lT05+ayGyoT53hcLfbJ\nSX0djWrdWUhlJKK/79mz+nqt3ylX+dZy/ewVInr9+Wp0gnM/AH2Obt3a30btoEHB3wBb73VuTi2s\nykq1xnp7VbxqarY3SLSw4JeqM9E26zjI2JjOhlyZcdE+Wyn4Y2MqVrOzevNXVOg2E+KlJZ8/pro6\nt0A0NmZHyBQU7GwRjMZG4No19TcXFKggNzdrPRYX+2tOJPwMXxEtX64JSI2Nan3Pz+t+ra36u7S3\n6+vjxzdXrulp/Ssv9zOCjZXhnxvR1qbXaIhsfhZrQYF3WVlIa3m53g8WYtrZqQ1jaan2GiYm/HyP\n1taNI1sqKlbH4edjVqrN4TgIEwxzNdJHfZnOrULB3wARtZh/8hM/M7G2FujuVrG6eVMfwK24EVaG\nHNqkHxP84LFMhHIJc65tiYQKj4no6KgPUZyc1DA4s4IshcDK4zQ1+cHVkhIV6J3MQr1502eFBLxA\nVFerKI6Oqng1NmZ3v6PR3I3pHXeo9T815ccK3v/+rbkDVo5TtLSopZ9Oq9ifOLG1a3zHO/S7g4Na\njjvvXO2KCpJIaNlNqEX0+r/3PW8IdHX5lB0tLdlpC7YadtrUpI39xIQer64ue0lLwPcgNmPApNPa\n47RGpLRU620vZiuvRW3tagNhJ3MNjiIU/A0Q0VhfS7Q1NaUuife8R98vL6sFvdmojnRaBdBYWlI3\nTmenDlDeuKGWqglfY6OWoaEhO3+6bctF0KoxEQNUjMw3bAt4T06utt4nJ7VRisV8UrMzZ7afXdHy\nw6zcZouxW93V1QF///faAJiQnzu3+rvOeX+vLcG31ekawcFCQHsVx49vvydTWKiRQem0n1SVi2RS\nXYRzc17k29t9+onSUj1GWZle31ve4kV/J9gMX1t4JfhbLi6qkbC05Gf7rnVvGaOj2T2G+Xm9jysr\n929h+Kb8E8GxAAAYb0lEQVQmdeFcu6a/x7lzh2M+xl5Cwd+A8XG9ecrLfY7xwkIVzrY2FfzLl1Uk\nKyv1YZ2a0u5yW9tqiyeV8oKcTOpxbOJRUZEKwNCQni+40lJ5uVrjNlhZX5/7obLZqpOT3sdtsdwW\nuw7oQz43pw3NSpELNkiAtww3EoG1KC5e7S9OJPSYlZU++dXwsF9aENDXQ0N6DZWVvi5HR/W1xWun\n0yo29fXejbXRzM9cXf3ZWf0NgvXqnJ5vakrPWVWlZU2lVNhWutQ2so5tvQQ79siIni8W04bVRNTq\n5Pbbt+Z6Saf1no3Htd5WCp4JfTqt9W9BAnNzes7CQj9uYPdNPK6/X1mZ//5KS/rSJT1Oc7Me4+1v\n1xj5vcQG/IMD33vV+Fj01E5mHe8FFPwNqKzMnuIejerNPjSkIjA7q933mRngRz9SP3U0qiJ3993A\nffdlW2eFhfrQXL6sD5LdpOm0HnNyUkW4vl63//CH+uAWF6sFE4y3zkV1tR4jOPHGBvgsWiaV8lZo\nrgHLXIuA5IqZ3iytrVp/lotnfFzLYPnvLeb8+9/XfaqqdL/+fhXbEyd8KmYRFZbCQi/aQ0P6oF28\nqP+bmlR4Tp9WAbceRmWlD9urrNTwS3M3JRJa3yMjKmynTuk5hoZ8psl4HPi7v/MZRVtbgZ/7OT8+\nkkjovsXF+vslk1pGczUlEnq/pNO63/S0n4twxx3+HjMWFrTswfkRa2E9hhs3vBgPD/t7yYjHtfzX\nr6vAp1LAy5n15iy30fS09gYaGrIzkdoAcVWV1pHl0pmZ0eNZw5RIaFbVoiI/AS+Ic1o3hYX6em5O\nX+80+VquVdQmJnZf8BMJP/8D0Ou2e++gQcHfgNlZvfkvXtQfNB7XG2hiQq21VErFqqhI47ALC9XC\nWFgAvvtdbQxyJakKJg2zgS97wM09MTLiY8xFfDz8etZDba1vSCws0yzhhgYVOQuDW2td1Npan4AL\n8AOoW2VmRh/mWEwf5vFxb70XFGjdDQ6qwDQ2+tWumptVEG7c0DKaoLz6qtaFrRpVU6OvR0a0/hMJ\n/Z9K6TUMDmr33gRreNiL4fS01oPVeVWVTsm3MNCyMm1cb97UxnliQs9z44aWr7xcP4vFgPe+V63J\nnh7fqEUiWnaLJioo0N/jjTf0eKOjfrzm3Dk97uKilsn8++Xlet3Dw9pA3Xbb6t8+kdDj2WD85GT2\nbNOhId/4fPe7WscLC1oeS0EwPq4Nr7kPLTBhcTF7Nqyls77zTq3fn/5U68Qm6ZmRMTurz8vcnB+L\nsIlw09N+EZig8APerbZd99VmV1bLN2a0GfG41ttW1y3eCyj4GzA9rZa6ZX8cGFBrq6pKhWVoSB+Y\nmhrdNyigy8v6naBYJhL6PbsZbODXltAzwbZJRUGX0PKy932vR3Nz7jEFC4ssKlKhSSSy0xAkk/qQ\n23eD8dFbXarRrHPArwnb2qrnNLdSNKrXbg94QYG3pm3ikbkobtzQbTU1Kr6W2gHQMptwxOP6m7S3\nq9jbnIS5ORWh5mYtx49/rMdvbfVWf329lsXGUrq6dMD+6lU9z9Wr+psEXWDXrqng/+AH3m01O+t7\nLq2teozycjUERka0fDbr2HqJFRV+Nar6ei13MFvpzIyWcaVbbWjInzeV8o2GDVZaz+zCBZ862LJM\nlperwDqn5bFIJXufK6w0HtfzjI9rPZjrcX5eryMW0zqxFBqAuqpsoZxr13yvsr9f7+mTJ308fk3N\n9kOIm5r0dzaDKRrdvhtyKxzEkNe1oOBvQHGx3pjXr3t3xMSE3rSzs/q+uFhvMueyI2xisdX+8WhU\n/+xBLC5W4Tp+XIX4pZe8xdDfr/HVJogzMyoeVVV6I2/1wbBJSrduadnOnFGxq6xUURwYyF4AZbuL\nYwRFHVAxWFjw1m5vr/rcS0v1tYVROqdlqanR+rl2TY9TUKBiZXW5vOwHPAHdx+rT0jOYdX/tmlrr\nlo6huFhFf3bWr5IFeBdTQ4O+NlEKDkzGYlrGYB55c2MEc+IEV6myVM0mnsvLeo7FRZ/VcWFBX9fV\n+c9t4HZx0btzcoWoBrdVVOh1BsXG7pHgILWlqpiY0N+5osIbMeZaKSzMPeBZXOzdmoDes5b0rL/f\nuwlvvz3bUrcGOuhCXFrSurb8TXY92xX8qiofshqJ7N1M28rK1bmkDuoqdxT8DSgoUOtocVFvnsVF\n744oKNAbeGFBf3AbsCor033PnFkdFmbx2b29Kh51dbpvcbEKY1mZCub0tN7AJi5zc/owl5erCM3O\nahd/K66WGzf84GM6rY3H29+u5zOxB3zInaU2EFHBSKXU0o/H/Zq2x45l+6hv3dKyTkxoGRcXvWsq\nmdSH+/p1vQ6zYBcXfUx9U5OKz9iY7j8z41MZ2+ImtlSg+Zxrarx7ZmJCy1RXp9cwP6/XZb+Vncf8\n9ktL/vOKChWKigrfA6ur82vLnjzpZwjPzOg1dHZ6y9RE1USmtta7mmZmvLjZddrgqjVyNmhqczPS\n6WwDIpcvurzci29hofZszI1RX+9nC1dW6m9jLqfmZj2nhZAuL/vAAZvFHYtpPQwMaFmKirSBSCT0\nN5qc9OXo6FAXUV2dH0cK0ti42kdveZaCvdid+ttzpeHebRoa/CpvgNZBU9PelmGzUPA34MIF75NN\npbx/uaZGH4iKCv0rL/cTsU6d0v2Cs3EXF32u+Opqfchs4kxxsQq8+YgLC/WmNWuyrEwf6s7ObB/u\njRtaloqKzWWINLExH3FhoZZhcVH/Llzwg1yW3iAW8yFuIuq3LSrS8pWU6H533qnl+PrXdRxjcVHP\ncfy4is/UlLpDXn9dG4FkUr8Ti/nB7okJP5loedlbtq2tev2trToXor9fy9fUpNcvonXT1uYbJEs3\n4JzuPzurwmnRVsmkCuGNG74n0toKvPWtKlytrV4oT5zQ846P+xDQ1lbfy/vxj7XnUFen1zg6qtd1\n8qSKnPX8Skp0/5YWPWdzs/5u6bSOS1RWqsvJFhq3Hkdvrx8PsB5OPK5lt6gi62nab2oLx1tkVWmp\n3ouvvOIt0dpa4P77tW5PntSyx+O+wRsc1HI3NGhoqI03Xb/ue2tm9AD6Hfu977tPw2snJvyC9eYm\nbGnxUWBNTVpvFnba2KjlsbUWNotzfu3k/YiOsbxPds8c1AgdgIK/LouLfqBRxFvhbW1qzfT1efE3\n//HcXPbAaVub7hPM1zI/rw9Q0GVSXb06SsOyGp4+rQ9AMArBHkh7EG3hkFzYfqWlaq1dvaoP1l13\n6USfCxfUlTQwoNdrYwWAPrAtLX6AzWbIjo2paJ84AfzRH+l3rl71lvzsrB7XYv0jET1nOq3HnpjQ\n+lxe9r2W8XEVFJsAVFys+8ZiPhTSkosNDenxbCaqhcbW1fkIqKEh/X5pqYqK9QrMgm5u9gPux46p\nMB07pr/Z8LAvT3m5HttyBFVU6DFu3dLrKC1VEVtc1HJbDH1xsZ73jju0Iejv95ZwebneN3av2DjE\nzZt6XrsnKiu9xTo7q++tnhcWtD4mJ7UeFhbUhWVzFEZGgBdf1DGG2VmNKLJxlcZGP+YUj+t120xf\nG7MAslN4XLqk57DFamzWdCyWLdA2Wc8av+CEsdZWP0GqvNyHOBcX63X89Kd6r5WVaQ92o4lcMzPa\nKNpymS0tei0bDfxadJDdl/ngIAu9QcFfh95evTELC/UBW1rSB+W++7wfNJn01tvYWHYu7+FhPwC3\nMu57fHy1j7y8XG/Y0VEfztfe7q0fm3i1uKgPcDAKYGDAr5UaZGJChSaZBL79bY3UcE6P/93v+hQC\ntniJ5bOx8yeTaoGbpW8ukuJijUpJJvWzeNynObC6SKVUtOz6i4p842OCaA/+3JyKq00Ks+s0F9n0\ntJatuNg3cubv/sEP9L31GGx94YkJ3dd8wrOzahlfu+bDCFta9DxvvKENVEkJ8M1vetH9wQ+0DPY7\nXr/uJ0fNz+uxx8b0Xhkc1M8iEa3bkRHtlb34ol5nUZEeLxZTq3l6Whuot79d6+36dT1OMqn3QDoN\nvO1tes0TE7pvcXF2qOTVq1ruigotTzyu96dZ1Lbf4mL2JDdAz29uJau/XAI7NqYNjUWm2aIs5sqo\nrPQN7OKi7m+9X0AbscpK766x335xUXt95vKamfEJ1ebn9TrXC0O28NJEwjfub7yhvdHTp9d27cTj\n6s60sY7ycn0O9iKiZ7/ZN8EXkfsB/CF0IfU/ds59Yb/KkotUSkWorMznMUmndYWnd77T71Nd7a27\n+vrVU/JzrQML5N5WVaUPvkUARaO+m1hWpmMClg64qyvbJ2ox30Gfr+X8Md/8pUs+QmdkxHf7i4u9\n0Nq57fpsMNQyMgYXJg/mwAG80FdU+M9SqezP7c/CWS1PEaCiaNdgYXs2c9UailhMj22T1fr7s336\ny8v6Z+MsFlUSifjxFxvYXVjQ38yu06KqXn3Vp36wRqO2Vj+3hqC0VAXGXCgWcWIuiclJbVjM1VNU\n5N05yaQfu7l5U3uK8biKaTBxnkUpAb6RF8nOq3TtmnfDmbXc1+eF3azXsrLVuXRWDgIvL2sjkCse\n3gIWbEA6nfZjFs5lp16+ccOP7xhzc6v98/39/t6w3FLWi7HvrMfSktbX3JzvkTqnxxgY8Kk8VnLz\nZvbA9tycd7MddfZF8EUkAuC/A3gvgCEAr4jIU8651/ejPLkwkWhv95NprKtqWCyzhRsODmYLrsVS\nA95/b+Qa1LE1TsfGfHrk4Gi/rejT0qKiFEwnUFa2Op+PWePBa7Jsi8PDPqLCfPsreyEr0xUE3wcb\nrJUZCk2kLXtjcL3cYJKyggJvzVt9mavAhC94HIsgikSyQweDKz4Fr7WoSB9sc0FYqKBz+pm5RAC/\nFvH0tA87TCT8GIGFdtoksURC6zES0YahqMiL8/Ky1nNBgYqPWZomypGId/0Bes7KSv2LRv3kM3Ox\nlJZqmSwraDCEMpXSY4ro8c1FY3X31rfq6+ZmP+cA0DKbWAYpL9djBn9TG4uoqPCzSQF/b87OZseh\nFxfrcYN5oXKF9QbDPq2RsR7DWt8JEotpHQfF28Jqc0U05TrvetuOIvtl4d8L4Ipzrg8AROQJAB8C\ncGAEv6jIW0e33eZzkK+M641GvXjX1KhFbdEOHR2+m3jmjIqGDdquFXoWiWy8xFthoQ6QDQz4Qd1c\nGSJXWmpnz2pDYeKwuOjdQDbgVVjoJ4VFo15gbNAzKMTB8gD+2lpavB++sFD/B106S0v6MFuESXm5\n1tX8vDaMxcW679SUDwOMRvWc5o93TkXMQk3NTWDJv2Ix7145dcrPbrb8OzYgbXlsSkv1d7Reh/Uy\n7D5oafE5hurrveuro0OPPz+vv31hoR57cVEt3NpaPVZJiRf1hYXslAxVVVoHdXX+nist1f2OH9dr\nMKs+mdRzx2L6nTNn1KIvL9ftb3ubzhu58069NjM4zN9ujUFRkV7LSsFvadFzB1N4mGumvt6PFVg0\nUUlJ7uR7weSAtbW5126wjKBWBzbeYuXbKK1xJKJ1bI2Y5Zcyo2Ytysv191q5LQzsyyLmIvJPAbzf\nOfdvMu//JYB7nXOfXrHfvi5ibt3s2Vm9sdvbNxfyZQ/lXiwhZwtfrMXAgO96z86qH7+/3wuqpXWw\nyBAbzLJBShunsLBGc5MERd6suLo64OGHVSxGRtRPurzs1xCwtBIW/WF5a06f9sfr7/fuJou+sAHz\noKunqUndZ9XV6qq6dMlblPX1WlZroC2V8sCA7/XYYucWJVJXp4Or0aimGrD1Y21Q1o5hIZhLS1q2\njg7gH/0jFeAXXtA6jUZVwG6/3edYsfGXoiLvNpua0sbdooOc0/ESE1TLhTMxofVhLgdbvKSzU7e/\n9JIX7q4u4J//881lrXRO3S/mpqqvX3/Ac2ZG3VPWk6mt9YbG669ni2htrdapNYC5iMfV5269tMZG\n/V4qpffFZp+fZFIbc2uoS0r0t10r0ieV8pPyrKxdXfu/5GM+WWsR8wMv+I8++uib77u7u9Hd3b2X\nRT0SLC3pQ2UuBUu/W1AAvPaaPjBnzvioFHP9XLyo4mbjGQUFKjIdHbrfO96hD8lXv6oP60c+4mPb\nTdD6+rzr6MUX1Vp85zv1f0mJHm9hQV1MloxsZES/Y3ldZma0d7K4qD2Uzk61RGdnffz8zIzPHdPb\nqw1HdbUKdTyun9tAYTzuw/hsu8WcFxaqqC0sqIDduuUtyWD+fAuFLS3Vc5aX6/HGx/W6ior0u4mE\nCqlZ7OaeMZG1QelgorKFBd8DSSR032AqZ8BPdrKxipERfW3pEbaCCfhmokxsrQULzQ1uv3VL67ei\nQn/LzZbDxlx2uoqczZHYbE4eCzTYz5TO+aKnpwc9PT1vvv/85z9/oAT/XQAec87dn3l/HoBbOXC7\n3xZ+WLl1y0/DB/yEHpHtZQK0OHyjoEAFfCux1ltlo57PzZtqxRuxmM9TFLRWLYqlpcUvJt7Z6V11\nuVYdyzeplC5cHkxqd+zYxq4/El4OmoVfAOASdND2JoCXAfyGc+61FftR8PcJc0OYW2SnU9Tn5vzi\n0g0Nuyv2m2Vy0q/+1djoLUyzVpeWvG/c9rOBS0uPvFe+30RCx4AszHS3GxlyuDlQgg+8GZb5Rfiw\nzN/LsQ8FnxBCtsiBE/zNQMEnhJCts5bgH4LJwIQQQvIBBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkIC\nBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8Q\nQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkICBZ8QQkLCjgRfRP6ZiFwQkZSI\n3LPis0dE5IqIvCYi7wtsv0dEfioil0XkD3dyfkIIIZtnpxb+qwD+CYC/D24UkbMAHgBwFsAHAHxJ\nRCTz8f8E8K+dc6cAnBKR9++wDLtKT0/PfhfhwMC68LAuPKwLz0Gvix0JvnPuknPuCgBZ8dGHADzh\nnEs653oBXAFwr4g0A6hwzr2S2e+rAD68kzLsNgf9B9xLWBce1oWHdeE56HWxWz78NgD9gfeDmW1t\nAAYC2wcy2wghhOwy0Y12EJFvA2gKbgLgAPwn59xf71bBCCGE5Bdxzu38ICIvAPgPzrkfZt6fB+Cc\nc1/IvH8GwKMA+gC84Jw7m9n+IID3OOf+7RrH3XnhCCEkhDjnVrraN7bwt0Dw4E8D+JqI/AHUZXMS\nwMvOOSci0yJyL4BXAPwrAP9tKwUmhBCyPXYalvlhEekH8C4AfyMi/wcAnHMXATwJ4CKAvwXwSee7\nEr8J4I8BXAZwxTn3zE7KQAghZHPkxaVDCCHk4MOZtusgIveLyOuZSWK/vd/l2UtEpF1EnheRn4nI\nqyLy6cz2GhF5VkQuici3RKRqv8u6F4hIRER+KCJPZ96HtR6qROTrmQmVPxORd4a4Lv59ZuLpT0Xk\nayJSdNDrgoK/BiISAfDfAbwfwB0AfkNEzuxvqfaUJIDPOufuAPBzAH4zc/3nATznnDsN4HkAj+xj\nGfeSz0BdlEZY6+GLAP42E3hxN4DXEcK6EJFWAP8OwD3OubdAx0N/Awe8Lij4a3MvdIyhzzmXAPAE\ndEJZKHDODTvnfpx5PQfgNQDt0Dp4PLPb4zjgE+fygYi0A/gVAF8ObA5jPVQC+AXn3FcAIDOxchoh\nrIsMBQDKRCQKoAQ63+hA1wUFf21WTh4L7SQxEekC8FYA3wPQ5JwbAbRRANC4fyXbM/4AwH+Ezj8x\nwlgPxwGMichXMu6tPxKRUoSwLpxzQwB+H8ANqNBPO+eewwGvCwo+WRcRKQfwFwA+k7H0V47yH+lR\nfxH5VQAjmd7OemHCR7oeMkQB3APgfzjn7gEwD3VhhOqeAAARqYZa850AWqGW/r/AAa8LCv7aDALo\nCLxvz2wLDZmu6l8A+FPn3FOZzSMi0pT5vBnA6H6Vb4+4D8AHReQagD8D8Esi8qcAhkNWD4D2cvud\nc9/PvP8GtAEI2z0BAL8M4JpzbsI5lwLwVwB+Hge8Lij4a/MKgJMi0ikiRQAehE4oCxN/AuCic+6L\ngW1PA/hY5vVHATy18ktHCefc55xzHc65E9B74Hnn3EMA/hohqgcAyLgq+kXkVGbTewH8DCG7JzLc\nAPAuESnOZAJ+L3RQ/0DXBePw10FE7odGJUQA/LFz7vf2uUh7hojcB+AfoCmwXebvcwBehk6qOwZN\nlfGAc25qv8q5l4jIe6ApRD4oIrUIYT2IyN3QwetCANcAfBw6eBnGungUagQkAPwIwCcAVOAA1wUF\nnxBCQgJdOoQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhIo+IQQEhL+P19W\nzfGfDXAJAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2976,7 +2984,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, diff --git a/kaggle.csv b/kaggle.csv index 485997c..d258dc3 100644 --- a/kaggle.csv +++ b/kaggle.csv @@ -17,12 +17,12 @@ PassengerId,Survived 907,1 908,0 909,0 -910,1 +910,0 911,1 -912,0 -913,0 +912,1 +913,1 914,1 -915,1 +915,0 916,1 917,0 918,1 @@ -32,11 +32,11 @@ PassengerId,Survived 922,0 923,0 924,0 -925,1 +925,0 926,0 927,0 -928,1 -929,1 +928,0 +929,0 930,0 931,0 932,0 @@ -48,7 +48,7 @@ PassengerId,Survived 938,0 939,0 940,1 -941,1 +941,0 942,0 943,0 944,1 @@ -67,19 +67,19 @@ PassengerId,Survived 957,1 958,1 959,0 -960,1 +960,0 961,1 962,1 963,0 -964,1 -965,1 +964,0 +965,0 966,1 -967,1 +967,0 968,0 969,1 970,0 971,1 -972,0 +972,1 973,0 974,0 975,0 @@ -88,12 +88,12 @@ PassengerId,Survived 978,1 979,1 980,1 -981,0 -982,1 +981,1 +982,0 983,0 984,1 985,0 -986,1 +986,0 987,0 988,1 989,0 @@ -131,13 +131,13 @@ PassengerId,Survived 1021,0 1022,0 1023,0 -1024,1 +1024,0 1025,0 1026,0 1027,0 1028,0 1029,0 -1030,1 +1030,0 1031,0 1032,0 1033,1 @@ -152,23 +152,23 @@ PassengerId,Survived 1042,1 1043,0 1044,0 -1045,1 +1045,0 1046,0 1047,0 1048,1 1049,1 1050,0 -1051,1 +1051,0 1052,1 -1053,0 +1053,1 1054,1 1055,0 1056,0 -1057,1 +1057,0 1058,0 1059,0 1060,1 -1061,1 +1061,0 1062,0 1063,0 1064,0 @@ -176,7 +176,7 @@ PassengerId,Survived 1066,0 1067,1 1068,1 -1069,0 +1069,1 1070,1 1071,1 1072,0 @@ -193,18 +193,18 @@ PassengerId,Survived 1083,0 1084,0 1085,0 -1086,0 +1086,1 1087,0 1088,1 1089,1 1090,0 -1091,1 +1091,0 1092,1 -1093,0 -1094,0 +1093,1 +1094,1 1095,1 1096,0 -1097,1 +1097,0 1098,1 1099,0 1100,1 @@ -233,7 +233,7 @@ PassengerId,Survived 1123,1 1124,0 1125,0 -1126,0 +1126,1 1127,0 1128,0 1129,0 @@ -248,7 +248,7 @@ PassengerId,Survived 1138,1 1139,0 1140,1 -1141,1 +1141,0 1142,1 1143,0 1144,1 @@ -267,7 +267,7 @@ PassengerId,Survived 1157,0 1158,0 1159,0 -1160,1 +1160,0 1161,0 1162,0 1163,0 @@ -279,8 +279,8 @@ PassengerId,Survived 1169,0 1170,0 1171,0 -1172,1 -1173,0 +1172,0 +1173,1 1174,1 1175,1 1176,1 @@ -306,7 +306,7 @@ PassengerId,Survived 1196,1 1197,1 1198,0 -1199,0 +1199,1 1200,0 1201,0 1202,0 @@ -315,14 +315,14 @@ PassengerId,Survived 1205,1 1206,1 1207,1 -1208,0 +1208,1 1209,0 1210,0 1211,0 1212,0 1213,0 1214,0 -1215,0 +1215,1 1216,1 1217,0 1218,1 @@ -366,7 +366,7 @@ PassengerId,Survived 1256,1 1257,0 1258,0 -1259,1 +1259,0 1260,1 1261,0 1262,0 @@ -375,7 +375,7 @@ PassengerId,Survived 1265,0 1266,1 1267,1 -1268,1 +1268,0 1269,0 1270,0 1271,0 @@ -389,7 +389,7 @@ PassengerId,Survived 1279,0 1280,0 1281,0 -1282,1 +1282,0 1283,1 1284,0 1285,0 @@ -402,7 +402,7 @@ PassengerId,Survived 1292,1 1293,0 1294,1 -1295,1 +1295,0 1296,0 1297,0 1298,0 @@ -411,7 +411,7 @@ PassengerId,Survived 1301,1 1302,1 1303,1 -1304,1 +1304,0 1305,0 1306,1 1307,0 diff --git a/model_iteration_1.ipynb b/model_iteration_1.ipynb index 93b8437..d49c375 100644 --- a/model_iteration_1.ipynb +++ b/model_iteration_1.ipynb @@ -7,7 +7,9 @@ "Shivali Chandra
\n", "First iteration of model for Titanic Kaggle dataset.
\n", "1/27/16
\n", - "Score: 0.75120" + "Initial Score: 0.75120
\n", + "Random forests Score: 0.7535
\n", + "Adding more columns Score: 0.7799" ] }, { @@ -19,7 +21,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 46, "metadata": { "collapsed": false }, @@ -148,7 +150,7 @@ "max 6.000000 512.329200 " ] }, - "execution_count": 37, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -173,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 47, "metadata": { "collapsed": true }, @@ -199,16 +201,91 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.78787878787878773" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test = pd.read_csv('test.csv')\n", + "test['Age'] = test['Age'].fillna(titanic['Age'].median())\n", + "\n", + "test.loc[test['Sex'] == 'male', 'Sex'] = 0\n", + "test.loc[test['Sex'] == 'female', 'Sex'] = 1\n", + "\n", + "test['Embarked'] = test['Embarked'].fillna('S')\n", + "test.loc[test['Embarked'] == 'S', 'Embarked'] = 0\n", + "test.loc[test['Embarked'] == 'C', 'Embarked'] = 1\n", + "test.loc[test['Embarked'] == 'Q', 'Embarked'] = 2\n", + "\n", + "test['Fare'] = test['Fare'].fillna(titanic['Fare'].median())\n", + "\n", + "alg = LogisticRegression(random_state=1)\n", + "scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3)\n", + "scores.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.819304152637\n" + ] + } + ], + "source": [ + "from sklearn import cross_validation\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "\n", + "titanic['FamilySize'] = titanic['SibSp'] + titanic['Parch']\n", + "titanic['NameLength'] = titanic['Name'].apply(lambda x: len(x))\n", + "test['FamilySize'] = test['SibSp'] + test['Parch']\n", + "test['NameLength'] = test['Name'].apply(lambda x: len(x))\n", + "\n", + "predictors = [\"Pclass\", \"Sex\", \"Age\", \"SibSp\", \"Parch\", \"Fare\", \"Embarked\"]\n", + "\n", + "# Initialize our algorithm with the default paramters\n", + "# n_estimators is the number of trees we want to make\n", + "# min_samples_split is the minimum number of rows we need to make a split\n", + "# min_samples_leaf is the minimum number of samples we can have at the place where a tree branch ends (the bottom points of the tree)\n", + "alg = RandomForestClassifier(random_state=1, n_estimators=10, min_samples_split=10, min_samples_leaf=5)\n", + "# Compute the accuracy score for all the cross validation folds. (much simpler than what we did before!)\n", + "scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic[\"Survived\"], cv=3)\n", + "\n", + "# Take the mean of the scores (because we have one for each fold)\n", + "print(scores.mean())" + ] + }, + { + "cell_type": "markdown", "metadata": { "collapsed": false }, - "outputs": [], "source": [ "predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']\n", "\n", "alg = LinearRegression()\n", "kf = KFold(titanic.shape[0], n_folds=3, random_state=1)\n", + "scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3)\n", + "scores.mean()\n", "\n", "predictions = []\n", "for train, test in kf:\n", @@ -227,20 +304,10 @@ ] }, { - "cell_type": "code", - "execution_count": 40, + "cell_type": "markdown", "metadata": { "collapsed": false }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/kiki/anaconda/lib/python2.7/site-packages/IPython/kernel/__main__.py:6: FutureWarning: in the future, boolean array-likes will be handled as a boolean array index\n" - ] - } - ], "source": [ "predictions = np.concatenate(predictions, axis=0)\n", "\n", @@ -257,30 +324,6 @@ "Computing accuracy score for all cross validation folds, and taking mean of scores" ] }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.78787878787878773" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "alg = LogisticRegression(random_state=1)\n", - "scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3)\n", - "scores.mean()" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -288,28 +331,6 @@ "Cleaning test data. Filling missing NaN values and replacing text values with number codes: " ] }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "test = pd.read_csv('test.csv')\n", - "test['Age'] = test['Age'].fillna(titanic['Age'].median())\n", - "\n", - "test.loc[test['Sex'] == 'male', 'Sex'] = 0\n", - "test.loc[test['Sex'] == 'female', 'Sex'] = 1\n", - "\n", - "test['Embarked'] = test['Embarked'].fillna('S')\n", - "test.loc[test['Embarked'] == 'S', 'Embarked'] = 0\n", - "test.loc[test['Embarked'] == 'C', 'Embarked'] = 1\n", - "test.loc[test['Embarked'] == 'Q', 'Embarked'] = 2\n", - "\n", - "test['Fare'] = test['Fare'].fillna(titanic['Fare'].median())" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -319,14 +340,12 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 50, "metadata": { "collapsed": true }, "outputs": [], "source": [ - "alg = LogisticRegression(random_state=1)\n", - "\n", "alg.fit(titanic[predictors], titanic['Survived'])\n", "\n", "predictions = alg.predict(test[predictors])\n", @@ -339,7 +358,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 51, "metadata": { "collapsed": true }, From f5960d9df0977f493ae619e35ade567ee9d0ab20 Mon Sep 17 00:00:00 2001 From: Kiki Date: Sun, 31 Jan 2016 17:15:09 -0500 Subject: [PATCH 4/7] Commented code --- model_iteration_1.ipynb | 106 +++++++++++++++++++++++----------------- 1 file changed, 61 insertions(+), 45 deletions(-) diff --git a/model_iteration_1.ipynb b/model_iteration_1.ipynb index d49c375..87dd29e 100644 --- a/model_iteration_1.ipynb +++ b/model_iteration_1.ipynb @@ -21,7 +21,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 43, "metadata": { "collapsed": false }, @@ -150,7 +150,7 @@ "max 6.000000 512.329200 " ] }, - "execution_count": 46, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -175,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 44, "metadata": { "collapsed": true }, @@ -196,27 +196,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Defining columns used to predict target, generating cross validation folds for the dataset (with random state set to ensure splits are the same every time), initializing predictors and target, training algorithm, and making predictions:" + "Defining columns used to predict target:" ] }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 45, "metadata": { "collapsed": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "0.78787878787878773" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "test = pd.read_csv('test.csv')\n", "test['Age'] = test['Age'].fillna(titanic['Age'].median())\n", @@ -231,14 +220,23 @@ "\n", "test['Fare'] = test['Fare'].fillna(titanic['Fare'].median())\n", "\n", - "alg = LogisticRegression(random_state=1)\n", - "scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3)\n", - "scores.mean()" + "#alg = LogisticRegression(random_state=1)\n", + "#scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3)\n", + "#scores.mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Adding new columns and using the random forest classifier algorithm to get scores and the mean; generating cross validation folds for the dataset (with random state set to ensure splits are the same every time), initializing predictors and target, training algorithm, and making predictions" ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 46, "metadata": { "collapsed": false }, @@ -247,12 +245,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.819304152637\n" + "0.821548821549\n" ] } ], "source": [ - "from sklearn import cross_validation\n", "from sklearn.ensemble import RandomForestClassifier\n", "\n", "titanic['FamilySize'] = titanic['SibSp'] + titanic['Parch']\n", @@ -260,7 +257,7 @@ "test['FamilySize'] = test['SibSp'] + test['Parch']\n", "test['NameLength'] = test['Name'].apply(lambda x: len(x))\n", "\n", - "predictors = [\"Pclass\", \"Sex\", \"Age\", \"SibSp\", \"Parch\", \"Fare\", \"Embarked\"]\n", + "predictors = [\"Pclass\", \"Sex\", \"Age\", \"SibSp\", \"Parch\", \"Fare\", \"Embarked\", \"NameLength\", \"FamilySize\"]\n", "\n", "# Initialize our algorithm with the default paramters\n", "# n_estimators is the number of trees we want to make\n", @@ -276,11 +273,31 @@ }, { "cell_type": "markdown", + "metadata": {}, + "source": [ + "This model gives an accuracy of 82% on the test data, which is an improvement. Below is the code for the previous columns and model used: " + ] + }, + { + "cell_type": "code", + "execution_count": 1, "metadata": { "collapsed": false }, + "outputs": [ + { + "data": { + "text/plain": [ + "\"predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']\\n\\nalg = LinearRegression()\\nkf = KFold(titanic.shape[0], n_folds=3, random_state=1)\\nscores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3)\\nscores.mean()\\n\\npredictions = []\\nfor train, test in kf:\\n train_predictors = (titanic[predictors].iloc[train,:])\\n train_target = titanic['Survived'].iloc[train]\\n alg.fit(train_predictors, train_target)\\n test_predictions = alg.predict(titanic[predictors].iloc[test,:])\\n predictions.append(test_predictions)\"" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']\n", + "\"\"\"predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']\n", "\n", "alg = LinearRegression()\n", "kf = KFold(titanic.shape[0], n_folds=3, random_state=1)\n", @@ -293,7 +310,7 @@ " train_target = titanic['Survived'].iloc[train]\n", " alg.fit(train_predictors, train_target)\n", " test_predictions = alg.predict(titanic[predictors].iloc[test,:])\n", - " predictions.append(test_predictions)" + " predictions.append(test_predictions)\"\"\"" ] }, { @@ -304,31 +321,30 @@ ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 2, "metadata": { "collapsed": false }, + "outputs": [ + { + "data": { + "text/plain": [ + "\"predictions = np.concatenate(predictions, axis=0)\\n\\npredictions[predictions > 0.5] = 1\\npredictions[predictions <= 0.5] = 0\\n\\naccuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions)\"" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "predictions = np.concatenate(predictions, axis=0)\n", + "\"\"\"predictions = np.concatenate(predictions, axis=0)\n", "\n", "predictions[predictions > 0.5] = 1\n", "predictions[predictions <= 0.5] = 0\n", "\n", - "accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Computing accuracy score for all cross validation folds, and taking mean of scores" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Cleaning test data. Filling missing NaN values and replacing text values with number codes: " + "accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions)\"\"\"" ] }, { @@ -340,7 +356,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 47, "metadata": { "collapsed": true }, @@ -358,7 +374,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 48, "metadata": { "collapsed": true }, From bbc4b7b018e141fcd67e80ede9a06088477a1a2e Mon Sep 17 00:00:00 2001 From: Kiki Date: Mon, 1 Feb 2016 00:52:04 -0500 Subject: [PATCH 5/7] New data cleaning done --- model_iteration_2.ipynb | 625 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 625 insertions(+) create mode 100644 model_iteration_2.ipynb diff --git a/model_iteration_2.ipynb b/model_iteration_2.ipynb new file mode 100644 index 0000000..5ff9ef8 --- /dev/null +++ b/model_iteration_2.ipynb @@ -0,0 +1,625 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Shivali Chandra
\n", + "1/30/16
\n", + "Warmup Project Iteration 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Inspiration 1: http://elenacuoco.altervista.org/blog/archives/1195?doing_wp_cron=1454278621.7234199047088623046875, provides a great overview of how the author figured out which values would be relevant
\n", + "Inspiration 2: https://triangleinequality.wordpress.com/2013/09/05/a-complete-guide-to-getting-0-79903-in-kaggles-titanic-competition-with-python/, good overview as to how to structure the code and model as decision trees. This was a really interesting approach, because it basically weighted different factors as deciding factors or questions leading to more factors (for example, starting with a male, checking the passenger class and moving to different factors based on the result). I did not implement this entirely, but read through it and the links it pointed to in order to get a better sense of how to modify my model. " + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import pandas as pd\n", + "from sklearn.linear_model import LinearRegression, LogisticRegression\n", + "from sklearn.cross_validation import KFold\n", + "from sklearn import cross_validation\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt \n", + "import thinkplot\n", + "import thinkstats2\n", + "import string" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I incorporated my own ideas by going through and seeing how the ideas in the two articles could be combined, especially with respect to different variables. Some of the variables I used were different, because I am interested in seeing the difference that they make, not necessarily just in achieving a higher score each time. " + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassAgeSibSpParchFare
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.204208
std257.3538420.4865920.83607114.5264971.1027430.80605749.693429
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.910400
50%446.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%668.5000001.0000003.00000038.0000001.0000000.00000031.000000
max891.0000001.0000003.00000080.0000008.0000006.000000512.329200
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Age SibSp \\\n", + "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", + "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", + "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", + "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", + "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", + "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", + "\n", + " Parch Fare \n", + "count 891.000000 891.000000 \n", + "mean 0.381594 32.204208 \n", + "std 0.806057 49.693429 \n", + "min 0.000000 0.000000 \n", + "25% 0.000000 7.910400 \n", + "50% 0.000000 14.454200 \n", + "75% 0.000000 31.000000 \n", + "max 6.000000 512.329200 " + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train = pd.read_csv('train.csv')\n", + "\n", + "train.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The biggest impact that this blog had on my model was the fact that it parsed for title and used that to assign age, rather than using the same mean. This actually seems pretty significant because there are over 200 ages missing, and with about 900 total people that is a large portion, so trying to get the age in a closer range is important. " + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def substrings_in_string(big_string, substrings):\n", + " for substring in substrings:\n", + " if string.find(big_string, substring) != -1:\n", + " return substring\n", + " print big_string\n", + " return np.nan\n", + "\n", + "title_list=['Mrs', 'Mr', 'Master', 'Miss', 'Major', 'Rev',\n", + " 'Dr', 'Ms', 'Mlle','Col', 'Capt', 'Mme', 'Countess',\n", + " 'Don', 'Jonkheer']\n", + "train['Title']=train['Name'].map(lambda x: substrings_in_string(x, title_list))\n", + "\n", + "#replacing all titles with mr, mrs, miss, master\n", + "def replace_titles(x):\n", + " title=x['Title']\n", + " if title in ['Mr','Don', 'Major', 'Capt', 'Jonkheer', 'Rev', 'Col']:\n", + " return 'Mr'\n", + " elif title in ['Master']:\n", + " return 'Master'\n", + " elif title in ['Countess', 'Mme','Mrs']:\n", + " return 'Mrs'\n", + " elif title in ['Mlle', 'Ms','Miss']:\n", + " return 'Miss'\n", + " elif title =='Dr':\n", + " if x['Sex']=='Male':\n", + " return 'Mr'\n", + " else:\n", + " return 'Mrs'\n", + " elif title =='':\n", + " if x['Sex']=='Male':\n", + " return 'Master'\n", + " else:\n", + " return 'Miss'\n", + " else:\n", + " return title\n", + "\n", + "train['Title']=train.apply(replace_titles, axis=1)\n", + "\n", + "train['AgeFill']=train['Age']\n", + "mean_ages = np.zeros(4)\n", + "mean_ages[0]=np.average(train[train['Title'] == 'Miss']['Age'].dropna())\n", + "mean_ages[1]=np.average(train[train['Title'] == 'Mrs']['Age'].dropna())\n", + "mean_ages[2]=np.average(train[train['Title'] == 'Mr']['Age'].dropna())\n", + "mean_ages[3]=np.average(train[train['Title'] == 'Master']['Age'].dropna())\n", + "train.loc[ (train.Age.isnull()) & (train.Title == 'Miss') ,'AgeFill'] = mean_ages[0]\n", + "train.loc[ (train.Age.isnull()) & (train.Title == 'Mrs') ,'AgeFill'] = mean_ages[1]\n", + "train.loc[ (train.Age.isnull()) & (train.Title == 'Mr') ,'AgeFill'] = mean_ages[2]\n", + "train.loc[ (train.Age.isnull()) & (train.Title == 'Master') ,'AgeFill'] = mean_ages[3]" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassAgeSibSpParchFareAgeFill
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.20420829.819131
std257.3538420.4865920.83607114.5264971.1027430.80605749.69342913.285423
min1.0000000.0000001.0000000.4200000.0000000.0000000.0000000.420000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.91040021.835616
50%446.0000000.0000003.00000028.0000000.0000000.00000014.45420030.000000
75%668.5000001.0000003.00000038.0000001.0000000.00000031.00000035.841667
max891.0000001.0000003.00000080.0000008.0000006.000000512.32920080.000000
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Age SibSp \\\n", + "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", + "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", + "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", + "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", + "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", + "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", + "\n", + " Parch Fare AgeFill \n", + "count 891.000000 891.000000 891.000000 \n", + "mean 0.381594 32.204208 29.819131 \n", + "std 0.806057 49.693429 13.285423 \n", + "min 0.000000 0.000000 0.420000 \n", + "25% 0.000000 7.910400 21.835616 \n", + "50% 0.000000 14.454200 30.000000 \n", + "75% 0.000000 31.000000 35.841667 \n", + "max 6.000000 512.329200 80.000000 " + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have cleaner data, of the first suggestions of the first blog was to make plots of age and other characteristics to see if there was any correlation: " + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+sAAAFVCAYAAACXX35lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPX1//HXAQIEJCEgS9gCggu4AUWrIhKLdUGRIlQW\nFxarqLhW/YnoF4NaV6wCalEUixR3aAGFgkqB1hYFBVRwAYSwBFBW2Rc5vz8yGbPMhKwzk+T9fDx4\nOPfez9w5Ge+59565n/u55u6IiIiIiIiISOyoFO0ARERERERERCQnFesiIiIiIiIiMUbFuoiIiIiI\niEiMUbEuIiIiIiIiEmNUrIuIiIiIiIjEGBXrIiIiIiIiIjHmqMW6mTUxszlmtszMvjSz2wLzk8xs\ntpl9a2azzCyx9MMVkZJkZq+Y2WYz+yLbvCfN7GszW2Jmk80sIduy+8xsRWD5hdGJWkSKKkzOhz2e\nK+dFyh8zq2Rmn5vZtDDLRwfyfomZtY10fCLyi4JcWT8M/NHdTwbOBoaY2UnAUOBDdz8RmAPcV3ph\nikgpeRW4KNe82cDJ7t4WWEEgt82sDXAl0Bq4BHjBzCyCsYpI8YXK+ZDHc+W8SLl1O7A81AIzuwRo\n6e7HA4OBsZEMTERyOmqx7u6b3H1J4PVu4GugCdAdmBBoNgH4XWkFKSKlw93/A2zPNe9Ddz8SmFxA\nZr4DXA686e6H3X0NmYX8mZGKVUSKL1TOE/54rpwXKWfMrAnQFXg5TJPuwGsA7v4JkGhmDSIUnojk\nUqh71s2sOdCWzBP4Bu6+GTILeqB+SQcnIlE3CJgReN0YWJdt2YbAPBEp2+qHOZ4r50XKn2eAewAP\ns1x5LxJDClysm9kxwLvA7YEr7LmTPFzSi0gZZGb3A4fc/Y1oxyIiEaXjuUg5ZGaXApsDPWYt8E9E\nYliVgjQysypkFuoT3X1qYPZmM2vg7pvNrCHwQ5j36qAvUkLcPSIHVjMbQGY3ud9km70BaJptuklg\nXqj3K+9FSkgE8j7c8Vw5LxIFpZjzHYHLzawrEA/UMrPX3P3abG2U9yJREC7vC1SsA+OB5e4+Ktu8\nacAA4AmgPzA1xPuyPryAH1NxpKWlkZaWFu0wYpK+m9BKcVynHL+um9nFZHaRO8/dD2RrNw2YZGbP\nkNklrhXwabiVKu/z0rYdmr6X8Eop73NfUQt3PFfOlwBt36HpewmtNMdwdPdhwLDA53QG7spVqENm\n3g8B3jKzs4AdWbfJhFlnaYVbrnU4vS2Lxr9e6p+T9uLzpA0eUuqfA9BhUD8WLV0Skc8qb/LL+6MW\n62bWEbgK+NLMFpPZPW4YmQf1t81sEJBO5oixIlKGmNnrQCpQ18zWAg+Smd9VgQ8CO48F7n6zuy83\ns7fJHEH2EHCz6ygtUqaEyfnHgXdyH8+V8yIVg5kNBtzdX3L3GWbW1cxWAnuAgVEOT6RCO2qx7u4f\nA5XDLL6gZMMRkUhy934hZr+aT/vHgMdKLyIRKU1hch7CHM+V8yLlk7vPA+YFXr+Ya9ktUQlKRPIo\naDd4KWGpqanRDiFm6buRWNPtkq5szMgo9np27d7Ne3//R7HXk9yoEdNnzjh6wzJCOS/lmbbv0PS9\niJS+1F+dEe0QpJistHu0mZl6zYmUADOL2ABzxVXe8j5S95YVlO4LqzjKSt6Xt5wXiZaykvOgvC+O\nWDuvKAk6Nym6/PJeV9ZLWfPmzUlPT492GFKGpKSksGbNmmiHUWzlbdu3DidHO4QcSnMQIom8spj3\n8fHxm/bv398ga1rbpEjBlcWcl9LR/PILSc8IOeB+maPjQP6Kkvcq1ougMF1i09PTNVKmFEp52dFp\n2xcpuLKY9/v372+gHBcpmrKY81I60jM26HypgihK3qtYL4KNGRkF7roSa1fjREREREREJPZVinYA\nIiIiIiIiIpKTinURERERERGRGKNivYL77rvvaNeuHYmJiTz33HMR/exKlSrx/fffl9r609PTqVSp\nEkeOHAm5/LHHHuOGG24oUNsRI0ZwzTXXlFqsElnlebsP55RTTmH+/Pkhl82bN4+mTZuGfe/AgQMZ\nPnx4gdpG07nnnsvSpUujHUYed999N2PHjo12GBWO8jyn8pLn2R08eJCTTz6ZzZs3RzuUPHr16sWs\nWbOiHYZIsVXEfWlxtGjRgjlz5pTY+nTPehSU1DObwynMM5iffPJJfvOb37B48eJSiyecSAyukt9n\n3HfffQVuW5DlcnSxsu2X9+0+lK+++irf5YWJKxZz4b333iMhIYHTTz8dgGXLlnHXXXfx2WefsW3b\nNn7++ecc7bdv386gQYP44IMPqFevHo8++ih9+/YNu/5rrrmGDz/8kH379tGwYUPuuecerrvuuuDy\njz76iFtuuYV169bx61//mldffZVmzZoBmcX6mWeeyR/+8AeqVCnfh91YyXFQnodS1vM8t5deeonO\nnTvToEHmQwmeffZZxowZw5YtW6hVqxa9e/fmqaeeolKlzGtT6enpDBw4kE8++YSUlBTGjBlDly5d\n8v2MUaNGMWrUKH744QdSUlKYOnUqrVq1AuD1119n2LBhbN26ld/+9reMHz+e2rVrA3Dvvfdy0003\ncdFFF5XiNyDllfalmcrCfqi0le+zhhhVmAHqiqLDoH4Fbpuenp7vCWppKi8jX/78889Urlw52mGU\nCbGy7Wu7L3/Gjh2bo/dLXFwcvXv3ZsiQIfzud7/L0/7mm2+mevXq/Pjjj3z++edceumltG3bltat\nW4dc/3333ce4ceOoXr063333HZ07d6Z9+/a0a9eOrVu30rNnT8aPH89ll13GAw88QO/evfnf//4H\nQMOGDWndujXTpk3jiiuuKJ0vIEbESo6D8rwiGDt2LOPGjQtOd+/enf79+5OUlMSOHTvo2bMno0eP\n5o477gCgb9++dOzYkZkzZ/L+++/Tq1cvVq5cSd26dUOu/+WXX+bVV19l5syZnHjiiaxevZqkpCQg\n8wfBG2+8kZkzZ9KuXTuuv/56brrpJt544w0AzjjjDHbt2sXnn39O+/btS/mbKBgzqwbMB6qSWQO8\n6+4jcrXpDEwFsi5nTnH3RyIaqGhfGqB9qbrBV2hdunThX//6F0OGDCEhIYGVK1dy8OBB7r77blJS\nUkhOTubmm2/mwIEDwC/d4p566ikaNGhA48aNmTp1avAgduyxx/LYY48F179w4ULOOecckpKSaNy4\nMbfeeiuHDx8OGUt+n3s0+/fv56677qJ58+YkJSVx3nnnBd/r7vztb38jJSWF+vXr8+ijjwbfl1/X\n9jVr1pCamkpiYiIXXXQRW7ZsCS7L6jI/fvx4UlJSgr/KL1iwgI4dO5KUlES7du2YN29e8D3nn38+\nw4cP59xzzyUhIYGLL76Ybdu2Fejvk5JVXrb7gQMHMmTIELp27UqtWrXo1KkTmzdv5s4776ROnTq0\nadMmR5fw7N2y9u/fz4ABA6hTpw6nnHIKCxcuzLHuxYsX86tf/YrExET69OnD/v37w8axceNGevXq\nRf369WnZsiVjxowJ23bGjBm0b9+exMREUlJSGDEixzkir732Gs2bN6devXo88sgjOWJ2dx5//HFa\ntWpFvXr16NOnD9u3bwfg0KFDzJkzh86dOwfXdcIJJzBw4EDatGmTJ469e/cyZcoUHnnkEeLj4+nY\nsSPdu3dn4sSJYWNv06YN1atXD8ZiZqxatQqAKVOmcMopp3DFFVdQtWpV0tLSWLp0Kd99913w/Z07\nd+b9998Pu34pWcrz8pPnO3bsCPk569atY/Xq1fz617/O8fdnFdM///wzlSpVYuXKlUBmV97FixeT\nlpZGtWrVuOKKKzjttNOYPHlyyPW7Ow899BDPPPMMJ554YnD9WVfOX3/9dS6//HI6duxIjRo1ePjh\nh5kyZQp79uwJriPW8t7dDwDnu3s7oC1wiZmdGaLpfHdvH/inQr0CKy/70tLcL02cODH43ux1RklR\nsV6BffTRR3Tq1Innn3+en376iVatWnHvvfeycuVKvvjiC1auXMmGDRt46KGHgu/ZtGkTBw8eJCMj\ngxEjRnD99dczadIkFi9ezPz583n44YdJT08HoHLlyjz77LNs27aN//3vf8yZM4cXXnghZCxH+9z8\n3HXXXSxevJgFCxawbds2nnzyyWCXN4CPP/6YFStW8OGHH/LQQw/x7bffBpeF617Tr18/zjjjDLZs\n2cIDDzzAhAkT8rSZP38+33zzDbNmzSIjI4PLLruM4cOHs337dkaOHEnPnj3ZunVrsP0bb7zBhAkT\n+PHHHzlw4AAjR44s0N8nJau8bPcA77zzDo8++ihbt26latWqnH322XTo0CF4pffOO+8M+b60tDRW\nr17N6tWrmTVrVo7t+9ChQ/To0YP+/fuzbds2fv/73+d7MtutWzfatWvHxo0b+eijjxg1ahQffPBB\nyPbHHHMMEydOZOfOnbz//vuMHTuWadOmAbB8+XKGDBnCG2+8wcaNG9m5cycZ2boAjh49mmnTpvHv\nf/+bjIwMkpKSGDJkCAArVqygcuXKNGrUqEDf23fffUdcXBwtW7YMzjv99NNZtmxZvu8bMmQINWvW\npHXr1jRq1IiuXbsCmVfYsrrfA9SoUYNWrVrlWF/r1q1j8n768kp5Xn7y/Oabbw75OV9++SXHHXdc\njuM9ZB5rExMTqVevHl988QU33nhj8LOPO+44atasGWybX96vX7+e9evX8+WXX9KsWTNatmxJWlpa\ncHnuvD/uuOOoVq1ajh/pYjHv3X1v4GU1Mq+uh7p0qb7HApSffWlp7ZeWL1/OzTffzKRJk8jIyGDr\n1q1s2LChSN91OCrWJYdx48bxzDPPkJiYSM2aNRk6dGiwSxdA1apVGTZsGJUrV6ZPnz5s2bKFO+64\ngxo1atCmTZscv/K3b9+eM888EzOjWbNm3HDDDTmuNhfmc8Nxd1599VVGjx5Nw4YNMTPOOuss4uLi\ngMxiPC0tjapVq3Laaadx+umnH/XAuXbtWhYtWsRDDz1EXFwcnTp1olu3bjnamBkjRowgPj6eatWq\n8be//Y1LL700eG9aly5d6NChAzNm/HI/0MCBA2nZsiXVqlXjyiuvZMmSJUf9+yQyytp2n6VHjx60\nbduWqlWr0qNHD+Lj47nqqqswM3r37h12G3vnnXd44IEHSExMpHHjxtx2223BZf/73/84fPgwt912\nG5UrV6Znz56cccYZIdfz6aefsmXLFu6//34qV65M8+bN+cMf/sCbb74Zsv15553HySefDGQOhNWn\nT5/gdzN58mQuv/xyzj77bKpUqZLnAPziiy/ypz/9ieTkZOLi4hg+fDjvvvsuR44cYceOHdSqVavA\n39vu3btJSEjIMS8hIYFdu3bl+77nn3+e3bt385///IcrrriCatWqBdeXmJiY7/pq1aoV9gqhRIby\nvGzneW7h8r5v377s3LmTFStWcOONN1K/fn2gYHma3fr16wH44IMPWLZsGXPmzOGNN97glVdeKfD6\nYjHvzaySmS0GNgEfuPvCEM3ONrMlZva+meXtniQVWlncl5bWfmny5Ml069aNjh07EhcXx8MPP1zi\n99nrnnUJ+vHHH9m7dy+/+tWvgvOOHDmS436RunXrBjfC+Ph4gOCBMGve7t27gcyrXX/84x9ZtGgR\n+/bt4/DhwznWXZjPDWfLli0cOHCA4447LmybrIFnIPOKV1Z84WzcuJGkpKTg3weQkpISPHBnadKk\nSfB1eno6b7/9NtOnTwcyf0Q4fPhwjoFrGjZsWKg4JDLK4nafJfu2HR8fn2c63DaWkZGRY/tNSUkJ\nvt64cSONGzfO0T778uzWrl3Lhg0bqFOnDpC53R85coTzzjsvZPtPP/2UoUOH8tVXX3Hw4EEOHjzI\n73//+2BM2Uefjo+Pz3EfaXp6Oj169AheRXN34uLi2Lx5M0lJSUcttLM75phj+Omnn3LM27lzZ/DE\nv2vXrvz73//GzHjxxRdz3KtnZpxzzjlMnDiRv/zlL9xyyy1HXR/Arl27gt1nJfKU52U/z5OTk3N8\nztHyvmXLlrRp04abbrqJyZMnHzVPTznlFNLT0zEzZs6cGbwCf++991KrVi1q1arF4MGDmTFjBtdd\nd12ZzXt3PwK0M7ME4B9m1sbdl2dr8hnQzN33mtklwD+AE6IRq8SesrovLa39Uu731qhRI+wYGEWl\nYl2Cjj32WGrUqMGyZcvyHBSL4qabbqJ9+/a89dZb1KhRg1GjRoXsZleczz322GOpXr06q1at4tRT\nTy12zADJycls376dffv2BXcya9euzdPVLvsvZ02bNuXaa6/lxRdfLJEYJHLK4nZfXMnJyaxbty44\nmFpWd7SsZbm7cK1duzY4+nF2TZs25bjjjstxa0l++vXrx2233casWbOIi4vjzjvvDN4qkpycnKP7\n6L59+3LcRtKsWTPGjx/P2WefnWe9xx57LO7Oxo0bC/RdnnDCCRw+fJhVq1YFu8IvXbo0+Kt79h4x\n4WS9H+Dkk0/O0cV4z549rFq1Krg+gK+//jpHl1mJLOV52c/z3E477TRWr17NkSNH8hyfsxw6dCj4\n2KeTTz6Z77//nj179gQL8aVLl3L11VcDeUfS37dvH1WrVs0xL/tx/+STT87RU2/VqlUcOnSIE074\npa6N5bx395/M7F/AxcDybPN3Z3s908xeMLM67h5yoJ3stwakpqaSmppaajFL9JXVfWlp7ZeSk5P5\n5ptvgtN79+7N8d5w5s6dy9y5cwsUu7rBS5CZcf3113PHHXfw448/ArBhwwZmz55dpPXt2rWLhIQE\natSowTfffMNf/vKXIn9upUqVQj471swYNGgQf/zjH9m4cSNHjhxhwYIFHDp0CCjcKJJZbZs1a0aH\nDh148MEHOXToEP/5z3+CV8xzt81y9dVXM336dGbPns2RI0fYv38/8+bNy3HPSywys1fMbLOZfZFt\nXpKZzTazb81slpklZlt2n5mtMLOvzezC6ERdssridl9Q4bb/K6+8kscee4wdO3awfv36HM9NzeoG\nNmbMGA4fPsyUKVP49NNPQ67nzDPPpFatWjz55JPs37+fn3/+mWXLlrFo0aKQ7Xfv3k1SUhJxcXF8\n+umnvP76LyPd9urVi+nTpwfzN/sJIMDgwYMZNmwYa9euBTJ/Zc+63ywuLo4LLrggT9e5AwcOcODA\nAdydAwcOcPDgQSDzl+8rrriC4cOHs3fv3mCOhxtw8scff+Stt95iz549HDlyhFmzZvHmm29ywQUX\nAJndlJctW8bf//53Dhw4wIgRI2jbtm2Ok/Z58+ZxySWXhFy/lD7lednP89waN25Mq1atcsT9yiuv\nBL/n5cuX8/jjjwfz9Pjjj6dt27aMGDGCAwcOMGXKFL766it69uwZcv3x8fH06dOHJ598kt27d7N+\n/Xpeeuml4G1xV111FdOnT+fjjz9mz549DB8+nJ49e+a4Jz7W8t7Mjs06pptZPPBb4JtcbRpke30m\nYOEKdcgs1rP+qVAv/8rqvrS09ku9evXivffe47///S+HDh1i+PDhBao9UlNTc+ROflSsV3C576t4\n4oknaNWqFWeddRa1a9fmwgsvzPFr09Hen3165MiRTJo0iYSEBAYPHkyfPn3Cts3vc9etW0dCQkLY\nK+cjR47k1FNP5YwzzqBu3boMHTo0eH9bfvHl97e8/vrrLFiwgLp16/Lwww/Tv3//fNfTpEkTpk6d\nyqOPPkq9evVISUlh5MiRYeOIIa8CuR8COxT40N1PBOYA9wEE7lu7EmgNXAK8YDH8h+WnPGz3Bfnq\ns7fJ/vrBBx+kWbNmtGjRgosvvphrr702uCwuLo4pU6bw6quvUrduXd55552wJ7OVKlXivffeY8mS\nJbRo0YL69etz/fXX5+kamuWFF17g//7v/0hMTOSRRx6hd+/ewWVt2rRhzJgx9O7dm0aNGpGQkED9\n+vWD94XffvvtdO/enQsvvJDExETOOeecHCfpN9xwA6+99lpwOj09nfj4eE499VTMjPj4eE466aTg\n8ueff569e/dSv359rr76asaOHRv2sW1mxl/+8heaNm1KnTp1+H//7/8xatQoLr30UiDzF//Jkycz\nbNgw6tSpw6JFi3Lcz7tx40a+/vrrkI+Qk9KjPC9/eZ7b4MGDc+T9xx9/zKmnnkqtWrW47LLLuOyy\ny/jTn/4UXP7mm2+ycOFCkpKSuP/++5k8eXK+XVbHjBlDzZo1adSoER07duTqq69mwIABwb9l7Nix\n9OvXj4YNG7Jv3z6ef/754HsXLlxIrVq16NChQ9j1R0Ey8C8zWwJ8Asxy9xlmNtjMbgi06WVmXwXu\na38W6B1uZVIxlId9aWntl9q0acPzzz9P3759adSoEXXr1s1x+1FJsNJ+fp2ZeXl7Rl6H09sW+NmH\n1uHkPL+wdLukKxtL8YprcqNGTJ959G6cZcWkSZNYvnx5jgNueWZmIX+VC8wv8eLYzFKA6e5+WmD6\nG6Czu282s4bAXHc/ycyGAu7uTwTazQTS3P2TEOt0yHvFR9t+wVW07T63PXv2ULt2bVauXBn2Xtrc\nOnXqxHPPPRdz3U7vvvtuWrVqFRyVOpRI531JCHV8V44XjvK88Hme3cGDB2nfvj0fffRRjnv5Y0Gv\nXr34wx/+wMUXXxxyeVnM+dzK4zl+pGSvJVQrFF9J7kuLu1/KT1HyXsV6ERS3WBfJTwwU69vcvU62\n5dvcvY6ZjQH+5+6vB+a/DMxw9ykh1hmyWBfJz3vvvUeXLl04cuQId911FwsXLuSzzz6LdlgRURZP\n3Mvj8V1KX0XO8+zKYs7npn1A0R2tWJfIitR+qSh5r27wInI0OoJIREydOpVGjRrRpEkTVq1aFfbR\nUCJSdinPRSTWxPJ+SaPBi0hum82sQbZu8D8E5m8AmmZr1yQwT6REjBs3jnHjxkU7jKgqzAixJc3M\n7gSuA44AXwIDgZrAW0AKsAa40t13RiVAKReU5yISa2J5v6RiXUQs8C/LNGAA8ATQH5iabf4kM3sG\naAy0AsKP/CMihZb70UcjRoyIyOeaWSPgVuAkdz9oZm8BfYE2ZA44+aSZ3UvmgJNDIxKUiIhIBadu\n8CIVmJm9DvwXOMHM1prZQOBx4Ldm9i3QJTCNuy8H3ibzeawzgJt1s5pIuVIZqGlmVYB4MnvOdAey\nHiI/AdCQ9iIiIhGiK+siFZi79wuz6IIw7R8DHiu9iEQkGtw9w8yeBtYCe4HZ7v5h1i0xgTabzKx+\nVAMVERGpQFSsi4iIVHBmVpvMq+gpwE7gHTO7irwDTKo3jUgJiuY4FSIS+1Ssl7KURo0xKxNP4JAY\nUdLPdIyWlJQUbfsiBRQDeX8B8L27bwMws78D5xB+wEmqV6++2cxi6+HWImVEVs5Ha5wKiR2qFSqO\nohzrVayXsjXTZpfq+jsM6seipUtK9TNEimLNmjXRDqHEZH8eaixQ3kspWAucZWbVgQNkjlexENhN\n6AEn2bdvX8Os1+XxecuxlPfKeZHyq7RrhUjRfqp0HHWAOTN7xcw2m9kX2eY9aGbrzezzwL+LSzdM\nERERKS3u/inwLrAYWErmEyJeIrNIzzPgpIiUPWZWzcw+MbPFZvalmT0Ypt1oM1thZkvMrG2k4xSR\nXxTkyvqrwBjgtVzz/+zufy75kERERCTS3H0EkLsP7jbCDDgpImWLux8ws/Pdfa+ZVQY+NrOZgR/r\nADCzS4CW7n68mf0aGAucFa2YRSq6o15Zd/f/ANtDLNLNFSIiIiIiZYS77w28rEbmRbvc9690J3CB\nzt0/ARI1NoVI9BTnOeu3BLrHvGxmiSUWkYiIiIiIlDgzq2Rmi4FNwAfuvjBXk8bAumzTGwLzRCQK\nijrA3AvAQ+7uZvYI8GfgunCN09LSgq9zj3opIqHpcS4iIiJSktz9CNDOzBKAf5hZG3dfXtT16Rxf\npPAKc45fpGLd3X/MNjkOmJ5f++yJLCIFo8e5iIiISGlw95/M7F/AxUD2Yn0D0DTbdJPAvJB0ji9S\neIU5xy9oN3gj2z3qgWetZrkC+KpQEYqIiIiISMSY2bFZt66aWTzwW+CbXM2mAdcG2pwF7HD3zREN\nVESCjnpl3cxeB1KBuma2FngQOD/wKIcjwBpgcCnGKCIiIiIixZMMTDCzSmResHvL3WeY2WDA3f2l\nwHRXM1sJ7AEGRjNgkYruqMW6u/cLMfvVUohFRERERERKgbt/CbQPMf/FXNO3RCwoEclXcUaDFxER\nEREREZFSoGJdREREREREJMaoWBeRPMzsTjP7ysy+MLNJZlbVzJLMbLaZfWtms7IGqRERERERkZKn\nYl1EcjCzRsCtQHt3P43MsS36AkOBD939RGAOcF/0ohQRERERKd9UrItIKJWBmmZWBYgn8xmr3YEJ\ngeUTgN9FKTYRERERkXJPxbqI5ODuGcDTwFoyi/Sd7v4h0CDrWavuvgmoH70oRURERETKNxXrIpKD\nmdUm8yp6CtCIzCvsVwGeq2nuaRERERERKSFHfc66iFQ4FwDfu/s2ADP7O3AOsNnMGrj7ZjNrCPyQ\n30rS0tKCr1NTU0lNTS21gEXKi7lz5zJ37txohyEiIiIxQMW6iOS2FjjLzKoDB4AuwEJgNzAAeALo\nD0zNbyXZi3URKZjcP2yNGDEiesGISLliZk2A14AGwBFgnLuPztWmM5nH9+8Ds6a4+yMRDVREglSs\ni0gO7v6pmb0LLAYOBf77ElALeNvMBgHpwJXRi1JEREQK6TDwR3dfYmbHAJ+Z2Wx3/yZXu/nufnkU\n4hORXFSsi0ge7j4CyH1JbxuZXeRFRESkjAkMDrsp8Hq3mX0NNAZyF+sW6dhEJDQNMCciIiIiUoGY\nWXOgLfBJiMVnm9kSM3vfzNpENDARyUHFuoiIiGBmiWb2jpl9bWbLzOzXZpZkZrPN7Fszm2VmidGO\nU0SKJ9AF/l3gdnffnWvxZ0Azd28LPAf8I9Lxicgv1A1eREREAEYBM9z992ZWBagJDAM+dPcnzexe\n4D5gaDSDFJGiC+T2u8BEd88zUGz24t3dZ5rZC2ZWJ+sJMbnpyS8ihVeYJ7+oWBcREangzCwB6OTu\nAwDc/TAcXcOgAAAgAElEQVSw08y6A50DzSYAc1GxLlKWjQeWu/uoUAuzHtEaeH0mYOEKddCTX0SK\nojBPflGxLiIiIi2ALWb2KnA6sAi4AwieuLv7JjOrH8UYRaQYzKwjcBXwpZktBpzM3jMpgLv7S0Av\nM7uJzKfB7AN6RyteEVGxLiIiIpnnA+2BIe6+yMyeIfMKuudql3taRMoId/8YqHyUNs8Dz0cmIhE5\nGhXrUmK6XdKVjRkZ0Q4DgORGjZg+c0a0wxARKSvWA+vcfVFgejKZxfrmrG6xZtYQ+CHcCnTvqkjh\nFebeVRGpeFSsS4nZmJHBovGvRzsMADoM6hftEEREyoxAMb7OzE5w9++ALsCywL8BwBNAfyDPgFRZ\ndO+qSOEV5t5VEal4VKyLiIgIwG3AJDOLA74HBpLZZfZtMxsEpANXRjE+ERGRCkXFuoiIiODuS4Ez\nQiy6INKxiIiICFSKdgAiIiIiIiIikpOKdREREREREZEYo2JdREREREREJMaoWBcRERERERGJMSrW\nRURERERERGLMUYt1M3vFzDab2RfZ5iWZ2Wwz+9bMZplZYumGKSKRZmaJZvaOmX1tZsvM7NfKfRER\nkbLJzJqY2ZzAMf1LM7stTLvRZrbCzJaYWdtIxykivyjIlfVXgYtyzRsKfOjuJwJzgPtKOjARibpR\nwAx3bw2cDnyDcl9ERKSsOgz80d1PBs4GhpjZSdkbmNklQEt3Px4YDIyNfJgikuWoxbq7/wfYnmt2\nd2BC4PUE4HclHJeIRJGZJQCd3P1VAHc/7O47Ue6LiIiUSe6+yd2XBF7vBr4GGudq1h14LdDmEyDR\nzBpENFARCSrqPev13X0zZCY+UL/kQhKRGNAC2GJmr5rZ52b2kpnVABoo90VERMo2M2sOtAU+ybWo\nMbAu2/QG8hb0IhIhJTXAnJfQekQkNlQB2gPPu3t7YA+ZXeBz57pyX0REpAwxs2OAd4HbA1fYRSRG\nVSni+zabWQN332xmDYEf8muclpYWfJ2amkpqamoRP1ak4pg7dy5z586N1sevB9a5+6LA9GQyi/UC\n577yXqTwopz3IlLOmVkVMgv1ie4+NUSTDUDTbNNNAvNC0rFepPAKc6wvaLFugX9ZpgEDgCeA/kCo\nZA/KnsgiUjC5D3ojRoyI2GcHivF1ZnaCu38HdAGWBf4NoAC5r7wXKbxo5r2IVAjjgeXuPirM8mnA\nEOAtMzsL2JF1+1soOtaLFF5hjvVHLdbN7HUgFahrZmuBB4HHgXfMbBCQDlxZrIhFJBbdBkwyszjg\ne2AgUBl4W7kvIiJStphZR+Aq4EszW0zmrWzDgBTA3f0ld59hZl3NbCWZt8ANjF7EInLUYt3d+4VZ\ndEEJxyIiMcTdlwJnhFik3BcRESlj3P1jMn90P1q7WyIQjogUQEkNMCciIiIiIiIiJUTFuoiIiIiI\niEiMUbEuIiIiIiIiEmNUrIuIiIiIiIjEGBXrIiIiIiIiIjFGxbqIiIgAYGaVzOxzM5sWmE4ys9lm\n9q2ZzTKzxGjHKCIiUlGoWBcREZEstwPLs00PBT509xOBOcB9UYlKRESkAlKxLiIiIphZE6Ar8HK2\n2d2BCYHXE4DfRTouERGRikrFuoiIiAA8A9wDeLZ5Ddx9M4C7bwLqRyMwERGRikjFuoiISAVnZpcC\nm919CWD5NPV8lolIjDOzV8xss5l9EWZ5ZzPbERi74nMzeyDSMYrIL6pEOwARERGJuo7A5WbWFYgH\napnZRGCTmTVw981m1hD4IdwK0tLSgq9TU1NJTU0t3YhFyoG5c+cyd+7cSH7kq8AY4LV82sx398sj\nFI+I5EPFuoiISAXn7sOAYZB5ZQ24y92vMbMngQHAE0B/YGq4dWQv1kWkYHL/sDVixIhS/Tx3/4+Z\npRylWX69a0QkglSsi4hIkXW7pCsbMzKiHQYAyY0aMX3mjGiHUd48DrxtZoOAdODKKMcjIqXvbDNb\nAmwA7nH35Ud7g4iUDhXrIiJSZBszMlg0/vVohwFAh0H9oh1CueDu84B5gdfbgAuiG5GIRNBnQDN3\n32tmlwD/AE6IckwiFZaKdRERERERwd13Z3s908xeMLM6gR/u8tBYFSKFV5ixKlSsi0hIZlYJWASs\nd/fLzSwJeAtIAdYAV7r7ziiGKCIiIoVnhLkvPWtAycDrMwELV6iDxqoQKYrCjFWhR7eJSDi3A9nv\nUxsKfOjuJwJzgPuiEpWIiIgUiZm9DvwXOMHM1prZQDMbbGY3BJr0MrOvzGwx8CzQO2rBioiurItI\nXmbWBOgK/An4Y2B2d6Bz4PUEYC6ZBbyIiIiUAe6e7+Ae7v488HyEwhGRo9CVdREJ5RngHsCzzQt2\njXP3TUD9aAQmIiIiIlIR6Mq6iORgZpcCm919iZml5tPU81mmQWdEiqAwg86IiIhI+aZiXURy6whc\nbmZdgXiglplNBDZlDTxjZg2BH/JbiQadESm8wgw6IyIiIuWbusGLSA7uPszdm7n7cUAfYI67XwNM\nBwYEmvUHpkYpRBERERGRck/FuogU1OPAb83sW6BLYFpEREREREqBusGLSFjuPg+YF3i9DbgguhGJ\niIiIiFQMurIuIiIiIiIiEmNUrIuIiIiIiIjEmGIV62a2xsyWmtliM/u0pIISEREREZGSZWavmNlm\nM/sinzajzWyFmS0xs7aRjE9EcirulfUjQKq7t3P3M0siIBERERERKRWvAheFW2hmlwAt3f14YDAw\nNlKBiUhexS3WrQTWISIiIiIipczd/wNsz6dJd+C1QNtPgEQzaxCJ2EQkr+IW2g58YGYLzez6kghI\nRERERESiojGwLtv0hsA8EYmC4j66raO7bzSzemQW7V8HfrETERERERERkSIqVrHu7hsD//3RzP4O\nnAnkKdbT0tKCr1NTU0lNTS3Ox4pUCHPnzmXu3LnRDkNEREQqjg1A02zTTQLzQtI5vkjhFeYcv8jF\nupnVACq5+24zqwlcCIwI1TZ7IotIweQ+6I0YETK9RERERArDAv9CmQYMAd4ys7OAHe6+OdyKdI4v\nUniFOccvzpX1BsDfzcwD65nk7rOLsT4RERGJAjNrQuagUg3IfNLLOHcfbWZJwFtACrAGuNLdd0Yt\nUBEpFjN7HUgF6prZWuBBoCrg7v6Su88ws65mthLYAwyMXrQiUuRi3d1XA3r2ooiISNl3GPijuy8x\ns2OAz8xsNpkn6h+6+5Nmdi9wHzA0moFKdHW7pCsbMzKiHUZQcqNGTJ85I9phlBnu3q8AbW6JRCwi\ncnTFHWBOREREyjh33wRsCrzebWZfk3mvanegc6DZBGAuKtYrtI0ZGSwa/3q0wwjqMOiotaeISJml\nZ6SLiIhIkJk1J7Pn3AKgQdb9qoGCvn70IhMREalYVKyLiIgIAIEu8O8Ct7v7bsBzNck9LSIiIqVE\n3eBFJA8NNiVS8ZhZFTIL9YnuPjUwe7OZNXD3zWbWEPgh3Pv1CCeRwtNjWkUkPyrWRSQUDTYlUvGM\nB5a7+6hs86YBA4AngP7A1BDvA/QIJ5Gi0GNaRSQ/6gYvInm4+yZ3XxJ4vRvIPtjUhECzCcDvohOh\niJQkM+sIXAX8xswWm9nnZnYxmUX6b83sW6AL8Hg04xQREalIdGVdRPKV32BTZqbBpkTKAXf/GKgc\nZvEFkYxFREREMunKuoiEpcGmRERERESiQ1fWRSQkDTYlEnkabEpERESyqFgXkXA02JRIhGmwKREp\nTYGxKJ4ls3ftK+7+RK7lnck8tn8fmDXF3R+JbJQikkXFuojkkW2wqS/NbDGZ3d2HkVmkv21mg4B0\n4MroRSkiIiIFZWaVgOfIHCwyA1hoZlPd/ZtcTee7++URD1BE8lCxLiJ5aLApERGRcudMYIW7pwOY\n2ZtkPuUld7FukQ5MRELTAHMiIiIiIuVfY2Bdtun1gXm5nW1mS8zsfTNrE5nQRCQUXVkXERERERGA\nz4Bm7r7XzC4B/gGcEOWYRCosFesiIiIiIuXfBqBZtukmgXlBgce0Zr2eaWYvmFkdd98WaoV68otI\n4RXmyS8q1kVEREREyr+FQCszSwE2An2AvtkbZD2eNfD6TMDCFeqgJ7+IFEVhnvyiYl1EREREpJxz\n95/N7BZgNr88uu1rMxucudhfAnqZ2U3AIWAf0Dt6EYuIinURERERkQrA3f8JnJhr3ovZXj8PPB/p\nuEQkNI0GLyIiIiIiIhJjVKyLiIiIiIiIxBgV6yIiIiIiIiIxRsW6iIiIiIiISIxRsS4iIiIiIiIS\nY1Ssi4iIiIiIiMQYFesiIiIiIiIiMUbFuoiIiIiIiEiMUbEuIiIiIiIiEmOKVayb2cVm9o2ZfWdm\n95ZUUCISu5T3IhWLcl6k/ChIPpvZaDNbYWZLzKxtpGMUkV8UuVg3s0rAc8BFwMlAXzM7qaQCK+/m\nLvo02iHELH03sUt5XzzatkPT9xK7lPPFp+07NH0vkVeQfDazS4CW7n48MBgYG/FApcQoz8q+4lxZ\nPxNY4e7p7n4IeBPoXjJhlX9zP1sY7RBilr6bmKa8LwZt26Hpe4lpyvli0vYdmr6XqChIPncHXgNw\n90+ARDNrENkwpaQoz8q+4hTrjYF12abXB+aJSPmlvBepWJTzIuVHQfI5d5sNIdqISIRogDkRERER\nERGRGGPuXrQ3mp0FpLn7xYHpoYC7+xO52hXtA0QkD3e3aH6+8l4k8qKZ98p5kcgrrZwvSD6b2Vjg\nX+7+VmD6G6Czu28OsT7lvUgJCZf3VYqxzoVAKzNLATYCfYC+Bf1gESmTlPciFYtyXqT8KEg+TwOG\nAG8FivsdoQp1UN6LREKRi3V3/9nMbgFmk9md/hV3/7rEIhORmKO8F6lYlPMi5Ue4fDazwZmL/SV3\nn2FmXc1sJbAHGBjNmEUquiJ3gxcRERERERGR0qEB5kRERERERERiTHHuWRcpNjM7icxnemY9FmQD\nME3dLEXKL+W9SMWjvBcRKTxdWY8BZlYh7wcys3uBNwEDPg38M+CNwAilIuVSRc15UN5LxaW8V96L\nREtF3v+UdbpnPQaY2Vp3bxbtOCLNzL4DTnb3Q7nmVwWWufvx0YlMpHRV1JwH5b1UXMp75b1ItFTk\n/U9Zp27wEWJmX4RbBDSIZCwx5AjQCEjPNT85sEykzFLOh6W8l3JLeR+W8l6klGn/Uz6pWI+cBsBF\nwPZc8w34b+TDiQl3AB+Z2QpgXWBeM6AVcEvUohIpGcr50JT3Up4p70NT3ouUPu1/yiEV65HzHnCM\nuy/JvcDM5kY+nOhz93+a2QnAmeQccGahu/8cvchESoRyPgTlvZRzyvsQlPciEaH9Tzmke9ZFRERE\nREREYoxGgxcRERERERGJMSrWRURERERERGKMinURERERERGRGKNiXURERERERCTGqFgXERERERER\niTEq1kVERERERERijIp1ERERERERkRijYl1EREREREQkxqhYFxEREREREYkxKtZFREREREREYoyK\ndREREREREZEYc9Ri3cyamNkcM1tmZl+a2a2B+Q+a2Xoz+zzw7+LSD1dESkqI3L4tMD/JzGab2bdm\nNsvMErO95z4zW2FmX5vZhdGLXkSKoijHdOW9SPlUlPMAEYksc/f8G5g1BBq6+xIzOwb4DOgO9AZ2\nufufSz9MESlp+eT2QGCruz9pZvcCSe4+1MzaAJOAM4AmwIfA8X60nYiIxIzCHtPNrDXwOsp7kXKn\nsOcB0YxVpKI66pV1d9/k7ksCr3cDXwONA4utFGMTkVIUJrebkHmgnhBoNgH4XeD15cCb7n7Y3dcA\nK4AzIxq0iBRLEY7p3VHei5RLRTgPEJEIK9Q962bWHGgLfBKYdYuZLTGzl9VFRqTsypbbC4AG7r4Z\nMg/kQP1As8bAumxv28AvJ/kiUsYU8JiuvBepAAp4HiAiEVbgYj3QPeZd4PbAr28vAMe5e1tgE6Du\n8CJlUIjczt29Vd1dRcqZAhzTn45mfCISOToPEIldVQrSyMyqkJnEE919KoC7/5ityThgepj3KsFF\nSoi7l+itJ6FyG9hsZg3cfXPgfrYfAvM3AE2zvb1JYF6o9SrvRUpIJPI+n2N6gfJeOS9Scko65/NT\nyPOA3O9V3ouUkHB5X6BiHRgPLHf3UVkzzKxhoGsMwBXAV/l8eEHjrDDS0tJIS0uLdhgxSd9NaGal\ncuzOk9vANGAA8ATQH5iabf4kM3uGzG6wrYBPw61YeZ+Xtu3Q9L2EF6m8z+eYXuC8L285f9553UhP\n31js9ezYkUHt2o2KtY6UlGTmzw95TaTMUt6HVko5n5/CnAfkUd7yviRo2w5P301o+eX9UYt1M+sI\nXAV8aWaLyewKMwzoZ2ZtgSPAGmBwSQQrIpGRT24/AbxtZoOAdOBKAHdfbmZvA8uBQ8DNGhFapGwp\n7DG9Iud9evpG6tVbVOz1HDqURr16acWMpUOx4xDJrbDnASISeUct1t39Y6ByiEX/LPlwRCRS8slt\ngAvCvOcx4LFSC0pESlVRjunKe5HyqSjnASISWYUaDV5KTmpqarRDiFn6bqS80rYdmr4XKc9q1UqN\ndggxSXkv5ZW27fD03RSelXZvNjOrKD3mREqVmUV00JniUN6LlIyykvflMedTUjqUSDf4kvDjjx1I\nT4+NWKR0lZWch/KZ9yLRkF/eq1iPMc2bNyc9PT3aYUgUpaSksGbNmjzzy9MBXNu5SE5lPe8LcqxX\n3ov8oqznPOgcP1q0Ly27ipL3KtZjTOB/VrTDkCgKtw2UpwO4tnORnMp63hfkWK+8F/lFWc95KH/n\n+CX1BIiSEu4pENqXll1FyfuCPrpNRERERESkXCqpJ0CUFD0FQkADzImIiIiIiIjEHBXrIiIiIiIi\nIjFGxbpExcCBAxk+fHipfsb555/P+PHjQy5bt24dCQkJwftG8mubnp5OpUqVOHLkSKnFKuVXJLb1\nUB577DFuuOGGsMtbtGjBnDlzQi6bN28eTZs2LVDbWDJs2DBGjx4d7TDyeO+99+jTp0+0w5AIUc5H\njnJepPyK1r60OEaMGME111xTouvUPetlQGkPeBFuAIvyrGnTpvz0008Fbm9WJsZ6KdO0nZes++67\nr1jvL2vb/JYtW5g4cSIrV64E4NChQ/Tr149FixaRnp7O3LlzOe+883K859577+WVV17BzLjuuut4\n/PHHw67/2WefZcyYMWzZsoVatWrRu3dvnnrqKSpVyvzNOz09nYEDB/LJJ5+QkpLCmDFj6NKlCwCX\nXXYZw4YN46uvvuKUU04ppW+gbFLel5yKnvNff/011157LatWrcLM+NWvfsWoUaNo3bp18D2FyXmA\nzz//nDvvvJPPP/+cY445hmHDhnHrrbcCynmJLdqXxo6S3peqWC8DSnvACw1gUTzuXuZOcmKRtnMp\njr/+9a907dqVatWqBed16tSJO++8k9///vd52r/44otMmzaNL7/8EoALLriA4447LuyVye7du9O/\nf3+SkpLYsWMHPXv2ZPTo0dxxxx0A9O3bl44dOzJz5kzef/99evXqxcqVK6lbty4Affr04cUXX2TM\nmDEl/aeXacp7KarcOd+4cWPefvttWrRogbvz3HPP0adPH5YuXQoUPue3bt3KJZdcwqhRo+jVqxcH\nDhxg/fr1weXKeYkl2peWX+oGLwXWokULRo4cyemnn06tWrW4/vrr+eGHH+jatSsJCQlceOGF7Ny5\nM9j+yiuvJDk5maSkJFJTU1m+fHnYdb/33nu0a9eOpKQkzj333ODBtCCmTp1Ku3btSExM5Pjjj2f2\n7NnBZWvWrOHcc88lISGBiy++mG3btgH5d20/cuQId999N/Xq1aNVq1a8//77OZaff/75PPDAA5x7\n7rnUrFmT1atX89NPP3HdddfRqFEjmjZtyv/93/8Fu9hPmDCBTp06cc8991CnTh1atmzJP//5zwL/\nfRJ5sbitZ3VTfeqpp2jQoAGNGzdm6tSpzJw5kxNPPJFjjz2Wxx57LNg+d1esiRMn0rx5c+rVq8ej\njz6aY9379+9nwIAB1KlTh1NOOYWFCxeGjcPdefzxx2nVqhX16tWjT58+7NixI2TbHTt20K1bN+rX\nr0/dunXp1q0bGRkZweVr1qyhc+fOJCYmcuGFF3LLLbfkiHnBggV07NiRpKQk2rVrx7x588LGNXPm\nTDp37hycjouL47bbbuOcc84JXv3O7rXXXuOuu+4iOTmZ5ORk7r77bv7617+GXX+LFi1ISkoC4Oef\nf6ZSpUrBK3rfffcdixcvJi0tjWrVqnHFFVdw2mmnMXny5OD7U1NT8+xLJHYo58t+zickJNCiRQvg\nlxxdtWpVcHlhc/7Pf/4zF198MX369KFKlSrUrFmTE088EYAVK1Yo50VCiMV9aWnul9asWUNqaiqJ\niYlcdNFFbNmypTBfV4GoWJdCmTJlCh999BHfffcd06ZNo2vXrjz++ONs2bKFn3/+Oce9Y127dmXV\nqlX88MMPtG/fnquuuirkOhcvXsx1113HuHHj2LZtG4MHD+byyy/n0KFDR43n008/pX///jz99NPs\n3LmT+fPn07x58+DyN954gwkTJvDjjz9y4MABRo4cGVwW7mr4Sy+9xIwZM1i6dCmLFi3i3XffzdPm\nb3/7Gy+//DK7du2iWbNm9O/fn2rVqvH999+zePFiPvjgA15++eUccbZu3ZqtW7dyzz33cN111x31\nb5PoirVtHWDTpk0cPHiQjIwMRowYwfXXX8+kSZNYvHgx8+fP5+GHHyY9PT3YPmsbX758OTfffDOT\nJk0iIyODrVu3smHDhmC7tLQ0Vq9ezerVq5k1axYTJkwIG8Po0aOZNm0a//73v8nIyCApKYmbb745\nZNsjR44waNAg1q1bx9q1a6lRowZDhgwJLu/Xrx9nnXUWW7du5cEHH2TixInBmDds2MBll13G8OHD\n2b59OyNHjqRnz55s3bo15Gd9+eWXwRPpgli2bBmnn356cPr0009n2bJl+b7njTfeIDExkXr16vHF\nF19w4403Apnf73HHHUfNmjXDrq9169akp6eze/fuAscokaWcD62s5XxSUhI1atTg9ttv5/777w/O\nL2zOL1iwgKSkJDp27EiDBg3o3r0769atC65LOS8SWqztS0tzv9SvXz/OOOMMtmzZwgMPPJDvvrSo\nVKxLodx6660ce+yxJCcn06lTJ379619z2mmnUbVqVXr06MHixYuDbQcMGECNGjWIi4tj+PDhLF26\nlF27duVZ57hx47jxxhvp0KEDZsY111xDtWrVWLBgwVHjGT9+PNdddx2/+c1vAEhOTuaEE04ILh84\ncCAtW7akWrVqXHnllSxZsuSo63znnXe44447aNSoEbVr1w55H+CAAQM46aSTqFSpEtu2bWPmzJk8\n88wzVK9enWOPPZY77riDN954I9g+JSWFQYMGYWb079+fTZs28cMPPxw1FomeWNvWAapWrcqwYcOo\nXLkyffr0YcuWLdxxxx3UqFGDNm3a0KZNm2CXz+wmT55Mt27d6NixI3FxcTz88MM5fqx65513eOCB\nB0hMTKRx48bcdtttYWN48cUX+dOf/kRycnLw73333XdD9lKpU6cOPXr0oFq1atSsWZP77ruP+fPn\nA7B27VoWLVrEiBEjqFKlCh07duTyyy8PvnfSpElceumlXHTRRQB06dKFDh06MGPGjJBx7dixg1q1\nahXoewTYvXs3iYmJwemEhISjnlT37duXnTt3smLFCm688Ubq168fcl1Z68u+DdSqVQt3D3tFUqJP\nOR9aWcv57du3s3PnTp577rkcxXlhc379+vW89tprjBkzhnXr1tG8eXP69u0bcl1Z61POi8TevrS0\n9kvr1q1j0aJFPPTQQ8TFxdGpUye6detW3K8vDxXrUigNGjQIvo6Pj88znXXgO3LkCEOHDqVVq1bU\nrl2bFi1aYGYhu4ekp6fz9NNPU6dOHerUqUNSUhLr16/P0UUlnHXr1tGyZcuwyxs2bBh8XaNGjQL9\nwp2RkZFjVNyUlJQ8bbIvT09P59ChQyQnJwfjv/HGG3P8rdnjiI+Px931a3uMi7VtHaBu3brBE+74\n+HiAYMGYO67scm/TNWrUCN5XmbW8SZMmwelQ23z2v6FHjx7Bv6FNmzbExcWxefPmPG337dvH4MGD\nad68ObVr16Zz587s2LEDd2fjxo3UqVOH6tWrB9vnzqu33347x3f18ccfs3Fj6AF0kpKSQh7gwznm\nmGNyDDK5c+dOjjnmGCBzVO1atWqRkJAQ8gpiy5YtadOmDTfddFPIdWWtL3shsWvXLsyM2rVrFzhG\niSzlfGhlMefj4+MZPHgw1157bfD/S2FzPj4+nh49etC+fXuqVq3Kgw8+yH//+1927dqlnBfJR6zt\nS0trv5TV0yhr3wz570uLSsW6lIpJkyYxffp05syZw44dO1izZg3uHryPO7umTZty//33s23bNrZt\n28b27dvZvXs3vXv3PurnNG3aNMc9aSUhOTk52NUNyNHFMEv2KxRNmzalevXqbN26NRj/jh07+OKL\nL0o0LolNkdrWiyP3Nr13794cXUsLss1nadasGTNnzszxN+zZs4fk5OQ8bZ9++mlW/P/27j/WrrJM\n9Pj3GQlGHaxtoT+k9MAEZACBzli4CUPIJpfwK0ANKgHHFIu3aWJIQP9Qioa2IVI6cWriVULCkAau\nxQ5zlUshCpWrB4JgADOVceBCk9pTbGnpvW2lFIEDfe4fZ/e4e7r36dm/19n7+0ka93n3Xns/LNez\n3vfZa+333bSJ559/nr17945+k52ZzJ49m927d/POO++Mvr4yhhNOOIGFCxce8jn79u3jG9/4RtW4\nzjrrLF599dUJ7I0RZ5xxxiFXJDdu3MgZZ5wBjMyqvW/fPt58803uuuuuqtsPDw+zefPm0ffavHkz\n+/fvH33+d7/73ej7wchM1SeeeOJocaDJy5yfHDn/wQcf8Pbbb4/e/l9vzp911lmH/Vzu4N/mvNS8\nTnahWFsAABURSURBVJ1L23Vemj17Nnv27OHPf/7z6Ou3bt3azC6pymJdbfHWW2/x4Q9/mKlTp7J/\n/36WLl1a8zfiixcv5u677+a5554DYP/+/fzsZz8b7QQXLVrEDTfcUHXbr3zlK6xZs4Zf/epXZCbb\nt2+f8IC92skARia7+P73v8+2bdvYs2cPq1atGvd9Zs2axcUXX8zXvvY19u3bR2ayefPm0ZOBelun\njvVmfP7zn+fRRx/lmWeeYXh4mNtuu+2Q4/+aa65h5cqV7N27lz/+8Y/84Ac/qPleS5Ys4dZbbx3t\nkHbt2sX69eurvnbfvn185CMf4eMf/zi7d+9m+fLlo8/NnTuX+fPns3z5coaHh3n22Wd55JG/LAvz\npS99iUceeYQNGzZw4MAB3nnnHZ588sma36JffvnlDA4OHtL23nvvjXbA7777Lu++++7ocwsXLmT1\n6tVs376dbdu2sXr1ahYtWlTzv/vee+9l165dwMjvge+8804uuugiAE455RTmzZvHihUrePfdd/np\nT3/K73//ez73uc+Nbv/kk09y2WWX1Xx/TR7mfDFz/oknnmDjxo0cOHCAN998k69//etMmzZtdOm2\nenN+0aJFPPTQQ7z44osMDw9z++23c/7553PMMceY81ILdOpc2q7z0sFtly1bxvDwME8//fQh27aK\nxbomrNY3zNUsXLiQuXPncvzxx/PpT3+a8847r+ZrP/OZz3DPPfdw4403Mm3aND71qU8dMkHDa6+9\nxvnnn19123POOYc1a9Zw8803M2XKFEql0ugVgiMtp1b5fOXjxYsXc8kll3D22Wczf/78QzrfWu97\n//33895773H66aczbdo0vvCFL7Bjx44JfbaKp4jHejNxnn766fzwhz/kuuuu45Of/CTTp08/5BbY\nZcuWMXfuXE466SQuvfRSFi5cWPN9b7rpJhYsWMDFF1/MlClTOO+880Y7z7Fuvvlm3n77bY499ljO\nO+88Lr/88kOeX7t2Lc888wzHHnsst912G9dee+3oMkxz5szh4Ycf5o477uC4445jYGCA7373u1V/\nJwsj/z/8/Oc/P6QgP/XUU/nYxz7G9u3bufTSS/noRz86WnAsWbKEK6+8kjPPPJOzzz6bq666isWL\nF1d9b4Bf//rXnHnmmRxzzDFcccUVXHHFFXznO98ZfX7dunU8//zzTJ06lW9961v85Cc/OeS24x//\n+McsWbKk5vuru8z5yZ/ze/fu5brrruMTn/gEp5xyCn/4wx947LHHOProo4H6c/7CCy/kjjvu4PLL\nL2fWrFls3ryZBx54YPR5c146XBHPpe08L61du5bf/OY3TJ8+ndtvv53rr79+/B3UgKh1dbFlHxCR\n7f6MXhIRh13xveCCKxkaqv6brVYYGJjNU0+1/pugVhgeHmbevHm8+OKLfOhDH+p2OB1R7RioaJ8U\nVf6R8t7j/HD9eKyPde2113LaaaexbNmyhrb/9re/zYwZM8adLKsbHn30UX70ox+xbt26mq+Z7Hk/\nkb7evD+UOW/OT+ach94b4w8MzG/rWuX12rVrPkNDh8fjufRQrT6XNnteGk8jeW+xXjC1/k9U/+iH\nDtzjXAAvvPAC06ZN46STTuLxxx/n6quv5tlnnz1kBud+MdnzvtFiXf3FnP+LyZ7z0Htj/MlcrKtx\nnTwvNZL3R03gTecA9wMzgQPAPZn5/YiYCvwrMABsAa7JzD/VfKMe0u5vrySpH+zYsYOrr76a3bt3\nM2fOHO6+++6+HLR3UiN9ekQsBW4A3gduyswN3Yhdk585L6loin5eOuKV9YiYBczKzI0R8dfAb4EF\nwCLg/2XmP0XEN4GpmXlLle176ls3aO83b7/9rd+W9bt++Lbdb4WlQ3Uq7+vt0yPidGAtcA4wB3gC\nOGVsgntlXapPP/T1k41X1tVujeT9ESeYy8wdmbmx/Pgt4GVGOuwFwMFf9t8HfLbBuCVJUgc00Kdf\nBazLzPczcwuwCTi3o0FLktSn6poNPiJOBOYBvwFmZuZOGOn8gRmtDk6SJLXHBPv044HXKjbbVm6T\nJEltNuFivXy73P9k5PdqbwFjr+F7P4YkSZOAfbokScV3xAnmACLiKEY69f+RmQ+Xm3dGxMzM3Fn+\nDdwbtbavXHy+VCpRKpUaDljqF4ODgwwODnY7DEk9ps4+fRtwQsXmc8pth7Gvl+pnXy9pPBNaui0i\n7gf+b2Z+vaJtFbA7M1c5wVzrvPLKibz11lBb3luTw8DAAFu2bDmsvZcmnTnxxBMZGvI4lw7qZN7X\n06dXTDD3Xxi5/f0XNDjBnHkv/UU/9PWTzWSZYM5z6eTVSN5PZOm2fwD+EfiPiPh3Rm6NuxVYBTwY\nETcAQ8A1jYeug049dUtdr6+VyNJERMS9wBXAzsw8q9y2DFjMX66s3ZqZj5Wfa8kSTtVOVEU2WTpw\n6Ujq7dMz86WIeBB4CRgGvtro6Ny8b5w5r3aodwygYphs51I154jFemb+GvhQjacvam04kjpsDfDf\nGVl3udLqzFxd2RARpzEygD+N8hJOEXHYFTZJxdVIn56ZK4GVbQtKUrdMeAwgqTvqmg1eUm/JzKeB\nPVWeqnYrzgJcwkmSpJ5Q5xhAUhdYrEuq5saI2BgR/xIRU8ptLuEkSVLvqzYGkNQFFuuSxroL+JvM\nnAfsAP65y/FIkqTOGDsG8HZ4qYsmtHSbpP6Rmbsq/rwHeKT8eMJLOIHLOEmNcBknSd00zhigKvt6\nqX719PUTWrqtGb22rAM4Q6y6o13LuUTEicAjmXlm+e9Zmbmj/PhrwDmZ+cWJLuFU3q6n8r5IOQ/m\nfT+ZLMs49VrOQ7Hy3pzvH53O+YmOAWps21N5X6ScB/O+nzS1dJuk3hURDwAlYHpEbAWWARdGxDzg\nALAFWAKtXcJJkiR1Vz1jAEndYbEu9bEa35avGef1LuEkSVIPqHcMIKnznGBOkiRJkqSCsViXJEmS\nJKlgLNYlSZIkSSoYi3VJkiRJkgrGYl2SJEmSpIKxWJckSZIkqWAs1iVJkiRJKhiLdUmSJEmSCsZi\nXZIkSZKkgrFYlyRJkiSpYCzWJUmSJEkqGIt1SZIkSZIK5qhuB6DeccEFVzI09Hq3wwBgYGA2Tz31\nSLfDkCRJkqSGHLFYj4h7gSuAnZl5VrltGbAYeKP8slsz87G2RalJYWjodY477oVuhwHA0ND8bocg\nSYVTb58eEUuBG4D3gZsyc0Pno5YkqT9N5Db4NcAlVdpXZ+bfl/9ZqEuSVHwT7tMj4jTgGuA04DLg\nroiIzoUqSVJ/O2KxnplPA3uqPGWHLUnSJFJnn74AWJeZ72fmFmATcG4bw5MkSRWamWDuxojYGBH/\nEhFTWhaRJEnqtGp9+vHAaxWv2VZukyRJHdBosX4X8DeZOQ/YAaxuXUiSJKmDxvbp/9zleCRJEg3O\nBp+Zuyr+vAcYd9rt5cuXjz4ulUqUSqVGPlbqK4ODgwwODnY7DEk9bpw+fRtwQsVzc8ptVdnXS/Wz\nr5c0nokW60HF79kiYlZm7ij/eTXw+/E2ruzAJU3M2MHuihUruheMpF4y0T59PbA2Ir7HyO3vJwPP\n1XpT+3qpfvb1ksYzkaXbHgBKwPSI2AosAy6MiHnAAWALsKSNMUqSpBaop0/PzJci4kHgJWAY+Gpm\nZjfiliSpHx2xWM/ML1ZpXtOGWCRJUhvV26dn5kpgZfsikiRJtTQzG7wkSZIkSWoDi3VJkiRJkgrG\nYl2SJEmSpIKxWJckSZIkqWAs1iVJkiRJKhiLdamPRcS9EbEzIl6saJsaERsi4pWIeDwiplQ8tzQi\nNkXEyxFxcXeiliRJzap3DCCp8yzWpf62BrhkTNstwBOZeSrwS2ApQEScDlwDnAZcBtwVEdHBWCVJ\nUutMeAwgqTss1qU+lplPA3vGNC8A7is/vg/4bPnxVcC6zHw/M7cAm4BzOxGnJElqrTrHAJK6wGJd\n0lgzMnMnQGbuAGaU248HXqt43bZymyRJ6g21xgCSusBiXdKRZLcDkCRJXeEYQOqio7odgKTC2RkR\nMzNzZ0TMAt4ot28DTqh43ZxyW1XLly8ffVwqlSiVSq2PVOoxg4ODDA4OdjsMSf2r1higKvt6qX71\n9PUW65Ki/O+g9cCXgVXA9cDDFe1rI+J7jNz+fjLwXK03rezAJU3M2MHuihUruheMpH4w0TFAVfb1\nUv3q6est1qU+FhEPACVgekRsBZYBdwL/FhE3AEOMzABPZr4UEQ8CLwHDwFcz09vjJEmahOoZA0jq\nDot1qY9l5hdrPHVRjdevBFa2LyJJktQJ9Y4BJHWeE8xJkiRJklQwFuuSJEmSJBWMxbokSZIkSQVj\nsS5JkiRJUsFYrEuSJEmSVDBHLNYj4t6I2BkRL1a0TY2IDRHxSkQ8HhFT2humJElqVr19ekQsjYhN\nEfFyRFzcnaglSepPE7myvga4ZEzbLcATmXkq8EtgaasDkyRJLTfhPj0iTmdkjeXTgMuAuyIiOhir\nJEl97YjFemY+DewZ07wAuK/8+D7gsy2OS5IktVidffpVwLrMfD8ztwCbgHM7EackSWr8N+szMnMn\nQGbuAGa0LiRJktRBtfr044HXKl63rdwmSZI6oFUTzGWL3keSJHWXfbokSQVwVIPb7YyImZm5MyJm\nAW+M9+Lly5ePPi6VSpRKpQY/Vuofg4ODDA4OdjsMSb2vVp++DTih4nVzym1V2ddL9bOvlzSeiRbr\nUf530Hrgy8Aq4Hrg4fE2ruzAJU3M2MHuihUruheMpF4y0T59PbA2Ir7HyO3vJwPP1XpT+3qpfvb1\nksZzxGI9Ih4ASsD0iNgKLAPuBP4tIm4AhhiZLVaSJBVYPX16Zr4UEQ8CLwHDwFcz01vkJUnqkCMW\n65n5xRpPXdTiWCRJUhvV26dn5kpgZfsikiRJtbRqgjlJkiRJktQiFuuSJEmSJBWMxbokSZIkSQVj\nsS5JkiRJUsFYrEuSJEmSVDAW65IkSZIkFYzFuiRJkiRJBWOxLkmSJElSwVisS5IkSZJUMBbrkiRJ\nkiQVjMW6JEmSJEkFY7EuSZIkSVLBHNXtACQVU0RsAf4EHACGM/PciJgK/CswAGwBrsnMP3UtSEmS\n1HLVxgDdjUjqT15Zl1TLAaCUmX9X0UnfAjyRmacCvwSWdi06SZLULtXGAJI6zGJdUi3B4eeIBcB9\n5cf3AZ/taESSJKkTqo0BJHWYSSiplgR+ERHPR8R/K7fNzMydAJm5A5jRtegkSVK7VI4BFnc7GKlf\n+Zt1SbX8Q2a+HhHHARsi4hVGOu9KY/+WJEmTX+UY4BcR8XJmPt3toKR+Y7EuqarMfL38v7si4n8B\n5wI7I2JmZu6MiFnAG7W2X758+ejjUqlEqVRqb8BSDxgcHGRwcLDbYUjqc2PGAA8xMgY4rFi3r5fq\nV09fH5ntvTAWEdnuz+i0gYH5HHfcC90OA4Bdu+YzNFSMWNwv7RURZGZ06LM+CvxVZr4VER8DNgAr\ngP8K7M7MVRHxTWBqZt5SZfueyvsiHdvQm8e3qutk3jej13IeipX35nz/KELO1xoDZOaGMa/rqbwv\nUs6Ded9Pxsv7pq6su6yD1LNmAg9FRDJynlibmRsi4gXgwYi4ARgCrulmkJJax+UaJZVVHQN0OSap\nLzV7G/zBZR32tCIYScWQmX8A5lVp3w1c1PmIJHVAtT794HKN/1S+m2ZpuU1Sj6o1BpDUec3OBu+y\nDpIk9QaXa5QkqUCaLbRd1kGSpN7gco2SJBVIs7fBu6yDJEm9weUadUQXXHAlQ0OvdzuMUQMDs3nq\nqUe6HYYktUVTxbrLOkjt4xJOkjrJ5Ro1EUNDrxdqxuyhofndDqEp9vWSxtNwsV5lWYeLGVna6TCV\nHbikiRk72F2xomp6SVLTxunT1wNfBlYB1wMP13oP+3qpfvb1ksbTzJV1l3WQJKk3uFyjJEkF03Cx\n7rIOkiT1BpdrlCSpeFx2TZIkSZKkgml2NnhJUh8r0szQzgotSZJ6icW6JKlhRZoZerLPCi1JklTJ\nYl2SJEmSVJV30XWPxbokSZIkqSrvouseJ5iTJEmSJKlgLNYlSZIkSSoYi3VJkiRJkgrGYl2SJEmS\npIKxWJckSZIkqWAs1iVJkiRJKhiLdUmSJEmSCsZiXZIkSZKkgrFYlyRJkiSpYCzWJUmSJEkqGIt1\nSZIkSZIKxmJdkiRJkqSCsViXJEmSJKlgLNYlSZIkSSoYi3VJkiRJkgqmqWI9Ii6NiP8TEa9GxDdb\nFVQ/2LdvsNshFJb7ptjM+8Z5bFfnfik2c745Ht/VuV+KzbxvnMd2be6b+jVcrEfEXwE/AC4BzgCu\ni4i/bVVgvc6DtTb3TXGZ983x2K7O/VJc5nzzPL6rc78Ul3nfHI/t2tw39Wvmyvq5wKbMHMrMYWAd\nsKA1YUkqKPNe6i/mvNR/zHupIJop1o8HXqv4+4/lNkm9y7yX+os5L/Uf814qiKM68SER0YmP6ait\nW5v/b3r99RUtiKRY+7cV+wVas2+KtF/6Ua/t/yId21Cs/ev5UNCb+75IeV+k/Vuk/QLF2jf9ptf2\nvcd2bUXaN0XaL+3WTLG+DZhb8fecctshMrN/9qbU+8x7qb+Y81L/Me+lgmjmNvjngZMjYiAijgau\nBda3JixJBWXeS/3FnJf6j3kvFUTDV9Yz84OIuBHYwEjRf29mvtyyyCQVjnkv9RdzXuo/5r1UHJGZ\n3Y5BkiRJkiRVaOY2eEmSJEmS1AYdmQ1eqiUi/paRtTsPLgmyDVjv7VbqBR7fUn8x56X+Y96rnbyy\nXgARsajbMXRDRHwTWAcE8Fz5XwA/johbuhmb1CyP78b06/lQk5853xhzXpOZed8Y837i/M16AUTE\n1syce+RX9paIeBU4IzOHx7QfDfxnZp7Sncik5nl8N6Zfz4ea/Mz5xpjzmszM+8aY9xPnbfAdEhEv\n1noKmNnJWArkAPBJYGhM++zyc9Jk5vFdg+dD9ShzvgZzXj3MvK/BvG8Ni/XOmQlcAuwZ0x7AM50P\npxBuBv53RGwCXiu3zQVOBm7sWlRSa3h81+b5UL3InK/NnFevMu9rM+9bwGK9cx4F/jozN459IiIG\nOx9O92XmYxHxKeBcDp2U4/nM/KB7kUnN8/gel+dD9RxzflzmvHqSeT8u874F/M26JEmSJEkF42zw\nkiRJkiQVjMW6JEmSJEkFY7EuSZIkSVLBWKxLkiRJklQwFuuSJEmSJBXM/wcA6jXsGrpk2QAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(20,6), dpi=1600 )\n", + "a=0.8 \n", + " \n", + "plt.subplots_adjust(bottom=0.1, right=0.8, top=2) \n", + "\n", + "##gender and age\n", + "#female\n", + "ax7 = fig.add_subplot(5,4,12)\n", + "female_aged = train.Survived[train.Sex == 'female'][train.AgeFill >= 60].value_counts()\n", + "female_aged.plot(kind='bar', label='female, aged', color='pink', alpha=a)\n", + " \n", + "ax7.set_xlim(-1, len(female_aged))\n", + "plt.legend(loc='best')\n", + "ax8 = fig.add_subplot(5,4,9)\n", + "female_child = train.Survived[train.Sex == 'female'][train.AgeFill <= 10].value_counts()\n", + "female_child.plot(kind='bar', label='female, children', color='pink', alpha=a)\n", + " \n", + "ax8.set_xlim(-1, len(female_child))\n", + "plt.legend(loc='best')\n", + "ax9 = fig.add_subplot(5,4,10)\n", + "female_middleage = train.Survived[train.Sex == 'female'][train.AgeFill>10][train.AgeFill<=30].value_counts()\n", + "female_middleage.plot(kind='bar', label='female, middle age(10-30)', color='pink', alpha=a)\n", + " \n", + "ax9.set_xlim(-1, len(female_middleage))\n", + "plt.legend(loc='best')\n", + "ax9 = fig.add_subplot(5,4,11)\n", + "female_middleage = train.Survived[train.Sex == 'female'][train.AgeFill>30][train.AgeFill<60].value_counts()\n", + "female_middleage.plot(kind='bar', label='female, middle age (30-60)', color='pink', alpha=a)\n", + " \n", + "ax9.set_xlim(-1, len(female_middleage))\n", + "plt.legend(loc='best')\n", + " \n", + "#male\n", + " \n", + "ax10 = fig.add_subplot(5,4,16)\n", + "male_aged = train.Survived[train.Sex == 'male'][train.AgeFill >= 60].value_counts()\n", + "male_aged.plot(kind='bar', label='male, aged', color='blue', alpha=a)\n", + " \n", + "ax10.set_xlim(-1, len(male_aged))\n", + "plt.legend(loc='best')\n", + "ax11 = fig.add_subplot(5,4,13)\n", + "male_child = train.Survived[train.Sex == 'male'][train.AgeFill <= 10].value_counts()\n", + "male_child.plot(kind='bar', label='male, children', color='blue', alpha=a)\n", + " \n", + "ax11.set_xlim(-1, len(male_child))\n", + "plt.legend(loc='best')\n", + "ax12 = fig.add_subplot(5,4,14)\n", + "male_middleage = train.Survived[train.Sex == 'male'][train.AgeFill>10][train.AgeFill<=30].value_counts()\n", + "male_middleage.plot(kind='bar', label='male, middle age (10-30)', color='blue', alpha=a)\n", + " \n", + "ax12.set_xlim(-1, len(male_middleage))\n", + "plt.legend(loc='best') \n", + "ax12 = fig.add_subplot(5,4,15)\n", + "male_middleage = train.Survived[train.Sex == 'male'][train.AgeFill>30][train.AgeFill<60].value_counts()\n", + "male_middleage.plot(kind='bar', label='male, middle age (30-60)', color='blue', alpha=a)\n", + " \n", + "ax12.set_xlim(-1, len(male_middleage))\n", + "plt.legend(loc='best')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From this we gain some very interesting and potentially useful information: \n", + "- the four aged females all survived\n", + "- female children had slightly under 2/3 chance of survival, not as high as I would have suspected. On the other hand, females between 10-30 had around a 3/4 chance, while females between 30-60 had about a 4/5 chance of survival\n", + "- male children had the best chance of surviving, with men between 30-60 next (about a 1/5 chance)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, checking once again the passenger class and gender correlation: " + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGndJREFUeJzt3X2YFfV99/H3R1AJBhCTAvEJjN4qaomxNdGY3tmojQQS\npaSlBbU+944PkTZ3VUijQL2MkruaoBIvidGgTSIam0KtDWarazQ1xQdUjErQqiiW9SEKahFZ+N5/\nzCCHhd0Zds+cmWU/r+s6186ZM3t+n12G893f/GZ+o4jAzMysMzuUHcDMzKrPxcLMzDK5WJiZWSYX\nCzMzy+RiYWZmmVwszMwsU6HFQtIPJLVKeqJm3WBJd0taKmmhpEE1r02VtEzS05K+UGQ2MzPLr+ie\nxU3Ace3WTQGaI+IA4B5gKoCkg4AJwEjgi8D3JKngfGZmlkOhxSIiHgDebLf6BGBuujwXGJcuHw/c\nGhFtEfECsAz4VJH5zMwsnzLGLIZERCtARKwEhqTr9wBeqtluRbrOzMxKVoUBbs83YmZWcX1LaLNV\n0tCIaJU0DHg1Xb8C2Ktmuz3TdVuQ5AJjZtYFEdGlseBG9CyUPjZaAJyaLp8CzK9Z/xeSdpK0D7Af\nsKijN42Iyj2mTZtWegZncqbemMuZ8j26o9CehaQfA03ARyQtB6YBVwC3SzodeJHkDCgi4ilJtwFP\nAeuAc6K7P52ZmdVFocUiIiZ18NKxHWx/OXB5cYnMzKwrqjDAvd1oamoqO8IWnCkfZ8qvirmcqXjq\niUd6JPkIlZnZNpJEVHiA28ys8kaMGIGk7eIxYsSIuv9+3LMwM+ODv7rLjlEXHf0s7lmYmVmhXCzM\nzCyTi4WZmWVysTAzs0xlzA1lZtYjnDflhkLf/9orzsy97ezZs/nhD3/IkiVLmDRpEjfeeGOBybbk\nYmFm1gPsscceXHzxxSxcuJA1a9Y0vH0XCzOzHmDcuOQ+cQ899BArVmx1Qu5CeczCzMwyuViYmVkm\nFwszM8vkYmFmZplcLMzMeoD169fz3nvvsX79etra2li7di3r169vWPueSNDMerx6XA8xe+ZZlZ5I\ncMaMGcyYMQNp0zyA06ZN45JLLtli2yImEnSxMLMerzcUi23hWWfNzKwULhZmZpbJxcLMzDK5WJiZ\nWSYXCzMzy+RiYWZmmVwszMwsk4uFmZllcrEwM7NMvvmRmVkH/u6mhwp9/8tOOzz3tu+//z7nnHMO\nzc3NvPnmm+y7775861vfYvTo0QUm3MQ9CzOzHqCtrY29996b+++/n1WrVnHppZcyYcIEli9f3pD2\nXSzMzHqA/v37c8kll7DXXnsBMHbsWPbZZx8eeeSRhrTvYmFm1gO1traybNkyDj744Ia052JhZtbD\ntLW1cdJJJ3Hqqaey//77N6RNFwszsx4kIjjppJPYeeedueaaaxrWrs+GMjPrQc444wxef/117rrr\nLvr06dOwdl0szMx6iK9+9as888wzNDc3s9NOOzW0bRcLM7MObMt1EEVbvnw5c+bMoV+/fgwdOhRI\n7nx3/fXXM3HixMLbL61YSPob4AxgA7AEOA3YBZgHDAdeACZExKqyMpqZVcXee+/Nhg0bSmu/lAFu\nSbsDXwMOi4hRJEVrIjAFaI6IA4B7gKll5DMzs82VeTZUH2AXSX2BDwErgBOAuenrc4FxJWUzM7Ma\npRSLiHgFuBJYTlIkVkVEMzA0IlrTbVYCQ8rIZ2ZmmytlzELSriS9iOHAKuB2SScC0W7T9s8/MH36\n9A+Wm5qaaGpqqntOM7OerKWlhZaWlrq8lyI6/DwujKQ/BY6LiLPS5ycDRwBHA00R0SppGHBvRIzc\nyvdHGbnNrJrOm3JDt99j9syz2F4+VyRt9WdJ16sr71nWmMVy4AhJ/SQJOAZ4ClgAnJpucwowv5x4\nZmZWK/MwlKR9gZcjYq2kJmAUcHNEvNXVRiNikaSfAouBdenXOcAA4DZJpwMvAhO62oaZmdVPnjGL\nO4A/lLQfyQf6fODHwJjuNBwRM4AZ7Vb/Dji2O+9rZmb1l+cw1IaIaAP+BLgmIi4APlZsLDMzq5I8\nPYt1kiaSjCF8OV23Y3GRzMyq4aonny30/b9+yH7btP3JJ59Mc3Mza9asYdiwYVxwwQWcccYZBaXb\nXJ6exWnAkcBlEfG8pH2AW4qNZWZm7U2dOpXnn3+et956iwULFvDNb36TxYsXN6TtzGIREU9FxPkR\n8RNJg4EBETGzAdnMzKzGQQcdRL9+/YDkvhaSeO655xrSdmaxkNQiaaCk3YBHge9Luqr4aGZm1t65\n557LLrvswsiRI9l9990ZM6Zb5xrllucw1KCIWA2MJzll9tP4jCUzs1LMnj2bd955hwceeIDx48ez\n8847N6TdPMWir6SPkVzzcGfBeczMLIMkPvOZz/DSSy9x3XXXNaTNPMXi74GFwLMR8ZCkjwPLio1l\nZmZZ2traqjNmERG3R8SoiDgnff5fEfGV4qOZmdlGr732GvPmzePdd99lw4YNLFy4kFtvvZVjj23M\nqECe6T76kdzR7mCg38b1EXF6gbnMzEq3rddBFEkS1113HWeffTYbNmxg+PDhzJo1i7Fjxzak/TwX\n5d0CPAMcR3JI6kTg6SJDmZnZ5j760Y/WbbrxrsgzZrFfRFwMvBsRc4GxwKeLjWVmZlWSp1isS7++\nJekQYBC+g52ZWa+S5zDUnPTK7YtJ7jfxYeCSQlM1UNFzv5StSsdcrTzb+35uxcssFhGx8RZU9wEf\nLzaOmZlVUYfFQtLXO/vGiPCUH2ZmvURnPYsBDUthZmaV1mGxSO9kZ2bWKwz+yBAklR2jLoYPH173\n98xzUd5cYPLGe26ng91X+qI8M+vIoqWvNbS9lau6P5neqD/7h9zbHjJobbfb2xbXXnFmQ9vbmjyn\nzo7aWCgAIuJN4JPFRTIzs6rJUyx2SHsTAKT3tchzyq2ZmW0n8nzoXwk8KOn29PmfAZcVF8nMzKom\nz3UWN0t6GDg6XTU+Ip4qNpaZmVVJrsNJaXFwgTAz66XyjFmYmVkv52JhZmaZXCzMzCxTZrGQNF7S\nMkmrJK2W9Lak1Y0IZ2Zm1ZBngPvbwJcjwnfHMzPrpfIchmp1oTAz693y9CweljQP+GfggwlRIuKf\nCktlZmaVkqdYDAT+B/hCzboAXCzMzHqJPFdwn9aIIGZmVl2d3Snvwoj4tqRrSHoSm4mI8wtNZmZm\nldFZz2LjoPbDjQhiZmbV1dmd8v4l/Tq3iIYlDQJuAA4BNgCnA78F5gHDgReACRGxqoj2zcwsvzKv\n4J4F3BURI4FPAM8AU4DmiDgAuAeYWmI+MzNLlVIsJA0E/igibgKIiLa0B3ECsLEnMxcYV0Y+MzPb\nXFk9i32A1yXdJOlRSXMk9QeGRkQrQESsBIaUlM/MzGpknjor6feAs4ARtdtHxOndbPcw4NyIeFjS\nd0gOQbU/62qLs7DMzKzx8lyUNx+4H2gG1tep3ZeBlyJi45lWd5AUi1ZJQyOiVdIw4NWO3mD69Okf\nLDc1NdHU1FSnaGZm24eWlhZaWlrq8l55ikX/iLioLq2l0mLwkqT9I+K3wDHAb9LHqcBM4BSSQrVV\ntcXCzMy21P4P6RkzZnT5vfIUizsljYmIu7rcytadD/xI0o7AfwGnAX2A2ySdDrwITKhzm2Zm1gV5\nisVk4BuS3gfeBwRERAzsTsMR8Thw+FZeOrY772tmZvWXZ26oAY0IYmZm1ZXnTnmSdJKki9Pne0n6\nVPHRzMysKvJcZ/E94EhgUvr8HWB2YYnMzKxy8oxZfDoiDpO0GCAi3pS0U8G5zMysQvL0LNZJ6kN6\ngVx6kd6GQlOZmVml5CkWVwM/A4ZIugx4APhWoanMzKxS8pwN9SNJj5BcOCdgXEQ8nfFtZma2Hckz\nZgHQSjLlR1/gQ5IOi4hHi4tlZmZVkmciwUtJpuB4jk0T+wVwdHGxzMysSvL0LCYA+0bE+0WHMTOz\nasozwP0ksGvRQczMrLry9CwuBxZLehJYu3FlRBxfWCozM6uUPMViLsmU4Uvw9RVmZr1SnmLxPxFx\ndeFJzMyssvIUi/slXQ4sYPPDUD511sysl8hTLD6Zfj2iZp1PnTUz60XyXMH9+UYEMTOz6spzP4tB\nkq6S9HD6uFLSoEaEMzOzashzncWNwNskF+dNAFYDNxUZyszMqiXPmMW+EfGVmuczJD1WVCAzM6ue\nPD2LNZI+u/GJpKOANcVFMjOzqsnTszgbmJuOUwj4HXBKoanMzKxS8pwN9RjwCUkD0+erC09lZmaV\nkudsqOck/QiYBOxVfCQzM6uaPGMWBwHXAx8B/l9aPH5WbCwzM6uSPMViPbAu/boBeDV9mJlZL5Fn\ngHs1yYyzVwHfj4g3io1kZmZVk6dnMRH4JXAOcKukGZKOKTaWmZlVSZ6zoeYD8yUdCHwR+GvgQuBD\nBWczM7OKyHM21B2SngVmAf2BvwQGFx3MzMyqI/dtVSNifdFhzMysmvIchnq4EUHMzKy68gxwm5lZ\nL9dhsUgnDETSzo2LY2ZmVdRZz+Lq9OuDjQhiZmbV1dmYxTpJc4A9JF3d/sWIOL+4WGZmViWdFYsv\nAccCxwGPFNG4pB2Ah4GXI+J4SYOBecBw4AVgQkSsKqJtMzPLr8NiERGvk1yx/XREPF5Q+5OBp4CB\n6fMpQHNEfFvSRcDUdJ2ZmZUoz9lQb0j6maRX08cdkvbsbsPpe4wBbqhZfQIwN12eC4zrbjtmZtZ9\neYrFTcACYPf08S/puu76DnABEDXrhkZEK0BErASG1KEdMzPrpjzFYkhE3BQRbenjh8DvdadRSWOB\n1vQufOpk0+jkNTMza5A80328Lukk4Cfp84lAd6cpPwo4XtIYkgkJB0i6BVgpaWhEtEoaRif3zZg+\nffoHy01NTTQ1NXUzkpnZ9qWlpYWWlpa6vJciOv/jXdJw4BrgSJK/9P8DOD8iltclgPQ54P+mZ0N9\nG3gjImamA9yDI2KLAW5JkZU7r6uefLYu71NVXz9kv7IjWAU0ej9ftPS1hra3srmxP98hg9Y2tL1r\nrzizLu8jiYjo7GhOh/LMDfUicHxX3rwLrgBuk3Q68CIwoUHtmplZJ/IchipURNwH3Jcu/47k2g4z\nM6sQTyRoZmaZ8tz8aJ8868zMbPuVp2dxx1bW/bTeQczMrLo6HLNI77l9MDBI0vialwYC/YoOZmZm\n1dHZAPcBJJMJ7gp8uWb928BZRYYyM7Nq6WwiwfnAfElHRoTvaWFm1ovlOXX2WUnfAEbUbh8RpxcV\nyszMqiVPsZgP3A80A+uLjWNmZlWUp1j0j4iLCk9iZmaVlefU2TvTCf/MzKyXylMsJpMUjDWSVkt6\nW9LqooOZmVl15JlIcEAjgpiZWXVlFgtJ/3tr6yPil/WPY2ZmVZRngPuCmuV+wKeAR4CjC0lkZmaV\nk+cwVO3V20jaC/huYYnMzKxyujJF+cvAyHoHMTOz6sozZnENye1UISkuhwKPFhnKzMyqJc+YxcM1\ny23ATyLiVwXlMTOzCsozZjFX0k7A/umqpcVGMjOzqslzGKoJmAu8AAjYS9IpPnXWzKz3yHMY6krg\nCxGxFEDS/sBPgD8oMpiZmVVHnrOhdtxYKAAi4rfAjsVFMjOzqsk1wC3pBuAf0+cnsvmgt5mZbefy\nFIuzgXOB89Pn9wPfKyyRmZlVTp6zodYCV6UPMzPrhTLHLCR9SdJiSb/zFOVmZr1TnsNQ3wXGA0si\nIrI2NjOz7U+es6FeAp50oTAz673y9CwuBO6SdB+wduPKiPAYhplZL5GnWFwGvENyL4udio1jZmZV\nlKdY7B4RhxSexMzMKivPmMVdkr5QeBIzM6usPMXibODnktb41Fkzs94pz0V5AxoRxMzMqivPmAWS\nBgP/i2SQGwBPUW5m1nvkuZ/FmcBkYE/gMeAI4EHg6GKjmZlZVeQZs5gMHA68GBGfBz4JvNWdRiXt\nKekeSb+RtETS+en6wZLulrRU0kJJg7rTjpmZ1UeeYvFeRLwHIGnniHgGOKCb7bYBX4+Ig4EjgXMl\nHQhMAZoj4gDgHmBqN9sxM7M6yDNm8bKkXYF/Bn4h6U3gxe40GhErgZXp8juSniY5zHUC8Ll0s7lA\nC0kBMTOzEuU5G+pP0sXpku4FBgE/r1cASSOAQ4FfA0MjojVtd6WkIfVqx8zMui7X2VAbRcR99Wxc\n0oeBnwKT0x5G+8kKO5y8cPr06R8sNzU10dTUVM9oZmY9XktLCy0tLXV5r20qFvUkqS9JobglIuan\nq1slDY2IVknDgFc7+v7aYmFmZltq/4f0jBkzuvxeeQa4i3Ij8FREzKpZtwA4NV0+BZjf/pvMzKzx\nSulZSDoKOBFYImkxyeGmbwAzgdsknU4yiD6hjHxmZra5UopFRPwK6NPBy8c2MouZmWUr8zCUmZn1\nEC4WZmaWycXCzMwyuViYmVkmFwszM8vkYmFmZplcLMzMLJOLhZmZZXKxMDOzTC4WZmaWycXCzMwy\nuViYmVkmFwszM8vkYmFmZplcLMzMLJOLhZmZZXKxMDOzTC4WZmaWycXCzMwyuViYmVkmFwszM8vk\nYmFmZplcLMzMLJOLhZmZZXKxMDOzTC4WZmaWqW/ZAXqbRUtfa2h7f/fQmw1t77LTDm9oe2bWGO5Z\nmJlZJhcLMzPL5GJhZmaZXCzMzCyTi4WZmWVysTAzs0w+dXY796tFzzS0vfOWPt7Q9q694syGtmfW\nW7lnYWZmmSpZLCSNlvSMpN9KuqjsPGZmvV3lioWkHYBrgeOAg4GJkg4sN1U+zz70n2VH2MJbK54u\nO8IWVixfWnaELbS0tJQdYQtVzATez/Oq4n7eHZUrFsCngGUR8WJErANuBU4oOVMuz1XxP9Er/k+U\nRxU/mKuYCbyf51XF/bw7qlgs9gBeqnn+crrOzMxKUsViYWZmFaOIKDvDZiQdAUyPiNHp8ylARMTM\nmm2qFdrMrIeICHXl+6pYLPoAS4FjgP8GFgETI6J6ByXNzHqJyl2UFxHrJZ0H3E1ymOwHLhRmZuWq\nXM/CzMyqp0cMcEsaLOluSUslLZQ0qJNtd5D0qKQFZWeStKekeyT9RtISSecXlCXzIkZJV0taJukx\nSYcWkWNbc0maJOnx9PGApN8vO1PNdodLWidpfBUySWqStFjSk5LuLTuTpIGSFqT70xJJpzYg0w8k\ntUp6opNtGrqfZ2UqaR/P/D2l223bPh4RlX8AM4EL0+WLgCs62fZvgH8EFpSdCRgGHJouf5hkLObA\nOufYAXgWGA7sCDzWvg3gi8C/psufBn7dgH+zPLmOAAaly6OLzpUnU812/w7cCYwvOxMwCPgNsEf6\n/KMVyDQVuHxjHuANoG/BuT4LHAo80cHrZeznWZkauo/nyVTzb7xN+3iP6FmQXJQ3N12eC4zb2kaS\n9gTGADdUIVNErIyIx9Lld4Cnqf81I3kuYjwBuDnN8Z/AIElD65xjm3NFxK8jYlX69NcUfz1N3gs+\nvwb8FHi14Dx5M00C7oiIFQAR8XoFMgUwIF0eALwREW1FhoqIB4DObirf8P08K1MJ+3ie3xN0YR/v\nKcViSES0QvIBDAzpYLvvABeQ7MhVyQSApBEk1b7el7/muYix/TYrtrJNvW3rxZVnAv9WaKIcmSTt\nDoyLiOuALp1iWO9MwP7AbpLulfSQpJMrkOla4CBJrwCPA5MLzpRHGfv5tmjEPp6pq/t4Zc6GkvQL\noPavAJF86H9zK5tvUQwkjQVaI+IxSU3U4T96dzPVvM+HSar45LSHYTUkfR44jaT7XLbvkhxW3KgR\nBSNLX+Aw4GhgF+BBSQ9GxLMlZjoOWBwRR0vaF/iFpFHev7due9jHK1MsIuKPO3otHawZGhGtkoax\n9a7TUcDxksYAHwIGSLo5Iv6yxExI6ktSKG6JiPldzdKJFcDeNc/3TNe132avjG3KyIWkUcAcYHRE\nZHWdG5HpD4FbJYnkWPwXJa2LiKJOmMiT6WXg9Yh4D3hP0i+BT5CMK5SV6TTgcoCIeE7S88CBwMMF\nZcqjjP08U4P38Ty6to8XPdhSpwGbmcBF6XKnA9zpNp+jMQPcmZlIjqFeVWCOPmwajNyJZDByZLtt\nxrBp4O8IGjPIlifX3sAy4IgG7UeZmdptfxPFD3Dn+T0dCPwi3bY/sAQ4qORMs4Fp6fJQksM/uzXg\n33AEsKSD1xq+n+fI1NB9PE+mdtvl3scbFr6bP/huQDPJ2UR3A7um6z8G3LmV7RtRLDIzkfR21qf/\n2RYDj5L8dVHvLKPTHMuAKem6/wP8Vc0216YfAI8DhzXo363TXMD3Sc6ieTT9/SwqO1O7bW8sulhs\nw7/f35KcEfUE8LWyM6X7+cI0zxMksywUnenHwCvAWmA5Se+m1P08K1NJ+3jm76lm29z7uC/KMzOz\nTD3lbCgzMyuRi4WZmWVysTAzs0wuFmZmlsnFwszMMrlYmJlZJhcLszqT9GVJF9bpvd6ux/uYdZev\nszDrAkl9ImJ9A9pZHREDi27HLIt7FtarSeov6c70xkJPSJog6XlJu6Wv/8HGmw1JmibpZkn3A7dI\nelDSyJr3ulfSYZJOkXRNeoOgF9q1tVxSH0kfl/Rv6Syy90naP91mhKT/SG+Wc2ljfxtmHXOxsN5u\nNLAiIj4ZEaOAn7PlDMK1z0cCx0TEJJL7PPw5QDqZ5LCIeHTj90TEamCxpM+l674E/DztkcwBzouI\nw0mm1b8u3WYWMDsiPgH8dz1/ULPucLGw3m4J8MeSLpf02fQDvrMpmxdExPvp8u3AV9LlCSSzC7d3\nG2lBAf4CmCdpF+AzwO2SFgPXs2kq/KNIihDALV35gcyKUJkpys3KEBHLJB1GMmPppZLuAdax6Q+p\nfu2+5d2a731F0hvpfZX/nGSytvYWAJdJGkxyT4p7SG6x+2ZEHLa1SGzqyVThXhpmgHsW1stJ+hiw\nJiJ+DPwDyQf6CyRz/sOmnkNH5gEXAgMj4sn2L0bEuyT3eJhFMhtxRMTbwPOS/rQmx6h08VfAxHT5\nxC79UGYFcLGw3u73gUXp4aBLgEuBvwdmSVoEZN1X+g6SXsW8TraZR/LBf2vNuhOBMyQ9JulJ4Ph0\n/V8D50p6nGQacLNK8KmzZmaWyT0LMzPL5GJhZmaZXCzMzCyTi4WZmWVysTAzs0wuFmZmlsnFwszM\nMrlYmJlZpv8PBE6Y5/68UeMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "female = train[train.Sex == 'female']\n", + "hist = thinkstats2.Hist(female[train.Pclass == 1].Survived)\n", + "hist1 = thinkstats2.Hist(female[train.Pclass == 2].Survived)\n", + "hist2 = thinkstats2.Hist(female[train.Pclass == 3].Survived)\n", + "thinkplot.PrePlot(3)\n", + "thinkplot.Hist(hist, align='left', width=0.3, label='1')\n", + "thinkplot.Hist(hist1, align='center', width=0.3, label='2')\n", + "thinkplot.Hist(hist2, align='right', width=0.3, label='3')\n", + "thinkplot.Show(xlabel='survived', ylabel='amount of women in class')" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH6JJREFUeJzt3XuYFeWV7/Hvj7uIIsZ4A22NRgWNo86AiSYnrTGCl6ij\nhEEiJ95mYoz3ExVygrSaxEsSM96j8RJMdMDoyQjGgDLaiYZEjKKCKKKPgBIhqAgaEbms88cucNt0\ndxXNrr0L+vd5nn669rvfXbWqKXr1W29VLUUEZmZmrelQ6wDMzKz4nCzMzCyVk4WZmaVysjAzs1RO\nFmZmlsrJwszMUuWaLCR1lfSkpGmSpksanbT3kvSwpFmSJknqWfaZkZJmS3pR0uF5xmdmZtko7/ss\nJHWPiA8kdQT+BJwDnAC8HRFXS7oY6BURIyT1A+4G+gN9gMnAZ8M3g5iZ1VTup6Ei4oNksSvQCQjg\nWGBM0j4GOC5ZPgYYGxErI2IOMBsYkHeMZmbWutyThaQOkqYBC4BHIuIpYLuIWAgQEQuAbZPuvYHX\nyz4+P2kzM7MaqsbIYnVE7E/ptNIASXtTGl18olvecZiZWdt1qtaGImKppEZgELBQ0nYRsVDS9sDf\nk27zgZ3KPtYnafsESU4uZmZtEBFqy+dyneCWtA2wIiKWSNoMmARcCXwZeCcirmphgvtASqefHqGZ\nCW5JFZvzvmbGKxVZD8Ckm65j4JnnVGx9lbD0vl/T0NBQ6zA+oaGhwTFlUMSYoJhxOaZsJLU5WeQ9\nstgBGCOpA6VTXuMi4iFJfwHulXQqMBcYAhARMyXdC8wEVgBn+kooM7PayzVZRMR04IBm2t8BDmvh\nM1cAV+QZl5mZrR/fwV1Bu/U/sNYhrKO+vr7WIazDMWVTxJigmHE5pvzlflNeHoo6Z1FEF+yze61D\nMLOCKPKchZlZq3bZZRfmzp1b6zA2KXV1dcyZM6ei63SyMLOamjt3LhvjGY4ik9o0eGiV5yzMzCyV\nk4WZmaVysjAzs1ROFmZmbTBmzBi+9KUv1TqMqvEEt5kVzlkjbst1/TdceXpF1pPHRHJLbrzxRn75\ny18yffp0hg0bxh133FG1bYOThZnZRqF3796MGjWKSZMmsWzZsqpv36ehzMxa8cYbb3DCCSew7bbb\n8ulPf5pzzmn+YaHnnXceO++8Mz179qR///488cQTa9976qmn6N+/Pz179mSHHXbgu9/9LgDLly9n\n+PDhbLPNNvTq1YsDDzyQRYsWNbv+4447jmOOOYatt9668juZgZOFmVkLVq9ezdFHH82uu+7KvHnz\nmD9/PkOHDm2274ABA3j++edZvHgxw4YN4+tf/zofffQRAOeeey7nnXceS5Ys4dVXX2XIkCFAad5j\n6dKlzJ8/n3feeYef//znbLbZZlXbv/XhZGFm1oKpU6fy5ptvcvXVV9OtWze6dOnCQQcd1GzfYcOG\nsdVWW9GhQwfOP/98li9fzqxZswDo0qULr7zyCm+//Tbdu3dnwIBStejOnTvz9ttv8/LLLyOJ/fff\nnx49elRt/9aHk4WZWQtef/116urq6NAh/VflT37yE/r160evXr3o1asXS5cu5a233gLg9ttvZ9as\nWey1114ceOCB/O53vwNg+PDhDBw4kKFDh9KnTx9GjBjBqlWrct2ntnKyMDNrwU477cS8efNYvXp1\nq/0ef/xxfvzjH3PfffexePFiFi9ezJZbbrn2MSa77bYb99xzD4sWLeKiiy5i8ODBLFu2jE6dOjFq\n1CheeOEFpkyZwoQJE7jrrruqsWvrzcnCzKwFAwYMYIcddmDEiBF88MEHLF++nClTpqzT7/3336dz\n58586lOf4qOPPuKyyy7jvffeW/v+3XffvXaU0bNnTyTRoUMHGhsbmTFjBqtXr6ZHjx507ty5xVHM\nqlWr+PDDD1m1ahUrV65k+fLlVR2F+NJZMyucSt0HsaE6dOjAhAkTOPvss9l5553p0KEDw4YNW2fe\nYuDAgQwcOJA99tiDHj16cP7557PTTjutfX/ixIlccMEFLFu2jLq6OsaNG0fXrl1ZsGABZ5xxBvPn\nz6dHjx4MHTqU4cOHNxvLD37wAy699NK193bcfffdjB49mksuuSS/H0AZ17NwPQuzmkpqLNQ6jE1K\nSz/TDaln4dNQZmaWysnCzMxSOVmYmVkqJwszM0vlZGFmZqmcLMzMLJWThZmZpXKyMDOzVE4WZmZt\n4LKqZmY19n/vfCrX9f/wlP4VWU+1yqp+9NFHnHnmmUyePJnFixez22678aMf/YhBgwZVZfuQ88hC\nUh9Jj0p6QdJ0SWcn7aMlvSHpmeRrUNlnRkqaLelFSYfnGZ+Z2cZg5cqV7Lzzzjz++OMsWbKEyy+/\nnCFDhjBv3ryqxZD3aaiVwAURsTfwBeAsSXsl710TEQckXxMBJPUFhgB9gSOAm1TNiuhmZk0Uoaxq\n9+7dueSSS9Y+nPCoo45i11135emnn85hj5uXa7KIiAUR8Wyy/D7wItA7ebu5JHAsMDYiVkbEHGA2\nMCDPGM3MWlLUsqoLFy5k9uzZ7L333pXb2RRVm+CWtAuwH/Bk0nSWpGcl3SapZ9LWG3i97GPz+Ti5\nmJlVVRHLqq5cuZKTTjqJk08+mT322KOyO9yKqiQLST2A+4BzkxHGTcBnImI/YAHw02rEYWa2PopW\nVjUiOOmkk+jatSvXX399ZXYyo9yvhpLUiVKi+FVEPAAQEeUn5X4BTEiW5wM7lb3XJ2lbR0NDw9rl\n+vp66uvrKxazmRl8sqxqawljTVnVxx57jH79+gGw9dZbr1NWFeD+++9n8ODBvPPOO2y22WaMGjWK\nUaNGMW/ePI444gj23HNPTjnllGa3c9ppp/HWW2/x0EMP0bFjx9T4GxsbaWxsXM+9bl41Lp29A5gZ\nEdeuaZC0fUQsSF4eD8xIlscDd0v6GaXTT7sDU5tbaXmyMDPLQ3lZ1YaGBjp27MjTTz+9zqmopmVV\nr7zyynXKqg4cOJBtttlmnbKq22yzDf369Ustq3rGGWfw0ksvMXnyZLp06ZIp/qZ/SF966aXr/0NI\n5JosJB0MfAOYLmkaEMD3gGGS9gNWA3OAbwFExExJ9wIzgRXAmRUriWdmG41K3QexoYpSVnXevHnc\neuutdOvWje222w4o3eNxyy23cOKJJ+b7Q0i4rKrLqprVlMuqVp7LqpqZWU04WZiZWSonCzMzS+Vk\nYWZmqZwszMwslZOFmZmlcrIwM7NUThZmZpbKycLMrA1cVtXMrMbyfrJCpZ5sUM3abMOHD2fy5Mks\nW7aM7bffngsvvJDTTjutatv3yMLMbCMwcuRIXnvtNd59913Gjx/P97//faZNm1a17TtZmJm1oghl\nVQH69etHt27dgFJdC0m8+uqrFd7bljlZmJm1oGhlVb/zne+w+eab07dvX3bccUeOPPLIyu90C1KT\nhaTNJXVIlveQdIykzvmHZmZWW0Urq3rjjTfy/vvv88QTT3D88cfTtWvXyu90C7KMLP4IdJPUG3gY\nGA78Ms+gzMyKoGhlVaE0qX7QQQfx+uuvc/PNN2/4TmaUJVkoIj6gVNHupoj4OrB3vmGZmdVeeVnV\n1qwpq3rfffexePFiFi9ezJZbbrlOWdVFixZx0UUXMXjwYJYtW0anTp0YNWoUL7zwAlOmTGHChAnc\nddddmWJbuXJl4eYsJOkLlCre/S5pSy/+ama2kSsvq/rBBx+wfPlypkyZsk6/pmVVL7vssnXKqq4Z\nZTQtqzpjxgxWr17dalnVRYsWMW7cOP7xj3+wevVqJk2axNixYznssMPy2/kmstxncR4wEvhtRLwg\n6TPAY/mGZWbtWVEqPBalrKokbr75Zr797W+zevVq6urquPbaaznqqKNy/xmsjWF9yhkmE909ImJp\nfiFlisNlVTMqyn86s5a4rGrl1aSsqqR7JG0paXNgBjBT0oVt2ZiZmW2cssxZ9EtGEscBvwd2pXRF\nlJmZtRNZkkXn5L6K44DxEbEC8JjRzKwdyZIsbgHmAJsDf5RUB9R0zsLMzKor9WqoiLgOuK6saa6k\nQ/ILyczMiibTI8olHUXpRrxuZc2X5RKRmZkVTmqykPRzoDtwCHAbMBiYmnNcZtZO1NXVVbUuRHtQ\nV1dX8XVmGVkcFBH7Sno+Ii6V9FNKV0WZmW2wOXPm1DoEyyDLBPey5PsHknYEVgA75BeSmZkVTZaR\nxYOStgJ+DDxD6bLZ23KNyszMCiV1ZBERl0fEuxFxP1AH7BURo7KsXFIfSY9KekHSdEnnJO29JD0s\naZakSZJ6ln1mpKTZkl6UdHhbd8zMzCqnxZGFpONbeY+I+H8Z1r8SuCAinpXUA3ha0sPAKcDkiLha\n0sWUHlQ4QlI/YAjQF+gDTJb02Yo9CMrMzNqktdNQX2vlvQBSk0VELAAWJMvvS3qRUhI4Fvhy0m0M\n0AiMAI4BxkbESmCOpNnAAODJtG2ZmVl+WkwWEXFKJTckaRdgP+AvwHYRsTDZzgJJ2ybdegN/LvvY\n/KTNzMxqKMt9Fj8Cro6Id5PXvYD/ExHfz7qR5BTUfcC5yQij6Wml9T7N1NDQsHa5vr6e+vr69V2F\nmdkmrbGxkcbGxoqsK7WehaRpEbF/k7ZnIuKATBuQOgEPAr+PiGuTtheB+ohYKGl74LGI6CtpBBAR\ncVXSbyIwOiKebLJO17PIyPUszGyNXOtZAB0ldS3b2GZA11b6N3UHMHNNokiMB05Olr8JPFDWPlRS\nF0m7Arvju8XNzGouy30WdwP/I+nO5PUplCalU0k6mFLt7umSplE63fQ94CrgXkmnAnMpXQFFRMyU\ndC8wk9LNf2f6Sigzs9rLVFZV0iBgTWXwRyJiUq5Rpcfj01AZ+TSUma2xIaehMj11NiImAhPbsgEz\nM9v4ZZmzMDOzds7JwszMUjlZmJlZqiw35R0MNFB6iGAnQJTuhfhMvqGZmVlRZJngvh04H3gaWJVv\nOGZmVkRZksWSiHBlPDOzdixLsnhM0o8pPWV2+ZrGiHgmt6jMzKxQsiSLA5Pv/1LWFsChlQ/HzMyK\nKDVZRMQh1QjEzMyKq7VKeSdFxK8lXdDc+xFxTX5hmZlZkbQ2stg8+b5FNQIxM7Piaq1S3i3J90ur\nF46ZmRWR7+A2M7NUThZmZpbKycLMzFJleTZUV+AEYJfy/hFxWX5hmZlZkWS5Ke8BYAmlZ0MtT+lr\nZmaboCzJok9EDMo9EjMzK6wscxZTJH0u90jMzKywsowsvgicLOk1Sqeh1tSz2DfXyMzMrDCyJIsj\nco/CzMwKLfU0VETMBXYCDk2WP8jyOTMz23Sk/tKXNBq4GBiZNHUGfp1nUGZmVixZRgj/ChwD/AMg\nIv6GHy5oZtauZEkWH0VEUCp4hKTNU/qbmdkmJkuyuFfSLcBWkv4dmAz8It+wzMysSLJUyvuJpK8C\nS4E9gUsi4pHcIzMzs8LIdFVTkhwuB34EPC1p6yyfk3S7pIWSni9rGy3pDUnPJF+Dyt4bKWm2pBcl\nHb6e+2JmZjnJ8iDBbwGXAh8Cq0luygM+k2H9dwLXA3c1ab+maVlWSX2BIUBfoA8wWdJnk/kSMzOr\noSw35X0X2Cci3lrflUfEE5LqmnlLzbQdC4yNiJXAHEmzgQHAk+u7XTMzq6wsp6FepXQjXiWdJelZ\nSbdJ6pm09QZeL+szP2kzM7MayzKyGEnpYYJPUvaI8og4p43bvAm4LCJC0g+AnwKnr+9KGhoa1i7X\n19dTX1/fxnDMzDZNjY2NNDY2VmRdSpsSkDQVeAKYTmnOAoCIGJNpA6XTUBOae/Bg+XuSRpRWG1cl\n700ERkfEOqehJFVsKuOaGa9UZD1FdcE+u9c6BDMrCElERHPTAKmyjCw6R8QFbVl5QpTNUUjaPiIW\nJC+PB2Yky+OBuyX9jNLpp92BqRuwXTMzq5AsyeL3kv4DmMAnT0O9k/ZBSfcA9cCnJM0DRgOHSNqP\n0ihlDvCtZH0zJd0LzARWAGf6Sigzs2LIchrqtWaaIyKyXDqbC5+Gys6nocxsjVxPQ0XErm1ZsZmZ\nbTpcl8LMzFI5WZiZWaoWk4Wkg5PvXasXjpmZFVFrI4vrku9/rkYgZmZWXK1NcK+QdCvQW9J1Td/c\ngDu4zcxsI9NasjgaOAwYCDxdnXDMzKyIWkwWyVNmx0p6MSKeq2JMZmZWMFmuhnpb0m8l/T35ul9S\nn9wjMzOzwsiSLO6k9NymHZOvCUmbmZm1E1mSxbYRcWdErEy+fgl8Oue4zMysQLIki7cknSSpY/J1\nEvB23oGZmVlxZEkWp1Kqjb0AeBMYDJySZ1BmZlYsWR4kOBc4pgqxmJlZQfnZUGZmlsrJwszMUqUm\nC0nr1LNors3MzDZdWUYW9zfTdl+lAzEzs+JqcYJb0l7A3kBPSceXvbUl0C3vwMzMrDhauxpqT0oP\nE9wK+FpZ+3vAv+cZlJmZFUtrDxJ8AHhA0hciwjUtzMzasdT7LIBXJH0P2KW8f0ScmldQZmZWLFmS\nxQPA48BkYFW+4ZiZWRFlSRbdI+Li3CMxM7PCynLp7IOSjsw9EjMzK6wsyeJcSgljmaSlkt6TtDTv\nwMzMrDiyPEhwi2oEYmZmxZWaLCT9r+baI+KPlQ/HzMyKKMsE94Vly92AAcDTwKFpH5R0O6Ub+xZG\nxL5JWy9gHFAHzAGGRMSS5L2RlOpnrATOjYiHM++JmZnlJnXOIiK+Vvb1VWAfYHHG9d8JDGzSNgKY\nHBF7Ao8CIwEk9aNUZKkvcARwkyRl3I6ZmeWoLY8of4PSL/RUEfEE6yaWY4ExyfIY4Lhk+RhgbFLn\new4wm9IoxszMaizLnMX1QCQvOwD7Ac9swDa3jYiFABGxQNK2SXtvoPyxIvOTNjMzq7EscxZ/LVte\nCfxXRPypgjFEepd1NTQ0rF2ur6+nvr6+QuGYmW0aGhsbaWxsrMi6FJH+u1pSF2CP5OWsiFiReQNS\nHTChbIL7RaA+IhZK2h54LCL6ShoBRERclfSbCIyOiCebWWdkiTuLa2a8UpH1FNUF++xe6xDMrCAk\nERFtmgvOUimvntL8wY3ATcDLLV1O29Iqkq81xgMnJ8vfpPTsqTXtQyV1SSrx7Q5MXY/tmJlZTrKc\nhvopcHhEzAKQtAfwX8A/p31Q0j1APfApSfOA0cCVwG8knQrMpXQFFBExU9K9wExgBXBmxYYPZma2\nQbIki85rEgVARLwsqXOWlUfEsBbeOqyF/lcAV2RZt5mZVU+mCW5JtwG/Tl5/g09OepuZ2SYuS7L4\nNvAd4Jzk9eOU5i7MzKydyHQ1VNFszFdDTZ21qKrb221plr8HKueHp/Sv6vbMLLu8r4Y6WtI0Se/4\nEeVmZu1Tlj87/xM4Hpjuq5PMzNqnLM+Geh2Y4URhZtZ+ZRlZXAQ8JOkPwPI1jRFxTW5RmZlZoWRJ\nFj8E3qdUy6JLvuGYmVkRZUkWO0bEPrlHYmZmhZVlzuIhSYfnHomZmRVWlmTxbWCipGW+dNbMrH1K\nPQ0VEVtUIxAzMyuuTLf3SuoFfJbSJDcAEfHHvIIyM7NiyVJW9XTgXKAP8CzweUrlTw/NNzSrhD9N\nfamq2ztr1nNV3d4NV55e1e2ZtVdZ5izOBfoDcyPiEGB/4N1cozIzs0LJkiw+jIgPASR1jYiXgD3z\nDcvMzIoky5zFG5K2Av4beETSYkoV7szMrJ3IcjXUvyaLDZIeA3oCE3ONyszMCmW9ih1ExB/yCsTM\nzIory5yFmZm1c04WZmaWysnCzMxSOVmYmVkqJwszM0vlZGFmZqmcLMzMLJWThZmZpXKyMDOzVOt1\nB3clSZoDLAFWAysiYkBSN2McUAfMAYZExJJaxWhmZiW1HFmsBuojYv+IGJC0jQAmR8SewKPAyJpF\nZ2Zma9UyWaiZ7R8LjEmWxwDHVTUiMzNrVi2TRVB65PlTSTU+gO0iYiFARCwAtq1ZdGZmtlbN5iyA\ngyPiTUmfBh6WNItSAinX9LWZmdVAzZJFRLyZfF8k6b+BAcBCSdtFxEJJ2wN/b+nzDQ0Na5fr6+up\nr6/PN2Azs41MY2MjjY2NFVmXIqr/x7uk7kCHiHhf0ubAw8ClwFeAdyLiKkkXA70iYkQzn49KxX3N\njFcqsp6sps5aVNXtLZhc3f3bp+fyqm7vhitPT+9kZgBIIiLUls/WamSxHfBbSZHEcHdEPCzpr8C9\nkk6lVLp1SI3iM9ukVPuPomq7YJ/dax3CJq8mySIiXgP2a6b9HeCw6kdkZhuzs0bcVusQclWEEbTv\n4DYzs1ROFmZmlsrJwszMUjlZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAzs1ROFmZmlsrJ\nwszMUjlZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAzs1ROFmZmlsrJwszMUjlZmJlZqk61\nDsDMNj1TZy2q6vYWLOla1e3t03N5VbdXBB5ZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAz\ns1ROFmZmlqqQyULSIEkvSXpZ0sW1jsfMrL0rXLKQ1AG4ARgI7A2cKGmv2kaVzStPPVnrENbx7vwX\nax3COubPm1XrENbR2NhY6xDWUcSYwMd5VkU8zjdE4ZIFMACYHRFzI2IFMBY4tsYxZfJqEf8T/c3/\nibIo4i/mIsYEPs6zKuJxviGKmCx6A6+XvX4jaTMzsxopYrIwM7OCUUTUOoZPkPR5oCEiBiWvRwAR\nEVeV9SlW0GZmG4mIUFs+V8Rk0RGYBXwFeBOYCpwYEcU7KWlm1k4U7hHlEbFK0lnAw5ROk93uRGFm\nVluFG1mYmVnxbBQT3JJ6SXpY0ixJkyT1bKVvB0nPSBpf65gk9ZH0qKQXJE2XdE5OsaTexCjpOkmz\nJT0rab884ljfuCQNk/Rc8vWEpM/VOqayfv0lrZB0fBFiklQvaZqkGZIeq3VMkraUND45nqZLOrkK\nMd0uaaGk51vpU9XjPC2mGh3jqT+npN/6HeMRUfgv4CrgomT5YuDKVvqeD/waGF/rmIDtgf2S5R6U\n5mL2qnAcHYBXgDqgM/Bs020ARwC/S5YPBP5ShX+zLHF9HuiZLA/KO64sMZX1+x/gQeD4WscE9ARe\nAHonr7cpQEwjgSvWxAO8DXTKOa4vAvsBz7fwfi2O87SYqnqMZ4mp7N94vY7xjWJkQemmvDHJ8hjg\nuOY6SeoDHAncVoSYImJBRDybLL8PvEjl7xnJchPjscBdSRxPAj0lbVfhONY7roj4S0QsSV7+hfzv\np8l6w+fZwH3A33OOJ2tMw4D7I2I+QES8VYCYAtgiWd4CeDsiVuYZVEQ8ASxupUvVj/O0mGpwjGf5\nOUEbjvGNJVlsGxELofQLGNi2hX4/Ay6kdCAXJSYAJO1CKdtX+vbXLDcxNu0zv5k+lba+N1eeDvw+\n14gyxCRpR+C4iLgZaNMlhpWOCdgD2FrSY5KekjS8ADHdAPST9DfgOeDcnGPKohbH+fqoxjGeqq3H\neGGuhpL0CFD+V4Ao/dL/fjPd10kGko4CFkbEs5LqqcB/9A2NqWw9PShl8XOTEYaVkXQIcAql4XOt\n/Sel04prVCNhpOkEHAAcCmwO/FnSnyPilRrGNBCYFhGHStoNeETSvj6+m7cpHOOFSRYR8dWW3ksm\na7aLiIWStqf5odPBwDGSjgQ2A7aQdFdE/O8axoSkTpQSxa8i4oG2xtKK+cDOZa/7JG1N++yU0qcW\ncSFpX+BWYFBEpA2dqxHTvwBjJYnSufgjJK2IiLwumMgS0xvAWxHxIfChpD8C/0RpXqFWMZ0CXAEQ\nEa9Keg3YC/hrTjFlUYvjPFWVj/Es2naM5z3ZUqEJm6uAi5PlVie4kz5fpjoT3KkxUTqHek2OcXTk\n48nILpQmI/s26XMkH0/8fZ7qTLJliWtnYDbw+SodR6kxNel/J/lPcGf5Oe0FPJL07Q5MB/rVOKYb\ngdHJ8naUTv9sXYV/w12A6S28V/XjPENMVT3Gs8TUpF/mY7xqwW/gjm8NTKZ0NdHDwFZJ+w7Ag830\nr0aySI2J0mhnVfKfbRrwDKW/Liody6AkjtnAiKTtW8B/lPW5IfkF8BxwQJX+3VqNC/gFpatonkl+\nPlNrHVOTvnfknSzW49/vu5SuiHoeOLvWMSXH+aQknucpPWUh75juAf4GLAfmURrd1PQ4T4upRsd4\n6s+prG/mY9w35ZmZWaqN5WooMzOrIScLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAzs1ROFmYVJulr\nki6q0Lreq8R6zDaU77MwawNJHSNiVRW2szQitsx7O2ZpPLKwdk1Sd0kPJoWFnpc0RNJrkrZO3v/n\nNcWGJI2WdJekx4FfSfqzpL5l63pM0gGSvinp+qRA0Jwm25onqaOkz0j6ffIU2T9I2iPps4ukKUmx\nnMur+9Mwa5mThbV3g4D5EbF/ROwLTGTdJwiXv+4LfCUihlGq8/BvAMnDJLePiGfWfCYilgLTJH05\naTsamJiMSG4FzoqI/pQeq39z0uda4MaI+CfgzUruqNmGcLKw9m468FVJV0j6YvILvrVHNo+PiI+S\n5d8AJyTLQyg9Xbipe0kSCjAUGCdpc+Ag4DeSpgG38PGj8A+mlIQAftWWHTLLQ2EeUW5WCxExW9IB\nlJ5YermkR4EVfPyHVLcmH/lH2Wf/JuntpK7yv1F6WFtT44EfSupFqSbFo5RK7C6OiAOaC4mPRzJF\nqKVhBnhkYe2cpB2AZRFxD/ATSr/Q51B65j98PHJoyTjgImDLiJjR9M2I+AelGg/XUnoacUTEe8Br\nkgaXxbFvsvgn4MRk+Rtt2imzHDhZWHv3OWBqcjroEuBy4DLgWklTgbS60vdTGlWMa6XPOEq/+MeW\ntX0DOE3Ss5JmAMck7ecB35H0HKXHgJsVgi+dNTOzVB5ZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZ\nmaVysjAzs1ROFmZmlsrJwszMUv1/eAValfv14SMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "male = train[train.Sex == 'male']\n", + "hist = thinkstats2.Hist(male[train.Pclass == 1].Survived)\n", + "hist1 = thinkstats2.Hist(male[train.Pclass == 2].Survived)\n", + "hist2 = thinkstats2.Hist(male[train.Pclass == 3].Survived)\n", + "thinkplot.PrePlot(3)\n", + "thinkplot.Hist(hist, align='left', width=0.3, label='class 1')\n", + "thinkplot.Hist(hist1, align='center', width=0.3, label='class 2')\n", + "thinkplot.Hist(hist2, align='right', width=0.3, label='class 3')\n", + "thinkplot.Show(xlabel='survived', ylabel='amount of men in class')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the females, it appears there is a stronger correlation between class and survival; nearly all high class and middle class females survived, while there was about a 50-50 split between the third class, which was given lower priority during the sinking.
\n", + "For the males there is certainly a higher ratio of high class and middle class males who survived, but it is not as significant.
\n", + "Because of this correlation between age, gender, and class I will try to incorporate that into my model. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} From d4b484c09afd8677c2837cd9841ccc23a3c0eb08 Mon Sep 17 00:00:00 2001 From: Kiki Date: Mon, 1 Feb 2016 22:10:02 -0500 Subject: [PATCH 6/7] finished, need to comment code/clean up --- model_iteration_2.ipynb | 644 +++++++++++++++++++++++++++++++++------- 1 file changed, 538 insertions(+), 106 deletions(-) diff --git a/model_iteration_2.ipynb b/model_iteration_2.ipynb index 5ff9ef8..2ab2936 100644 --- a/model_iteration_2.ipynb +++ b/model_iteration_2.ipynb @@ -14,12 +14,12 @@ "metadata": {}, "source": [ "Inspiration 1: http://elenacuoco.altervista.org/blog/archives/1195?doing_wp_cron=1454278621.7234199047088623046875, provides a great overview of how the author figured out which values would be relevant
\n", - "Inspiration 2: https://triangleinequality.wordpress.com/2013/09/05/a-complete-guide-to-getting-0-79903-in-kaggles-titanic-competition-with-python/, good overview as to how to structure the code and model as decision trees. This was a really interesting approach, because it basically weighted different factors as deciding factors or questions leading to more factors (for example, starting with a male, checking the passenger class and moving to different factors based on the result). I did not implement this entirely, but read through it and the links it pointed to in order to get a better sense of how to modify my model. " + "Inspiration 2: https://triangleinequality.wordpress.com/2013/09/05/a-complete-guide-to-getting-0-79903-in-kaggles-titanic-competition-with-python/, good overview as to how to structure the code and model as decision trees. This was a really interesting approach, because it basically weighted different factors as deciding factors or questions leading to more factors (for example, starting with a male, checking the passenger class and moving to different factors based on the result). I did not implement this entirely, but read through it and the links it pointed to in order to get a better sense of how to modify my model and understand how the random classifier model actually works. " ] }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 423, "metadata": { "collapsed": false }, @@ -28,13 +28,19 @@ "%matplotlib inline\n", "import pandas as pd\n", "from sklearn.linear_model import LinearRegression, LogisticRegression\n", - "from sklearn.cross_validation import KFold\n", + "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn import cross_validation\n", + "from sklearn.cross_validation import train_test_split,StratifiedShuffleSplit,StratifiedKFold, KFold\n", + "from sklearn.pipeline import Pipeline\n", + "from sklearn.grid_search import GridSearchCV\n", + "from sklearn.feature_selection import SelectKBest, f_classif\n", "import numpy as np\n", "import matplotlib.pyplot as plt \n", "import thinkplot\n", "import thinkstats2\n", - "import string" + "import string\n", + "from patsy import dmatrices,dmatrix\n", + "from sklearn.ensemble import GradientBoostingClassifier" ] }, { @@ -46,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 392, "metadata": { "collapsed": false }, @@ -175,13 +181,14 @@ "max 6.000000 512.329200 " ] }, - "execution_count": 60, + "execution_count": 392, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train = pd.read_csv('train.csv')\n", + "test = pd.read_csv('test.csv')\n", "\n", "train.describe()" ] @@ -195,12 +202,13 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 393, "metadata": { "collapsed": false }, "outputs": [], "source": [ + "#code from link to first blog; finds title in each name if exists and places it in a new column, called title. The titles are normalized. \n", "def substrings_in_string(big_string, substrings):\n", " for substring in substrings:\n", " if string.find(big_string, substring) != -1:\n", @@ -212,6 +220,7 @@ " 'Dr', 'Ms', 'Mlle','Col', 'Capt', 'Mme', 'Countess',\n", " 'Don', 'Jonkheer']\n", "train['Title']=train['Name'].map(lambda x: substrings_in_string(x, title_list))\n", + "test['Title']=test['Name'].map(lambda x: substrings_in_string(x, title_list))\n", "\n", "#replacing all titles with mr, mrs, miss, master\n", "def replace_titles(x):\n", @@ -238,8 +247,10 @@ " return title\n", "\n", "train['Title']=train.apply(replace_titles, axis=1)\n", + "test['Title']=test.apply(replace_titles, axis=1)\n", "\n", "train['AgeFill']=train['Age']\n", + "test['AgeFill']=test['Age']\n", "mean_ages = np.zeros(4)\n", "mean_ages[0]=np.average(train[train['Title'] == 'Miss']['Age'].dropna())\n", "mean_ages[1]=np.average(train[train['Title'] == 'Mrs']['Age'].dropna())\n", @@ -248,12 +259,106 @@ "train.loc[ (train.Age.isnull()) & (train.Title == 'Miss') ,'AgeFill'] = mean_ages[0]\n", "train.loc[ (train.Age.isnull()) & (train.Title == 'Mrs') ,'AgeFill'] = mean_ages[1]\n", "train.loc[ (train.Age.isnull()) & (train.Title == 'Mr') ,'AgeFill'] = mean_ages[2]\n", - "train.loc[ (train.Age.isnull()) & (train.Title == 'Master') ,'AgeFill'] = mean_ages[3]" + "train.loc[ (train.Age.isnull()) & (train.Title == 'Master') ,'AgeFill'] = mean_ages[3]\n", + "test.loc[ (test.Age.isnull()) & (test.Title == 'Miss') ,'AgeFill'] = mean_ages[0]\n", + "test.loc[ (test.Age.isnull()) & (test.Title == 'Mrs') ,'AgeFill'] = mean_ages[1]\n", + "test.loc[ (test.Age.isnull()) & (test.Title == 'Mr') ,'AgeFill'] = mean_ages[2]\n", + "test.loc[ (test.Age.isnull()) & (test.Title == 'Master') ,'AgeFill'] = mean_ages[3]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The effort that the blog put into trying to ensure the age was accurate led me to see if I should implement a more complex way of filling in missing Embarked values. However, when I run: " ] }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 394, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "PassengerId 0\n", + "Survived 0\n", + "Pclass 0\n", + "Name 0\n", + "Sex 0\n", + "Age 177\n", + "SibSp 0\n", + "Parch 0\n", + "Ticket 0\n", + "Fare 0\n", + "Cabin 687\n", + "Embarked 2\n", + "Title 0\n", + "AgeFill 0\n", + "dtype: int64" + ] + }, + "execution_count": 394, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I see that there are actually only 2 passengers for whom the starting point is unknown. Thus, it seems safe to simply fill in those values with 'S', the most common location.\n", + "I will continue cleaning the data as I did earlier, dropping the columns which no longer matter and replacing the Embarked and Sex values with integers. I will also combine the SibSp and Parch columns into one Family column. \n", + "Unlike the blogpost, I also converted the title column into integer values, to see if that makes any impact on the final survival predictions. " + ] + }, + { + "cell_type": "code", + "execution_count": 395, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "train['FamilySize'] = train['SibSp'] + train['Parch']\n", + "train['NameLength'] = train['Name'].apply(lambda x: len(x))\n", + "train['Embarked'] = train['Embarked'].fillna('S')\n", + "train.loc[train['Embarked'] == 'S', 'Embarked'] = 0\n", + "train.loc[train['Embarked'] == 'C', 'Embarked'] = 1\n", + "train.loc[train['Embarked'] == 'Q', 'Embarked'] = 2\n", + "train.loc[train['Sex'] == 'male', 'Sex'] = 1\n", + "train.loc[train['Sex'] == 'female', 'Sex'] = 0\n", + "test['FamilySize'] = test['SibSp'] + test['Parch']\n", + "test['NameLength'] = test['Name'].apply(lambda x: len(x))\n", + "test['Embarked'] = test['Embarked'].fillna('S')\n", + "test.loc[test['Embarked'] == 'S', 'Embarked'] = 0\n", + "test.loc[test['Embarked'] == 'C', 'Embarked'] = 1\n", + "test.loc[test['Embarked'] == 'Q', 'Embarked'] = 2\n", + "test.loc[test['Sex'] == 'male', 'Sex'] = 1\n", + "test.loc[test['Sex'] == 'female', 'Sex'] = 0\n", + "\n", + "test.loc[ test.Title == 'Miss','Title'] = 4\n", + "test.loc[ test.Title == 'Mrs','Title'] = 3\n", + "test.loc[ test.Title == 'Mr','Title'] = 1\n", + "test.loc[ test.Title == 'Master','Title'] = 2\n", + "train.loc[ train.Title == 'Miss','Title'] = 4\n", + "train.loc[ train.Title == 'Mrs','Title'] = 3\n", + "train.loc[ train.Title == 'Mr','Title'] = 1\n", + "train.loc[ train.Title == 'Master','Title'] = 2\n", + "\n", + "train = train.drop(['Name','Age','Cabin','Ticket','SibSp','Parch'], axis=1)\n", + "test = test.drop(['Name','Age','Cabin','Ticket','SibSp','Parch'], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 396, "metadata": { "collapsed": false }, @@ -269,11 +374,10 @@ " PassengerId\n", " Survived\n", " Pclass\n", - " Age\n", - " SibSp\n", - " Parch\n", " Fare\n", " AgeFill\n", + " FamilySize\n", + " NameLength\n", " \n", " \n", " \n", @@ -282,7 +386,6 @@ " 891.000000\n", " 891.000000\n", " 891.000000\n", - " 714.000000\n", " 891.000000\n", " 891.000000\n", " 891.000000\n", @@ -293,105 +396,98 @@ " 446.000000\n", " 0.383838\n", " 2.308642\n", - " 29.699118\n", - " 0.523008\n", - " 0.381594\n", " 32.204208\n", " 29.819131\n", + " 0.904602\n", + " 26.965208\n", " \n", " \n", " std\n", " 257.353842\n", " 0.486592\n", " 0.836071\n", - " 14.526497\n", - " 1.102743\n", - " 0.806057\n", " 49.693429\n", " 13.285423\n", + " 1.613459\n", + " 9.281607\n", " \n", " \n", " min\n", " 1.000000\n", " 0.000000\n", " 1.000000\n", - " 0.420000\n", - " 0.000000\n", - " 0.000000\n", " 0.000000\n", " 0.420000\n", + " 0.000000\n", + " 12.000000\n", " \n", " \n", " 25%\n", " 223.500000\n", " 0.000000\n", " 2.000000\n", - " 20.125000\n", - " 0.000000\n", - " 0.000000\n", " 7.910400\n", " 21.835616\n", + " 0.000000\n", + " 20.000000\n", " \n", " \n", " 50%\n", " 446.000000\n", " 0.000000\n", " 3.000000\n", - " 28.000000\n", - " 0.000000\n", - " 0.000000\n", " 14.454200\n", " 30.000000\n", + " 0.000000\n", + " 25.000000\n", " \n", " \n", " 75%\n", " 668.500000\n", " 1.000000\n", " 3.000000\n", - " 38.000000\n", - " 1.000000\n", - " 0.000000\n", " 31.000000\n", " 35.841667\n", + " 1.000000\n", + " 30.000000\n", " \n", " \n", " max\n", " 891.000000\n", " 1.000000\n", " 3.000000\n", - " 80.000000\n", - " 8.000000\n", - " 6.000000\n", " 512.329200\n", " 80.000000\n", + " 10.000000\n", + " 82.000000\n", " \n", " \n", "\n", "" ], "text/plain": [ - " PassengerId Survived Pclass Age SibSp \\\n", - "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", - "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", - "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", - "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", - "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", - "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", - "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", - "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", + " PassengerId Survived Pclass Fare AgeFill \\\n", + "count 891.000000 891.000000 891.000000 891.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 32.204208 29.819131 \n", + "std 257.353842 0.486592 0.836071 49.693429 13.285423 \n", + "min 1.000000 0.000000 1.000000 0.000000 0.420000 \n", + "25% 223.500000 0.000000 2.000000 7.910400 21.835616 \n", + "50% 446.000000 0.000000 3.000000 14.454200 30.000000 \n", + "75% 668.500000 1.000000 3.000000 31.000000 35.841667 \n", + "max 891.000000 1.000000 3.000000 512.329200 80.000000 \n", "\n", - " Parch Fare AgeFill \n", - "count 891.000000 891.000000 891.000000 \n", - "mean 0.381594 32.204208 29.819131 \n", - "std 0.806057 49.693429 13.285423 \n", - "min 0.000000 0.000000 0.420000 \n", - "25% 0.000000 7.910400 21.835616 \n", - "50% 0.000000 14.454200 30.000000 \n", - "75% 0.000000 31.000000 35.841667 \n", - "max 6.000000 512.329200 80.000000 " + " FamilySize NameLength \n", + "count 891.000000 891.000000 \n", + "mean 0.904602 26.965208 \n", + "std 1.613459 9.281607 \n", + "min 0.000000 12.000000 \n", + "25% 0.000000 20.000000 \n", + "50% 0.000000 25.000000 \n", + "75% 1.000000 30.000000 \n", + "max 10.000000 82.000000 " ] }, - "execution_count": 63, + "execution_count": 396, "metadata": {}, "output_type": "execute_result" } @@ -400,6 +496,32 @@ "train.describe()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While all the values of the train data are filled in, I realize that it is possible that the fare may be unknown for a passenger. Thus, I will use the Pclass to predict a more accurate value for fare. " + ] + }, + { + "cell_type": "code", + "execution_count": 397, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "p1 = train[train.Pclass == 1]\n", + "p2 = train[train.Pclass == 2]\n", + "p3 = train[train.Pclass == 3]\n", + "train.loc[train.Fare.isnull() & (train.Pclass == 1), 'Fare'] = p1.Fare.mean()\n", + "train.loc[train.Fare.isnull() & (train.Pclass == 2), 'Fare'] = p2.Fare.mean()\n", + "train.loc[train.Fare.isnull() & (train.Pclass == 3), 'Fare'] = p3.Fare.mean()\n", + "test.loc[test.Fare.isnull() & (test.Pclass == 1), 'Fare'] = p1.Fare.mean()\n", + "test.loc[test.Fare.isnull() & (test.Pclass == 2), 'Fare'] = p2.Fare.mean()\n", + "test.loc[test.Fare.isnull() & (test.Pclass == 3), 'Fare'] = p3.Fare.mean()" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -409,16 +531,16 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 398, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+sAAAFVCAYAAACXX35lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPX1//HXAQIEJCEgS9gCggu4AUWrIhKLdUGRIlQW\nFxarqLhW/YnoF4NaV6wCalEUixR3aAGFgkqB1hYFBVRwAYSwBFBW2Rc5vz8yGbPMhKwzk+T9fDx4\nOPfez9w5Ge+59565n/u55u6IiIiIiIiISOyoFO0ARERERERERCQnFesiIiIiIiIiMUbFuoiIiIiI\niEiMUbEuIiIiIiIiEmNUrIuIiIiIiIjEGBXrIiIiIiIiIjHmqMW6mTUxszlmtszMvjSz2wLzk8xs\ntpl9a2azzCyx9MMVkZJkZq+Y2WYz+yLbvCfN7GszW2Jmk80sIduy+8xsRWD5hdGJWkSKKkzOhz2e\nK+dFyh8zq2Rmn5vZtDDLRwfyfomZtY10fCLyi4JcWT8M/NHdTwbOBoaY2UnAUOBDdz8RmAPcV3ph\nikgpeRW4KNe82cDJ7t4WWEEgt82sDXAl0Bq4BHjBzCyCsYpI8YXK+ZDHc+W8SLl1O7A81AIzuwRo\n6e7HA4OBsZEMTERyOmqx7u6b3H1J4PVu4GugCdAdmBBoNgH4XWkFKSKlw93/A2zPNe9Ddz8SmFxA\nZr4DXA686e6H3X0NmYX8mZGKVUSKL1TOE/54rpwXKWfMrAnQFXg5TJPuwGsA7v4JkGhmDSIUnojk\nUqh71s2sOdCWzBP4Bu6+GTILeqB+SQcnIlE3CJgReN0YWJdt2YbAPBEp2+qHOZ4r50XKn2eAewAP\ns1x5LxJDClysm9kxwLvA7YEr7LmTPFzSi0gZZGb3A4fc/Y1oxyIiEaXjuUg5ZGaXApsDPWYt8E9E\nYliVgjQysypkFuoT3X1qYPZmM2vg7pvNrCHwQ5j36qAvUkLcPSIHVjMbQGY3ud9km70BaJptuklg\nXqj3K+9FSkgE8j7c8Vw5LxIFpZjzHYHLzawrEA/UMrPX3P3abG2U9yJREC7vC1SsA+OB5e4+Ktu8\nacAA4AmgPzA1xPuyPryAH1NxpKWlkZaWFu0wYpK+m9BKcVynHL+um9nFZHaRO8/dD2RrNw2YZGbP\nkNklrhXwabiVKu/z0rYdmr6X8Eop73NfUQt3PFfOlwBt36HpewmtNMdwdPdhwLDA53QG7spVqENm\n3g8B3jKzs4AdWbfJhFlnaYVbrnU4vS2Lxr9e6p+T9uLzpA0eUuqfA9BhUD8WLV0Skc8qb/LL+6MW\n62bWEbgK+NLMFpPZPW4YmQf1t81sEJBO5oixIlKGmNnrQCpQ18zWAg+Smd9VgQ8CO48F7n6zuy83\ns7fJHEH2EHCz6ygtUqaEyfnHgXdyH8+V8yIVg5kNBtzdX3L3GWbW1cxWAnuAgVEOT6RCO2qx7u4f\nA5XDLL6gZMMRkUhy934hZr+aT/vHgMdKLyIRKU1hch7CHM+V8yLlk7vPA+YFXr+Ya9ktUQlKRPIo\naDd4KWGpqanRDiFm6buRWNPtkq5szMgo9np27d7Ne3//R7HXk9yoEdNnzjh6wzJCOS/lmbbv0PS9\niJS+1F+dEe0QpJistHu0mZl6zYmUADOL2ABzxVXe8j5S95YVlO4LqzjKSt6Xt5wXiZaykvOgvC+O\nWDuvKAk6Nym6/PJeV9ZLWfPmzUlPT492GFKGpKSksGbNmmiHUWzlbdu3DidHO4QcSnMQIom8spj3\n8fHxm/bv398ga1rbpEjBlcWcl9LR/PILSc8IOeB+maPjQP6Kkvcq1ougMF1i09PTNVKmFEp52dFp\n2xcpuLKY9/v372+gHBcpmrKY81I60jM26HypgihK3qtYL4KNGRkF7roSa1fjREREREREJPZVinYA\nIiIiIiIiIpKTinURERERERGRGKNivYL77rvvaNeuHYmJiTz33HMR/exKlSrx/fffl9r609PTqVSp\nEkeOHAm5/LHHHuOGG24oUNsRI0ZwzTXXlFqsElnlebsP55RTTmH+/Pkhl82bN4+mTZuGfe/AgQMZ\nPnx4gdpG07nnnsvSpUujHUYed999N2PHjo12GBWO8jyn8pLn2R08eJCTTz6ZzZs3RzuUPHr16sWs\nWbOiHYZIsVXEfWlxtGjRgjlz5pTY+nTPehSU1DObwynMM5iffPJJfvOb37B48eJSiyecSAyukt9n\n3HfffQVuW5DlcnSxsu2X9+0+lK+++irf5YWJKxZz4b333iMhIYHTTz8dgGXLlnHXXXfx2WefsW3b\nNn7++ecc7bdv386gQYP44IMPqFevHo8++ih9+/YNu/5rrrmGDz/8kH379tGwYUPuuecerrvuuuDy\njz76iFtuuYV169bx61//mldffZVmzZoBmcX6mWeeyR/+8AeqVCnfh91YyXFQnodS1vM8t5deeonO\nnTvToEHmQwmeffZZxowZw5YtW6hVqxa9e/fmqaeeolKlzGtT6enpDBw4kE8++YSUlBTGjBlDly5d\n8v2MUaNGMWrUKH744QdSUlKYOnUqrVq1AuD1119n2LBhbN26ld/+9reMHz+e2rVrA3Dvvfdy0003\ncdFFF5XiNyDllfalmcrCfqi0le+zhhhVmAHqiqLDoH4Fbpuenp7vCWppKi8jX/78889Urlw52mGU\nCbGy7Wu7L3/Gjh2bo/dLXFwcvXv3ZsiQIfzud7/L0/7mm2+mevXq/Pjjj3z++edceumltG3bltat\nW4dc/3333ce4ceOoXr063333HZ07d6Z9+/a0a9eOrVu30rNnT8aPH89ll13GAw88QO/evfnf//4H\nQMOGDWndujXTpk3jiiuuKJ0vIEbESo6D8rwiGDt2LOPGjQtOd+/enf79+5OUlMSOHTvo2bMno0eP\n5o477gCgb9++dOzYkZkzZ/L+++/Tq1cvVq5cSd26dUOu/+WXX+bVV19l5syZnHjiiaxevZqkpCQg\n8wfBG2+8kZkzZ9KuXTuuv/56brrpJt544w0AzjjjDHbt2sXnn39O+/btS/mbKBgzqwbMB6qSWQO8\n6+4jcrXpDEwFsi5nTnH3RyIaqGhfGqB9qbrBV2hdunThX//6F0OGDCEhIYGVK1dy8OBB7r77blJS\nUkhOTubmm2/mwIEDwC/d4p566ikaNGhA48aNmTp1avAgduyxx/LYY48F179w4ULOOecckpKSaNy4\nMbfeeiuHDx8OGUt+n3s0+/fv56677qJ58+YkJSVx3nnnBd/r7vztb38jJSWF+vXr8+ijjwbfl1/X\n9jVr1pCamkpiYiIXXXQRW7ZsCS7L6jI/fvx4UlJSgr/KL1iwgI4dO5KUlES7du2YN29e8D3nn38+\nw4cP59xzzyUhIYGLL76Ybdu2Fejvk5JVXrb7gQMHMmTIELp27UqtWrXo1KkTmzdv5s4776ROnTq0\nadMmR5fw7N2y9u/fz4ABA6hTpw6nnHIKCxcuzLHuxYsX86tf/YrExET69OnD/v37w8axceNGevXq\nRf369WnZsiVjxowJ23bGjBm0b9+exMREUlJSGDEixzkir732Gs2bN6devXo88sgjOWJ2dx5//HFa\ntWpFvXr16NOnD9u3bwfg0KFDzJkzh86dOwfXdcIJJzBw4EDatGmTJ469e/cyZcoUHnnkEeLj4+nY\nsSPdu3dn4sSJYWNv06YN1atXD8ZiZqxatQqAKVOmcMopp3DFFVdQtWpV0tLSWLp0Kd99913w/Z07\nd+b9998Pu34pWcrz8pPnO3bsCPk569atY/Xq1fz617/O8fdnFdM///wzlSpVYuXKlUBmV97FixeT\nlpZGtWrVuOKKKzjttNOYPHlyyPW7Ow899BDPPPMMJ554YnD9WVfOX3/9dS6//HI6duxIjRo1ePjh\nh5kyZQp79uwJriPW8t7dDwDnu3s7oC1wiZmdGaLpfHdvH/inQr0CKy/70tLcL02cODH43ux1RklR\nsV6BffTRR3Tq1Innn3+en376iVatWnHvvfeycuVKvvjiC1auXMmGDRt46KGHgu/ZtGkTBw8eJCMj\ngxEjRnD99dczadIkFi9ezPz583n44YdJT08HoHLlyjz77LNs27aN//3vf8yZM4cXXnghZCxH+9z8\n3HXXXSxevJgFCxawbds2nnzyyWCXN4CPP/6YFStW8OGHH/LQQw/x7bffBpeF617Tr18/zjjjDLZs\n2cIDDzzAhAkT8rSZP38+33zzDbNmzSIjI4PLLruM4cOHs337dkaOHEnPnj3ZunVrsP0bb7zBhAkT\n+PHHHzlw4AAjR44s0N8nJau8bPcA77zzDo8++ihbt26latWqnH322XTo0CF4pffOO+8M+b60tDRW\nr17N6tWrmTVrVo7t+9ChQ/To0YP+/fuzbds2fv/73+d7MtutWzfatWvHxo0b+eijjxg1ahQffPBB\nyPbHHHMMEydOZOfOnbz//vuMHTuWadOmAbB8+XKGDBnCG2+8wcaNG9m5cycZ2boAjh49mmnTpvHv\nf/+bjIwMkpKSGDJkCAArVqygcuXKNGrUqEDf23fffUdcXBwtW7YMzjv99NNZtmxZvu8bMmQINWvW\npHXr1jRq1IiuXbsCmVfYsrrfA9SoUYNWrVrlWF/r1q1j8n768kp5Xn7y/Oabbw75OV9++SXHHXdc\njuM9ZB5rExMTqVevHl988QU33nhj8LOPO+44atasGWybX96vX7+e9evX8+WXX9KsWTNatmxJWlpa\ncHnuvD/uuOOoVq1ajh/pYjHv3X1v4GU1Mq+uh7p0qb7HApSffWlp7ZeWL1/OzTffzKRJk8jIyGDr\n1q1s2LChSN91OCrWJYdx48bxzDPPkJiYSM2aNRk6dGiwSxdA1apVGTZsGJUrV6ZPnz5s2bKFO+64\ngxo1atCmTZscv/K3b9+eM888EzOjWbNm3HDDDTmuNhfmc8Nxd1599VVGjx5Nw4YNMTPOOuss4uLi\ngMxiPC0tjapVq3Laaadx+umnH/XAuXbtWhYtWsRDDz1EXFwcnTp1olu3bjnamBkjRowgPj6eatWq\n8be//Y1LL700eG9aly5d6NChAzNm/HI/0MCBA2nZsiXVqlXjyiuvZMmSJUf9+yQyytp2n6VHjx60\nbduWqlWr0qNHD+Lj47nqqqswM3r37h12G3vnnXd44IEHSExMpHHjxtx2223BZf/73/84fPgwt912\nG5UrV6Znz56cccYZIdfz6aefsmXLFu6//34qV65M8+bN+cMf/sCbb74Zsv15553HySefDGQOhNWn\nT5/gdzN58mQuv/xyzj77bKpUqZLnAPziiy/ypz/9ieTkZOLi4hg+fDjvvvsuR44cYceOHdSqVavA\n39vu3btJSEjIMS8hIYFdu3bl+77nn3+e3bt385///IcrrriCatWqBdeXmJiY7/pq1aoV9gqhRIby\nvGzneW7h8r5v377s3LmTFStWcOONN1K/fn2gYHma3fr16wH44IMPWLZsGXPmzOGNN97glVdeKfD6\nYjHvzaySmS0GNgEfuPvCEM3ONrMlZva+meXtniQVWlncl5bWfmny5Ml069aNjh07EhcXx8MPP1zi\n99nrnnUJ+vHHH9m7dy+/+tWvgvOOHDmS436RunXrBjfC+Ph4gOCBMGve7t27gcyrXX/84x9ZtGgR\n+/bt4/DhwznWXZjPDWfLli0cOHCA4447LmybrIFnIPOKV1Z84WzcuJGkpKTg3weQkpISPHBnadKk\nSfB1eno6b7/9NtOnTwcyf0Q4fPhwjoFrGjZsWKg4JDLK4nafJfu2HR8fn2c63DaWkZGRY/tNSUkJ\nvt64cSONGzfO0T778uzWrl3Lhg0bqFOnDpC53R85coTzzjsvZPtPP/2UoUOH8tVXX3Hw4EEOHjzI\n73//+2BM2Uefjo+Pz3EfaXp6Oj169AheRXN34uLi2Lx5M0lJSUcttLM75phj+Omnn3LM27lzZ/DE\nv2vXrvz73//GzHjxxRdz3KtnZpxzzjlMnDiRv/zlL9xyyy1HXR/Arl27gt1nJfKU52U/z5OTk3N8\nztHyvmXLlrRp04abbrqJyZMnHzVPTznlFNLT0zEzZs6cGbwCf++991KrVi1q1arF4MGDmTFjBtdd\nd12ZzXt3PwK0M7ME4B9m1sbdl2dr8hnQzN33mtklwD+AE6IRq8SesrovLa39Uu731qhRI+wYGEWl\nYl2Cjj32WGrUqMGyZcvyHBSL4qabbqJ9+/a89dZb1KhRg1GjRoXsZleczz322GOpXr06q1at4tRT\nTy12zADJycls376dffv2BXcya9euzdPVLvsvZ02bNuXaa6/lxRdfLJEYJHLK4nZfXMnJyaxbty44\nmFpWd7SsZbm7cK1duzY4+nF2TZs25bjjjstxa0l++vXrx2233casWbOIi4vjzjvvDN4qkpycnKP7\n6L59+3LcRtKsWTPGjx/P2WefnWe9xx57LO7Oxo0bC/RdnnDCCRw+fJhVq1YFu8IvXbo0+Kt79h4x\n4WS9H+Dkk0/O0cV4z549rFq1Krg+gK+//jpHl1mJLOV52c/z3E477TRWr17NkSNH8hyfsxw6dCj4\n2KeTTz6Z77//nj179gQL8aVLl3L11VcDeUfS37dvH1WrVs0xL/tx/+STT87RU2/VqlUcOnSIE074\npa6N5bx395/M7F/AxcDybPN3Z3s908xeMLM67h5yoJ3stwakpqaSmppaajFL9JXVfWlp7ZeSk5P5\n5ptvgtN79+7N8d5w5s6dy9y5cwsUu7rBS5CZcf3113PHHXfw448/ArBhwwZmz55dpPXt2rWLhIQE\natSowTfffMNf/vKXIn9upUqVQj471swYNGgQf/zjH9m4cSNHjhxhwYIFHDp0CCjcKJJZbZs1a0aH\nDh148MEHOXToEP/5z3+CV8xzt81y9dVXM336dGbPns2RI0fYv38/8+bNy3HPSywys1fMbLOZfZFt\nXpKZzTazb81slpklZlt2n5mtMLOvzezC6ERdssridl9Q4bb/K6+8kscee4wdO3awfv36HM9NzeoG\nNmbMGA4fPsyUKVP49NNPQ67nzDPPpFatWjz55JPs37+fn3/+mWXLlrFo0aKQ7Xfv3k1SUhJxcXF8\n+umnvP76LyPd9urVi+nTpwfzN/sJIMDgwYMZNmwYa9euBTJ/Zc+63ywuLo4LLrggT9e5AwcOcODA\nAdydAwcOcPDgQSDzl+8rrriC4cOHs3fv3mCOhxtw8scff+Stt95iz549HDlyhFmzZvHmm29ywQUX\nAJndlJctW8bf//53Dhw4wIgRI2jbtm2Ok/Z58+ZxySWXhFy/lD7lednP89waN25Mq1atcsT9yiuv\nBL/n5cuX8/jjjwfz9Pjjj6dt27aMGDGCAwcOMGXKFL766it69uwZcv3x8fH06dOHJ598kt27d7N+\n/Xpeeuml4G1xV111FdOnT+fjjz9mz549DB8+nJ49e+a4Jz7W8t7Mjs06pptZPPBb4JtcbRpke30m\nYOEKdcgs1rP+qVAv/8rqvrS09ku9evXivffe47///S+HDh1i+PDhBao9UlNTc+ROflSsV3C576t4\n4oknaNWqFWeddRa1a9fmwgsvzPFr09Hen3165MiRTJo0iYSEBAYPHkyfPn3Cts3vc9etW0dCQkLY\nK+cjR47k1FNP5YwzzqBu3boMHTo0eH9bfvHl97e8/vrrLFiwgLp16/Lwww/Tv3//fNfTpEkTpk6d\nyqOPPkq9evVISUlh5MiRYeOIIa8CuR8COxT40N1PBOYA9wEE7lu7EmgNXAK8YDH8h+WnPGz3Bfnq\ns7fJ/vrBBx+kWbNmtGjRgosvvphrr702uCwuLo4pU6bw6quvUrduXd55552wJ7OVKlXivffeY8mS\nJbRo0YL69etz/fXX5+kamuWFF17g//7v/0hMTOSRRx6hd+/ewWVt2rRhzJgx9O7dm0aNGpGQkED9\n+vWD94XffvvtdO/enQsvvJDExETOOeecHCfpN9xwA6+99lpwOj09nfj4eE499VTMjPj4eE466aTg\n8ueff569e/dSv359rr76asaOHRv2sW1mxl/+8heaNm1KnTp1+H//7/8xatQoLr30UiDzF//Jkycz\nbNgw6tSpw6JFi3Lcz7tx40a+/vrrkI+Qk9KjPC9/eZ7b4MGDc+T9xx9/zKmnnkqtWrW47LLLuOyy\ny/jTn/4UXP7mm2+ycOFCkpKSuP/++5k8eXK+XVbHjBlDzZo1adSoER07duTqq69mwIABwb9l7Nix\n9OvXj4YNG7Jv3z6ef/754HsXLlxIrVq16NChQ9j1R0Ey8C8zWwJ8Asxy9xlmNtjMbgi06WVmXwXu\na38W6B1uZVIxlId9aWntl9q0acPzzz9P3759adSoEXXr1s1x+1FJsNJ+fp2ZeXl7Rl6H09sW+NmH\n1uHkPL+wdLukKxtL8YprcqNGTJ959G6cZcWkSZNYvnx5jgNueWZmIX+VC8wv8eLYzFKA6e5+WmD6\nG6Czu282s4bAXHc/ycyGAu7uTwTazQTS3P2TEOt0yHvFR9t+wVW07T63PXv2ULt2bVauXBn2Xtrc\nOnXqxHPPPRdz3U7vvvtuWrVqFRyVOpRI531JCHV8V44XjvK88Hme3cGDB2nfvj0fffRRjnv5Y0Gv\nXr34wx/+wMUXXxxyeVnM+dzK4zl+pGSvJVQrFF9J7kuLu1/KT1HyXsV6ERS3WBfJTwwU69vcvU62\n5dvcvY6ZjQH+5+6vB+a/DMxw9ykh1hmyWBfJz3vvvUeXLl04cuQId911FwsXLuSzzz6LdlgRURZP\n3Mvj8V1KX0XO8+zKYs7npn1A0R2tWJfIitR+qSh5r27wInI0OoJIREydOpVGjRrRpEkTVq1aFfbR\nUCJSdinPRSTWxPJ+SaPBi0hum82sQbZu8D8E5m8AmmZr1yQwT6REjBs3jnHjxkU7jKgqzAixJc3M\n7gSuA44AXwIDgZrAW0AKsAa40t13RiVAKReU5yISa2J5v6RiXUQs8C/LNGAA8ATQH5iabf4kM3sG\naAy0AsKP/CMihZb70UcjRoyIyOeaWSPgVuAkdz9oZm8BfYE2ZA44+aSZ3UvmgJNDIxKUiIhIBadu\n8CIVmJm9DvwXOMHM1prZQOBx4Ldm9i3QJTCNuy8H3ibzeawzgJt1s5pIuVIZqGlmVYB4MnvOdAey\nHiI/AdCQ9iIiIhGiK+siFZi79wuz6IIw7R8DHiu9iEQkGtw9w8yeBtYCe4HZ7v5h1i0xgTabzKx+\nVAMVERGpQFSsi4iIVHBmVpvMq+gpwE7gHTO7irwDTKo3jUgJiuY4FSIS+1Ssl7KURo0xKxNP4JAY\nUdLPdIyWlJQUbfsiBRQDeX8B8L27bwMws78D5xB+wEmqV6++2cxi6+HWImVEVs5Ha5wKiR2qFSqO\nohzrVayXsjXTZpfq+jsM6seipUtK9TNEimLNmjXRDqHEZH8eaixQ3kspWAucZWbVgQNkjlexENhN\n6AEn2bdvX8Os1+XxecuxlPfKeZHyq7RrhUjRfqp0HHWAOTN7xcw2m9kX2eY9aGbrzezzwL+LSzdM\nERERKS3u/inwLrAYWErmEyJeIrNIzzPgpIiUPWZWzcw+MbPFZvalmT0Ypt1oM1thZkvMrG2k4xSR\nXxTkyvqrwBjgtVzz/+zufy75kERERCTS3H0EkLsP7jbCDDgpImWLux8ws/Pdfa+ZVQY+NrOZgR/r\nADCzS4CW7n68mf0aGAucFa2YRSq6o15Zd/f/ANtDLNLNFSIiIiIiZYS77w28rEbmRbvc9690J3CB\nzt0/ARI1NoVI9BTnOeu3BLrHvGxmiSUWkYiIiIiIlDgzq2Rmi4FNwAfuvjBXk8bAumzTGwLzRCQK\nijrA3AvAQ+7uZvYI8GfgunCN09LSgq9zj3opIqHpcS4iIiJSktz9CNDOzBKAf5hZG3dfXtT16Rxf\npPAKc45fpGLd3X/MNjkOmJ5f++yJLCIFo8e5iIiISGlw95/M7F/AxUD2Yn0D0DTbdJPAvJB0ji9S\neIU5xy9oN3gj2z3qgWetZrkC+KpQEYqIiIiISMSY2bFZt66aWTzwW+CbXM2mAdcG2pwF7HD3zREN\nVESCjnpl3cxeB1KBuma2FngQOD/wKIcjwBpgcCnGKCIiIiIixZMMTDCzSmResHvL3WeY2WDA3f2l\nwHRXM1sJ7AEGRjNgkYruqMW6u/cLMfvVUohFRERERERKgbt/CbQPMf/FXNO3RCwoEclXcUaDFxER\nEREREZFSoGJdREREREREJMaoWBeRPMzsTjP7ysy+MLNJZlbVzJLMbLaZfWtms7IGqRERERERkZKn\nYl1EcjCzRsCtQHt3P43MsS36AkOBD939RGAOcF/0ohQRERERKd9UrItIKJWBmmZWBYgn8xmr3YEJ\ngeUTgN9FKTYRERERkXJPxbqI5ODuGcDTwFoyi/Sd7v4h0CDrWavuvgmoH70oRURERETKNxXrIpKD\nmdUm8yp6CtCIzCvsVwGeq2nuaRERERERKSFHfc66iFQ4FwDfu/s2ADP7O3AOsNnMGrj7ZjNrCPyQ\n30rS0tKCr1NTU0lNTS21gEXKi7lz5zJ37txohyEiIiIxQMW6iOS2FjjLzKoDB4AuwEJgNzAAeALo\nD0zNbyXZi3URKZjcP2yNGDEiesGISLliZk2A14AGwBFgnLuPztWmM5nH9+8Ds6a4+yMRDVREglSs\ni0gO7v6pmb0LLAYOBf77ElALeNvMBgHpwJXRi1JEREQK6TDwR3dfYmbHAJ+Z2Wx3/yZXu/nufnkU\n4hORXFSsi0ge7j4CyH1JbxuZXeRFRESkjAkMDrsp8Hq3mX0NNAZyF+sW6dhEJDQNMCciIiIiUoGY\nWXOgLfBJiMVnm9kSM3vfzNpENDARyUHFuoiIiGBmiWb2jpl9bWbLzOzXZpZkZrPN7Fszm2VmidGO\nU0SKJ9AF/l3gdnffnWvxZ0Azd28LPAf8I9Lxicgv1A1eREREAEYBM9z992ZWBagJDAM+dPcnzexe\n4D5gaDSDFJGiC+T2u8BEd88zUGz24t3dZ5rZC2ZWJ+sJMbnpyS8ihVeYJ7+oWBcREangzCwB6OTu\nAwDc/TAcXcOgAAAgAElEQVSw08y6A50DzSYAc1GxLlKWjQeWu/uoUAuzHtEaeH0mYOEKddCTX0SK\nojBPflGxLiIiIi2ALWb2KnA6sAi4AwieuLv7JjOrH8UYRaQYzKwjcBXwpZktBpzM3jMpgLv7S0Av\nM7uJzKfB7AN6RyteEVGxLiIiIpnnA+2BIe6+yMyeIfMKuudql3taRMoId/8YqHyUNs8Dz0cmIhE5\nGhXrUmK6XdKVjRkZ0Q4DgORGjZg+c0a0wxARKSvWA+vcfVFgejKZxfrmrG6xZtYQ+CHcCnTvqkjh\nFebeVRGpeFSsS4nZmJHBovGvRzsMADoM6hftEEREyoxAMb7OzE5w9++ALsCywL8BwBNAfyDPgFRZ\ndO+qSOEV5t5VEal4VKyLiIgIwG3AJDOLA74HBpLZZfZtMxsEpANXRjE+ERGRCkXFuoiIiODuS4Ez\nQiy6INKxiIiICFSKdgAiIiIiIiIikpOKdREREREREZEYo2JdREREREREJMaoWBcRERERERGJMSrW\nRURERERERGLMUYt1M3vFzDab2RfZ5iWZ2Wwz+9bMZplZYumGKSKRZmaJZvaOmX1tZsvM7NfKfRER\nkbLJzJqY2ZzAMf1LM7stTLvRZrbCzJaYWdtIxykivyjIlfVXgYtyzRsKfOjuJwJzgPtKOjARibpR\nwAx3bw2cDnyDcl9ERKSsOgz80d1PBs4GhpjZSdkbmNklQEt3Px4YDIyNfJgikuWoxbq7/wfYnmt2\nd2BC4PUE4HclHJeIRJGZJQCd3P1VAHc/7O47Ue6LiIiUSe6+yd2XBF7vBr4GGudq1h14LdDmEyDR\nzBpENFARCSrqPev13X0zZCY+UL/kQhKRGNAC2GJmr5rZ52b2kpnVABoo90VERMo2M2sOtAU+ybWo\nMbAu2/QG8hb0IhIhJTXAnJfQekQkNlQB2gPPu3t7YA+ZXeBz57pyX0REpAwxs2OAd4HbA1fYRSRG\nVSni+zabWQN332xmDYEf8muclpYWfJ2amkpqamoRP1ak4pg7dy5z586N1sevB9a5+6LA9GQyi/UC\n577yXqTwopz3IlLOmVkVMgv1ie4+NUSTDUDTbNNNAvNC0rFepPAKc6wvaLFugX9ZpgEDgCeA/kCo\nZA/KnsgiUjC5D3ojRoyI2GcHivF1ZnaCu38HdAGWBf4NoAC5r7wXKbxo5r2IVAjjgeXuPirM8mnA\nEOAtMzsL2JF1+1soOtaLFF5hjvVHLdbN7HUgFahrZmuBB4HHgXfMbBCQDlxZrIhFJBbdBkwyszjg\ne2AgUBl4W7kvIiJStphZR+Aq4EszW0zmrWzDgBTA3f0ld59hZl3NbCWZt8ANjF7EInLUYt3d+4VZ\ndEEJxyIiMcTdlwJnhFik3BcRESlj3P1jMn90P1q7WyIQjogUQEkNMCciIiIiIiIiJUTFuoiIiIiI\niEiMUbEuIiIiIiIiEmNUrIuIiIiIiIjEGBXrIiIiIiIiIjFGxbqIiIgAYGaVzOxzM5sWmE4ys9lm\n9q2ZzTKzxGjHKCIiUlGoWBcREZEstwPLs00PBT509xOBOcB9UYlKRESkAlKxLiIiIphZE6Ar8HK2\n2d2BCYHXE4DfRTouERGRikrFuoiIiAA8A9wDeLZ5Ddx9M4C7bwLqRyMwERGRikjFuoiISAVnZpcC\nm919CWD5NPV8lolIjDOzV8xss5l9EWZ5ZzPbERi74nMzeyDSMYrIL6pEOwARERGJuo7A5WbWFYgH\napnZRGCTmTVw981m1hD4IdwK0tLSgq9TU1NJTU0t3YhFyoG5c+cyd+7cSH7kq8AY4LV82sx398sj\nFI+I5EPFuoiISAXn7sOAYZB5ZQ24y92vMbMngQHAE0B/YGq4dWQv1kWkYHL/sDVixIhS/Tx3/4+Z\npRylWX69a0QkglSsi4hIkXW7pCsbMzKiHQYAyY0aMX3mjGiHUd48DrxtZoOAdODKKMcjIqXvbDNb\nAmwA7nH35Ud7g4iUDhXrIiJSZBszMlg0/vVohwFAh0H9oh1CueDu84B5gdfbgAuiG5GIRNBnQDN3\n32tmlwD/AE6IckwiFZaKdRERERERwd13Z3s908xeMLM6gR/u8tBYFSKFV5ixKlSsi0hIZlYJWASs\nd/fLzSwJeAtIAdYAV7r7ziiGKCIiIoVnhLkvPWtAycDrMwELV6iDxqoQKYrCjFWhR7eJSDi3A9nv\nUxsKfOjuJwJzgPuiEpWIiIgUiZm9DvwXOMHM1prZQDMbbGY3BJr0MrOvzGwx8CzQO2rBioiurItI\nXmbWBOgK/An4Y2B2d6Bz4PUEYC6ZBbyIiIiUAe6e7+Ae7v488HyEwhGRo9CVdREJ5RngHsCzzQt2\njXP3TUD9aAQmIiIiIlIR6Mq6iORgZpcCm919iZml5tPU81mmQWdEiqAwg86IiIhI+aZiXURy6whc\nbmZdgXiglplNBDZlDTxjZg2BH/JbiQadESm8wgw6IyIiIuWbusGLSA7uPszdm7n7cUAfYI67XwNM\nBwYEmvUHpkYpRBERERGRck/FuogU1OPAb83sW6BLYFpEREREREqBusGLSFjuPg+YF3i9DbgguhGJ\niIiIiFQMurIuIiIiIiIiEmNUrIuIiIiIiIjEmGIV62a2xsyWmtliM/u0pIISEREREZGSZWavmNlm\nM/sinzajzWyFmS0xs7aRjE9EcirulfUjQKq7t3P3M0siIBERERERKRWvAheFW2hmlwAt3f14YDAw\nNlKBiUhexS3WrQTWISIiIiIipczd/wNsz6dJd+C1QNtPgEQzaxCJ2EQkr+IW2g58YGYLzez6kghI\nRERERESiojGwLtv0hsA8EYmC4j66raO7bzSzemQW7V8HfrETERERERERkSIqVrHu7hsD//3RzP4O\nnAnkKdbT0tKCr1NTU0lNTS3Ox4pUCHPnzmXu3LnRDkNEREQqjg1A02zTTQLzQtI5vkjhFeYcv8jF\nupnVACq5+24zqwlcCIwI1TZ7IotIweQ+6I0YETK9RERERArDAv9CmQYMAd4ys7OAHe6+OdyKdI4v\nUniFOccvzpX1BsDfzcwD65nk7rOLsT4RERGJAjNrQuagUg3IfNLLOHcfbWZJwFtACrAGuNLdd0Yt\nUBEpFjN7HUgF6prZWuBBoCrg7v6Su88ws65mthLYAwyMXrQiUuRi3d1XA3r2ooiISNl3GPijuy8x\ns2OAz8xsNpkn6h+6+5Nmdi9wHzA0moFKdHW7pCsbMzKiHUZQcqNGTJ85I9phlBnu3q8AbW6JRCwi\ncnTFHWBOREREyjh33wRsCrzebWZfk3mvanegc6DZBGAuKtYrtI0ZGSwa/3q0wwjqMOiotaeISJml\nZ6SLiIhIkJk1J7Pn3AKgQdb9qoGCvn70IhMREalYVKyLiIgIAIEu8O8Ct7v7bsBzNck9LSIiIqVE\n3eBFJA8NNiVS8ZhZFTIL9YnuPjUwe7OZNXD3zWbWEPgh3Pv1CCeRwtNjWkUkPyrWRSQUDTYlUvGM\nB5a7+6hs86YBA4AngP7A1BDvA/QIJ5Gi0GNaRSQ/6gYvInm4+yZ3XxJ4vRvIPtjUhECzCcDvohOh\niJQkM+sIXAX8xswWm9nnZnYxmUX6b83sW6AL8Hg04xQREalIdGVdRPKV32BTZqbBpkTKAXf/GKgc\nZvEFkYxFREREMunKuoiEpcGmRERERESiQ1fWRSQkDTYlEnkabEpERESyqFgXkXA02JRIhGmwKREp\nTYGxKJ4ls3ftK+7+RK7lnck8tn8fmDXF3R+JbJQikkXFuojkkW2wqS/NbDGZ3d2HkVmkv21mg4B0\n4MroRSkiIiIFZWaVgOfIHCwyA1hoZlPd/ZtcTee7++URD1BE8lCxLiJ5aLApERGRcudMYIW7pwOY\n2ZtkPuUld7FukQ5MRELTAHMiIiIiIuVfY2Bdtun1gXm5nW1mS8zsfTNrE5nQRCQUXVkXERERERGA\nz4Bm7r7XzC4B/gGcEOWYRCosFesiIiIiIuXfBqBZtukmgXlBgce0Zr2eaWYvmFkdd98WaoV68otI\n4RXmyS8q1kVEREREyr+FQCszSwE2An2AvtkbZD2eNfD6TMDCFeqgJ7+IFEVhnvyiYl1EREREpJxz\n95/N7BZgNr88uu1rMxucudhfAnqZ2U3AIWAf0Dt6EYuIinURERERkQrA3f8JnJhr3ovZXj8PPB/p\nuEQkNI0GLyIiIiIiIhJjVKyLiIiIiIiIxBgV6yIiIiIiIiIxRsW6iIiIiIiISIxRsS4iIiIiIiIS\nY1Ssi4iIiIiIiMQYFesiIiIiIiIiMUbFuoiIiIiIiEiMUbEuIiIiIiIiEmOKVayb2cVm9o2ZfWdm\n95ZUUCISu5T3IhWLcl6k/ChIPpvZaDNbYWZLzKxtpGMUkV8UuVg3s0rAc8BFwMlAXzM7qaQCK+/m\nLvo02iHELH03sUt5XzzatkPT9xK7lPPFp+07NH0vkVeQfDazS4CW7n48MBgYG/FApcQoz8q+4lxZ\nPxNY4e7p7n4IeBPoXjJhlX9zP1sY7RBilr6bmKa8LwZt26Hpe4lpyvli0vYdmr6XqChIPncHXgNw\n90+ARDNrENkwpaQoz8q+4hTrjYF12abXB+aJSPmlvBepWJTzIuVHQfI5d5sNIdqISIRogDkRERER\nERGRGGPuXrQ3mp0FpLn7xYHpoYC7+xO52hXtA0QkD3e3aH6+8l4k8qKZ98p5kcgrrZwvSD6b2Vjg\nX+7+VmD6G6Czu28OsT7lvUgJCZf3VYqxzoVAKzNLATYCfYC+Bf1gESmTlPciFYtyXqT8KEg+TwOG\nAG8FivsdoQp1UN6LREKRi3V3/9nMbgFmk9md/hV3/7rEIhORmKO8F6lYlPMi5Ue4fDazwZmL/SV3\nn2FmXc1sJbAHGBjNmEUquiJ3gxcRERERERGR0qEB5kRERERERERiTHHuWRcpNjM7icxnemY9FmQD\nME3dLEXKL+W9SMWjvBcRKTxdWY8BZlYh7wcys3uBNwEDPg38M+CNwAilIuVSRc15UN5LxaW8V96L\nREtF3v+UdbpnPQaY2Vp3bxbtOCLNzL4DTnb3Q7nmVwWWufvx0YlMpHRV1JwH5b1UXMp75b1ItFTk\n/U9Zp27wEWJmX4RbBDSIZCwx5AjQCEjPNT85sEykzFLOh6W8l3JLeR+W8l6klGn/Uz6pWI+cBsBF\nwPZc8w34b+TDiQl3AB+Z2QpgXWBeM6AVcEvUohIpGcr50JT3Up4p70NT3ouUPu1/yiEV65HzHnCM\nuy/JvcDM5kY+nOhz93+a2QnAmeQccGahu/8cvchESoRyPgTlvZRzyvsQlPciEaH9Tzmke9ZFRERE\nREREYoxGgxcRERERERGJMSrWRURERERERGKMinURERERERGRGKNiXURERERERCTGqFgXERERERER\niTEq1kVERERERERijIp1ERERERERkRijYl1EREREREQkxqhYFxEREREREYkxKtZFREREREREYoyK\ndREREREREZEYc9Ri3cyamNkcM1tmZl+a2a2B+Q+a2Xoz+zzw7+LSD1dESkqI3L4tMD/JzGab2bdm\nNsvMErO95z4zW2FmX5vZhdGLXkSKoijHdOW9SPlUlPMAEYksc/f8G5g1BBq6+xIzOwb4DOgO9AZ2\nufufSz9MESlp+eT2QGCruz9pZvcCSe4+1MzaAJOAM4AmwIfA8X60nYiIxIzCHtPNrDXwOsp7kXKn\nsOcB0YxVpKI66pV1d9/k7ksCr3cDXwONA4utFGMTkVIUJrebkHmgnhBoNgH4XeD15cCb7n7Y3dcA\nK4AzIxq0iBRLEY7p3VHei5RLRTgPEJEIK9Q962bWHGgLfBKYdYuZLTGzl9VFRqTsypbbC4AG7r4Z\nMg/kQP1As8bAumxv28AvJ/kiUsYU8JiuvBepAAp4HiAiEVbgYj3QPeZd4PbAr28vAMe5e1tgE6Du\n8CJlUIjczt29Vd1dRcqZAhzTn45mfCISOToPEIldVQrSyMyqkJnEE919KoC7/5ityThgepj3KsFF\nSoi7l+itJ6FyG9hsZg3cfXPgfrYfAvM3AE2zvb1JYF6o9SrvRUpIJPI+n2N6gfJeOS9Scko65/NT\nyPOA3O9V3ouUkHB5X6BiHRgPLHf3UVkzzKxhoGsMwBXAV/l8eEHjrDDS0tJIS0uLdhgxSd9NaGal\ncuzOk9vANGAA8ATQH5iabf4kM3uGzG6wrYBPw61YeZ+Xtu3Q9L2EF6m8z+eYXuC8L285f9553UhP\n31js9ezYkUHt2o2KtY6UlGTmzw95TaTMUt6HVko5n5/CnAfkUd7yviRo2w5P301o+eX9UYt1M+sI\nXAV8aWaLyewKMwzoZ2ZtgSPAGmBwSQQrIpGRT24/AbxtZoOAdOBKAHdfbmZvA8uBQ8DNGhFapGwp\n7DG9Iud9evpG6tVbVOz1HDqURr16acWMpUOx4xDJrbDnASISeUct1t39Y6ByiEX/LPlwRCRS8slt\ngAvCvOcx4LFSC0pESlVRjunKe5HyqSjnASISWYUaDV5KTmpqarRDiFn6bqS80rYdmr4XKc9q1UqN\ndggxSXkv5ZW27fD03RSelXZvNjOrKD3mREqVmUV00JniUN6LlIyykvflMedTUjqUSDf4kvDjjx1I\nT4+NWKR0lZWch/KZ9yLRkF/eq1iPMc2bNyc9PT3aYUgUpaSksGbNmjzzy9MBXNu5SE5lPe8LcqxX\n3ov8oqznPOgcP1q0Ly27ipL3KtZjTOB/VrTDkCgKtw2UpwO4tnORnMp63hfkWK+8F/lFWc95KH/n\n+CX1BIiSEu4pENqXll1FyfuCPrpNRERERESkXCqpJ0CUFD0FQkADzImIiIiIiIjEHBXrIiIiIiIi\nIjFGxbpExcCBAxk+fHipfsb555/P+PHjQy5bt24dCQkJwftG8mubnp5OpUqVOHLkSKnFKuVXJLb1\nUB577DFuuOGGsMtbtGjBnDlzQi6bN28eTZs2LVDbWDJs2DBGjx4d7TDyeO+99+jTp0+0w5AIUc5H\njnJepPyK1r60OEaMGME111xTouvUPetlQGkPeBFuAIvyrGnTpvz0008Fbm9WJsZ6KdO0nZes++67\nr1jvL2vb/JYtW5g4cSIrV64E4NChQ/Tr149FixaRnp7O3LlzOe+883K859577+WVV17BzLjuuut4\n/PHHw67/2WefZcyYMWzZsoVatWrRu3dvnnrqKSpVyvzNOz09nYEDB/LJJ5+QkpLCmDFj6NKlCwCX\nXXYZw4YN46uvvuKUU04ppW+gbFLel5yKnvNff/011157LatWrcLM+NWvfsWoUaNo3bp18D2FyXmA\nzz//nDvvvJPPP/+cY445hmHDhnHrrbcCynmJLdqXxo6S3peqWC8DSnvACw1gUTzuXuZOcmKRtnMp\njr/+9a907dqVatWqBed16tSJO++8k9///vd52r/44otMmzaNL7/8EoALLriA4447LuyVye7du9O/\nf3+SkpLYsWMHPXv2ZPTo0dxxxx0A9O3bl44dOzJz5kzef/99evXqxcqVK6lbty4Affr04cUXX2TM\nmDEl/aeXacp7KarcOd+4cWPefvttWrRogbvz3HPP0adPH5YuXQoUPue3bt3KJZdcwqhRo+jVqxcH\nDhxg/fr1weXKeYkl2peWX+oGLwXWokULRo4cyemnn06tWrW4/vrr+eGHH+jatSsJCQlceOGF7Ny5\nM9j+yiuvJDk5maSkJFJTU1m+fHnYdb/33nu0a9eOpKQkzj333ODBtCCmTp1Ku3btSExM5Pjjj2f2\n7NnBZWvWrOHcc88lISGBiy++mG3btgH5d20/cuQId999N/Xq1aNVq1a8//77OZaff/75PPDAA5x7\n7rnUrFmT1atX89NPP3HdddfRqFEjmjZtyv/93/8Fu9hPmDCBTp06cc8991CnTh1atmzJP//5zwL/\nfRJ5sbitZ3VTfeqpp2jQoAGNGzdm6tSpzJw5kxNPPJFjjz2Wxx57LNg+d1esiRMn0rx5c+rVq8ej\njz6aY9379+9nwIAB1KlTh1NOOYWFCxeGjcPdefzxx2nVqhX16tWjT58+7NixI2TbHTt20K1bN+rX\nr0/dunXp1q0bGRkZweVr1qyhc+fOJCYmcuGFF3LLLbfkiHnBggV07NiRpKQk2rVrx7x588LGNXPm\nTDp37hycjouL47bbbuOcc84JXv3O7rXXXuOuu+4iOTmZ5ORk7r77bv7617+GXX+LFi1ISkoC4Oef\nf6ZSpUrBK3rfffcdixcvJi0tjWrVqnHFFVdw2mmnMXny5OD7U1NT8+xLJHYo58t+zickJNCiRQvg\nlxxdtWpVcHlhc/7Pf/4zF198MX369KFKlSrUrFmTE088EYAVK1Yo50VCiMV9aWnul9asWUNqaiqJ\niYlcdNFFbNmypTBfV4GoWJdCmTJlCh999BHfffcd06ZNo2vXrjz++ONs2bKFn3/+Oce9Y127dmXV\nqlX88MMPtG/fnquuuirkOhcvXsx1113HuHHj2LZtG4MHD+byyy/n0KFDR43n008/pX///jz99NPs\n3LmT+fPn07x58+DyN954gwkTJvDjjz9y4MABRo4cGVwW7mr4Sy+9xIwZM1i6dCmLFi3i3XffzdPm\nb3/7Gy+//DK7du2iWbNm9O/fn2rVqvH999+zePFiPvjgA15++eUccbZu3ZqtW7dyzz33cN111x31\nb5PoirVtHWDTpk0cPHiQjIwMRowYwfXXX8+kSZNYvHgx8+fP5+GHHyY9PT3YPmsbX758OTfffDOT\nJk0iIyODrVu3smHDhmC7tLQ0Vq9ezerVq5k1axYTJkwIG8Po0aOZNm0a//73v8nIyCApKYmbb745\nZNsjR44waNAg1q1bx9q1a6lRowZDhgwJLu/Xrx9nnXUWW7du5cEHH2TixInBmDds2MBll13G8OHD\n2b59OyNHjqRnz55s3bo15Gd9+eWXwRPpgli2bBmnn356cPr0009n2bJl+b7njTfeIDExkXr16vHF\nF19w4403Apnf73HHHUfNmjXDrq9169akp6eze/fuAscokaWcD62s5XxSUhI1atTg9ttv5/777w/O\nL2zOL1iwgKSkJDp27EiDBg3o3r0769atC65LOS8SWqztS0tzv9SvXz/OOOMMtmzZwgMPPJDvvrSo\nVKxLodx6660ce+yxJCcn06lTJ379619z2mmnUbVqVXr06MHixYuDbQcMGECNGjWIi4tj+PDhLF26\nlF27duVZ57hx47jxxhvp0KEDZsY111xDtWrVWLBgwVHjGT9+PNdddx2/+c1vAEhOTuaEE04ILh84\ncCAtW7akWrVqXHnllSxZsuSo63znnXe44447aNSoEbVr1w55H+CAAQM46aSTqFSpEtu2bWPmzJk8\n88wzVK9enWOPPZY77riDN954I9g+JSWFQYMGYWb079+fTZs28cMPPxw1FomeWNvWAapWrcqwYcOo\nXLkyffr0YcuWLdxxxx3UqFGDNm3a0KZNm2CXz+wmT55Mt27d6NixI3FxcTz88MM5fqx65513eOCB\nB0hMTKRx48bcdtttYWN48cUX+dOf/kRycnLw73333XdD9lKpU6cOPXr0oFq1atSsWZP77ruP+fPn\nA7B27VoWLVrEiBEjqFKlCh07duTyyy8PvnfSpElceumlXHTRRQB06dKFDh06MGPGjJBx7dixg1q1\nahXoewTYvXs3iYmJwemEhISjnlT37duXnTt3smLFCm688Ubq168fcl1Z68u+DdSqVQt3D3tFUqJP\nOR9aWcv57du3s3PnTp577rkcxXlhc379+vW89tprjBkzhnXr1tG8eXP69u0bcl1Z61POi8TevrS0\n9kvr1q1j0aJFPPTQQ8TFxdGpUye6detW3K8vDxXrUigNGjQIvo6Pj88znXXgO3LkCEOHDqVVq1bU\nrl2bFi1aYGYhu4ekp6fz9NNPU6dOHerUqUNSUhLr16/P0UUlnHXr1tGyZcuwyxs2bBh8XaNGjQL9\nwp2RkZFjVNyUlJQ8bbIvT09P59ChQyQnJwfjv/HGG3P8rdnjiI+Px931a3uMi7VtHaBu3brBE+74\n+HiAYMGYO67scm/TNWrUCN5XmbW8SZMmwelQ23z2v6FHjx7Bv6FNmzbExcWxefPmPG337dvH4MGD\nad68ObVr16Zz587s2LEDd2fjxo3UqVOH6tWrB9vnzqu33347x3f18ccfs3Fj6AF0kpKSQh7gwznm\nmGNyDDK5c+dOjjnmGCBzVO1atWqRkJAQ8gpiy5YtadOmDTfddFPIdWWtL3shsWvXLsyM2rVrFzhG\niSzlfGhlMefj4+MZPHgw1157bfD/S2FzPj4+nh49etC+fXuqVq3Kgw8+yH//+1927dqlnBfJR6zt\nS0trv5TV0yhr3wz570uLSsW6lIpJkyYxffp05syZw44dO1izZg3uHryPO7umTZty//33s23bNrZt\n28b27dvZvXs3vXv3PurnNG3aNMc9aSUhOTk52NUNyNHFMEv2KxRNmzalevXqbN26NRj/jh07+OKL\nL0o0LolNkdrWiyP3Nr13794cXUsLss1nadasGTNnzszxN+zZs4fk5OQ8bZ9++mlW/P/27j/WrrJM\n9Pj3GQlGHaxtoT+k9MAEZACBzli4CUPIJpfwK0ANKgHHFIu3aWJIQP9Qioa2IVI6cWriVULCkAau\nxQ5zlUshCpWrB4JgADOVceBCk9pTbGnpvW2lFIEDfe4fZ/e4e7r36dm/19n7+0ka93n3Xns/LNez\n3vfZa+333bSJ559/nr17945+k52ZzJ49m927d/POO++Mvr4yhhNOOIGFCxce8jn79u3jG9/4RtW4\nzjrrLF599dUJ7I0RZ5xxxiFXJDdu3MgZZ5wBjMyqvW/fPt58803uuuuuqtsPDw+zefPm0ffavHkz\n+/fvH33+d7/73ej7wchM1SeeeOJocaDJy5yfHDn/wQcf8Pbbb4/e/l9vzp911lmH/Vzu4N/mvNS8\nTnahWFsAABURSURBVJ1L23Vemj17Nnv27OHPf/7z6Ou3bt3azC6pymJdbfHWW2/x4Q9/mKlTp7J/\n/36WLl1a8zfiixcv5u677+a5554DYP/+/fzsZz8b7QQXLVrEDTfcUHXbr3zlK6xZs4Zf/epXZCbb\nt2+f8IC92skARia7+P73v8+2bdvYs2cPq1atGvd9Zs2axcUXX8zXvvY19u3bR2ayefPm0ZOBelun\njvVmfP7zn+fRRx/lmWeeYXh4mNtuu+2Q4/+aa65h5cqV7N27lz/+8Y/84Ac/qPleS5Ys4dZbbx3t\nkHbt2sX69eurvnbfvn185CMf4eMf/zi7d+9m+fLlo8/NnTuX+fPns3z5coaHh3n22Wd55JG/LAvz\npS99iUceeYQNGzZw4MAB3nnnHZ588sma36JffvnlDA4OHtL23nvvjXbA7777Lu++++7ocwsXLmT1\n6tVs376dbdu2sXr1ahYtWlTzv/vee+9l165dwMjvge+8804uuugiAE455RTmzZvHihUrePfdd/np\nT3/K73//ez73uc+Nbv/kk09y2WWX1Xx/TR7mfDFz/oknnmDjxo0cOHCAN998k69//etMmzZtdOm2\nenN+0aJFPPTQQ7z44osMDw9z++23c/7553PMMceY81ILdOpc2q7z0sFtly1bxvDwME8//fQh27aK\nxbomrNY3zNUsXLiQuXPncvzxx/PpT3+a8847r+ZrP/OZz3DPPfdw4403Mm3aND71qU8dMkHDa6+9\nxvnnn19123POOYc1a9Zw8803M2XKFEql0ugVgiMtp1b5fOXjxYsXc8kll3D22Wczf/78QzrfWu97\n//33895773H66aczbdo0vvCFL7Bjx44JfbaKp4jHejNxnn766fzwhz/kuuuu45Of/CTTp08/5BbY\nZcuWMXfuXE466SQuvfRSFi5cWPN9b7rpJhYsWMDFF1/MlClTOO+880Y7z7Fuvvlm3n77bY499ljO\nO+88Lr/88kOeX7t2Lc888wzHHnsst912G9dee+3oMkxz5szh4Ycf5o477uC4445jYGCA7373u1V/\nJwsj/z/8/Oc/P6QgP/XUU/nYxz7G9u3bufTSS/noRz86WnAsWbKEK6+8kjPPPJOzzz6bq666isWL\nF1d9b4Bf//rXnHnmmRxzzDFcccUVXHHFFXznO98ZfX7dunU8//zzTJ06lW9961v85Cc/OeS24x//\n+McsWbKk5vuru8z5yZ/ze/fu5brrruMTn/gEp5xyCn/4wx947LHHOProo4H6c/7CCy/kjjvu4PLL\nL2fWrFls3ryZBx54YPR5c146XBHPpe08L61du5bf/OY3TJ8+ndtvv53rr79+/B3UgKh1dbFlHxCR\n7f6MXhIRh13xveCCKxkaqv6brVYYGJjNU0+1/pugVhgeHmbevHm8+OKLfOhDH+p2OB1R7RioaJ8U\nVf6R8t7j/HD9eKyPde2113LaaaexbNmyhrb/9re/zYwZM8adLKsbHn30UX70ox+xbt26mq+Z7Hk/\nkb7evD+UOW/OT+ach94b4w8MzG/rWuX12rVrPkNDh8fjufRQrT6XNnteGk8jeW+xXjC1/k9U/+iH\nDtzjXAAvvPAC06ZN46STTuLxxx/n6quv5tlnnz1kBud+MdnzvtFiXf3FnP+LyZ7z0Htj/MlcrKtx\nnTwvNZL3R03gTecA9wMzgQPAPZn5/YiYCvwrMABsAa7JzD/VfKMe0u5vrySpH+zYsYOrr76a3bt3\nM2fOHO6+++6+HLR3UiN9ekQsBW4A3gduyswN3Yhdk585L6loin5eOuKV9YiYBczKzI0R8dfAb4EF\nwCLg/2XmP0XEN4GpmXlLle176ls3aO83b7/9rd+W9bt++Lbdb4WlQ3Uq7+vt0yPidGAtcA4wB3gC\nOGVsgntlXapPP/T1k41X1tVujeT9ESeYy8wdmbmx/Pgt4GVGOuwFwMFf9t8HfLbBuCVJUgc00Kdf\nBazLzPczcwuwCTi3o0FLktSn6poNPiJOBOYBvwFmZuZOGOn8gRmtDk6SJLXHBPv044HXKjbbVm6T\nJEltNuFivXy73P9k5PdqbwFjr+F7P4YkSZOAfbokScV3xAnmACLiKEY69f+RmQ+Xm3dGxMzM3Fn+\nDdwbtbavXHy+VCpRKpUaDljqF4ODgwwODnY7DEk9ps4+fRtwQsXmc8pth7Gvl+pnXy9pPBNaui0i\n7gf+b2Z+vaJtFbA7M1c5wVzrvPLKibz11lBb3luTw8DAAFu2bDmsvZcmnTnxxBMZGvI4lw7qZN7X\n06dXTDD3Xxi5/f0XNDjBnHkv/UU/9PWTzWSZYM5z6eTVSN5PZOm2fwD+EfiPiPh3Rm6NuxVYBTwY\nETcAQ8A1jYeug049dUtdr6+VyNJERMS9wBXAzsw8q9y2DFjMX66s3ZqZj5Wfa8kSTtVOVEU2WTpw\n6Ujq7dMz86WIeBB4CRgGvtro6Ny8b5w5r3aodwygYphs51I154jFemb+GvhQjacvam04kjpsDfDf\nGVl3udLqzFxd2RARpzEygD+N8hJOEXHYFTZJxdVIn56ZK4GVbQtKUrdMeAwgqTvqmg1eUm/JzKeB\nPVWeqnYrzgJcwkmSpJ5Q5xhAUhdYrEuq5saI2BgR/xIRU8ptLuEkSVLvqzYGkNQFFuuSxroL+JvM\nnAfsAP65y/FIkqTOGDsG8HZ4qYsmtHSbpP6Rmbsq/rwHeKT8eMJLOIHLOEmNcBknSd00zhigKvt6\nqX719PUTWrqtGb22rAM4Q6y6o13LuUTEicAjmXlm+e9Zmbmj/PhrwDmZ+cWJLuFU3q6n8r5IOQ/m\nfT+ZLMs49VrOQ7Hy3pzvH53O+YmOAWps21N5X6ScB/O+nzS1dJuk3hURDwAlYHpEbAWWARdGxDzg\nALAFWAKtXcJJkiR1Vz1jAEndYbEu9bEa35avGef1LuEkSVIPqHcMIKnznGBOkiRJkqSCsViXJEmS\nJKlgLNYlSZIkSSoYi3VJkiRJkgrGYl2SJEmSpIKxWJckSZIkqWAs1iVJkiRJKhiLdUmSJEmSCsZi\nXZIkSZKkgrFYlyRJkiSpYCzWJUmSJEkqGIt1SZIkSZIK5qhuB6DeccEFVzI09Hq3wwBgYGA2Tz31\nSLfDkCRJkqSGHLFYj4h7gSuAnZl5VrltGbAYeKP8slsz87G2RalJYWjodY477oVuhwHA0ND8bocg\nSYVTb58eEUuBG4D3gZsyc0Pno5YkqT9N5Db4NcAlVdpXZ+bfl/9ZqEuSVHwT7tMj4jTgGuA04DLg\nroiIzoUqSVJ/O2KxnplPA3uqPGWHLUnSJFJnn74AWJeZ72fmFmATcG4bw5MkSRWamWDuxojYGBH/\nEhFTWhaRJEnqtGp9+vHAaxWv2VZukyRJHdBosX4X8DeZOQ/YAaxuXUiSJKmDxvbp/9zleCRJEg3O\nBp+Zuyr+vAcYd9rt5cuXjz4ulUqUSqVGPlbqK4ODgwwODnY7DEk9bpw+fRtwQsVzc8ptVdnXS/Wz\nr5c0nokW60HF79kiYlZm7ij/eTXw+/E2ruzAJU3M2MHuihUruheMpF4y0T59PbA2Ir7HyO3vJwPP\n1XpT+3qpfvb1ksYzkaXbHgBKwPSI2AosAy6MiHnAAWALsKSNMUqSpBaop0/PzJci4kHgJWAY+Gpm\nZjfiliSpHx2xWM/ML1ZpXtOGWCRJUhvV26dn5kpgZfsikiRJtTQzG7wkSZIkSWoDi3VJkiRJkgrG\nYl2SJEmSpIKxWJckSZIkqWAs1iVJkiRJKhiLdamPRcS9EbEzIl6saJsaERsi4pWIeDwiplQ8tzQi\nNkXEyxFxcXeiliRJzap3DCCp8yzWpf62BrhkTNstwBOZeSrwS2ApQEScDlwDnAZcBtwVEdHBWCVJ\nUutMeAwgqTss1qU+lplPA3vGNC8A7is/vg/4bPnxVcC6zHw/M7cAm4BzOxGnJElqrTrHAJK6wGJd\n0lgzMnMnQGbuAGaU248HXqt43bZymyRJ6g21xgCSusBiXdKRZLcDkCRJXeEYQOqio7odgKTC2RkR\nMzNzZ0TMAt4ot28DTqh43ZxyW1XLly8ffVwqlSiVSq2PVOoxg4ODDA4OdjsMSf2r1higKvt6qX71\n9PUW65Ki/O+g9cCXgVXA9cDDFe1rI+J7jNz+fjLwXK03rezAJU3M2MHuihUruheMpH4w0TFAVfb1\nUv3q6est1qU+FhEPACVgekRsBZYBdwL/FhE3AEOMzABPZr4UEQ8CLwHDwFcz09vjJEmahOoZA0jq\nDot1qY9l5hdrPHVRjdevBFa2LyJJktQJ9Y4BJHWeE8xJkiRJklQwFuuSJEmSJBWMxbokSZIkSQVj\nsS5JkiRJUsFYrEuSJEmSVDBHLNYj4t6I2BkRL1a0TY2IDRHxSkQ8HhFT2humJElqVr19ekQsjYhN\nEfFyRFzcnaglSepPE7myvga4ZEzbLcATmXkq8EtgaasDkyRJLTfhPj0iTmdkjeXTgMuAuyIiOhir\nJEl97YjFemY+DewZ07wAuK/8+D7gsy2OS5IktVidffpVwLrMfD8ztwCbgHM7EackSWr8N+szMnMn\nQGbuAGa0LiRJktRBtfr044HXKl63rdwmSZI6oFUTzGWL3keSJHWXfbokSQVwVIPb7YyImZm5MyJm\nAW+M9+Lly5ePPi6VSpRKpQY/Vuofg4ODDA4OdjsMSb2vVp++DTih4nVzym1V2ddL9bOvlzSeiRbr\nUf530Hrgy8Aq4Hrg4fE2ruzAJU3M2MHuihUruheMpF4y0T59PbA2Ir7HyO3vJwPP1XpT+3qpfvb1\nksZzxGI9Ih4ASsD0iNgKLAPuBP4tIm4AhhiZLVaSJBVYPX16Zr4UEQ8CLwHDwFcz01vkJUnqkCMW\n65n5xRpPXdTiWCRJUhvV26dn5kpgZfsikiRJtbRqgjlJkiRJktQiFuuSJEmSJBWMxbokSZIkSQVj\nsS5JkiRJUsFYrEuSJEmSVDAW65IkSZIkFYzFuiRJkiRJBWOxLkmSJElSwVisS5IkSZJUMBbrkiRJ\nkiQVjMW6JEmSJEkFY7EuSZIkSVLBHNXtACQVU0RsAf4EHACGM/PciJgK/CswAGwBrsnMP3UtSEmS\n1HLVxgDdjUjqT15Zl1TLAaCUmX9X0UnfAjyRmacCvwSWdi06SZLULtXGAJI6zGJdUi3B4eeIBcB9\n5cf3AZ/taESSJKkTqo0BJHWYSSiplgR+ERHPR8R/K7fNzMydAJm5A5jRtegkSVK7VI4BFnc7GKlf\n+Zt1SbX8Q2a+HhHHARsi4hVGOu9KY/+WJEmTX+UY4BcR8XJmPt3toKR+Y7EuqarMfL38v7si4n8B\n5wI7I2JmZu6MiFnAG7W2X758+ejjUqlEqVRqb8BSDxgcHGRwcLDbYUjqc2PGAA8xMgY4rFi3r5fq\nV09fH5ntvTAWEdnuz+i0gYH5HHfcC90OA4Bdu+YzNFSMWNwv7RURZGZ06LM+CvxVZr4VER8DNgAr\ngP8K7M7MVRHxTWBqZt5SZfueyvsiHdvQm8e3qutk3jej13IeipX35nz/KELO1xoDZOaGMa/rqbwv\nUs6Ded9Pxsv7pq6su6yD1LNmAg9FRDJynlibmRsi4gXgwYi4ARgCrulmkJJax+UaJZVVHQN0OSap\nLzV7G/zBZR32tCIYScWQmX8A5lVp3w1c1PmIJHVAtT794HKN/1S+m2ZpuU1Sj6o1BpDUec3OBu+y\nDpIk9QaXa5QkqUCaLbRd1kGSpN7gco2SJBVIs7fBu6yDJEm9weUadUQXXHAlQ0OvdzuMUQMDs3nq\nqUe6HYYktUVTxbrLOkjt4xJOkjrJ5Ro1EUNDrxdqxuyhofndDqEp9vWSxtNwsV5lWYeLGVna6TCV\nHbikiRk72F2xomp6SVLTxunT1wNfBlYB1wMP13oP+3qpfvb1ksbTzJV1l3WQJKk3uFyjJEkF03Cx\n7rIOkiT1BpdrlCSpeFx2TZIkSZKkgml2NnhJUh8r0szQzgotSZJ6icW6JKlhRZoZerLPCi1JklTJ\nYl2SJEmSVJV30XWPxbokSZIkqSrvouseJ5iTJEmSJKlgLNYlSZIkSSoYi3VJkiRJkgrGYl2SJEmS\npIKxWJckSZIkqWAs1iVJkiRJKhiLdUmSJEmSCsZiXZIkSZKkgrFYlyRJkiSpYCzWJUmSJEkqGIt1\nSZIkSZIKxmJdkiRJkqSCsViXJEmSJKlgLNYlSZIkSSoYi3VJkiRJkgqmqWI9Ii6NiP8TEa9GxDdb\nFVQ/2LdvsNshFJb7ptjM+8Z5bFfnfik2c745Ht/VuV+KzbxvnMd2be6b+jVcrEfEXwE/AC4BzgCu\ni4i/bVVgvc6DtTb3TXGZ983x2K7O/VJc5nzzPL6rc78Ul3nfHI/t2tw39Wvmyvq5wKbMHMrMYWAd\nsKA1YUkqKPNe6i/mvNR/zHupIJop1o8HXqv4+4/lNkm9y7yX+os5L/Uf814qiKM68SER0YmP6ait\nW5v/b3r99RUtiKRY+7cV+wVas2+KtF/6Ua/t/yId21Cs/ev5UNCb+75IeV+k/Vuk/QLF2jf9ptf2\nvcd2bUXaN0XaL+3WTLG+DZhb8fecctshMrN/9qbU+8x7qb+Y81L/Me+lgmjmNvjngZMjYiAijgau\nBda3JixJBWXeS/3FnJf6j3kvFUTDV9Yz84OIuBHYwEjRf29mvtyyyCQVjnkv9RdzXuo/5r1UHJGZ\n3Y5BkiRJkiRVaOY2eEmSJEmS1AYdmQ1eqiUi/paRtTsPLgmyDVjv7VbqBR7fUn8x56X+Y96rnbyy\nXgARsajbMXRDRHwTWAcE8Fz5XwA/johbuhmb1CyP78b06/lQk5853xhzXpOZed8Y837i/M16AUTE\n1syce+RX9paIeBU4IzOHx7QfDfxnZp7Sncik5nl8N6Zfz4ea/Mz5xpjzmszM+8aY9xPnbfAdEhEv\n1noKmNnJWArkAPBJYGhM++zyc9Jk5vFdg+dD9ShzvgZzXj3MvK/BvG8Ni/XOmQlcAuwZ0x7AM50P\npxBuBv53RGwCXiu3zQVOBm7sWlRSa3h81+b5UL3InK/NnFevMu9rM+9bwGK9cx4F/jozN459IiIG\nOx9O92XmYxHxKeBcDp2U4/nM/KB7kUnN8/gel+dD9RxzflzmvHqSeT8u874F/M26JEmSJEkF42zw\nkiRJkiQVjMW6JEmSJEkFY7EuSZIkSVLBWKxLkiRJklQwFuuSJEmSJBXM/wcA6jXsGrpk2QAAAABJ\nRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+sAAAFVCAYAAACXX35lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmYFOXV9/HvYRWQGYZtZmRgQHDDKGjUqGgc0YASlrgE\nAY2IXAS3KNHkFTSBwV0f3KOP4vagIoaICRJBcQkQNURJQBRcQGTYZBQGEFBxcM77RzfN7Gvv/ftc\n11x0V91Vdejuc1efrqq7zN0RERERERERkfjRKNYBiIiIiIiIiEhZKtZFRERERERE4oyKdRERERER\nEZE4o2JdREREREREJM6oWBcRERERERGJMyrWRUREREREROJMjcW6meWY2ZtmtsLMPjCzq4PTM8xs\nvpl9Ymavmll65MMVkXAysyfMrNDMlpeadpeZfWRmy8xslpmllZo3wcxWBef3i03UIlJfVeR8lftz\n5bxI8jGzRmb2XzN7qYr5DwTzfpmZ9Y52fCKyX22OrO8FrnX3I4GTgCvN7HBgPPC6ux8GvAlMiFyY\nIhIhTwH9y02bDxzp7r2BVQRz28x6AkOBI4CzgYfNzKIYq4g0XGU5X+n+XDkvkrSuAVZWNsPMzga6\nu/shwFjgkWgGJiJl1Visu/tmd18WfLwL+AjIAYYA04LNpgG/iFSQIhIZ7v4WsK3ctNfdvST4dDGB\nfAcYDDzv7nvdfS2BQv6EaMUqIg1XWc5T9f5cOS+SZMwsBxgAPF5FkyHA0wDu/m8g3cwyoxSeiJRT\np2vWzawr0JvAF/hMdy+EQEEPdAx3cCISc5cCc4OPOwHrS83bGJwmIomtYxX7c+W8SPK5F/g94FXM\nV96LxJFaF+tmdiDwAnBN8Ah7+SSvKulFJAGZ2Y1AsbvPiHUsIhJV2p+LJCEz+zlQGDxj1oJ/IhLH\nmtSmkZk1IVCoP+Pus4OTC80s090LzSwL+LKKZbXTFwkTd4/KjtXMLiFwmlzfUpM3Ap1LPc8JTqts\neeW9SJhEIe+r2p8r50ViIII53wcYbGYDgBZAazN72t0vLtVGeS8SA1Xlfa2KdeBJYKW7319q2kvA\nJcCdwEhgdiXL7dt4LTeTGPLz88nPz491GFKNZHyPIjiuU5lf183sLAKnyP3U3feUavcSMN3M7iVw\nSlwP4N2qVppMeZ+Mn6dklIzvU4TyvvwRtar25ymb85Ccn6dklGzvUyTHcHT3G4Abgts5DbiuXKEO\ngby/EvizmZ0IbN93mUwV64xUuFFnZpAf6yjC7B/A6bEOIszyk+tzB9XnfY3Fupn1AS4EPjCzpQRO\nj7uBwE59ppldChQQGDFWRBKImT0H5AHtzGwdMIlAfjcDXgt2Hovd/Qp3X2lmMwmMIFsMXOHJ1luK\nJLkqcv4O4C/l9+fKeZHUYGZjAXf3qe4+18wGmNlqYDcwKsbhiaS0Got1d38baFzF7DPDG46IRJO7\nj6hk8lPVtL8duD1yEYlIJFWR81DF/lw5L5Kc3H0hsDD4+NFy866KSVAiUkFtT4OXUvLy8mIdgtRA\n71FqyMrJonBjlWfnhdXkyZOjsp3MTpls3rA5KttKNsp7CSd9nhKD3ieRanSNdQDSUBbpM9rMTGfN\niYSBmUVtgLmGilbeJ+X1ZfnJdy2W1F+i5L329SLhkSg5D8mX90n5nSIZ5Sff96Tq8l5H1iOsa9eu\nFBQUxDoMSSC5ubmsXbs21mFIlDV/sDl7tgbG84vkAEMSn5T3qUnfEVKXcl72Kb3/l9pJ1O9J9cn7\npCnWo3k6bF0l268/ElmJ2gFJw+zZukd9RQpT3qemgoIC5X2KUs7LPtr/p4765H3SFOuFGwvj89SV\n/FgHICIiIiIiIommUawDEBEREREREZGykubIuoiIiCS3eL7kTUREJNxUrKe4Tz/9lAsuuIA1a9Zw\n6623ctVV0bu1ZqNGjVi9ejUHH3xwRNZfUFBAt27d2Lt3L40aVTyJ5Pbbb+fzzz9n6tSpNbadPHky\nq1ev5plnnolIrCLxLpn7CkkccXvJW33lxzqAqinnRQTUF9RVt27deOKJJ+jbt29Y1qfT4GMgKycL\nM4vYX1ZOVq1jueuuu+jbty87duyIavJBdAZXqW4bEyZMYOrUqbWOR4PBSLSprwgIV+4tWLCAvn37\n0qZNm0p3/AUFBfTt25dWrVrRs2dP3njjjWrX17dvXzp27EibNm045phjeOmll8rMf+655+jatSut\nW7fm3HPPZfv27WH5f0hyi5e8T4acv+++++jevTvp6enk5ORw3XXXUVJSEppf15wHuP/++zn44IM5\n8MADOfLII1m9enVonnJewiVe+gFIjr4gkenIegxE+shAYX7tTxEsKChg+PDhkQumGsky8uUPP/xA\n48aNYx2GJCH1FQHh6itatWrF6NGjGTFiBLfddluF+cOHD6dPnz7MmzePl19+mfPPP5/Vq1fTrl27\nStd3//33c/jhh9O0aVPeffddzjzzTFatWkVmZiYrVqzgsssuY968eRxzzDGMGTOGyy+/nBkzZoTl\n/yLJK17yPhlyfsiQIYwcOZKMjAy2b9/OeeedxwMPPMC4ceOAuuf8448/zlNPPcW8efM47LDD+Pzz\nz8nIyABIiJw3s+bAIqAZgRrgBXefXK7NacBsYE1w0ovufktUA5W46QcgOfqCRKYj6ynsjDPO4B//\n+AdXXnklaWlprF69mu+//57f/e535Obmkp2dzRVXXMGePYF7Py5cuJDOnTvzP//zP2RmZtKpUydm\nz54d2mm1b9+e22+/PbT+9957j5NPPpmMjAw6derEb37zG/bu3VtpLNVttybfffcd1113HV27diUj\nI4Of/vSnoWXdnWeffZbc3Fw6duxY5gv65MmT+dWvflXpOteuXUteXh7p6en079+fLVu2hOYVFBTQ\nqFEjnnzySXJzcznjjDMAWLx4MX369CEjI4NjjjmGhQsXhpY5/fTTmThxIqeccgppaWmcddZZFBUV\n1er/JxJrydJXHH/88Vx44YV069atwrxVq1axdOlS8vPzad68Oeeeey5HH300s2bNqnJ9Rx11FE2b\nNg0937t3L+vXrwcCR9gGDx5Mnz59aNmyJTfffDMvvvgiu3fvrlWsIrGULDnfrVu3UDH9ww8/hE6p\nhcCpvXXJeXfnpptu4t577+Wwww4Lrb9NmzZAYuS8u+8BTnf3Y4DewNlmdkIlTRe5+7HBPxXqKSxZ\n+oK5c+dy7LHHkp6eTm5uLpMnl/mNiqeffpquXbvSoUMHbrnlFrp168abb74JBHL/jjvuoEePHnTo\n0IFhw4aVOWvmmWeeCS1b2YGAhlKxnsLeeOMNTj31VB566CG+/vprevTowfXXX8/q1atZvnw5q1ev\nZuPGjdx0002hZTZv3sz333/Ppk2bmDx5MmPGjGH69OksXbqURYsWcfPNN1NQUABA48aNue+++ygq\nKuJf//oXb775Jg8//HClsdS03epcd911LF26lMWLF1NUVMRdd91V5rrzt99+m1WrVvH6669z0003\n8cknn4TmVXV6zYgRIzj++OPZsmULf/jDH5g2bVqFNosWLeLjjz/m1VdfZdOmTQwcOJCJEyeybds2\npkyZwnnnncfWrVtD7WfMmMG0adP46quv2LNnD1OmTKnV/08k1pKlr6jOihUrOPjgg2nVqlVoWq9e\nvVixYkW1yw0aNIgWLVpw4oknkpeXx3HHHRdaX69evULtDj74YJo3b86nn37a4FhFIi2Zcn7GjBmk\np6fToUMHli9fzmWXXQbAypUr65TzGzZsYMOGDXzwwQd06dKF7t27k5+fH5qfKDnv7t8EHzYncHS9\nskOXOvdYgOTpCw488ECeeeYZduzYwcsvv8wjjzwSunRt5cqVXHnllcyYMYMvvviCHTt2sGnTptCy\nDzzwAC+99BL//Oc/2bRpExkZGVxxxRWhZa+44gqmT5/Opk2b2Lp1Kxs3bqzXa10VFetSxmOPPca9\n995Leno6rVq1Yvz48WVO4WrWrBk33HADjRs3ZtiwYWzZsoVx48bRsmVLevbsSc+ePXn//fcBOPbY\nYznhhBMwM7p06cKvf/3rMkeb67Ldqrg7Tz31FA888ABZWYHre0488cTQ0S4zIz8/n2bNmnH00UfT\nq1evUHxVWbduHUuWLOGmm26iadOmnHrqqQwaNKhMGzNj8uTJtGjRgubNm/Pss8/y85//nP79+wOB\nXyKPO+445s6dG1pm1KhRdO/enebNmzN06FCWLVtW4/9PJF4lWl9Rk127dpGenl5mWlpaGjt37qx2\nuTlz5rBr1y7mzZtHv379Grw+kXiVqDk/fPhwduzYwapVq7jsssvo2LEjUPcc3bBhAwCvvfYaK1as\n4M0332TGjBk88cQT9VpfrJhZIzNbCmwGXnP39yppdpKZLTOzl82sZ5RDlDiXiH3BT3/6U4488kgA\nfvSjHzFs2LDQdmbNmsXgwYM56aSTaNKkSYUfAB599FFuvfVWsrOzadq0KRMnTuSFF16gpKSEWbNm\nMWjQIPr06UPTpk25+eabw36dva5Zl5CvvvqKb775hh//+MehaSUlJWWuF2nXrl3oQ9iiRQuA0I5v\n37Rdu3YBgdNKr732WpYsWcK3337L3r17y6y7LtutypYtW9izZ0+1o0RmZmaGHrds2TIUX1W++OIL\nMjIyQv8/gNzc3NCOep+cnJzQ44KCAmbOnMmcOXOAwI8Ie/fuDZ0iD5CVtX8wj9rEIRKvErGvqMmB\nBx7I119/XWbajh07aN26NRDYuRcUFGBmzJs3jz59+oTaNW7cmP79+3PffffRo0cPBg4cWOP6RBJJ\nMuR89+7d6dmzJ5dffjmzZs2qc87vOwJ//fXX07p1a1q3bs3YsWOZO3cuo0ePTpicd/cS4BgzSwP+\nZmY93X1lqSb/Abq4+zdmdjbwN+DQWMQq8SdR+4J3332X8ePH8+GHH/L999/z/fff88tf/hKATZs2\n0blz5zLxlR63oqCggHPOOSd01q6707RpUwoLCyss27JlyyrHvKgvFesS0r59e1q2bMmKFSvIzs5u\n8Pouv/xyjj32WP785z/TsmVL7r///kqvBWvIdtu3b88BBxzAZ599xlFHHdXgmAGys7PZtm0b3377\nbaiTWbduXYVbupX+5axz585cfPHFPProo2GJQSSeJWJfUZMjjzySNWvWsHv37tCX8vfff5+LLroI\ngA8//LDGdezdu5fPPvsstL7SZ/F89tlnFBcXc+ih+s4riSdZcr64uJg1awLjptU157/99luaNWtW\nZlrp7wGJlvPu/rWZ/QM4C1hZavquUo/nmdnDZtbW3SsdaKf0pQB5eXnk5eVFLGaJvUTtC0aMGMHV\nV1/Nq6++StOmTfntb38bulQ1Ozu7zOUq3377bZnLWLt06cKTTz7JSSedVGG92dnZfPzxx6Hn33zz\nTZllq7JgwQIWLFhQq9h1GryEmBljxoxh3LhxfPXVVwBs3LiR+fPn12t9O3fuJC0tjZYtW/Lxxx/z\nv//7v/XebqNGjVi0aFGly1566aVce+21fPHFF5SUlLB48WKKi4uBuo0iua9tly5dOO6445g0aRLF\nxcW89dZboSPm5dvuc9FFFzFnzhzmz59PSUkJ3333HQsXLixzzUs8MrMnzKzQzJaXmpZhZvPN7BMz\ne9XM0kvNm2Bmq8zsIzPrV/laJdklYl8Bgbzds2cP33//PSUlJezZsyfUVxxyyCH07t2byZMns2fP\nHl588UU+/PBDzjvvvErX9cknn/DKK6/w3XffsXfvXp599ln++c9/ctpppwFw4YUXMmfOHN5++212\n797NxIkTOe+888pcHyuSKBI155944onQcitXruSOO+7gzDPPBOqe8y1atGDYsGHcdddd7Nq1iw0b\nNjB16tTQZXKJkPNm1n7fPt3MWgA/Az4u1yaz1OMTAKuqUIdAsb7vT4V68kvUvmDXrl1kZGSE7t7y\n3HPPheadf/75zJkzJ1Q/lP4BCmDs2LHccMMNrFu3Dggc5d93vfv555/P3//+d9555x2Ki4uZOHFi\nrWqPvLy8MrlTHRXrKa78dRV33nknPXr04MQTT6RNmzb069ev2sFRyi9f+vmUKVOYPn06aWlpjB07\nlmHDhlXZtrrtrl+/nrS0tCqPnE+ZMoWjjjqK448/nnbt2jF+/PjQfVSri6+6/8tzzz3H4sWLadeu\nHTfffDMjR46sdj05OTnMnj2b2267jQ4dOpCbm8uUKVOqjCOOPAX0LzdtPPC6ux8GvAlMAAhetzYU\nOAI4G3jY4vg/JuGVDH3FokWLaNGiBQMHDmT9+vW0bNkyNM4EwPPPP897771HRkYGN954I7Nmzary\ndDZ3Jz8/n8zMTDp27MiDDz7IzJkz6d27NwA9e/bkkUceYcSIEWRlZfHtt9/y0EMPVfn6iMSbZMj5\nt99+m6OOOorWrVszcOBABg4cyK233hqaX5ecB3jwwQdp1aoVBx10EH369OGiiy7ikksuARIm57OB\nf5jZMuDfwKvuPtfMxprZr4NtzjezD4PXtd8HXBCrYCU+JENf8PDDD/PHP/6R9PR0brnlFi64YP/H\numfPnjz44INccMEFHHTQQaSlpdGxY0eaN28OwDXXXMOQIUPo168f6enpnHzyybz77ruhZR966CGG\nDx/OQQcdRLt27cpcJhsOFun715mZR+MeeWYW0fsR1lt+xaOwWTlZgfsnRkhmp0w2b9gcsfVH2/Tp\n01m5cmWZHWwyM7NKf5ULTg97cWxmucAcdz86+Pxj4DR3LzSzLGCBux9uZuMBd/c7g+3mAfnu/u9K\n1pnaeV8f+eorGiqR+4po5324KefrKV953xDK+diKVt5HS8z6l3z1Aw0Vzr5g9+7dtGnThtWrV5Ob\nmxuG6ParT97rmvUYSKbkiIYLL7ww1iGkmo7uXgjg7pvNbN+oIJ2Af5VqtzE4TSJEfUXdqK+QZKC8\nrz3lvCQr9QN109C+4O9//ztnnHEGJSUlXHfddRx99NFhL9TrS6fBi0hNkudncxERERGRUmbPns1B\nBx1ETk4On332Gc8//3ysQwrRkXURKa/QzDJLnQb/ZXD6RqBzqXY5wWmV0gixInVXlxFiw83MfguM\nBkqAD4BRQCvgz0AusBYY6u47YhKgiIhIBDz22GM89thjsQ6jUrpmPdLy6zYiuUgMrlnvSuCa9aOC\nz+8Eitz9TjO7Hshw9/HBAeamAz8hcPr7a8AhlSV4yud9feSrr0hlsb5+1cwOAt4CDnf3783sz8Bc\noCew1d3vKt0fVLK8cr4+8pX3qSrWOR8OumY9TPLVD6SK+uS9ToMXSWFm9hzwDnComa0zs1HAHcDP\nzOwT4Izgc9x9JTCTwP1Y5wJXJNVeWkQaA63MrAnQgsCZM0OAacH504BfxCg2ERGRlKPT4EVSmLuP\nqGLWmVW0vx24PXIRiUgsuPsmM7sbWAd8A8x399f3XRITbFN6wEkRERGJMBXrIiIiKc7M2hA4ip4L\n7AD+YmYXUnGAySrPptE4FSJ1F8txKkQk/qlYj7Dm7ZoHroERqaV4uVWERJf6itQWB3l/JrDG3YsA\nzOyvwMlUPeBkBaWLdakd5X3q2pfz5X/Ymjx5cowiklhRP5A66rOvV7EeYXt+s6f+C+drwAmRVBHq\nK/KV9xIT64ATzewAYA+B8SreA3YBlwB3AiOB2bEKMBnt+c0e5bxIimtQrZCK8lOrz6xxgDkze8LM\nCs1sealpk8xsg5n9N/h3VmTDFBERkUhx93eBF4ClwPuAAVMJFOkVBpwUkcRjZs3N7N9mttTMPjCz\nSVW0e8DMVpnZMjPrHe04RWS/2hxZfwp4EHi63PR73P2e8IckIiIi0ebuk4Hy5+AWUcWAkyKSWNx9\nj5md7u7fmFlj4G0zmxf8sQ4AMzsb6O7uh5jZT4BHgBNjFbNIqqvxyLq7vwVsq2SWLq4QEREREUkQ\n7v5N8GFzAgftyp9PPITgATp3/zeQbmaZ0YtQREpryH3WrwqeHvO4maWHLSIREREREQk7M2tkZkuB\nzcBr7v5euSadgPWlnm8MThORGKjvAHMPAze5u5vZLcA9wOiqGut2LiJ1p9u5iIiISDi5ewlwjJml\nAX8zs57uvrK+69N3fJG6q8t3fKvNaHpmlgvMcfej6zIvON+jMWKfmUF+xDcTXfmpNdqhVM/McPeE\nuPxEed8A+cp72S9R8l453wD5ynnZL5o5b2Z/BHaXHoPKzB4B/uHufw4+/xg4zd0LK1k+KnkfLUnZ\nvySj/OTrM6vL+9qeBm+UukY9eK/Vfc4FPqx/eCIiIiIiEklm1n7fpatm1gL4GfBxuWYvARcH25wI\nbK+sUBeR6KjxNHgzew7IA9qZ2TpgEnB68FYOJcBaYGwEYxQRERERkYbJBqaZWSMCB+z+7O5zzWws\n4O4+Nfh8gJmtBnYDo2IZsEiqq7FYd/cRlUx+KgKxiIiIiIhIBLj7B8CxlUx/tNzzq6IWlIhUqyGj\nwYuIiIiIiIhIBKhYFxEREREREYkzKtZFpAIz+62ZfWhmy81supk1M7MMM5tvZp+Y2av7BqkRERER\nEZHwU7EuImWY2UHAb4Bjg7dkbAIMB8YDr7v7YcCbwITYRSkiIiIiktxUrItIZRoDrcysCdAC2AgM\nAaYF508DfhGj2EREREREkp6KdREpw903AXcD6wgU6Tvc/XUgc9+9Vt19M9AxdlGKiIiIiCQ3Fesi\nUoaZtSFwFD0XOIjAEfYLAS/XtPxzEREREREJkxrvsy4iKedMYI27FwGY2V+Bk4FCM8t090IzywK+\nrG4l+fn5ocd5eXnk5eVFLGCRZLFgwQIWLFgQ6zBEREQkDqhYF5Hy1gEnmtkBwB7gDOA9YBdwCXAn\nMBKYXd1KShfrIlI75X/Ymjx5cuyCEZGkYmY5wNNAJlACPObuD5RrcxqB/fua4KQX3f2WqAYqIiEq\n1kWkDHd/18xeAJYCxcF/pwKtgZlmdilQAAyNXZQiIiJSR3uBa919mZkdCPzHzOa7+8fl2i1y98Ex\niE9EylGxLiIVuPtkoPwhvSICp8iLiIhIggkODrs5+HiXmX0EdALKF+sW7dhEpHIaYE5EREREJIWY\nWVegN/DvSmafZGbLzOxlM+sZ1cBEpAwV6yIiIoKZpZvZX8zsIzNbYWY/MbMMM5tvZp+Y2atmlh7r\nOEWkYYKnwL8AXOPuu8rN/g/Qxd17A38C/hbt+ERkP50GLyIiIgD3A3Pd/Zdm1gRoBdwAvO7ud5nZ\n9cAEYHwsgxSR+gvm9gvAM+5eYaDY0sW7u88zs4fNrO2+O8SUpzu/iNRdXe78Yu6RvVWymXmktxHc\nDuRHfDPRlQ/ReO0kMZgZ7p4Q15Ep7xsgX3kv+0Ur780sDVjq7t3LTf8YOK3ULRsXuPvhlSyvnK+v\nfOW87BfpnDezp4Et7n5tFfMz3b0w+PgEYKa7d62ibVTyPlqSsn9JRvnJ12dWl/c6si4iIiLdgC1m\n9hTQC1gCjANCX9zdfbOZdYxhjCLSAGbWB7gQ+MDMlgJO4OyZXMDdfSpwvpldTuBuMN8CF8QqXhFR\nsS4iIiKB7wPHAle6+xIzu5fA6e7lD18k1+EMkRTi7m8DjWto8xDwUHQiEpGaqFiXqMrKyaJwY2Gs\nwwirzE6ZbN6wOdZhiIg0xAZgvbsvCT6fRaBYL9x3WmzwNPgvq1qBrl0Vqbu6XLsqIqlH16zHs/zk\nvCZD71P96Jr1Srejz5MktWjmvZktBMa4+6dmNgloGZxV5O53BgeYy3D3CgPMKecbIF85L/tpXx87\nSdm/JKP85Oszdc26iIiI1ORqYLqZNQXWAKMInDI708wuBQqAoTGMT0REJKWoWBcRERHc/X3g+Epm\nnRntWERERAQaxToAERERERERESlLxbqIiIiIiIhInFGxLiIiIiIiIhJnVKyLiIiIiIiIxBkV6yIi\nIiIiIiJxpsZi3cyeMLNCM1tealqGmc03s0/M7FUzS49smCISbWaWbmZ/MbOPzGyFmf1EuS8iIpKY\nzCzHzN4M7tM/MLOrq2j3gJmtMrNlZtY72nGKyH61ObL+FNC/3LTxwOvufhjwJjAh3IGJSMzdD8x1\n9yOAXsDHKPdFREQS1V7gWnc/EjgJuNLMDi/dwMzOBrq7+yHAWOCR6IcpIvvUWKy7+1vAtnKThwDT\ngo+nAb8Ic1wiEkNmlgac6u5PAbj7XnffgXJfREQkIbn7ZndfFny8C/gI6FSu2RDg6WCbfwPpZpYZ\n1UBFJKS+16x3dPdCCCQ+0DF8IYlIHOgGbDGzp8zsv2Y21cxaApnKfRERkcRmZl2B3sC/y83qBKwv\n9XwjFQt6EYmScA0w52Faj4jEhybAscBD7n4ssJvAKfDlc125LyIikkDM7EDgBeCa4BF2EYlTTeq5\nXKGZZbp7oZllAV9W1zg/Pz/0OC8vj7y8vHpuViR1LFiwgAULFsRq8xuA9e6+JPh8FoFivda5r7wX\nqbsY572IJDkza0KgUH/G3WdX0mQj0LnU85zgtEppXy9Sd3XZ15t7zQfGgqfKzHH3o4LP7wSK3P1O\nM7seyHD38VUs67XZRkOZGeRHfDPRlQ/ReO2iSe9T/ZkZ7m4R39D+7S0Exrj7p2Y2CWgZnFVj7ivv\nGyA/+fJe6i/aeV9fyvkGyFfOy36RznkzexrY4u7XVjF/AHClu//czE4E7nP3E6toG5W8j5ak7F+S\nUX7y9ZnV5X2NR9bN7DkgD2hnZuuAScAdwF/M7FKgABgavnBFJE5cDUw3s6bAGmAU0BiYqdwXERFJ\nLGbWB7gQ+MDMlhK4lO0GIBdwd5/q7nPNbICZrSZwCdyo2EUsIjUW6+4+oopZZ4Y5FhGJI+7+PnB8\nJbOU+yIiIgnG3d8m8KN7Te2uikI4IlIL4RpgTkRERERERETCRMW6iIiIiIiISJxRsS4iIiIiIiIS\nZ1Ssi4iIiIiIiMQZFesiIiIiIiIicUbFuoiIiABgZo3M7L9m9lLweYaZzTezT8zsVTNLj3WMIiIi\nqULFuoiIiOxzDbCy1PPxwOvufhjwJjAhJlGJiIikIBXrIiIigpnlAAOAx0tNHgJMCz6eBvwi2nGJ\niIikKhUtUIHEAAAgAElEQVTrIiIiAnAv8HvAS03LdPdCAHffDHSMRWAiIiKpSMW6iIhIijOznwOF\n7r4MsGqaejXzRCTOmdkTZlZoZsurmH+amW0Pjl3xXzP7Q7RjFJH9msQ6ABEREYm5PsBgMxsAtABa\nm9kzwGYzy3T3QjPLAr6sagX5+fmhx3l5eeTl5UU2YpEksGDBAhYsWBDNTT4FPAg8XU2bRe4+OErx\niEg1VKyLiIikOHe/AbgBAkfWgOvc/VdmdhdwCXAnMBKYXdU6ShfrIlI75X/Ymjx5ckS35+5vmVlu\nDc2qO7tGRKJIp8GLiEhEZeVkYWZJ85eVkxXrlzSa7gB+ZmafAGcEn4tIcjvJzJaZ2ctm1jPWwYik\nMh1ZFxGRiCrcWAj5sY4ifArzC2MdQkS5+0JgYfBxEXBmbCMSkSj6D9DF3b8xs7OBvwGHxjgmkZSl\nYl1ERERERHD3XaUezzOzh82sbfCHuwo0VoVI3dVlrAoV6yJSKTNrBCwBNrj7YDPLAP4M5AJrgaHu\nviOGIYqIiEjdGVVcl75vQMng4xMAq6pQB41VIVIfdRmrQtesi0hVrgFWlno+Hnjd3Q8D3gQmxCQq\nERERqRczew54BzjUzNaZ2SgzG2tmvw42Od/MPjSzpcB9wAUxC1ZEdGRdRCoysxxgAHArcG1w8hDg\ntODjacACAgW8iIiIJAB3H1HD/IeAh6IUjojUQEfWRaQy9wK/B7zUtNCpce6+GegYi8BERERERFKB\njqyLSBlm9nOg0N2XmVleNU29mnkadEakHuoy6IyIiIgkNxXrIlJeH2CwmQ0AWgCtzewZYPO+gWfM\nLAv4srqVaNAZkbqry6AzIiIiktx0GryIlOHuN7h7F3c/GBgGvOnuvwLmAJcEm40EZscoRBERERGR\npKdiXURq6w7gZ2b2CXBG8LmIiIiIiESAToMXkSq5+0JgYfBxEXBmbCMSEREREUkNOrIuIiIiIiIi\nEmdUrIuIiIiIiIjEmQYV62a21szeN7OlZvZuuIISEREREZHwMrMnzKzQzJZX0+YBM1tlZsvMrHc0\n4xORshp6ZL0EyHP3Y9z9hHAEJCIiIiIiEfEU0L+qmWZ2NtDd3Q8BxgKPRCswEamoocW6hWEdIiIi\nIiISYe7+FrCtmiZDgKeDbf8NpJtZZjRiE5GKGlpoO/Camb1nZmPCEZCIiIiIiMREJ2B9qecbg9NE\nJAYaeuu2Pu7+hZl1IFC0fxT8xU5ERERERERE6qlBxbq7fxH89ysz+ytwAlChWM/Pzw89zsvLIy8v\nryGbFUkJCxYsYMGCBbEOQ0RERFLHRqBzqec5wWmV0nd8kbqry3d8c/d6bcTMWgKN3H2XmbUC5gOT\n3X1+uXZe323UMR7Ij/hmoisfovHaRZPep/ozM9zdIr6hMFDeN0C+8j7u5UfvPUqUvFfON0B+8uW8\n1F80ct7MugJz3P2oSuYNAK5095+b2YnAfe5+YhXriUreR0tS9i/JKD/5+szq8r4hR9Yzgb+amQfX\nM718oS4iIiLxz8xyCAwqlUngTi+PufsDZpYB/BnIBdYCQ919R8wCFZEGMbPngDygnZmtAyYBzQB3\n96nuPtfMBpjZamA3MCp20YpIvYt1d/8c0L0XRUREEt9e4Fp3X2ZmBwL/MbP5BL6ov+7ud5nZ9cAE\nYHwsA5X4l5WTReHGwliHEVaZnTLZvGFzrMNoMHcfUYs2V0UjFhGpWUMHmBMREZEE5+6bgc3Bx7vM\n7CMC16oOAU4LNpsGLEDFutSgcGNh0p1OXJifXD8+iEhi0D3SRUREJCR4PWtvYDGQ6e6FECroO8Yu\nMhERkdSiYl1EREQACJ4C/wJwjbvvAsqP4pNco/qIiIjEMZ0GLyIVaLApkdRjZk0IFOrPuPvs4ORC\nM8t090IzywK+rGp53cJJpO50m1YRqY6KdRGpjAabEkk9TwIr3f3+UtNeAi4B7gRGArMrWQ4oW6yL\nSO2U/2Fr8uTJsQtGROKOToMXkQrcfbO7Lws+3gWUHmxqWrDZNOAXsYlQRMLJzPoAFwJ9zWypmf3X\nzM4iUKT/zMw+Ac4A7ohlnCIiIqlER9ZFpFrVDTZlZhpsSiQJuPvbQOMqZp8ZzVhEREQkQEfWRaRK\nGmxKRERERCQ2dGRdRCqlwaZEok+DTYmIiMg+KtZFpCoabEokyjTYlIhEUnAsivsInF37hLvfWW7+\naQT27WuCk15091uiG6WI7KNiXUQqKDXY1AdmtpTA6e43ECjSZ5rZpUABMDR2UYqIiEhtmVkj4E8E\nBovcBLxnZrPd/eNyTRe5++CoBygiFahYF5EKNNiUiIhI0jkBWOXuBQBm9jyBu7yUL9Yt2oGJSOU0\nwJyIiIiISPLrBKwv9XxDcFp5J5nZMjN72cx6Ric0EamMjqyLiIiIiAjAf4Au7v6NmZ0N/A04NMYx\niaQsFesiIiIiIslvI9Cl1POc4LSQ4G1a9z2eZ2YPm1lbdy+qbIW684tI3dXlzi8q1kVEREREkt97\nQA8zywW+AIYBw0s32Hd71uDjEwCrqlAH3flFpD7qcucXFesiIiIiIknO3X8ws6uA+ey/ddtHZjY2\nMNunAueb2eVAMfAtcEHsIhYRFesiIiIiIinA3V8BDis37dFSjx8CHop2XCJSOY0GLyIiIiIiIhJn\nVKyLiIiIiIiIxBkV6yIiIiIiIiJxRsW6iIiIiIiISJxRsS4iIiIiIiISZ1Ssi4iIiIiIiMQZFesi\nIiIiIiIicUbFuoiIiIiIiEicUbEuIiIiIiIiEmcaVKyb2Vlm9rGZfWpm14crKBGJX8p7kdSinBdJ\nHrXJZzN7wMxWmdkyM+sd7RhFZL96F+tm1gj4E9AfOBIYbmaHhyuwuPZ5rAOQGuk9ioiUzXt9nhKD\n3qewS9mcB32eEoXep1qrTT6b2dlAd3c/BBgLPBL1QCV8lB8JryFH1k8AVrl7gbsXA88DQ8ITVpxb\nG+sApEZrYx1A0krNvF8b6wCkVtbGOoCklJo5D/o8JYq1sQ4godQmn4cATwO4+7+BdDPLjG6YEjZr\nYx2ANFRDivVOwPpSzzcEp4lI8lLei6QW5bxI8qhNPpdvs7GSNiISJRpgTkRERERERCTONGnAshuB\nLqWe5wSnVWBmDdhMHeRHZzMALIzOZqL22kVTfpS2E6X3CJL0fapc6ua9Pk8Nkx+l7ahvDrfUzXnQ\n56kh8qO4Lb1PtVWbfN4IdK6hTUgSvCZl5cc6gAiI4veXaEm6z101GlKsvwf0MLNc4AtgGDC8fCN3\nT51XUyT5Ke9FUotyXiR51CafXwKuBP5sZicC2929sLKVKe9FIq/exbq7/2BmVwHzCZxO/4S7fxS2\nyEQk7ijvRVKLcl4keVSVz2Y2NjDbp7r7XDMbYGargd3AqFjGLJLqzN1jHYOIiIiIiIiIlKIB5kRE\nRERERETiTEOuWReJG2Z2OIF7g+67vchG4CWdrimSvJT3IqlFOS8iqUZH1hvAzHQdTxwws+uB5wED\n3g3+GTDDzMbHMjZJLsr5+KG8l2hR3scH5bxI/akfS1y6Zr0BzGydu3epuaVEkpl9Chzp7sXlpjcD\nVrj7IbGJTJKNcj5+KO8lWpT38UE5L1J/6scSl06Dr4GZLa9qFpAZzVikSiXAQUBBuenZwXkitaac\nTxjKewkb5X1CUM6LVEP9WHJSsV6zTKA/sK3cdAPeiX44UolxwBtmtgpYH5zWBegBXBWzqCRRKecT\ng/Jewkl5H/+U8yLVUz+WhFSs1+zvwIHuvqz8DDNbEP1wpDx3f8XMDgVOoOygM++5+w+xi0wSlHI+\nASjvJcyU93FOOS9SI/VjSUjXrIuIiIiIiIjEGY0GLyIiIiIiIhJnVKyLiIiIiIiIxBkV6yIiIiIi\nIiJxRsW6iIiIiIiISJxRsS4iIiIiIiISZ1Ssi4iIiIiIiMQZFesiIiIiIiIicUbFuoiIiIiIiEic\nUbEuIiIiIiIiEmdUrIuIiIiIiIjEGRXrIiIiIiIiInGmxmLdzHLM7E0zW2FmH5jZb4LTJ5nZBjP7\nb/DvrMiHKyLhUkluXx2cnmFm883sEzN71czSSy0zwcxWmdlHZtYvdtGLSH3UZ5+uvBdJTvX5HiAi\n0WXuXn0Dsywgy92XmdmBwH+AIcAFwE53vyfyYYpIuFWT26OAre5+l5ldD2S4+3gz6wlMB44HcoDX\ngUO8pk5EROJGXffpZnYE8BzKe5GkU9fvAbGMVSRV1Xhk3d03u/uy4ONdwEdAp+Bsi2BsIhJBVeR2\nDoEd9bRgs2nAL4KPBwPPu/ted18LrAJOiGrQItIg9dinD0F5L5KU6vE9QESirE7XrJtZV6A38O/g\npKvMbJmZPa5TZEQSV6ncXgxkunshBHbkQMdgs07A+lKLbWT/l3wRSTC13Kcr70VSQC2/B4hIlNW6\nWA+eHvMCcE3w17eHgYPdvTewGdDp8CIJqJLcLn96q053FUkytdin3x3L+EQkevQ9QCR+NalNIzNr\nQiCJn3H32QDu/lWpJo8Bc6pYVgkuEibuHtZLTyrLbaDQzDLdvTB4PduXwekbgc6lFs8JTqtsvcp7\nkTCJRt5Xs0+vVd4r50XCJ9w5X506fg8ov6zyXiRMqsr72h5ZfxJY6e7375sQTN59zgU+rGbjSfU3\nadKkmMegv9R7jyKkQm4DLwGXBB+PBGaXmj7MzJqZWTegB/BuVSuO9eulz1Pq/SXj+xQhddmn1zrv\no/F6ZGbmRugliZ3MzNyYf84S+S/Z8j4G6vI9oIJYv176LKXeXzK+T9Wp8ci6mfUBLgQ+MLOlBE6F\nuQEYYWa9gRJgLTC2pnWJSPyoJrfvBGaa2aVAATAUwN1XmtlMYCVQDFzhNfUwIhJX6rpPj7e8Lyws\nIHpn5OYH/yKrsFBj9Ups1PV7gIhEX43Furu/DTSuZNYr4Q9HRKKlmtwGOLOKZW4Hbo9YUCISUfXZ\npyvvRZJTfb4HiEh01Wk0eAnIy8uLdQhSA71HEk76PCUGvU8SXnmxDkBqQXkv4aLPUmJItffJIn02\nm5npTFmRMDAzPIqDzjSE8l4kPBIl76OV82ZG8g1MbTVesyipI1FyHrSvFwmX6vK+VqPBS/R07dqV\ngoKCWIchMZSbm8vatWtjHYbEOfUVyUV5L7WhvE8eynmpL/UDias+ea8j63Em+MtKrMOQGKrqM6Bf\n26U09RXJJdHzXkfWG6L2uay8Tx6JnvMQvbzPyuoaHFwyeWRm5rJ589p6Lat+IHHVJ+9VrMcZJaBo\nBy61ob4iuSR63qtYbwgV66ko0XMelPcNU/9cVj+QuOqT9xpgTkRERERERCTOqFgXERERERERiTMq\n1iUmRo0axcSJEyO6jdNPP50nn3yy0nnr168nLS0tdCpKdW0LCgpo1KgRJSUlEYtV6icrqytmllR/\nWVldY/2yxp1o9BciEj+U8yKSiP3A5MmT+dWvfhXWdapYTwCRLkhSsTjo3LkzX3/9dfA6qJrVtp1E\nV2DAGU+qv4YMoqO+onrFxcX88pe/pFu3bjRq1IhFixZVaHP99dfTvn17OnTowPjx46td33333Uf3\n7t1JT08nJyeH6667rsyPegUFBfTt25dWrVrRs2dP3njjjbD/nyS1Keer99FHH3H88cfTtm1b2rVr\nR79+/fjoo4/KtKlLzgP897//5bTTTqN169ZkZ2fz4IMPhuYp5yVW1BfEj3DXDCrWE0CkC5JkG2Ez\n2jTIh8QL9RU1O/XUU5k+fTrZ2dkV5j366KO89NJLfPDBByxfvpw5c+YwderUKtc1ZMgQlixZwo4d\nO/jwww9ZtmwZDzzwQGj+8OHD+fGPf0xRURG33HIL559/Plu3bo3I/0tSk3K+ep06dWLmzJkUFRWx\nZcsWBg0axLBhw0Lz65rzW7du5eyzz+byyy9n27ZtrF69mn79+oXmK+clVtQXJC8V61Jr3bp1Y8qU\nKfTq1YvWrVszZswYvvzySwYMGEBaWhr9+vVjx44dofZDhw4lOzubjIwM8vLyWLlyZZXr/vvf/84x\nxxxDRkYGp5xyCh988EGt45o9ezbHHHMM6enpHHLIIcyfPz80b+3atZxyyimkpaVx1llnUVRUBFR/\nantJSQm/+93v6NChAz169ODll18uM//000/nD3/4A6eccgqtWrXi888/5+uvv2b06NEcdNBBdO7c\nmT/+8Y+hIn7atGmceuqp/P73v6dt27Z0796dV155pdb/P5FEFI/9RdOmTbn66qs5+eSTadSo4u7v\n6aef5rrrriM7O5vs7Gx+97vf8X//93/V/h8zMjIA+OGHH2jUqBGrV68G4NNPP2Xp0qXk5+fTvHlz\nzj33XI4++mhmzZpVq1hFEk085nxaWhrdunUD9ufoZ599Fppf15y/5557OOussxg2bBhNmjShVatW\nHHbYYQCsWrVKOS8pLx77ge3btzNo0CA6duxIu3btGDRoEJs2bQrNX7t2Laeddhrp6en069ePq666\nqsyp7IsXL6ZPnz5kZGRwzDHHsHDhwjLL5uXlkZ6eTv/+/dmyZUtdXq5aUbEudfLiiy/yxhtv8Omn\nn/LSSy8xYMAA7rjjDrZs2cIPP/xQ5qjSgAED+Oyzz/jyyy859thjufDCCytd59KlSxk9ejSPPfYY\nRUVFjB07lsGDB1NcXFxjPO+++y4jR47k7rvvZseOHSxatIiuXbuG5s+YMYNp06bx1VdfsWfPHqZM\nmRKaV9VpKlOnTmXu3Lm8//77LFmyhBdeeKFCm2effZbHH3+cnTt30qVLF0aOHEnz5s1Zs2YNS5cu\n5bXXXuPxxx8vE+cRRxzB1q1b+f3vf8/o0aNr/L+JJLp46y9qsmLFCnr16hV63qtXL1asWFHtMjNm\nzCA9PZ0OHTqwfPlyLrvsMgBWrlzJwQcfTKtWreq0PpFEFq85n5GRQcuWLbnmmmu48cYbQ9PrmvOL\nFy8mIyODPn36kJmZyZAhQ1i/fn1oXcp5kfjrB0pKSrj00ktZv34969ato2XLllx55ZWh+SNGjODE\nE09k69atTJo0iWeeeSZUI2zcuJGBAwcyceJEtm3bxpQpUzjvvPNCZ8yMGDGC448/ni1btvCHP/yB\nadOmNeSlq5SKdamT3/zmN7Rv357s7GxOPfVUfvKTn3D00UfTrFkzzjnnHJYuXRpqe8kll9CyZUua\nNm3KxIkTef/999m5c2eFdT722GNcdtllHHfccZgZv/rVr2jevDmLFy+uMZ4nn3yS0aNH07dvXwCy\ns7M59NBDQ/NHjRpF9+7dad68OUOHDmXZsmU1rvMvf/kL48aN46CDDqJNmzZMmDChQptLLrmEww8/\nnEaNGlFUVMS8efO49957OeCAA2jfvj3jxo1jxowZofa5ublceumlmBkjR45k8+bNfPnllzXGIpLI\n4q2/qMmuXbtIT08PPU9LS2PXrl3VLjN8+HB27NjBqlWruOyyy+jYsWOl69q3vsr+TyLJIl5zftu2\nbezYsYM//elPZYrzuub8hg0bePrpp3nwwQdZv349Xbt2Zfjw4ZWua9/6lPOSauKtH2jbti3nnHMO\nzZs3p1WrVkyYMCE0Zs26detYsmQJkydPpkmTJvTp04fBgweHlp0+fTo///nP6d+/PwBnnHEGxx13\nHHPnzmX9+vUsWbKEm266iaZNm3LqqacyaNCghr58FahYlzrJzMwMPW7RokWF5/t2ciUlJYwfP54e\nPXrQpk0bunXrhplVenpIQUEBd999N23btqVt27ZkZGSwYcOGMqeoVGX9+vV07969yvlZWVmhxy1b\ntqzxizfApk2b6Ny5c+h5bm5uhTal5xcUFFBcXEx2dnYo/ssuu6zM/7V0HC1atMDdaxWLSCKLt/6i\nJgceeCBff/116PmOHTs48MADAbj99ttp3bo1aWlpXHHFFRWW7d69Oz179uTyyy+vdF371te6desG\nxykSr+I551u0aMHYsWO5+OKLQ9upa863aNGCc845h2OPPZZmzZoxadIk3nnnHXbu3KmcFwmKt37g\n22+/ZezYsXTt2pU2bdpw2mmnsX37dtydL774grZt23LAAQeE2pf/jj9z5swy23377bf54osv2LRp\nExkZGbRo0SLUvrKaoaFUrEtETJ8+nTlz5vDmm2+yfft21q5di7tXOhhb586dufHGGykqKqKoqIht\n27axa9cuLrjgghq307lz5zLXn4VDdnZ26LQ2CCRqeaVPoe/cuTMHHHAAW7duDcW/fft2li9fHta4\nRJJVtPqLmhx55JG8//77oefLli3jyCOPBGDChAns3LmTr7/+mocffrjS5YuLi1mzZk1oXWvWrGH3\n7t2h+e+//35ofSKpLFY5/8MPP/DNN9+wceNGoO45f/TRR1e4hG7fc+W8SN1Eqx+4++67WbVqFe+9\n9x7bt28PHVV3d7KzsykqKuK7774LtS9dA3Tu3JmLL764zHZ37tzJ//t//4/s7Gy2bdvGt99+G2q/\nbt26hrwklVKxLhGxa9cumjdvTkZGBrt372bChAlVXiM+ZswYHnnkEd59910Adu/ezdy5c0M7vFGj\nRnHppZdWuuzo0aN56qmn+Mc//oG7s2nTJj799NNaxVjVKO5Dhw7lgQceYOPGjWzbto0777yz2vVk\nZWXRr18/fvvb37Jz507cnTVr1lR6WygRqSha/QXA999/H9op79mzhz179oTmXXzxxdxzzz1s2rSJ\njRs3cs899zBq1Kgq1/XEE0/w1VdfAYFr1O+44w7OPPNMAA455BB69+7N5MmT2bNnDy+++CIffvgh\n5513Xh1eGZHkFK2cf/3111m2bBklJSV8/fXXXHvttbRt25YjjjgCqHvOjxo1ir/+9a8sX76c4uJi\nbr75Zk455RRat26tnBepo2j1Azt37qRFixakpaVRVFREfn5+aF6XLl047rjjyM/Pp7i4mH/961/M\nmTMnNP+iiy5izpw5zJ8/n5KSEr777jsWLlzIpk2bQstOmjSJ4uJi3nrrrTLLhouKdam1qn5NrszF\nF19Mly5d6NSpEz/60Y84+eSTq2z74x//mMcee4yrrrqKtm3bcuihh5YZoGH9+vWccsoplS57/PHH\n89RTTzFu3DjS09PJy8sLHQmv6T6HpeeXfjxmzBj69+9Pr169OO644yrsaCtb79NPP833339Pz549\nadu2Lb/85S/ZvHlzrbYtkozisb8AOOyww2jVqhWbNm3irLPOomXLlqFfwseOHcugQYM46qij6NWr\nF4MHD2bMmDFVruvtt9/mqKOOonXr1gwcOJCBAwdy6623huY///zzvPfee2RkZHDjjTcya9Ys2rVr\nV+X6RBJZPOb89u3bGT58OG3atOGQQw7h888/55VXXqFZs2ZA3XP+9NNP57bbbmPAgAFkZWWxZs0a\nnnvuudB85bykunjsB8aNG8c333xD+/btOfnkkxkwYECZ+dOnT+edd96hffv2TJw4kWHDhtG8eXMA\ncnJymD17NrfddhsdOnQgNzeXKVOmhO4mNX36dBYvXky7du24+eabGTlyZPUvUD1YpO8RbWau+1DX\nnplVOOKbldU1ovc3zMzMZfPmtRFbf0MUFxfTu3dvli9fTuPGjWMdTlRU9hkoNT0hqvxo5X1gJ5Bs\n/Uvl73+FVuorKkjk/iLR81453xC1y3mo+DlRzivnY0l53xC1z/sKS2r/X0a4+4Fhw4ZxxBFHMGnS\npDBEV1Z98l7Fepyp6k2U1KEdeJ22Q6ruwNVXJJdEz3vlfEPUv1iXxJXoOQ/K+4YJb7Eu9bdkyRLa\ntm1Lt27dePXVVzn33HP517/+VebOEeFSn7yv8TR4M8sxszfNbIWZfWBmVwenZ5jZfDP7xMxeNbP0\nmtYVSVlZXTGzhP8TERGJlPrs081sgpmtMrOPzKxf7KIXEREJr82bN5OXl0fr1q0ZN24cjzzySEQK\n9fqq8ci6mWUBWe6+zMwOBP4DDAFGAVvd/S4zux7IcPfxlSyvX93qRL+WpTr92l6n7ZAceV+ajqyn\nomjlfV336WbWE5gOHA/kAK8Dh5RPcOV8Q+jIeirSvr5O2yGV877CkuoHElZEjqy7+2Z3XxZ8vAv4\niMAOewiw78r+acAv6hm3iIiIREE99umDgefdfa+7rwVWASdENWgREZEUVafR4M2sK9AbWAxkunsh\nBHb+QMdwByciIiKRUct9eidgfanFNganiYiISITVulgPni73AnBN8Nf48sfwdT6GiIhIAtA+XURE\nJP41qU0jM2tCYKf+jLvPDk4uNLNMdy8MXgP3ZVXLl775fF5eHnl5efUOWCRVLFiwgAULFsQ6DBFJ\nMnXcp28EOpdaPCc4rQLt60XqTvt6EalOrW7dZmZPA1vc/dpS0+4Eitz9Tg0wFz7Nm3dlz57I3SdR\n4l9ubi5r166tMF2DzlS6HZIh78uq3cAxXbt2paBAfUWyiGbe12WfXmqAuZ8QOP39NTTAXJjVfrAo\n5X3y0L6+TtshlfO+PPUDias+eV+b0eD7AIuADwhkigM3AO8CMwn84l4ADHX37ZUsr0SuN432KPtF\n6Ev7E8BAoNDdjw5OmwSMYf+RtRvc/ZXgvAnApcBeAqfPzq9ivcr7elPey34RGA2+zvv0YN6PBoqp\nIu+V8w2hnJf9olms1/U7QCXLK+/rTXkv+zWoWA/DxpXI9aZElv3+f3v3E2LrXd4B/PtIcNEWQgjN\nvW2iuYipRgmkLcZFuxgpGN0YV6F1V2kRgou6SrLKdWcKuirZaJAUkqZxYTFdaGLlLEIXtRQJ9KZ6\nodwkXryj1CB1F83TxZxmxsn8f8+c8573fD5w8cw75+T3OO/5zu993vfM+zunZv1Pk/wyyd/vm6j/\nt7u/su+5dyd5Jscs4TR/rtyfmdyza12ussn8EDLPriU36yc+Bjjk9XJ/ZnLPrkFLtwHT1d0vJXnj\ngG8d9AvjgVjCCQAm4ZTHAMAKaNaBg3y+qn5QVV+rqpvn2yzhBADTd9AxALACmnVgvyeSvK+7701y\nI05tpXwAAA4fSURBVMmXV1wPALAc+48Bjv04PHB+TrR0G7A5uvtne778apLn549PvIRTYhknOAvL\nOAGrdMQxwIHM9XB6p5nr3WBu1Nx8gl3nddOZqrqU5Pnuvmf+9cXuvjF//IUkH+nuz5x0Caf56+T+\nzOSeXW4w945xIvNM2bIzf9JjgENeK/dnJvfsOir3rqzDBquqZ5JsJbm1ql5L8liSj1XVvUneSnIt\nyeeSpLuvVNVzSa5kZwmnh5YySwMAC3eaYwBgNVxZHzVn3di1LlfYErkfRu7ZtS65l/khZJ5d65L5\nRO6HkXt2WboNAAAA1ohmHQAAAEZGsw4AAAAjo1kHAACAkdGsAwAAwMho1gEAAGBkNOsAAAAwMpp1\nAAAAGBnNOgAAAIyMZh0AAABGRrMOAAAAI6NZBwAAgJG5adUFsFkuXryU7e1XV13GQl24cGdu3Li2\n6jIAAIAJOfbKelU9WVXbVfXynm2PVdWPq+o/5v8+cb5lMhU7jXpP6t/UTj4A03XaOb2qHq2qq1X1\nSlV9fDVVA8BmOsnH4L+e5P4Dtn+lu/9o/u/bC64LAFi8E8/pVXV3kgeT3J3kk0meqKpaXqkAsNmO\nbda7+6UkbxzwLRM2AKyRU87pDyR5trt/1d3XklxNct85lgcA7DHkBnOfr6ofVNXXqurmhVUEACzb\nQXP67Ule3/Oc6/NtAMASnLVZfyLJ+7r73iQ3knxlcSUBAEu0f07/8orrAQByxrvBd/fP9nz51STP\nH/X8y5cvv/14a2srW1tbZxkWNspsNstsNlt1GcDEHTGnX0/ynj3fu2O+7UDmejg9cz1wlOru459U\ndSnJ8919z/zri919Y/74C0k+0t2fOeS1fZIxhtq55835j7NclWX87JbJfhowSlW6ey3uFSH3Q0wv\n95zdeeT+pHN6VX0oydNJPpqdj7+/mOSug8It80PIPLvM9QeOE7lnyo7K/bFX1qvqmSRbSW6tqteS\nPJbkY1V1b5K3klxL8rmFVQsAnIvTzOndfaWqnktyJcmbSR5aypE5AJDkhFfWBw3grNsA0zvrZj8N\nGMXZ9oPGifcTU7YuuZf5IWSeXeuS+UTuh5F7dh2V+yF3gwcAAADOgWYdAAAARkazDgAAACOjWQcA\nAICR0awDAADAyGjWYYNV1ZNVtV1VL+/ZdktVvVBVP6yq71TVzXu+92hVXa2qV6rq46upGgAY6rTH\nAMDyadZhs309yf37tj2S5Lvd/YEk30vyaJJU1YeSPJjk7iSfTPJE7aynAgCsnxMfAwCroVmHDdbd\nLyV5Y9/mB5I8NX/8VJJPzx9/Ksmz3f2r7r6W5GqS+5ZRJwCwWKc8BgBWQLMO7Hdbd28nSXffSHLb\nfPvtSV7f87zr820AwDQcdgwArIBmHThOr7oAAGAlHAPACt206gKA0dmuqgvdvV1VF5P8dL79epL3\n7HneHfNtB7p8+fLbj7e2trK1tbX4SmFiZrNZZrPZqssANtdhxwAHMtfD6Z1mrq/u8z1hVlV93mPM\nx8n0Tv5VlvGzWyb7acAoVenuhd/QraouJXm+u++Zf/14kp939+NV9XCSW7r7kfkN5p5O8tHsfPz9\nxSR3HRRwuR9iernn7M4r94sm80PIPLuWnfmTHgMc8lq5PzO5Z9dRuXdlHTZYVT2TZCvJrVX1WpLH\nknwpyTeq6rNJXs3OHeDT3Veq6rkkV5K8meShpczSAMDCneYYAFgNV9ZHbXpn3eynAaOsyRW2RO6H\nmV7uObt1yb3MDyHz7FqXzCdyP4zcs+uo3LvBHAAAAIyMZh0AAABGRrMOAAAAI6NZBwAAgJHRrAMA\nAMDIHNusV9WTVbVdVS/v2XZLVb1QVT+squ9U1c3nWyYAMNRp5/SqerSqrlbVK1X18dVUDQCb6SRX\n1r+e5P592x5J8t3u/kCS7yV5dNGFAQALd+I5vao+lJ01lu9O8skkT9TOGkoAwBIc26x390tJ3ti3\n+YEkT80fP5Xk0wuuCwBYsFPO6Z9K8mx3/6q7ryW5muS+ZdQJAJz9b9Zv6+7tJOnuG0luW1xJAMAS\nHTan357k9T3Puz7fBgAswaJuMNcL+u8AAKtlTgeAEbjpjK/brqoL3b1dVReT/PSoJ1++fPntx1tb\nW9na2jrjsLA5ZrNZZrPZqssApu+wOf16kvfsed4d820HMtfD6ZnrgaNU9/En0KvqUpLnu/ue+deP\nJ/l5dz9eVQ8nuaW7HznktX2SMYbauefN1C4GVJbxs1sm+2nAKFXp7rW4uZPcDzG93HN255H7k87p\n8xvMPZ3ko9n5+PuLSe46KNwyP4TMs8tcf+A4kXum7KjcH3tlvaqeSbKV5Naqei3JY0m+lOQbVfXZ\nJK9m526xAMCInWZO7+4rVfVckitJ3kzy0FKOzAGAJCe8sj5oAGfdBpjeWTf7acAozrYfNE68n5iy\ndcm9zA8h8+xal8wncj+M3LPrqNwv6gZzAAAAwIJo1gEAAGBkNOsAAAAwMpp1AAAAGBnNOgAAAIyM\nZh0AAABGRrMOAAAAI6NZBwAAgJHRrAMAAMDIaNYBAABgZDTrAAAAMDKadQAAABiZm1ZdADBOVXUt\nyS+SvJXkze6+r6puSfKPSe5Mci3Jg939i5UVCQAs3EHHAKutCDaTK+vAYd5KstXdf7hnkn4kyXe7\n+wNJvpfk0ZVVBwCcl4OOAYAl06wDh6m883fEA0memj9+Ksmnl1oRALAMBx0DAEsmhMBhOsmLVfX9\nqvqr+bYL3b2dJN19I8ltK6sOADgve48B/nrVxcCm8jfrwGH+pLt/UlW/m+SFqvphdibvvfZ/DQCs\nv73HAC9W1Svd/dKqi4JNo1kHDtTdP5n/78+q6p+S3Jdku6oudPd2VV1M8tPDXn/58uW3H29tbWVr\na+t8C4YJmM1mmc1mqy4D2HD7jgG+mZ1jgHc06+Z6OL3TzPXVfb4Xxqqqz3uM+TiZ3kW+yjJ+dstk\nPw0YpSrdXec+0M5Yv5XkXd39y6r67SQvJPlikj9L8vPufryqHk5yS3c/csDr5f7Mppd7zm6ZuR9C\n5oeQeXaNIfOHHQN09wv7nif3Zyb37Doq94OurFvWASbrQpJvVlVn5/fE0939QlX9e5LnquqzSV5N\n8uAqiwQWx3KNwNyBxwArrgk20qAr61X130n+uLvfOOI5zrqd2fTOutlPA0YZwdn2k5L7IaaXe85u\nyZ+oececXlWPJ/mf7v5bn6Y5LzLPLnP9geNE7pmyo3I/9G7wlnUAgGmwXCMAjMjQRtuyDgAwDZZr\nBIARGXo3eMs6AMA0WK6Rhbh48VK2t19ddRkLdeHCnblx49qqywA2zKBm3bIOcH4s4QQsk+UaWZSd\nRn1a53W2t8/nz8jN9cBRznyDOcs6LMP0bj5hPw0YxU1nDhon3k9M2bJyb7nGVZpe5u2nAaOY6w8a\nJ95PTNl5Ld1mWQcAmAbLNQLAyAxauu1EAzjrNsD0zrrZTwNGcbb9oHHi/cSUrUvuZX6I6WXefhow\nyppkPpH7YaaXe87uPJduAwAAABZMsw7Aubp48VKqajL/Ll68tOofKQCwAXwMftSm9xEZ+2nAKD4a\nd9A48X4av+ntp+Xto3XJvcwPIfPrwVy/n9wPMb3cc3bndYM5AAAANtzFi5fmyzZOx4ULd+bGjWsr\nrcGV9VGb3lk3+2nAKM62HzROvJ/Gb3r7yZX1/WR+CJlfD+b6/eR+CLlfD6vPvb9ZBwAAgJHRrAMA\nAMDIaNYBAABgZDTrAAAAMDKadQAAABgZzToAAACMjGYdAAAARkazDgAAACOjWQcAAICR0awDAADA\nyGjWAQAAYGQ06wAAADAymnUAAAAYGc06AAAAjIxmHQAAAEZmULNeVZ+oqv+qqh9V1cOLKmr8Zqsu\ngGPNVl3AZG1m7merLoATma26gEnazMwn3k/rYrbqAiZpM3M/W3UBnMhs1QUs1Zmb9ap6V5K/S3J/\nkg8n+Yuq+uCiChu32aoL4FizVRcwSZub+9mqC+BEZqsuYHI2N/OJ99O6mK26gMnZ3NzPVl0AJzJb\ndQFLNeTK+n1Jrnb3q939ZpJnkzywmLKAkZJ72CwyD5tH7mEkhjTrtyd5fc/XP55vA6ZL7mGzyDxs\nHrmHkbhpGYNU1TKGSbKscZLki0sZZXk/u2Va1v+n5eyjZKr7aZjp5d77aZhp7adp7qNhppf5xPtp\nCPtpE0wv9+b6YeynRRvSrF9P8t49X98x3/YbunuK70TYVHIPm0XmYfPIPYzEkI/Bfz/J+6vqzqp6\nd5I/T/KtxZQFjJTcw2aRedg8cg8jceYr693966r6fJIXstP0P9ndryysMmB05B42i8zD5pF7GI/q\n7lXXAAAAAOwx5GPwAAAAwDlYyt3g4bxV1Qezswbo/y8tcj3Jt3xsi7PwfoLNI/ewWWSedeDK+gBV\n9ZerroGkqh5O8mx21ov4t/m/SvIPVfXIKmtj/Xg/rT+/mzktuV9/cs9pyPz625TM+5v1Aarqte5+\n7/HP5DxV1Y+SfLi739y3/d1J/rO771pNZawj76f153czpyX360/uOQ2ZX3+bknkfgz9GVb182LeS\nXFhmLRzqrSS/n+TVfdt/b/49OA3vpzXgdzMLJvdrQO5ZIJlfAzKvWT+JC0nuT/LGvu2V5F+XXw4H\n+Jsk/1JVV5O8Pt/23iTvT/L5lVXFuvJ+Wg9+N7NIcr8e5J5Fkfn1sPGZ16wf75+T/E53/2D/N6pq\ntvxy2K+7v11Vf5DkvvzmTUK+392/Xl1lrCPvp7XhdzMLI/drQ+5ZCJlfGxufeX+zDgAAACPjbvAA\nAAAwMpp1AAAAGBnNOgAAAIyMZh0AAABGRrMOAAAAI/N/tTHGE9xHv/sAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -426,64 +548,56 @@ } ], "source": [ - "fig = plt.figure(figsize=(20,6), dpi=1600 )\n", - "a=0.8 \n", + "female = train[train.Sex == 0]\n", + "male = train[train.Sex == 1]\n", + "fig = plt.figure(figsize=(20,6))\n", " \n", "plt.subplots_adjust(bottom=0.1, right=0.8, top=2) \n", "\n", "##gender and age\n", "#female\n", - "ax7 = fig.add_subplot(5,4,12)\n", - "female_aged = train.Survived[train.Sex == 'female'][train.AgeFill >= 60].value_counts()\n", - "female_aged.plot(kind='bar', label='female, aged', color='pink', alpha=a)\n", - " \n", - "ax7.set_xlim(-1, len(female_aged))\n", + "ax1 = fig.add_subplot(5,4,12)\n", + "female_aged = female.Survived[female.AgeFill >= 60].value_counts()\n", + "female_aged.plot(kind='bar', color='green', label='female, aged')\n", "plt.legend(loc='best')\n", - "ax8 = fig.add_subplot(5,4,9)\n", - "female_child = train.Survived[train.Sex == 'female'][train.AgeFill <= 10].value_counts()\n", - "female_child.plot(kind='bar', label='female, children', color='pink', alpha=a)\n", - " \n", - "ax8.set_xlim(-1, len(female_child))\n", + "\n", + "ax2 = fig.add_subplot(5,4,9)\n", + "female_child = female.Survived[female.AgeFill <= 10].value_counts()\n", + "female_child.plot(kind='bar', color='green', label='female, children')\n", "plt.legend(loc='best')\n", - "ax9 = fig.add_subplot(5,4,10)\n", - "female_middleage = train.Survived[train.Sex == 'female'][train.AgeFill>10][train.AgeFill<=30].value_counts()\n", - "female_middleage.plot(kind='bar', label='female, middle age(10-30)', color='pink', alpha=a)\n", - " \n", - "ax9.set_xlim(-1, len(female_middleage))\n", + "\n", + "ax3 = fig.add_subplot(5,4,10)\n", + "female_midage = female.Survived[female.AgeFill>10][female.AgeFill<=30].value_counts()\n", + "female_midage.plot(kind='bar', color='green', label='female, 10-30')\n", "plt.legend(loc='best')\n", - "ax9 = fig.add_subplot(5,4,11)\n", - "female_middleage = train.Survived[train.Sex == 'female'][train.AgeFill>30][train.AgeFill<60].value_counts()\n", - "female_middleage.plot(kind='bar', label='female, middle age (30-60)', color='pink', alpha=a)\n", - " \n", - "ax9.set_xlim(-1, len(female_middleage))\n", + "\n", + "ax4 = fig.add_subplot(5,4,11)\n", + "female_middleage = female.Survived[female.AgeFill>30][female.AgeFill<60].value_counts()\n", + "female_middleage.plot(kind='bar', color='green', label='female, 30-60')\n", "plt.legend(loc='best')\n", " \n", "#male\n", " \n", - "ax10 = fig.add_subplot(5,4,16)\n", - "male_aged = train.Survived[train.Sex == 'male'][train.AgeFill >= 60].value_counts()\n", - "male_aged.plot(kind='bar', label='male, aged', color='blue', alpha=a)\n", - " \n", - "ax10.set_xlim(-1, len(male_aged))\n", + "ax5 = fig.add_subplot(5,4,16)\n", + "male_aged = male.Survived[male.AgeFill >= 60].value_counts()\n", + "male_aged.plot(kind='bar', label='male, aged')\n", "plt.legend(loc='best')\n", - "ax11 = fig.add_subplot(5,4,13)\n", - "male_child = train.Survived[train.Sex == 'male'][train.AgeFill <= 10].value_counts()\n", - "male_child.plot(kind='bar', label='male, children', color='blue', alpha=a)\n", - " \n", - "ax11.set_xlim(-1, len(male_child))\n", + "\n", + "ax6 = fig.add_subplot(5,4,13)\n", + "male_child = male.Survived[male.AgeFill <= 10].value_counts()\n", + "male_child.plot(kind='bar', label='male, children')\n", "plt.legend(loc='best')\n", - "ax12 = fig.add_subplot(5,4,14)\n", - "male_middleage = train.Survived[train.Sex == 'male'][train.AgeFill>10][train.AgeFill<=30].value_counts()\n", - "male_middleage.plot(kind='bar', label='male, middle age (10-30)', color='blue', alpha=a)\n", - " \n", - "ax12.set_xlim(-1, len(male_middleage))\n", + "\n", + "ax7 = fig.add_subplot(5,4,14)\n", + "male_midage = male.Survived[male.AgeFill>10][male.AgeFill<=30].value_counts()\n", + "male_midage.plot(kind='bar', label='male, 10-30')\n", "plt.legend(loc='best') \n", - "ax12 = fig.add_subplot(5,4,15)\n", - "male_middleage = train.Survived[train.Sex == 'male'][train.AgeFill>30][train.AgeFill<60].value_counts()\n", - "male_middleage.plot(kind='bar', label='male, middle age (30-60)', color='blue', alpha=a)\n", - " \n", - "ax12.set_xlim(-1, len(male_middleage))\n", + "\n", + "ax8 = fig.add_subplot(5,4,15)\n", + "male_middleage = male.Survived[male.AgeFill>30][male.AgeFill<60].value_counts()\n", + "male_middleage.plot(kind='bar', label='male, 30-60') \n", "plt.legend(loc='best')\n", + "\n", "plt.show()" ] }, @@ -506,7 +620,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 399, "metadata": { "collapsed": false }, @@ -515,7 +629,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGndJREFUeJzt3X2YFfV99/H3R1AJBhCTAvEJjN4qaomxNdGY3tmojQQS\npaSlBbU+944PkTZ3VUijQL2MkruaoBIvidGgTSIam0KtDWarazQ1xQdUjErQqiiW9SEKahFZ+N5/\nzCCHhd0Zds+cmWU/r+s6186ZM3t+n12G893f/GZ+o4jAzMysMzuUHcDMzKrPxcLMzDK5WJiZWSYX\nCzMzy+RiYWZmmVwszMwsU6HFQtIPJLVKeqJm3WBJd0taKmmhpEE1r02VtEzS05K+UGQ2MzPLr+ie\nxU3Ace3WTQGaI+IA4B5gKoCkg4AJwEjgi8D3JKngfGZmlkOhxSIiHgDebLf6BGBuujwXGJcuHw/c\nGhFtEfECsAz4VJH5zMwsnzLGLIZERCtARKwEhqTr9wBeqtluRbrOzMxKVoUBbs83YmZWcX1LaLNV\n0tCIaJU0DHg1Xb8C2Ktmuz3TdVuQ5AJjZtYFEdGlseBG9CyUPjZaAJyaLp8CzK9Z/xeSdpK0D7Af\nsKijN42Iyj2mTZtWegZncqbemMuZ8j26o9CehaQfA03ARyQtB6YBVwC3SzodeJHkDCgi4ilJtwFP\nAeuAc6K7P52ZmdVFocUiIiZ18NKxHWx/OXB5cYnMzKwrqjDAvd1oamoqO8IWnCkfZ8qvirmcqXjq\niUd6JPkIlZnZNpJEVHiA28ys8kaMGIGk7eIxYsSIuv9+3LMwM+ODv7rLjlEXHf0s7lmYmVmhXCzM\nzCyTi4WZmWVysTAzs0xlzA1lZtYjnDflhkLf/9orzsy97ezZs/nhD3/IkiVLmDRpEjfeeGOBybbk\nYmFm1gPsscceXHzxxSxcuJA1a9Y0vH0XCzOzHmDcuOQ+cQ899BArVmx1Qu5CeczCzMwyuViYmVkm\nFwszM8vkYmFmZplcLMzMeoD169fz3nvvsX79etra2li7di3r169vWPueSNDMerx6XA8xe+ZZlZ5I\ncMaMGcyYMQNp0zyA06ZN45JLLtli2yImEnSxMLMerzcUi23hWWfNzKwULhZmZpbJxcLMzDK5WJiZ\nWSYXCzMzy+RiYWZmmVwszMwsk4uFmZllcrEwM7NMvvmRmVkH/u6mhwp9/8tOOzz3tu+//z7nnHMO\nzc3NvPnmm+y7775861vfYvTo0QUm3MQ9CzOzHqCtrY29996b+++/n1WrVnHppZcyYcIEli9f3pD2\nXSzMzHqA/v37c8kll7DXXnsBMHbsWPbZZx8eeeSRhrTvYmFm1gO1traybNkyDj744Ia052JhZtbD\ntLW1cdJJJ3Hqqaey//77N6RNFwszsx4kIjjppJPYeeedueaaaxrWrs+GMjPrQc444wxef/117rrr\nLvr06dOwdl0szMx6iK9+9as888wzNDc3s9NOOzW0bRcLM7MObMt1EEVbvnw5c+bMoV+/fgwdOhRI\n7nx3/fXXM3HixMLbL61YSPob4AxgA7AEOA3YBZgHDAdeACZExKqyMpqZVcXee+/Nhg0bSmu/lAFu\nSbsDXwMOi4hRJEVrIjAFaI6IA4B7gKll5DMzs82VeTZUH2AXSX2BDwErgBOAuenrc4FxJWUzM7Ma\npRSLiHgFuBJYTlIkVkVEMzA0IlrTbVYCQ8rIZ2ZmmytlzELSriS9iOHAKuB2SScC0W7T9s8/MH36\n9A+Wm5qaaGpqqntOM7OerKWlhZaWlrq8lyI6/DwujKQ/BY6LiLPS5ycDRwBHA00R0SppGHBvRIzc\nyvdHGbnNrJrOm3JDt99j9syz2F4+VyRt9WdJ16sr71nWmMVy4AhJ/SQJOAZ4ClgAnJpucwowv5x4\nZmZWK/MwlKR9gZcjYq2kJmAUcHNEvNXVRiNikaSfAouBdenXOcAA4DZJpwMvAhO62oaZmdVPnjGL\nO4A/lLQfyQf6fODHwJjuNBwRM4AZ7Vb/Dji2O+9rZmb1l+cw1IaIaAP+BLgmIi4APlZsLDMzq5I8\nPYt1kiaSjCF8OV23Y3GRzMyq4aonny30/b9+yH7btP3JJ59Mc3Mza9asYdiwYVxwwQWcccYZBaXb\nXJ6exWnAkcBlEfG8pH2AW4qNZWZm7U2dOpXnn3+et956iwULFvDNb36TxYsXN6TtzGIREU9FxPkR\n8RNJg4EBETGzAdnMzKzGQQcdRL9+/YDkvhaSeO655xrSdmaxkNQiaaCk3YBHge9Luqr4aGZm1t65\n557LLrvswsiRI9l9990ZM6Zb5xrllucw1KCIWA2MJzll9tP4jCUzs1LMnj2bd955hwceeIDx48ez\n8847N6TdPMWir6SPkVzzcGfBeczMLIMkPvOZz/DSSy9x3XXXNaTNPMXi74GFwLMR8ZCkjwPLio1l\nZmZZ2traqjNmERG3R8SoiDgnff5fEfGV4qOZmdlGr732GvPmzePdd99lw4YNLFy4kFtvvZVjj23M\nqECe6T76kdzR7mCg38b1EXF6gbnMzEq3rddBFEkS1113HWeffTYbNmxg+PDhzJo1i7Fjxzak/TwX\n5d0CPAMcR3JI6kTg6SJDmZnZ5j760Y/WbbrxrsgzZrFfRFwMvBsRc4GxwKeLjWVmZlWSp1isS7++\nJekQYBC+g52ZWa+S5zDUnPTK7YtJ7jfxYeCSQlM1UNFzv5StSsdcrTzb+35uxcssFhGx8RZU9wEf\nLzaOmZlVUYfFQtLXO/vGiPCUH2ZmvURnPYsBDUthZmaV1mGxSO9kZ2bWKwz+yBAklR2jLoYPH173\n98xzUd5cYPLGe26ng91X+qI8M+vIoqWvNbS9lau6P5neqD/7h9zbHjJobbfb2xbXXnFmQ9vbmjyn\nzo7aWCgAIuJN4JPFRTIzs6rJUyx2SHsTAKT3tchzyq2ZmW0n8nzoXwk8KOn29PmfAZcVF8nMzKom\nz3UWN0t6GDg6XTU+Ip4qNpaZmVVJrsNJaXFwgTAz66XyjFmYmVkv52JhZmaZXCzMzCxTZrGQNF7S\nMkmrJK2W9Lak1Y0IZ2Zm1ZBngPvbwJcjwnfHMzPrpfIchmp1oTAz693y9CweljQP+GfggwlRIuKf\nCktlZmaVkqdYDAT+B/hCzboAXCzMzHqJPFdwn9aIIGZmVl2d3Snvwoj4tqRrSHoSm4mI8wtNZmZm\nldFZz2LjoPbDjQhiZmbV1dmd8v4l/Tq3iIYlDQJuAA4BNgCnA78F5gHDgReACRGxqoj2zcwsvzKv\n4J4F3BURI4FPAM8AU4DmiDgAuAeYWmI+MzNLlVIsJA0E/igibgKIiLa0B3ECsLEnMxcYV0Y+MzPb\nXFk9i32A1yXdJOlRSXMk9QeGRkQrQESsBIaUlM/MzGpknjor6feAs4ARtdtHxOndbPcw4NyIeFjS\nd0gOQbU/62qLs7DMzKzx8lyUNx+4H2gG1tep3ZeBlyJi45lWd5AUi1ZJQyOiVdIw4NWO3mD69Okf\nLDc1NdHU1FSnaGZm24eWlhZaWlrq8l55ikX/iLioLq2l0mLwkqT9I+K3wDHAb9LHqcBM4BSSQrVV\ntcXCzMy21P4P6RkzZnT5vfIUizsljYmIu7rcytadD/xI0o7AfwGnAX2A2ySdDrwITKhzm2Zm1gV5\nisVk4BuS3gfeBwRERAzsTsMR8Thw+FZeOrY772tmZvWXZ26oAY0IYmZm1ZXnTnmSdJKki9Pne0n6\nVPHRzMysKvJcZ/E94EhgUvr8HWB2YYnMzKxy8oxZfDoiDpO0GCAi3pS0U8G5zMysQvL0LNZJ6kN6\ngVx6kd6GQlOZmVml5CkWVwM/A4ZIugx4APhWoanMzKxS8pwN9SNJj5BcOCdgXEQ8nfFtZma2Hckz\nZgHQSjLlR1/gQ5IOi4hHi4tlZmZVkmciwUtJpuB4jk0T+wVwdHGxzMysSvL0LCYA+0bE+0WHMTOz\nasozwP0ksGvRQczMrLry9CwuBxZLehJYu3FlRBxfWCozM6uUPMViLsmU4Uvw9RVmZr1SnmLxPxFx\ndeFJzMyssvIUi/slXQ4sYPPDUD511sysl8hTLD6Zfj2iZp1PnTUz60XyXMH9+UYEMTOz6spzP4tB\nkq6S9HD6uFLSoEaEMzOzashzncWNwNskF+dNAFYDNxUZyszMqiXPmMW+EfGVmuczJD1WVCAzM6ue\nPD2LNZI+u/GJpKOANcVFMjOzqsnTszgbmJuOUwj4HXBKoanMzKxS8pwN9RjwCUkD0+erC09lZmaV\nkudsqOck/QiYBOxVfCQzM6uaPGMWBwHXAx8B/l9aPH5WbCwzM6uSPMViPbAu/boBeDV9mJlZL5Fn\ngHs1yYyzVwHfj4g3io1kZmZVk6dnMRH4JXAOcKukGZKOKTaWmZlVSZ6zoeYD8yUdCHwR+GvgQuBD\nBWczM7OKyHM21B2SngVmAf2BvwQGFx3MzMyqI/dtVSNifdFhzMysmvIchnq4EUHMzKy68gxwm5lZ\nL9dhsUgnDETSzo2LY2ZmVdRZz+Lq9OuDjQhiZmbV1dmYxTpJc4A9JF3d/sWIOL+4WGZmViWdFYsv\nAccCxwGPFNG4pB2Ah4GXI+J4SYOBecBw4AVgQkSsKqJtMzPLr8NiERGvk1yx/XREPF5Q+5OBp4CB\n6fMpQHNEfFvSRcDUdJ2ZmZUoz9lQb0j6maRX08cdkvbsbsPpe4wBbqhZfQIwN12eC4zrbjtmZtZ9\neYrFTcACYPf08S/puu76DnABEDXrhkZEK0BErASG1KEdMzPrpjzFYkhE3BQRbenjh8DvdadRSWOB\n1vQufOpk0+jkNTMza5A80328Lukk4Cfp84lAd6cpPwo4XtIYkgkJB0i6BVgpaWhEtEoaRif3zZg+\nffoHy01NTTQ1NXUzkpnZ9qWlpYWWlpa6vJciOv/jXdJw4BrgSJK/9P8DOD8iltclgPQ54P+mZ0N9\nG3gjImamA9yDI2KLAW5JkZU7r6uefLYu71NVXz9kv7IjWAU0ej9ftPS1hra3srmxP98hg9Y2tL1r\nrzizLu8jiYjo7GhOh/LMDfUicHxX3rwLrgBuk3Q68CIwoUHtmplZJ/IchipURNwH3Jcu/47k2g4z\nM6sQTyRoZmaZ8tz8aJ8868zMbPuVp2dxx1bW/bTeQczMrLo6HLNI77l9MDBI0vialwYC/YoOZmZm\n1dHZAPcBJJMJ7gp8uWb928BZRYYyM7Nq6WwiwfnAfElHRoTvaWFm1ovlOXX2WUnfAEbUbh8RpxcV\nyszMqiVPsZgP3A80A+uLjWNmZlWUp1j0j4iLCk9iZmaVlefU2TvTCf/MzKyXylMsJpMUjDWSVkt6\nW9LqooOZmVl15JlIcEAjgpiZWXVlFgtJ/3tr6yPil/WPY2ZmVZRngPuCmuV+wKeAR4CjC0lkZmaV\nk+cwVO3V20jaC/huYYnMzKxyujJF+cvAyHoHMTOz6sozZnENye1UISkuhwKPFhnKzMyqJc+YxcM1\ny23ATyLiVwXlMTOzCsozZjFX0k7A/umqpcVGMjOzqslzGKoJmAu8AAjYS9IpPnXWzKz3yHMY6krg\nCxGxFEDS/sBPgD8oMpiZmVVHnrOhdtxYKAAi4rfAjsVFMjOzqsk1wC3pBuAf0+cnsvmgt5mZbefy\nFIuzgXOB89Pn9wPfKyyRmZlVTp6zodYCV6UPMzPrhTLHLCR9SdJiSb/zFOVmZr1TnsNQ3wXGA0si\nIrI2NjOz7U+es6FeAp50oTAz673y9CwuBO6SdB+wduPKiPAYhplZL5GnWFwGvENyL4udio1jZmZV\nlKdY7B4RhxSexMzMKivPmMVdkr5QeBIzM6usPMXibODnktb41Fkzs94pz0V5AxoRxMzMqivPmAWS\nBgP/i2SQGwBPUW5m1nvkuZ/FmcBkYE/gMeAI4EHg6GKjmZlZVeQZs5gMHA68GBGfBz4JvNWdRiXt\nKekeSb+RtETS+en6wZLulrRU0kJJg7rTjpmZ1UeeYvFeRLwHIGnniHgGOKCb7bYBX4+Ig4EjgXMl\nHQhMAZoj4gDgHmBqN9sxM7M6yDNm8bKkXYF/Bn4h6U3gxe40GhErgZXp8juSniY5zHUC8Ll0s7lA\nC0kBMTOzEuU5G+pP0sXpku4FBgE/r1cASSOAQ4FfA0MjojVtd6WkIfVqx8zMui7X2VAbRcR99Wxc\n0oeBnwKT0x5G+8kKO5y8cPr06R8sNzU10dTUVM9oZmY9XktLCy0tLXV5r20qFvUkqS9JobglIuan\nq1slDY2IVknDgFc7+v7aYmFmZltq/4f0jBkzuvxeeQa4i3Ij8FREzKpZtwA4NV0+BZjf/pvMzKzx\nSulZSDoKOBFYImkxyeGmbwAzgdsknU4yiD6hjHxmZra5UopFRPwK6NPBy8c2MouZmWUr8zCUmZn1\nEC4WZmaWycXCzMwyuViYmVkmFwszM8vkYmFmZplcLMzMLJOLhZmZZXKxMDOzTC4WZmaWycXCzMwy\nuViYmVkmFwszM8vkYmFmZplcLMzMLJOLhZmZZXKxMDOzTC4WZmaWycXCzMwyuViYmVkmFwszM8vk\nYmFmZplcLMzMLJOLhZmZZXKxMDOzTC4WZmaWqW/ZAXqbRUtfa2h7f/fQmw1t77LTDm9oe2bWGO5Z\nmJlZJhcLMzPL5GJhZmaZXCzMzCyTi4WZmWVysTAzs0w+dXY796tFzzS0vfOWPt7Q9q694syGtmfW\nW7lnYWZmmSpZLCSNlvSMpN9KuqjsPGZmvV3lioWkHYBrgeOAg4GJkg4sN1U+zz70n2VH2MJbK54u\nO8IWVixfWnaELbS0tJQdYQtVzATez/Oq4n7eHZUrFsCngGUR8WJErANuBU4oOVMuz1XxP9Er/k+U\nRxU/mKuYCbyf51XF/bw7qlgs9gBeqnn+crrOzMxKUsViYWZmFaOIKDvDZiQdAUyPiNHp8ylARMTM\nmm2qFdrMrIeICHXl+6pYLPoAS4FjgP8GFgETI6J6ByXNzHqJyl2UFxHrJZ0H3E1ymOwHLhRmZuWq\nXM/CzMyqp0cMcEsaLOluSUslLZQ0qJNtd5D0qKQFZWeStKekeyT9RtISSecXlCXzIkZJV0taJukx\nSYcWkWNbc0maJOnx9PGApN8vO1PNdodLWidpfBUySWqStFjSk5LuLTuTpIGSFqT70xJJpzYg0w8k\ntUp6opNtGrqfZ2UqaR/P/D2l223bPh4RlX8AM4EL0+WLgCs62fZvgH8EFpSdCRgGHJouf5hkLObA\nOufYAXgWGA7sCDzWvg3gi8C/psufBn7dgH+zPLmOAAaly6OLzpUnU812/w7cCYwvOxMwCPgNsEf6\n/KMVyDQVuHxjHuANoG/BuT4LHAo80cHrZeznWZkauo/nyVTzb7xN+3iP6FmQXJQ3N12eC4zb2kaS\n9gTGADdUIVNErIyIx9Lld4Cnqf81I3kuYjwBuDnN8Z/AIElD65xjm3NFxK8jYlX69NcUfz1N3gs+\nvwb8FHi14Dx5M00C7oiIFQAR8XoFMgUwIF0eALwREW1FhoqIB4DObirf8P08K1MJ+3ie3xN0YR/v\nKcViSES0QvIBDAzpYLvvABeQ7MhVyQSApBEk1b7el7/muYix/TYrtrJNvW3rxZVnAv9WaKIcmSTt\nDoyLiOuALp1iWO9MwP7AbpLulfSQpJMrkOla4CBJrwCPA5MLzpRHGfv5tmjEPp6pq/t4Zc6GkvQL\noPavAJF86H9zK5tvUQwkjQVaI+IxSU3U4T96dzPVvM+HSar45LSHYTUkfR44jaT7XLbvkhxW3KgR\nBSNLX+Aw4GhgF+BBSQ9GxLMlZjoOWBwRR0vaF/iFpFHev7due9jHK1MsIuKPO3otHawZGhGtkoax\n9a7TUcDxksYAHwIGSLo5Iv6yxExI6ktSKG6JiPldzdKJFcDeNc/3TNe132avjG3KyIWkUcAcYHRE\nZHWdG5HpD4FbJYnkWPwXJa2LiKJOmMiT6WXg9Yh4D3hP0i+BT5CMK5SV6TTgcoCIeE7S88CBwMMF\nZcqjjP08U4P38Ty6to8XPdhSpwGbmcBF6XKnA9zpNp+jMQPcmZlIjqFeVWCOPmwajNyJZDByZLtt\nxrBp4O8IGjPIlifX3sAy4IgG7UeZmdptfxPFD3Dn+T0dCPwi3bY/sAQ4qORMs4Fp6fJQksM/uzXg\n33AEsKSD1xq+n+fI1NB9PE+mdtvl3scbFr6bP/huQDPJ2UR3A7um6z8G3LmV7RtRLDIzkfR21qf/\n2RYDj5L8dVHvLKPTHMuAKem6/wP8Vc0216YfAI8DhzXo363TXMD3Sc6ieTT9/SwqO1O7bW8sulhs\nw7/f35KcEfUE8LWyM6X7+cI0zxMksywUnenHwCvAWmA5Se+m1P08K1NJ+3jm76lm29z7uC/KMzOz\nTD3lbCgzMyuRi4WZmWVysTAzs0wuFmZmlsnFwszMMrlYmJlZJhcLszqT9GVJF9bpvd6ux/uYdZev\nszDrAkl9ImJ9A9pZHREDi27HLIt7FtarSeov6c70xkJPSJog6XlJu6Wv/8HGmw1JmibpZkn3A7dI\nelDSyJr3ulfSYZJOkXRNeoOgF9q1tVxSH0kfl/Rv6Syy90naP91mhKT/SG+Wc2ljfxtmHXOxsN5u\nNLAiIj4ZEaOAn7PlDMK1z0cCx0TEJJL7PPw5QDqZ5LCIeHTj90TEamCxpM+l674E/DztkcwBzouI\nw0mm1b8u3WYWMDsiPgH8dz1/ULPucLGw3m4J8MeSLpf02fQDvrMpmxdExPvp8u3AV9LlCSSzC7d3\nG2lBAf4CmCdpF+AzwO2SFgPXs2kq/KNIihDALV35gcyKUJkpys3KEBHLJB1GMmPppZLuAdax6Q+p\nfu2+5d2a731F0hvpfZX/nGSytvYWAJdJGkxyT4p7SG6x+2ZEHLa1SGzqyVThXhpmgHsW1stJ+hiw\nJiJ+DPwDyQf6CyRz/sOmnkNH5gEXAgMj4sn2L0bEuyT3eJhFMhtxRMTbwPOS/rQmx6h08VfAxHT5\nxC79UGYFcLGw3u73gUXp4aBLgEuBvwdmSVoEZN1X+g6SXsW8TraZR/LBf2vNuhOBMyQ9JulJ4Ph0\n/V8D50p6nGQacLNK8KmzZmaWyT0LMzPL5GJhZmaZXCzMzCyTi4WZmWVysTAzs0wuFmZmlsnFwszM\nMrlYmJlZpv8PBE6Y5/68UeMAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -524,7 +638,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -532,7 +646,6 @@ } ], "source": [ - "female = train[train.Sex == 'female']\n", "hist = thinkstats2.Hist(female[train.Pclass == 1].Survived)\n", "hist1 = thinkstats2.Hist(female[train.Pclass == 2].Survived)\n", "hist2 = thinkstats2.Hist(female[train.Pclass == 3].Survived)\n", @@ -545,7 +658,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 400, "metadata": { "collapsed": false }, @@ -554,7 +667,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH6JJREFUeJzt3XuYFeWV7/Hvj7uIIsZ4A22NRgWNo86AiSYnrTGCl6ij\nhEEiJ95mYoz3ExVygrSaxEsSM96j8RJMdMDoyQjGgDLaiYZEjKKCKKKPgBIhqAgaEbms88cucNt0\ndxXNrr0L+vd5nn669rvfXbWqKXr1W29VLUUEZmZmrelQ6wDMzKz4nCzMzCyVk4WZmaVysjAzs1RO\nFmZmlsrJwszMUuWaLCR1lfSkpGmSpksanbT3kvSwpFmSJknqWfaZkZJmS3pR0uF5xmdmZtko7/ss\nJHWPiA8kdQT+BJwDnAC8HRFXS7oY6BURIyT1A+4G+gN9gMnAZ8M3g5iZ1VTup6Ei4oNksSvQCQjg\nWGBM0j4GOC5ZPgYYGxErI2IOMBsYkHeMZmbWutyThaQOkqYBC4BHIuIpYLuIWAgQEQuAbZPuvYHX\nyz4+P2kzM7MaqsbIYnVE7E/ptNIASXtTGl18olvecZiZWdt1qtaGImKppEZgELBQ0nYRsVDS9sDf\nk27zgZ3KPtYnafsESU4uZmZtEBFqy+dyneCWtA2wIiKWSNoMmARcCXwZeCcirmphgvtASqefHqGZ\nCW5JFZvzvmbGKxVZD8Ckm65j4JnnVGx9lbD0vl/T0NBQ6zA+oaGhwTFlUMSYoJhxOaZsJLU5WeQ9\nstgBGCOpA6VTXuMi4iFJfwHulXQqMBcYAhARMyXdC8wEVgBn+kooM7PayzVZRMR04IBm2t8BDmvh\nM1cAV+QZl5mZrR/fwV1Bu/U/sNYhrKO+vr7WIazDMWVTxJigmHE5pvzlflNeHoo6Z1FEF+yze61D\nMLOCKPKchZlZq3bZZRfmzp1b6zA2KXV1dcyZM6ei63SyMLOamjt3LhvjGY4ik9o0eGiV5yzMzCyV\nk4WZmaVysjAzs1ROFmZmbTBmzBi+9KUv1TqMqvEEt5kVzlkjbst1/TdceXpF1pPHRHJLbrzxRn75\ny18yffp0hg0bxh133FG1bYOThZnZRqF3796MGjWKSZMmsWzZsqpv36ehzMxa8cYbb3DCCSew7bbb\n8ulPf5pzzmn+YaHnnXceO++8Mz179qR///488cQTa9976qmn6N+/Pz179mSHHXbgu9/9LgDLly9n\n+PDhbLPNNvTq1YsDDzyQRYsWNbv+4447jmOOOYatt9668juZgZOFmVkLVq9ezdFHH82uu+7KvHnz\nmD9/PkOHDm2274ABA3j++edZvHgxw4YN4+tf/zofffQRAOeeey7nnXceS5Ys4dVXX2XIkCFAad5j\n6dKlzJ8/n3feeYef//znbLbZZlXbv/XhZGFm1oKpU6fy5ptvcvXVV9OtWze6dOnCQQcd1GzfYcOG\nsdVWW9GhQwfOP/98li9fzqxZswDo0qULr7zyCm+//Tbdu3dnwIBStejOnTvz9ttv8/LLLyOJ/fff\nnx49elRt/9aHk4WZWQtef/116urq6NAh/VflT37yE/r160evXr3o1asXS5cu5a233gLg9ttvZ9as\nWey1114ceOCB/O53vwNg+PDhDBw4kKFDh9KnTx9GjBjBqlWrct2ntnKyMDNrwU477cS8efNYvXp1\nq/0ef/xxfvzjH3PfffexePFiFi9ezJZbbrn2MSa77bYb99xzD4sWLeKiiy5i8ODBLFu2jE6dOjFq\n1CheeOEFpkyZwoQJE7jrrruqsWvrzcnCzKwFAwYMYIcddmDEiBF88MEHLF++nClTpqzT7/3336dz\n58586lOf4qOPPuKyyy7jvffeW/v+3XffvXaU0bNnTyTRoUMHGhsbmTFjBqtXr6ZHjx507ty5xVHM\nqlWr+PDDD1m1ahUrV65k+fLlVR2F+NJZMyucSt0HsaE6dOjAhAkTOPvss9l5553p0KEDw4YNW2fe\nYuDAgQwcOJA99tiDHj16cP7557PTTjutfX/ixIlccMEFLFu2jLq6OsaNG0fXrl1ZsGABZ5xxBvPn\nz6dHjx4MHTqU4cOHNxvLD37wAy699NK193bcfffdjB49mksuuSS/H0AZ17NwPQuzmkpqLNQ6jE1K\nSz/TDaln4dNQZmaWysnCzMxSOVmYmVkqJwszM0vlZGFmZqmcLMzMLJWThZmZpXKyMDOzVE4WZmZt\n4LKqZmY19n/vfCrX9f/wlP4VWU+1yqp+9NFHnHnmmUyePJnFixez22678aMf/YhBgwZVZfuQ88hC\nUh9Jj0p6QdJ0SWcn7aMlvSHpmeRrUNlnRkqaLelFSYfnGZ+Z2cZg5cqV7Lzzzjz++OMsWbKEyy+/\nnCFDhjBv3ryqxZD3aaiVwAURsTfwBeAsSXsl710TEQckXxMBJPUFhgB9gSOAm1TNiuhmZk0Uoaxq\n9+7dueSSS9Y+nPCoo45i11135emnn85hj5uXa7KIiAUR8Wyy/D7wItA7ebu5JHAsMDYiVkbEHGA2\nMCDPGM3MWlLUsqoLFy5k9uzZ7L333pXb2RRVm+CWtAuwH/Bk0nSWpGcl3SapZ9LWG3i97GPz+Ti5\nmJlVVRHLqq5cuZKTTjqJk08+mT322KOyO9yKqiQLST2A+4BzkxHGTcBnImI/YAHw02rEYWa2PopW\nVjUiOOmkk+jatSvXX399ZXYyo9yvhpLUiVKi+FVEPAAQEeUn5X4BTEiW5wM7lb3XJ2lbR0NDw9rl\n+vp66uvrKxazmRl8sqxqawljTVnVxx57jH79+gGw9dZbr1NWFeD+++9n8ODBvPPOO2y22WaMGjWK\nUaNGMW/ePI444gj23HNPTjnllGa3c9ppp/HWW2/x0EMP0bFjx9T4GxsbaWxsXM+9bl41Lp29A5gZ\nEdeuaZC0fUQsSF4eD8xIlscDd0v6GaXTT7sDU5tbaXmyMDPLQ3lZ1YaGBjp27MjTTz+9zqmopmVV\nr7zyynXKqg4cOJBtttlmnbKq22yzDf369Ustq3rGGWfw0ksvMXnyZLp06ZIp/qZ/SF966aXr/0NI\n5JosJB0MfAOYLmkaEMD3gGGS9gNWA3OAbwFExExJ9wIzgRXAmRUriWdmG41K3QexoYpSVnXevHnc\neuutdOvWje222w4o3eNxyy23cOKJJ+b7Q0i4rKrLqprVlMuqVp7LqpqZWU04WZiZWSonCzMzS+Vk\nYWZmqZwszMwslZOFmZmlcrIwM7NUThZmZpbKycLMrA1cVtXMrMbyfrJCpZ5sUM3abMOHD2fy5Mks\nW7aM7bffngsvvJDTTjutatv3yMLMbCMwcuRIXnvtNd59913Gjx/P97//faZNm1a17TtZmJm1oghl\nVQH69etHt27dgFJdC0m8+uqrFd7bljlZmJm1oGhlVb/zne+w+eab07dvX3bccUeOPPLIyu90C1KT\nhaTNJXVIlveQdIykzvmHZmZWW0Urq3rjjTfy/vvv88QTT3D88cfTtWvXyu90C7KMLP4IdJPUG3gY\nGA78Ms+gzMyKoGhlVaE0qX7QQQfx+uuvc/PNN2/4TmaUJVkoIj6gVNHupoj4OrB3vmGZmdVeeVnV\n1qwpq3rfffexePFiFi9ezJZbbrlOWdVFixZx0UUXMXjwYJYtW0anTp0YNWoUL7zwAlOmTGHChAnc\nddddmWJbuXJl4eYsJOkLlCre/S5pSy/+ama2kSsvq/rBBx+wfPlypkyZsk6/pmVVL7vssnXKqq4Z\nZTQtqzpjxgxWr17dalnVRYsWMW7cOP7xj3+wevVqJk2axNixYznssMPy2/kmstxncR4wEvhtRLwg\n6TPAY/mGZWbtWVEqPBalrKokbr75Zr797W+zevVq6urquPbaaznqqKNy/xmsjWF9yhkmE909ImJp\nfiFlisNlVTMqyn86s5a4rGrl1aSsqqR7JG0paXNgBjBT0oVt2ZiZmW2cssxZ9EtGEscBvwd2pXRF\nlJmZtRNZkkXn5L6K44DxEbEC8JjRzKwdyZIsbgHmAJsDf5RUB9R0zsLMzKor9WqoiLgOuK6saa6k\nQ/ILyczMiibTI8olHUXpRrxuZc2X5RKRmZkVTmqykPRzoDtwCHAbMBiYmnNcZtZO1NXVVbUuRHtQ\nV1dX8XVmGVkcFBH7Sno+Ii6V9FNKV0WZmW2wOXPm1DoEyyDLBPey5PsHknYEVgA75BeSmZkVTZaR\nxYOStgJ+DDxD6bLZ23KNyszMCiV1ZBERl0fEuxFxP1AH7BURo7KsXFIfSY9KekHSdEnnJO29JD0s\naZakSZJ6ln1mpKTZkl6UdHhbd8zMzCqnxZGFpONbeY+I+H8Z1r8SuCAinpXUA3ha0sPAKcDkiLha\n0sWUHlQ4QlI/YAjQF+gDTJb02Yo9CMrMzNqktdNQX2vlvQBSk0VELAAWJMvvS3qRUhI4Fvhy0m0M\n0AiMAI4BxkbESmCOpNnAAODJtG2ZmVl+WkwWEXFKJTckaRdgP+AvwHYRsTDZzgJJ2ybdegN/LvvY\n/KTNzMxqKMt9Fj8Cro6Id5PXvYD/ExHfz7qR5BTUfcC5yQij6Wml9T7N1NDQsHa5vr6e+vr69V2F\nmdkmrbGxkcbGxoqsK7WehaRpEbF/k7ZnIuKATBuQOgEPAr+PiGuTtheB+ohYKGl74LGI6CtpBBAR\ncVXSbyIwOiKebLJO17PIyPUszGyNXOtZAB0ldS3b2GZA11b6N3UHMHNNokiMB05Olr8JPFDWPlRS\nF0m7Arvju8XNzGouy30WdwP/I+nO5PUplCalU0k6mFLt7umSplE63fQ94CrgXkmnAnMpXQFFRMyU\ndC8wk9LNf2f6Sigzs9rLVFZV0iBgTWXwRyJiUq5Rpcfj01AZ+TSUma2xIaehMj11NiImAhPbsgEz\nM9v4ZZmzMDOzds7JwszMUjlZmJlZqiw35R0MNFB6iGAnQJTuhfhMvqGZmVlRZJngvh04H3gaWJVv\nOGZmVkRZksWSiHBlPDOzdixLsnhM0o8pPWV2+ZrGiHgmt6jMzKxQsiSLA5Pv/1LWFsChlQ/HzMyK\nKDVZRMQh1QjEzMyKq7VKeSdFxK8lXdDc+xFxTX5hmZlZkbQ2stg8+b5FNQIxM7Piaq1S3i3J90ur\nF46ZmRWR7+A2M7NUThZmZpbKycLMzFJleTZUV+AEYJfy/hFxWX5hmZlZkWS5Ke8BYAmlZ0MtT+lr\nZmaboCzJok9EDMo9EjMzK6wscxZTJH0u90jMzKywsowsvgicLOk1Sqeh1tSz2DfXyMzMrDCyJIsj\nco/CzMwKLfU0VETMBXYCDk2WP8jyOTMz23Sk/tKXNBq4GBiZNHUGfp1nUGZmVixZRgj/ChwD/AMg\nIv6GHy5oZtauZEkWH0VEUCp4hKTNU/qbmdkmJkuyuFfSLcBWkv4dmAz8It+wzMysSLJUyvuJpK8C\nS4E9gUsi4pHcIzMzs8LIdFVTkhwuB34EPC1p6yyfk3S7pIWSni9rGy3pDUnPJF+Dyt4bKWm2pBcl\nHb6e+2JmZjnJ8iDBbwGXAh8Cq0luygM+k2H9dwLXA3c1ab+maVlWSX2BIUBfoA8wWdJnk/kSMzOr\noSw35X0X2Cci3lrflUfEE5LqmnlLzbQdC4yNiJXAHEmzgQHAk+u7XTMzq6wsp6FepXQjXiWdJelZ\nSbdJ6pm09QZeL+szP2kzM7MayzKyGEnpYYJPUvaI8og4p43bvAm4LCJC0g+AnwKnr+9KGhoa1i7X\n19dTX1/fxnDMzDZNjY2NNDY2VmRdSpsSkDQVeAKYTmnOAoCIGJNpA6XTUBOae/Bg+XuSRpRWG1cl\n700ERkfEOqehJFVsKuOaGa9UZD1FdcE+u9c6BDMrCElERHPTAKmyjCw6R8QFbVl5QpTNUUjaPiIW\nJC+PB2Yky+OBuyX9jNLpp92BqRuwXTMzq5AsyeL3kv4DmMAnT0O9k/ZBSfcA9cCnJM0DRgOHSNqP\n0ihlDvCtZH0zJd0LzARWAGf6Sigzs2LIchrqtWaaIyKyXDqbC5+Gys6nocxsjVxPQ0XErm1ZsZmZ\nbTpcl8LMzFI5WZiZWaoWk4Wkg5PvXasXjpmZFVFrI4vrku9/rkYgZmZWXK1NcK+QdCvQW9J1Td/c\ngDu4zcxsI9NasjgaOAwYCDxdnXDMzKyIWkwWyVNmx0p6MSKeq2JMZmZWMFmuhnpb0m8l/T35ul9S\nn9wjMzOzwsiSLO6k9NymHZOvCUmbmZm1E1mSxbYRcWdErEy+fgl8Oue4zMysQLIki7cknSSpY/J1\nEvB23oGZmVlxZEkWp1Kqjb0AeBMYDJySZ1BmZlYsWR4kOBc4pgqxmJlZQfnZUGZmlsrJwszMUqUm\nC0nr1LNors3MzDZdWUYW9zfTdl+lAzEzs+JqcYJb0l7A3kBPSceXvbUl0C3vwMzMrDhauxpqT0oP\nE9wK+FpZ+3vAv+cZlJmZFUtrDxJ8AHhA0hciwjUtzMzasdT7LIBXJH0P2KW8f0ScmldQZmZWLFmS\nxQPA48BkYFW+4ZiZWRFlSRbdI+Li3CMxM7PCynLp7IOSjsw9EjMzK6wsyeJcSgljmaSlkt6TtDTv\nwMzMrDiyPEhwi2oEYmZmxZWaLCT9r+baI+KPlQ/HzMyKKMsE94Vly92AAcDTwKFpH5R0O6Ub+xZG\nxL5JWy9gHFAHzAGGRMSS5L2RlOpnrATOjYiHM++JmZnlJnXOIiK+Vvb1VWAfYHHG9d8JDGzSNgKY\nHBF7Ao8CIwEk9aNUZKkvcARwkyRl3I6ZmeWoLY8of4PSL/RUEfEE6yaWY4ExyfIY4Lhk+RhgbFLn\new4wm9IoxszMaizLnMX1QCQvOwD7Ac9swDa3jYiFABGxQNK2SXtvoPyxIvOTNjMzq7EscxZ/LVte\nCfxXRPypgjFEepd1NTQ0rF2ur6+nvr6+QuGYmW0aGhsbaWxsrMi6FJH+u1pSF2CP5OWsiFiReQNS\nHTChbIL7RaA+IhZK2h54LCL6ShoBRERclfSbCIyOiCebWWdkiTuLa2a8UpH1FNUF++xe6xDMrCAk\nERFtmgvOUimvntL8wY3ATcDLLV1O29Iqkq81xgMnJ8vfpPTsqTXtQyV1SSrx7Q5MXY/tmJlZTrKc\nhvopcHhEzAKQtAfwX8A/p31Q0j1APfApSfOA0cCVwG8knQrMpXQFFBExU9K9wExgBXBmxYYPZma2\nQbIki85rEgVARLwsqXOWlUfEsBbeOqyF/lcAV2RZt5mZVU+mCW5JtwG/Tl5/g09OepuZ2SYuS7L4\nNvAd4Jzk9eOU5i7MzKydyHQ1VNFszFdDTZ21qKrb221plr8HKueHp/Sv6vbMLLu8r4Y6WtI0Se/4\nEeVmZu1Tlj87/xM4Hpjuq5PMzNqnLM+Geh2Y4URhZtZ+ZRlZXAQ8JOkPwPI1jRFxTW5RmZlZoWRJ\nFj8E3qdUy6JLvuGYmVkRZUkWO0bEPrlHYmZmhZVlzuIhSYfnHomZmRVWlmTxbWCipGW+dNbMrH1K\nPQ0VEVtUIxAzMyuuTLf3SuoFfJbSJDcAEfHHvIIyM7NiyVJW9XTgXKAP8CzweUrlTw/NNzSrhD9N\nfamq2ztr1nNV3d4NV55e1e2ZtVdZ5izOBfoDcyPiEGB/4N1cozIzs0LJkiw+jIgPASR1jYiXgD3z\nDcvMzIoky5zFG5K2Av4beETSYkoV7szMrJ3IcjXUvyaLDZIeA3oCE3ONyszMCmW9ih1ExB/yCsTM\nzIory5yFmZm1c04WZmaWysnCzMxSOVmYmVkqJwszM0vlZGFmZqmcLMzMLJWThZmZpXKyMDOzVOt1\nB3clSZoDLAFWAysiYkBSN2McUAfMAYZExJJaxWhmZiW1HFmsBuojYv+IGJC0jQAmR8SewKPAyJpF\nZ2Zma9UyWaiZ7R8LjEmWxwDHVTUiMzNrVi2TRVB65PlTSTU+gO0iYiFARCwAtq1ZdGZmtlbN5iyA\ngyPiTUmfBh6WNItSAinX9LWZmdVAzZJFRLyZfF8k6b+BAcBCSdtFxEJJ2wN/b+nzDQ0Na5fr6+up\nr6/PN2Azs41MY2MjjY2NFVmXIqr/x7uk7kCHiHhf0ubAw8ClwFeAdyLiKkkXA70iYkQzn49KxX3N\njFcqsp6sps5aVNXtLZhc3f3bp+fyqm7vhitPT+9kZgBIIiLUls/WamSxHfBbSZHEcHdEPCzpr8C9\nkk6lVLp1SI3iM9ukVPuPomq7YJ/dax3CJq8mySIiXgP2a6b9HeCw6kdkZhuzs0bcVusQclWEEbTv\n4DYzs1ROFmZmlsrJwszMUjlZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAzs1ROFmZmlsrJ\nwszMUjlZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAzs1ROFmZmlsrJwszMUjlZmJlZqk61\nDsDMNj1TZy2q6vYWLOla1e3t03N5VbdXBB5ZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAz\ns1ROFmZmlqqQyULSIEkvSXpZ0sW1jsfMrL0rXLKQ1AG4ARgI7A2cKGmv2kaVzStPPVnrENbx7vwX\nax3COubPm1XrENbR2NhY6xDWUcSYwMd5VkU8zjdE4ZIFMACYHRFzI2IFMBY4tsYxZfJqEf8T/c3/\nibIo4i/mIsYEPs6zKuJxviGKmCx6A6+XvX4jaTMzsxopYrIwM7OCUUTUOoZPkPR5oCEiBiWvRwAR\nEVeV9SlW0GZmG4mIUFs+V8Rk0RGYBXwFeBOYCpwYEcU7KWlm1k4U7hHlEbFK0lnAw5ROk93uRGFm\nVluFG1mYmVnxbBQT3JJ6SXpY0ixJkyT1bKVvB0nPSBpf65gk9ZH0qKQXJE2XdE5OsaTexCjpOkmz\nJT0rab884ljfuCQNk/Rc8vWEpM/VOqayfv0lrZB0fBFiklQvaZqkGZIeq3VMkraUND45nqZLOrkK\nMd0uaaGk51vpU9XjPC2mGh3jqT+npN/6HeMRUfgv4CrgomT5YuDKVvqeD/waGF/rmIDtgf2S5R6U\n5mL2qnAcHYBXgDqgM/Bs020ARwC/S5YPBP5ShX+zLHF9HuiZLA/KO64sMZX1+x/gQeD4WscE9ARe\nAHonr7cpQEwjgSvWxAO8DXTKOa4vAvsBz7fwfi2O87SYqnqMZ4mp7N94vY7xjWJkQemmvDHJ8hjg\nuOY6SeoDHAncVoSYImJBRDybLL8PvEjl7xnJchPjscBdSRxPAj0lbVfhONY7roj4S0QsSV7+hfzv\np8l6w+fZwH3A33OOJ2tMw4D7I2I+QES8VYCYAtgiWd4CeDsiVuYZVEQ8ASxupUvVj/O0mGpwjGf5\nOUEbjvGNJVlsGxELofQLGNi2hX4/Ay6kdCAXJSYAJO1CKdtX+vbXLDcxNu0zv5k+lba+N1eeDvw+\n14gyxCRpR+C4iLgZaNMlhpWOCdgD2FrSY5KekjS8ADHdAPST9DfgOeDcnGPKohbH+fqoxjGeqq3H\neGGuhpL0CFD+V4Ao/dL/fjPd10kGko4CFkbEs5LqqcB/9A2NqWw9PShl8XOTEYaVkXQIcAql4XOt\n/Sel04prVCNhpOkEHAAcCmwO/FnSnyPilRrGNBCYFhGHStoNeETSvj6+m7cpHOOFSRYR8dWW3ksm\na7aLiIWStqf5odPBwDGSjgQ2A7aQdFdE/O8axoSkTpQSxa8i4oG2xtKK+cDOZa/7JG1N++yU0qcW\ncSFpX+BWYFBEpA2dqxHTvwBjJYnSufgjJK2IiLwumMgS0xvAWxHxIfChpD8C/0RpXqFWMZ0CXAEQ\nEa9Keg3YC/hrTjFlUYvjPFWVj/Es2naM5z3ZUqEJm6uAi5PlVie4kz5fpjoT3KkxUTqHek2OcXTk\n48nILpQmI/s26XMkH0/8fZ7qTLJliWtnYDbw+SodR6kxNel/J/lPcGf5Oe0FPJL07Q5MB/rVOKYb\ngdHJ8naUTv9sXYV/w12A6S28V/XjPENMVT3Gs8TUpF/mY7xqwW/gjm8NTKZ0NdHDwFZJ+w7Ag830\nr0aySI2J0mhnVfKfbRrwDKW/Liody6AkjtnAiKTtW8B/lPW5IfkF8BxwQJX+3VqNC/gFpatonkl+\nPlNrHVOTvnfknSzW49/vu5SuiHoeOLvWMSXH+aQknucpPWUh75juAf4GLAfmURrd1PQ4T4upRsd4\n6s+prG/mY9w35ZmZWaqN5WooMzOrIScLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAzs1ROFmYVJulr\nki6q0Lreq8R6zDaU77MwawNJHSNiVRW2szQitsx7O2ZpPLKwdk1Sd0kPJoWFnpc0RNJrkrZO3v/n\nNcWGJI2WdJekx4FfSfqzpL5l63pM0gGSvinp+qRA0Jwm25onqaOkz0j6ffIU2T9I2iPps4ukKUmx\nnMur+9Mwa5mThbV3g4D5EbF/ROwLTGTdJwiXv+4LfCUihlGq8/BvAMnDJLePiGfWfCYilgLTJH05\naTsamJiMSG4FzoqI/pQeq39z0uda4MaI+CfgzUruqNmGcLKw9m468FVJV0j6YvILvrVHNo+PiI+S\n5d8AJyTLQyg9Xbipe0kSCjAUGCdpc+Ag4DeSpgG38PGj8A+mlIQAftWWHTLLQ2EeUW5WCxExW9IB\nlJ5YermkR4EVfPyHVLcmH/lH2Wf/JuntpK7yv1F6WFtT44EfSupFqSbFo5RK7C6OiAOaC4mPRzJF\nqKVhBnhkYe2cpB2AZRFxD/ATSr/Q51B65j98PHJoyTjgImDLiJjR9M2I+AelGg/XUnoacUTEe8Br\nkgaXxbFvsvgn4MRk+Rtt2imzHDhZWHv3OWBqcjroEuBy4DLgWklTgbS60vdTGlWMa6XPOEq/+MeW\ntX0DOE3Ss5JmAMck7ecB35H0HKXHgJsVgi+dNTOzVB5ZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZ\nmaVysjAzs1ROFmZmlsrJwszMUv1/eAValfv14SMAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -563,7 +676,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -571,7 +684,6 @@ } ], "source": [ - "male = train[train.Sex == 'male']\n", "hist = thinkstats2.Hist(male[train.Pclass == 1].Survived)\n", "hist1 = thinkstats2.Hist(male[train.Pclass == 2].Survived)\n", "hist2 = thinkstats2.Hist(male[train.Pclass == 3].Survived)\n", @@ -591,6 +703,326 @@ "Because of this correlation between age, gender, and class I will try to incorporate that into my model. " ] }, + { + "cell_type": "code", + "execution_count": 401, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.82379349046\n" + ] + } + ], + "source": [ + "predictors = [\"Pclass\", \"Sex\", \"AgeFill\", \"Fare\", \"Embarked\", \"NameLength\", \"FamilySize\", \"Title\"]\n", + "\n", + "# Initialize our algorithm with the default paramters\n", + "# n_estimators is the number of trees we want to make\n", + "# min_samples_split is the minimum number of rows we need to make a split\n", + "# min_samples_leaf is the minimum number of samples we can have at the place where a tree branch ends (the bottom points of the tree)\n", + "alg = RandomForestClassifier(random_state=1, n_estimators=10, min_samples_split=10, min_samples_leaf=5)\n", + "# Compute the accuracy score for all the cross validation folds. (much simpler than what we did before!)\n", + "scores = cross_validation.cross_val_score(alg, train[predictors], train[\"Survived\"], cv=3)\n", + "\n", + "# Take the mean of the scores (because we have one for each fold)\n", + "print(scores.mean())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before adding the new title column the mean was around 0.81, so it looks like my decision to add the column in was a good choice. Next, I will try adding columns to differentiate sex, age, and class, to see if that makes a difference. The weightings are based off of the probability of each section surviving based on the train results." + ] + }, + { + "cell_type": "code", + "execution_count": 402, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "train['SexClass'] = train['Sex']\n", + "\"\"\"train.loc[ (train.Sex == 0) & (train.Pclass == 1) & (train.AgeFill>30) & (train.AgeFill<60),'SexClass'] = 100\n", + "train.loc[ (train.Sex == 0) & (train.Pclass == 1) & ((train.AgeFill>10) & (train.AgeFill<30) | (train.AgeFill>60)),'SexClass'] = 25\n", + "train.loc[ (train.Sex == 0) & (train.Pclass == 1) & (train.AgeFill<10),'SexClass'] = 40\n", + "\n", + "train.loc[ (train.Sex == 0) & (train.Pclass == 2) & (train.AgeFill>30) & (train.AgeFill<60),'SexClass'] = 9\n", + "train.loc[ (train.Sex == 0) & (train.Pclass == 2) & (train.AgeFill>10) & (train.AgeFill<30),'SexClass'] = 8\n", + "train.loc[ (train.Sex == 0) & (train.Pclass == 2) & (train.AgeFill<10),'SexClass'] = 7\n", + "train.loc[ (train.Sex == 0) & (train.Pclass == 2) & (train.AgeFill>60),'SexClass'] = 6\n", + "\n", + "train.loc[ (train.Sex == 0) & (train.Pclass == 3) ,'SexClass'] = 5\n", + "\n", + "train.loc[ (train.Sex == 1) & (train.Pclass == 1) & (train.AgeFill>30) & (train.AgeFill<60),'SexClass'] = 4\n", + "train.loc[ (train.Sex == 1) & (train.Pclass == 1) & ((train.AgeFill>10) & (train.AgeFill<30) | (train.AgeFill>60)),'SexClass'] = 3\n", + "train.loc[ (train.Sex == 1) & (train.Pclass == 1) & (train.AgeFill<10),'SexClass'] = 20\"\"\"\n", + "\n", + "train.loc[ (train.Sex == 0) & (train.Pclass == 1) ,'SexClass'] = 5\n", + "train.loc[ (train.Sex == 0) & (train.Pclass == 2) ,'SexClass'] = 4\n", + "train.loc[ (train.Sex == 0) & (train.Pclass == 3) ,'SexClass'] = 3\n", + "train.loc[ (train.Sex == 1) & (train.Pclass == 1) ,'SexClass'] = 2\n", + "train.loc[ (train.Sex == 1) & (train.Pclass == 2) ,'SexClass'] = 1\n", + "train.loc[ (train.Sex == 1) & (train.Pclass == 3) ,'SexClass'] = 0\n", + "\n", + "test['SexClass'] = test['Sex']\n", + "\"\"\"test.loc[ (test.Sex == 0) & (test.Pclass == 1) & (test.AgeFill>30) & (test.AgeFill<60),'SexClass'] = 100\n", + "test.loc[ (test.Sex == 0) & (test.Pclass == 1) & ((test.AgeFill>10) & (test.AgeFill<30) | (test.AgeFill>60)),'SexClass'] = 25\n", + "test.loc[ (test.Sex == 0) & (test.Pclass == 1) & (test.AgeFill<10),'SexClass'] = 40\n", + "\n", + "test.loc[ (test.Sex == 0) & (test.Pclass == 2) & (test.AgeFill>30) & (test.AgeFill<60),'SexClass'] = 9\n", + "test.loc[ (test.Sex == 0) & (test.Pclass == 2) & (test.AgeFill>10) & (test.AgeFill<30),'SexClass'] = 8\n", + "test.loc[ (test.Sex == 0) & (test.Pclass == 2) & (test.AgeFill<10),'SexClass'] = 7\n", + "test.loc[ (test.Sex == 0) & (test.Pclass == 2) & (test.AgeFill>60),'SexClass'] = 6\n", + "\n", + "test.loc[ (test.Sex == 0) & (test.Pclass == 3) ,'SexClass'] = 5\n", + "\n", + "test.loc[ (test.Sex == 1) & (test.Pclass == 1) & (test.AgeFill>30) & (test.AgeFill<60),'SexClass'] = 4\n", + "test.loc[ (test.Sex == 1) & (test.Pclass == 1) & ((test.AgeFill>10) & (test.AgeFill<30) | (test.AgeFill>60)),'SexClass'] = 3\n", + "test.loc[ (test.Sex == 1) & (test.Pclass == 1) & (test.AgeFill<10),'SexClass'] = 20\"\"\"\n", + "\n", + "test.loc[ (test.Sex == 0) & (test.Pclass == 1) ,'SexClass'] = 5\n", + "test.loc[ (test.Sex == 0) & (test.Pclass == 2) ,'SexClass'] = 4\n", + "test.loc[ (test.Sex == 0) & (test.Pclass == 3) ,'SexClass'] = 3\n", + "test.loc[ (test.Sex == 1) & (test.Pclass == 1) ,'SexClass'] = 2\n", + "test.loc[ (test.Sex == 1) & (test.Pclass == 2) ,'SexClass'] = 1\n", + "test.loc[ (test.Sex == 1) & (test.Pclass == 3) ,'SexClass'] = 0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "This gave a slight improvement " + ] + }, + { + "cell_type": "code", + "execution_count": 447, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.821609710551\n" + ] + } + ], + "source": [ + "predictors = [\"Pclass\", \"Sex\", \"AgeFill\", \"Fare\", \"Embarked\", \"NameLength\", \"FamilySize\", \"Title\", \"SexClass\"]\n", + "\n", + "# Initialize our algorithm with the default paramters\n", + "# n_estimators is the number of trees we want to make\n", + "# min_samples_split is the minimum number of rows we need to make a split\n", + "# min_samples_leaf is the minimum number of samples we can have at the place where a tree branch ends (the bottom points of the tree)\n", + "alg = RandomForestClassifier(random_state=1, n_estimators=10, min_samples_split=2, min_samples_leaf=5)\n", + "# Compute the accuracy score for all the cross validation folds. (much simpler than what we did before!)\n", + "scores = cross_validation.cross_val_score(alg, train[predictors], train[\"Survived\"], cv=25)\n", + "\n", + "# Take the mean of the scores (because we have one for each fold)\n", + "print(scores.mean())" + ] + }, + { + "cell_type": "code", + "execution_count": 448, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "alg.fit(train[predictors], train['Survived'])\n", + "predictions = alg.predict(test[predictors])\n", + "submission = pd.DataFrame({\n", + " 'PassengerId': test['PassengerId'],\n", + " 'Survived': predictions\n", + " })" + ] + }, + { + "cell_type": "code", + "execution_count": 449, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.828371615313\n" + ] + } + ], + "source": [ + "alg = RandomForestClassifier(random_state=1, n_estimators=150, min_samples_split=4, min_samples_leaf=5)\n", + "# Compute the accuracy score for all the cross validation folds. (much simpler than what we did before!)\n", + "scores = cross_validation.cross_val_score(alg, train[predictors], train[\"Survived\"], cv=25)\n", + "\n", + "# Take the mean of the scores (because we have one for each fold)\n", + "print(scores.mean())" + ] + }, + { + "cell_type": "code", + "execution_count": 450, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAE2CAYAAACqSMMWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHCRJREFUeJzt3Xu0XHV99/H3J4kXLiZGJTlWkVsFAQGleHv0qaei1jtU\nBKVqAcGnXcvbo61K6qOJVK2laFVc2lqRxgst8FAEfEQihWnVVkEBQS6xFkW85LhQQYF6QT7PH3tP\nMjk558ycc2Znz2/yea01K3v27Ml8M2vymd/89m//frJNRESUYUnbBURExOAS2hERBUloR0QUJKEd\nEVGQhHZEREES2hERBekb2pL2lXS1pKvqP++Q9FpJKyVtkLRR0iWSVmyPgiMidmSazzhtSUuA7wFP\nAF4N/Nj2qZLeDKy0fXIzZUZEBMy/e+TpwH/ZvhU4Alhf718PHDnMwiIiYlvzDe0XA2fV26ttTwHY\n3gSsGmZhERGxrYFDW9J9gBcA59a7pver5Hr4iIiGLZvHsc8Gvmb7tvr+lKTVtqckTQA/mulJkhLm\nERELYFvT982ne+RY4B977l8IHF9vHwdcMMcLF3tbu3Zt6zXsqPWXXHvqb/9Wev2zGSi0Je1MdRLy\nn3t2/xXwDEkbgcOBdw/yd0VExMINFNq277a9m+2f9+z7ie2n297P9jNt395cme057bT3IWnkbhMT\ne7b91kREC+bTp71DuuuuOxjFc6xTU9t0dc1ocnKy2UIaVHLtkPrbVnr9s5nXxTULegHJTb9GkyQx\niqENmrPfKyLKJgkv8kRkRES0LKEdEVGQhHZEREES2hERBUloR0QUJKEdEVGQhHZEREES2hERBUlo\nR0QUJKEdEVGQhHZEREES2hERBUloR0QUJKEdEVGQhHZEREES2hERBUloR0QUJKEdEVGQhHZEREES\n2hERBUloR0QUZKDQlrRC0rmSbpR0vaQnSFopaYOkjZIukbSi6WIjInZ0g7a03w981vb+wCHATcDJ\nwKW29wMuA9Y0U2JERHTJ9twHSMuBq23vM23/TcBTbU9JmgA6th81w/Pd7zVGmSRgFOsXJb+vETE3\nSdjW9P2DtLT3Am6TdKakqyR9RNLOwGrbUwC2NwGrhltyRERMt2zAYw4FXmX7q5L+hqprZHozb9Zm\n37p16zZvT05OMjk5Oe9CIyLGWafTodPp9D1ukO6R1cB/2N67vv8UqtDeB5js6R65vO7znv78dI80\nIt0jEeNswd0jdRfIrZL2rXcdDlwPXAgcX+87DrhgOKVGRMRs+ra0ASQdAnwUuA9wM3ACsBQ4B9gd\nuAU4xvbtMzw3Le1GpKUdMc5ma2kPFNqLfOGEdiMS2hHjbDGjRyIiYkQktCMiCpLQjogoSEI7IqIg\nCe2IiIIktCMiCpLQjogoSEI7IqIgCe2IiIIktCMiCpLQjogoSEI7IqIgCe2IiIIktCMiCpLQjogo\nSEI7IqIgCe2IiIIktCMiCpLQjogoSEI7IqIgCe2IiIIktCMiCpLQjogoyLJBDpL0HeAO4F7g17Yf\nL2klcDawB/Ad4BjbdzRUZ0REMHhL+15g0vZjbT++3ncycKnt/YDLgDVNFBgREVsMGtqa4dgjgPX1\n9nrgyGEVFRERMxs0tA18XtKVkk6q9622PQVgexOwqokCIyJii4H6tIEn2/6hpN2ADZI2UgV5r+n3\nN1u3bt3m7cnJSSYnJ+dZZkTEeOt0OnQ6nb7HyZ41a2d+grQWuBM4iaqfe0rSBHC57f1nON7zfY1R\nIok5vo9aJEp+XyNibpKwren7+3aPSNpZ0q719i7AM4HrgAuB4+vDjgMuGFq1ERExo74tbUl7AedT\nNTeXAZ+y/W5JDwLOAXYHbqEa8nf7DM9PS7sRaWlHjLPZWtrz7h5ZwAsntBuR0I4YZwvuHomIiNGR\n0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKiIAntiIiC\nJLQjIgqS0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKi\nIAOHtqQlkq6SdGF9f6WkDZI2SrpE0ormyoyICJhfS/t1wA09908GLrW9H3AZsGaYhUVExLYGCm1J\nDweeA3y0Z/cRwPp6ez1w5HBLi4iI6QZtaf8N8EbAPftW254CsL0JWDXk2iIiYppl/Q6Q9FxgyvY1\nkibnONSzPbBu3brN25OTk0xOzvXXRETseDqdDp1Op+9xsmfN2uoA6V3Ay4B7gJ2ABwDnA4cBk7an\nJE0Al9vef4bnu99rjDJJzPF91CJR8vsaEXOThG1N39+3e8T2n9t+hO29gZcAl9l+OXARcHx92HHA\nBUOsNyIiZrCYcdrvBp4haSNweH0/IiIa1Ld7ZNEvkO6RhqR7JGKcLbh7JCIiRkdCOyKiIAntiIiC\nJLQjIgqS0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKi\nIAntiIiCJLQjIgqS0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKiIAntiIiC9A1tSfeT9BVJ\nV0u6TtLaev9KSRskbZR0iaQVzZcbEbFjk+3+B0k7275b0lLgS8BrgaOAH9s+VdKbgZW2T57huR7k\nNUaVJGAU6xclv68RMTdJ2Nb0/QN1j9i+u968H7CMKsWOANbX+9cDRw6hzoiImMNAoS1piaSrgU3A\n521fCay2PQVgexOwqrkyIyICqlZzX7bvBR4raTlwvqQD2bbPYNbf6uvWrdu8PTk5yeTk5LwLjYgY\nZ51Oh06n0/e4gfq0t3qC9FbgbuAkYNL2lKQJ4HLb+89wfPq0G5E+7YhxtuA+bUkP6Y4MkbQT8Azg\nRuBC4Pj6sOOAC4ZWbUREzGiQ7pGHAuslLaEK+bNtf1bSl4FzJL0CuAU4psE6IyKCBXSPzPsF0j3S\nkHSPRIyzRQ35i4iI0ZDQjogoSEI7IqIgCe2IiIIktCMiCpLQjogoSEI7IqIgCe2IiIIktCMiCpLQ\njogoSEI7IqIgCe2IiIIMtAjCYlWTLo2W1av3YNOm77RdRkTEvGyXWf5KniUvs/xFRBsyy19ExBhI\naEfEjCYm9kTSyN0mJvZs+61pVbpH+h2V7pHYQeWz3650j0REjIGEdkREQRLaEREFSWhHRBQkoR0R\nUZCEdkREQfqGtqSHS7pM0vWSrpP02nr/SkkbJG2UdImkFc2XGxGxY+s7TlvSBDBh+xpJuwJfA44A\nTgB+bPtUSW8GVto+eYbnZ5x2I3aMsarRnnz227Xgcdq2N9m+pt6+E7gReDhVcK+vD1sPHDm8ciMi\nYibz6tOWtCfwGODLwGrbU1AFO7Bq2MVFRMTWBp6ate4a+b/A62zfWXV7bGWO3yvrerYn61tERHR1\nOh06nU7f4waae0TSMuAzwMW231/vuxGYtD1V93tfbnv/GZ6bPu1G7Bj9etGefPbbtdi5Rz4G3NAN\n7NqFwPH19nHABYuqMCIi+hpk9MiTgX8DrqP62jXw58AVwDnA7sAtwDG2b5/h+WlpN2LHaG1Ee/LZ\nb9dsLe1MzdrvqHxwYweVz367MjVrRMQYSGhHRBQkoR0RUZCEdkREQRLaEREFSWhHRBQkoR0RUZCE\ndkREQRLaEREFSWhHRBQkoR0RUZCEdkREQRLaEREFSWjHyJqY2BNJI3mbmNiz7bcndlCZmrXfUZme\nsjWj+95D3v82jf97D5maNSJiLCS0IyIKktCOiChIQjsioiAJ7YiIgiS0IyIKktCOiChIQjsioiB9\nQ1vSGZKmJF3bs2+lpA2SNkq6RNKKZsuMiAgYrKV9JvD70/adDFxqez/gMmDNsAuLiIht9Q1t218E\nfjpt9xHA+np7PXDkkOuKiIgZLLRPe5XtKQDbm4BVwyspIiJms2xIf0+f2VvW9WxP1reIiOjqdDp0\nOp2+xw00y5+kPYCLbB9c378RmLQ9JWkCuNz2/rM8N7P8NWL8Zzob3fce8v63afzfe1j8LH+qb10X\nAsfX28cBFyyquoiIGEjflraks6j6Mx4MTAFrgU8D5wK7A7cAx9i+fZbnp6XdiPFvbYzuew95/9s0\n/u89zN7SziII/Y7KB7c1o/veQ97/No3/ew9ZBCEiYiwktCMiCpLQjogoSEI7IqIgCe2IiIIktCMi\nCpLQjogoSEI7IqIgCe2IiIIktCMiCpLQjogoSEI7IqIgCe2IiIIktCMiCpLQjogoSEI7IqIgCe2I\niIIktCMiCpLQjmjIxMSeSBrJ28TEnm2/PbFAWSOy31FZJ681o/vewyDvf+pvyvh/9iFrRO6wRrW1\nl5ZexMKkpd3vqMJbGyXXP7q1Q+pvU1rai/lLnyXpJknflPTmxfxdERHR34JDW9IS4IPA7wMHAsdK\netSwCouIWIxOp9N2CY1YTEv78cB/2r7F9q+BfwKOGE5ZERGLk9De1sOAW3vuf6/eFxERDcnokYgY\nS6ed9r7WR0k1MXJq2SKe+33gET33H17vm8E2J0BHQnV2fKAjG61joXaM+kezdkj9bRr8sz96pqZu\nWVT9Cx7yJ2kpsBE4HPghcAVwrO0bF1xNRETMacEtbdu/kfRqYANVN8sZCeyIiGY1fnFNREQMT05E\nRkQUJKEdEVGQxYwemZWkfYDv2f6lpEngYODjtm9v4vUiYnjqQQar6ckH299tr6Lo1UiftqRrgMOA\nPYHPAhcAB9p+ztBfbMgk/QXwdtv31PeXA++3fUK7lc1N0nXMPLuPANs+eDuXtCCqxkK9FNjb9imS\nHgFM2L6i5dLmJOki5phdyfYLtmM5CybpNcBaYAq4t95d0udnX+DDwGrbj5Z0MPAC2+9oubShaaSl\nDdxr+x5JfwCcbvt0SVc39FrDtgz4iqQTqFobHwROb7ekgTyv7QKG5ENUYfE04BTg58B5wOPaLGoA\np9V/vhCYAD5Z3z+WKgBL8TpgP9s/bruQBfp74I3A3wHYvlbSWUBCu49fSzoWOA54fr3vPg291lDZ\nXiPpUuArwE+B37X9rZbL6sv2LW3XMCRPsH1o90ve9k8l3bftovqx/a8Akt5j+7Cehy6S9NWWylqI\nW4E72i5iEXa2fcW0i1fuaauYJjQV2icAfwK80/a3Je0FfKKh1xoqSb8LfICqlXcQcLqkE23/oN3K\n5ibp58zdPbJ8O5e0UL+u+1QNIGk3tvxML8Eukva2fTNA/dnfpeWa+pL0hnrzZqAj6f8Bv+w+bvu9\nrRQ2f7fV59S6n58XUV38NzYaCW3bNwCvBZC0EniA7b9q4rUacBpwdP1vQNILgcuAkZ521vYD2q5h\nSD4AnA+skvRO4EXA/2m3pHl5PVXo3Uz1hbkH8MftljSQ7ufnu/XtvvUNRnMlhNm8CvgI8ChJ3we+\nDbys3ZKGq6kTkR3gBVRfCl8DfgR8yfYb5nreKJC01PZvpu178Kj38Ulabvtnkh400+O2f7K9a1qo\nel72w6lC719Ku9JW0v3Y8iV/k+1fznX8KJF0tO1z++0bdZJ2AZbY/nnbtQxbU6F9te3HSjoJ2N32\nWknXlnAGWtJq4F3Aw2w/S9IBwJNsn9FyaXOS9Bnbz5P0baqWUW+nnm3v3VJpA6u7Ra63PdK/auYi\naWfgDcAetl8p6ZFUJ/Y+03JpA5F0le1D++0bVZJ+A/w1sMZ1uJVU/yCa6tNeJumhwDHAWxp6jab8\nA3AmW+r+JnA2MNKhbft59Z97tV3LQtXz2WyU9IiCxwWfSfXr8kn1/e8D5wIjHdqSng08B3iYpA/0\nPLScsk7kXU910eAGSS+uf2GWOyXgDJq6IvIU4BLgW7avlLQ38J8NvdawPcT2OdQnv+rx2r+Z+ynt\nqyfv6m4f2GYti7QSuF7Sv0i6sHtru6h52Mf2qcCvAWzfTRmh8QPgq8AvqL50urcLqZYULMU9tt8E\nfBT4gqTfoaw++b6aOhF5LlXronv/ZuCoJl6rAXdJejBbzj4/kTKGQL2Cakw5VCN1Sv05+Na2C1ik\nX0naiS2fn33oGYUxqmx/Hfi6pLPq5QNLJQDbZ0u6HjiLref9L15Tl7HfHziRasHf+3f3235FE683\nZG+gal3sI+lLwG5UIxhKUkLLbkbd8c4FWwt8Dthd0qeAJwPHt1rR/FwlaXrL9A6qVvg7Rv2EPHBS\nd8P2NyT9T8Zs7dqm+rQ/AdxE9bPqFKrLkkd6BICkxwG32r5K0lOphmkdRTVf+PdaLW4wD6yvQF0C\nLK+HKm5m+5/bKWt+6l82pwP7Uw05WwrcVco4c9ufl3QV8ESqL8/X2b6t5bLm42Kq7sCz6vsvAXYG\nNlGd73n+zE9rl6Sn2b4M2EPSHtMevrONmprS9OiRa20fLOk+wBdsP3HoLzYk9X+0p9v+SX2BzT8B\nrwEeA+xve6Rb25LOnONhF/Irh/rqwZdQda8dBvwRsK/tNa0WNiBJp9h+W8/9JcAnbL+0xbIGNtfo\nEUnX2T6ordrmIunt9Si1mf4fFPP5H0Rjl7HXf94u6dFU39KrGnqtYVnaM5b5xcBHbJ8HnFdPgDXS\nRn1Cq/mw/a2e8fJn1pe0FxHaVN0ia2z/ZT1e+xyglHl3AJZKenx3gq76F+jS+rGRHUVie23959j8\nP5hNU6NHPlJfCflWqv7hG4BTG3qtYVkqqfsldjjVVZBdTX25DZ2k1ZLOkHRxff8ASSe2Xdc83F3P\nNXKNpFMlvZ6y5n1/BXCQpDXARUDH9rp2S5qXk4AzJH1b0neohrq+sr5Y5S9brWwOkp7f2y0i6W2S\nvl6PPip2GOxMstxYTdJbqMap3kZ1tvlQ25b028B6209utcAB1WF9JvAW24fUX0RXj+rP2unq/3hT\nVP3ZrwdWAB8a9Um7JPV2KdyHapa5L1GP77d9VRt1LZSkFQC2Sxg5haRrgSfavlvS84D3Us2w+Fiq\naSlKGrY4p6GGds+kMzMa9Uln6pNgDwU22L6r3rcvsGsp/+kkXWn7cd3zCvW+a2w/pu3a5lL4BTVI\nunyOh237adutmEWou3SOopoLv3cRhFPaqmkQkr5u+5B6+2PAxu58R7kicm5FT1pk+8sz7PtmG7Us\nQqnjzD9NPbZc0nm2SxnXD4Dt36tPOh5t++y261mEC6g+L1+jgPHlPSRpV+Buqu7ND/U8dv+Zn1Km\noYa27bcP8++LBSl1nHnv2PKRnydlJrbvlfRGqmkPSvVw289qu4gFeB9wDfAz4EbbXwWQ9FjGbGrW\nRk7wSFov6YE991fWP1miYXU3zlOB/0E11vxA29e2W9VAPMt2aS6V9GeSdpf0oO6t7aLm4d8lFXH+\no5ftj1F97k+kOjfVtYlqfv+x0eg47X77YvimX1RTuwO4zvaPtnc9g6pnZ7uLqsW9E9XPXChsEQdV\nsyxOV8QsiwCSbgB+m2oe6l9S3hqj51Gd/P2c7ZIWzxhYU0PZlkhaafunAHVLo5hhc4U7kWqGue6J\nsUmq/sm96gs/RnIFIdtL+x81+kqeZbH27LYLWKQPU7WsT5d0LnCm7Y0t1zRUTQXpe4AvSzqnvn80\n8M6GXiu2tozqCs4p2Dw/+MeBJwD/RiHLvpWsvqDsALaed+fj7VU0ONu3SHoK8EjbZ6pa7m3Xtusa\nlO1LqbqoVlAN+btU0q1UC/5+svDJsIAGx2mrWjygO8zpMtfLd0WzJN1g+4Ce+6JaWOCAdFE1T9Ja\nql83BwCfpWq5fnHUp0Hoqus/jGrhhn0l/RZwbinXKUC10hTVEmMvp5py9lPAU4CDbE+2WNpQDLWl\nXc/u9ydUfWLXAX9bz0cd209H0mfYMjXuUfW+XYDb2ytrh/Ei4BCqC5pOqH/pfLLlmubjD6guSLkK\nwPYPJBUzlFfS+cB+VL8on2+7O3Lk7Hpem+INu3tkPdW8I1+gamHsD/zvIb9GzO1VwAupWhZQTam5\nur5Y6Pdaq2rH8d/10L97JC2nWh9197aLmodf1VcCd8f5j/xK8tN8wPaMFzrZPmx7F9OEYYf2Ad3L\npSWdAVwx5L8/+qj/w91MNTXo0VSjAM5rt6odylfr4a5/T3UC+E7gP9otaV7OkfR3VFP9vpJqLpWP\ntlxTX72jpmYaQVXK1MSDGPZl7FtdLjpul4+Osvpy+2Pr221UF3j8me3pcwvHdiJpT2B5IePkN5P0\nDOCZVMP9LrH9+ZZL6muWKVm7xmpq1mGHdnesLWw93raosbYlknQvVbfUid3JlSTdXMr44HFSt/Se\nQnWR0Bdtn99ySYsi6UslnYgcd8O+jH0sxtoW6oVUiwdcLulzVIs4FLvsWKkkfYjqRPw/1rv+WNLT\nbb+qxbIWa+TXWJT0MtufnG3SulGfrG4+csHLmLD9aeDT9YmjI6hOAK+S9GHgfNsbWi1wx/E0qnHy\n3RN564Hr2y1p0UqYVqB7wrSYkS4Llfm0x5iqhSiOBl5s+/C269kR1MMtX2X7lvr+HsAHbY/k2opd\ns0x/ANWvtb+1vdv2rCdml9COGAJJF1G1SFcAj6MaOWWqK1GvGPWLOvqcyCtmGa96lZrXsO184C9o\nq6ZhS2hHDIGkp871uO1/3V617MgkfZ1qwqjrgM0TRo3T+5/QjmhAfWFNb0vvJ3McPjLqKzjfBfyW\n7WfX01E8yfYZLZc2EElfsf2EtutoUkI7Yogk/S/gFOAXVC297nDXIoZejsEao38IPBLYQM/KO6Us\nFziIjB6JGK43Ao+2fVvbhSzQQ2yfo2o1eWzfU19/UYqDqCaKehpbukfMlsnripfQjhiu/2LLAg4l\nKnWN0a6jgb1t/6rtQpqS0I4YrjVUS3Z9ha1/nr+2vZLmpdQ1Rru+ATyQaqKusZQ+7YghknQF8EW2\nHb2wvrWi5qnux96Pqj9+Y0kLB0jqAAcDV7L1l2aG/EXEtkpfaELSUuC5bDvOuYjLwGcbejlOQ/7S\nPRIxXBfXI0guYuuWXhFD/qjq/gXTfimUYpzCeTZpaUcM0Risxn5tKSuvz6Q+cXo61QIs9wWWAneN\n0wyjaWlHDNEYrMZ+saRnFjzB2AepZrs8l2qtyz8C9m21oiFb0nYBEeNA0pt6to+e9ti7tn9FC/Zl\n4HxJ/y3pZ5J+LulnbRc1H/V88ktt/8b2mcCz2q5pmBLaEcPxkp7tNdMeKyk03gs8CdjZ9nLbDyis\na+FuSfcFrpF0qqTXM2Y5N1b/mIgWaZbtme6PsluBb7jck10vp8q1V1OtorU7cFSrFQ1Z+rQjhsOz\nbM90f5TdDHTqOUh6R7+M9JA/SY+w/d3uPOZUI2De3mZNTUloRwzHIXXfr4CdevqBBdy/vbLm7dv1\n7b71rRSfBg4FkHSe7bFqXfdKaEcMwbisj2q71NZpbxdUEcMrFyqhHRGbSdoNeBNwID2/EGyP+ix5\nc3VPjZWciIyIXp8CbgL2ouoT/g7VPB6j7pDuEEXg4Hq7yCGL/eSKyIjYTNLXbP9O75WRkq60/bi2\na4tKukciold3Rr8fSnou8APgQS3WE9MktCOi1zskrQD+lGoOj+XA69stKXqleyQioiBpaUcEkt42\nx8O2/RfbrZiYU1raEYGkP51h9y7AicCDbe+6nUuKWSS0I2Irkh4AvI4qsM8B3mN7bNdcLE26RyIC\nAEkPolrY96XAeuBQ2z9tt6qYLqEdEUj6a+CFwEeAg2zf2XJJMYt0j0QEku6lmtXvHra+DFxUJyJL\nmlN7rCW0IyIKkrlHIiIKktCOiChIQjsioiAJ7YiIgiS0IyIK8v8BHhTDJw0IZYkAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.828371615313\n" + ] + } + ], + "source": [ + "# Perform feature selection\n", + "selector = SelectKBest(f_classif, k='all')\n", + "selector.fit(train[predictors], train[\"Survived\"])\n", + "\n", + "# Get the raw p-values for each feature, and transform from p-values into scores\n", + "scores = -np.log10(selector.pvalues_)\n", + "\n", + "# Plot the scores. See how \"Pclass\", \"Sex\", \"Title\", and \"Fare\" are the best?\n", + "plt.bar(range(len(predictors)), scores)\n", + "plt.xticks(range(len(predictors)), predictors, rotation='vertical')\n", + "plt.show()\n", + "\n", + "# Pick only the four best features.\n", + "#predictors = [\"Pclass\", \"Sex\", \"Fare\", \"Title\"]\n", + "\n", + "alg = RandomForestClassifier(random_state=1, n_estimators=150, min_samples_split=8, min_samples_leaf=5)\n", + "# Compute the accuracy score for all the cross validation folds. (much simpler than what we did before!)\n", + "scores = cross_validation.cross_val_score(alg, train[predictors], train[\"Survived\"], cv=25)\n", + "\n", + "# Take the mean of the scores (because we have one for each fold)\n", + "print(scores.mean())" + ] + }, + { + "cell_type": "code", + "execution_count": 460, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.820426487093\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/kiki/anaconda/lib/python2.7/site-packages/IPython/kernel/__main__.py:34: FutureWarning: in the future, boolean array-likes will be handled as a boolean array index\n" + ] + } + ], + "source": [ + "# The algorithms we want to ensemble.\n", + "# We're using the more linear predictors for the logistic regression, and everything with the gradient boosting classifier.\n", + "algorithms = [\n", + " [GradientBoostingClassifier(random_state=1, n_estimators=25, max_depth=3), [\"Pclass\", \"Sex\", \"AgeFill\", \"Fare\", \"Embarked\", \"FamilySize\", \"Title\", \"NameLength\", \"SexClass\"]],\n", + " [LogisticRegression(random_state=1), [\"Pclass\", \"Sex\", \"Fare\", \"FamilySize\", \"Title\", \"AgeFill\", \"Embarked\", \"NameLength\", \"SexClass\"]]\n", + "]\n", + "\n", + "# Initialize the cross validation folds\n", + "kf = KFold(train.shape[0], n_folds=3, random_state=1)\n", + "\n", + "predictions = []\n", + "for train1, test1 in kf:\n", + " train_target = train[\"Survived\"].iloc[train1]\n", + " full_test_predictions = []\n", + " # Make predictions for each algorithm on each fold\n", + " for alg, predictors in algorithms:\n", + " # Fit the algorithm on the training data.\n", + " alg.fit(train[predictors].iloc[train1,:], train_target)\n", + " # Select and predict on the test fold. \n", + " # The .astype(float) is necessary to convert the dataframe to all floats and avoid an sklearn error.\n", + " test_predictions = alg.predict_proba(train[predictors].iloc[test1,:].astype(float))[:,1]\n", + " full_test_predictions.append(test_predictions)\n", + " # Use a simple ensembling scheme -- just average the predictions to get the final classification.\n", + " test_predictions = (full_test_predictions[0] + full_test_predictions[1]) / 2\n", + " # Any value over .5 is assumed to be a 1 prediction, and below .5 is a 0 prediction.\n", + " test_predictions[test_predictions <= .5] = 0\n", + " test_predictions[test_predictions > .5] = 1\n", + " predictions.append(test_predictions)\n", + "\n", + "# Put all the predictions together into one array.\n", + "predictions = np.concatenate(predictions, axis=0)\n", + "\n", + "# Compute accuracy by comparing to the training data.\n", + "accuracy = sum(predictions[predictions == train[\"Survived\"]]) / len(predictions)\n", + "print(accuracy)" + ] + }, + { + "cell_type": "code", + "execution_count": 461, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "full_predictions = []\n", + "for alg, predictors in algorithms:\n", + " # Fit the algorithm using the full training data.\n", + " alg.fit(train[predictors], train[\"Survived\"])\n", + " # Predict using the test dataset. We have to convert all the columns to floats to avoid an error.\n", + " predictions = alg.predict_proba(test[predictors].astype(float))[:,1]\n", + " full_predictions.append(predictions)\n", + "\n", + "# The gradient boosting classifier generates better predictions, so we weight it higher.\n", + "predictions = (full_predictions[0] * 5 + full_predictions[1]) / 4\n", + "predictions[predictions <= .5] = 0\n", + "predictions[predictions > .5] = 1\n", + "predictions = predictions.astype(int)\n", + "submission = pd.DataFrame({\n", + " \"PassengerId\": test[\"PassengerId\"],\n", + " \"Survived\": predictions\n", + " })" + ] + }, + { + "cell_type": "code", + "execution_count": 462, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "submission.to_csv('kaggle.csv', index=False)" + ] + }, { "cell_type": "code", "execution_count": null, From 9266e171badc633e8122e0d03d98d233ee33297f Mon Sep 17 00:00:00 2001 From: Kiki Date: Tue, 2 Feb 2016 12:30:55 -0500 Subject: [PATCH 7/7] Finished warmup project --- model_iteration_2.ipynb | 141 ++++++++++++++++++++++++---------------- 1 file changed, 86 insertions(+), 55 deletions(-) diff --git a/model_iteration_2.ipynb b/model_iteration_2.ipynb index 2ab2936..d42fc5d 100644 --- a/model_iteration_2.ipynb +++ b/model_iteration_2.ipynb @@ -19,11 +19,20 @@ }, { "cell_type": "code", - "execution_count": 423, + "execution_count": 1, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/kiki/anaconda/lib/python2.7/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.\n", + " warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')\n" + ] + } + ], "source": [ "%matplotlib inline\n", "import pandas as pd\n", @@ -52,7 +61,7 @@ }, { "cell_type": "code", - "execution_count": 392, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -181,7 +190,7 @@ "max 6.000000 512.329200 " ] }, - "execution_count": 392, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -202,7 +211,7 @@ }, { "cell_type": "code", - "execution_count": 393, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -275,7 +284,7 @@ }, { "cell_type": "code", - "execution_count": 394, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -300,7 +309,7 @@ "dtype: int64" ] }, - "execution_count": 394, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -320,7 +329,7 @@ }, { "cell_type": "code", - "execution_count": 395, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -358,7 +367,7 @@ }, { "cell_type": "code", - "execution_count": 396, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -487,7 +496,7 @@ "max 10.000000 82.000000 " ] }, - "execution_count": 396, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -505,7 +514,7 @@ }, { "cell_type": "code", - "execution_count": 397, + "execution_count": 7, "metadata": { "collapsed": false }, @@ -531,7 +540,7 @@ }, { "cell_type": "code", - "execution_count": 398, + "execution_count": 8, "metadata": { "collapsed": false }, @@ -540,7 +549,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+sAAAFVCAYAAACXX35lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmYFOXV9/HvYRWQGYZtZmRgQHDDKGjUqGgc0YASlrgE\nAY2IXAS3KNHkFTSBwV0f3KOP4vagIoaICRJBcQkQNURJQBRcQGTYZBQGEFBxcM77RzfN7Gvv/ftc\n11x0V91Vdejuc1efrqq7zN0RERERERERkfjRKNYBiIiIiIiIiEhZKtZFRERERERE4oyKdRERERER\nEZE4o2JdREREREREJM6oWBcRERERERGJMyrWRUREREREROJMjcW6meWY2ZtmtsLMPjCzq4PTM8xs\nvpl9Ymavmll65MMVkXAysyfMrNDMlpeadpeZfWRmy8xslpmllZo3wcxWBef3i03UIlJfVeR8lftz\n5bxI8jGzRmb2XzN7qYr5DwTzfpmZ9Y52fCKyX22OrO8FrnX3I4GTgCvN7HBgPPC6ux8GvAlMiFyY\nIhIhTwH9y02bDxzp7r2BVQRz28x6AkOBI4CzgYfNzKIYq4g0XGU5X+n+XDkvkrSuAVZWNsPMzga6\nu/shwFjgkWgGJiJl1Visu/tmd18WfLwL+AjIAYYA04LNpgG/iFSQIhIZ7v4WsK3ctNfdvST4dDGB\nfAcYDDzv7nvdfS2BQv6EaMUqIg1XWc5T9f5cOS+SZMwsBxgAPF5FkyHA0wDu/m8g3cwyoxSeiJRT\np2vWzawr0JvAF/hMdy+EQEEPdAx3cCISc5cCc4OPOwHrS83bGJwmIomtYxX7c+W8SPK5F/g94FXM\nV96LxJFaF+tmdiDwAnBN8Ah7+SSvKulFJAGZ2Y1AsbvPiHUsIhJV2p+LJCEz+zlQGDxj1oJ/IhLH\nmtSmkZk1IVCoP+Pus4OTC80s090LzSwL+LKKZbXTFwkTd4/KjtXMLiFwmlzfUpM3Ap1LPc8JTqts\neeW9SJhEIe+r2p8r50ViIII53wcYbGYDgBZAazN72t0vLtVGeS8SA1Xlfa2KdeBJYKW7319q2kvA\nJcCdwEhgdiXL7dt4LTeTGPLz88nPz491GFKNZHyPIjiuU5lf183sLAKnyP3U3feUavcSMN3M7iVw\nSlwP4N2qVppMeZ+Mn6dklIzvU4TyvvwRtar25ymb85Ccn6dklGzvUyTHcHT3G4Abgts5DbiuXKEO\ngby/EvizmZ0IbN93mUwV64xUuFFnZpAf6yjC7B/A6bEOIszyk+tzB9XnfY3Fupn1AS4EPjCzpQRO\nj7uBwE59ppldChQQGDFWRBKImT0H5AHtzGwdMIlAfjcDXgt2Hovd/Qp3X2lmMwmMIFsMXOHJ1luK\nJLkqcv4O4C/l9+fKeZHUYGZjAXf3qe4+18wGmNlqYDcwKsbhiaS0Got1d38baFzF7DPDG46IRJO7\nj6hk8lPVtL8duD1yEYlIJFWR81DF/lw5L5Kc3H0hsDD4+NFy866KSVAiUkFtT4OXUvLy8mIdgtRA\n71FqyMrJonBjlWfnhdXkyZOjsp3MTpls3rA5KttKNsp7CSd9nhKD3ieRanSNdQDSUBbpM9rMTGfN\niYSBmUVtgLmGilbeJ+X1ZfnJdy2W1F+i5L329SLhkSg5D8mX90n5nSIZ5Sff96Tq8l5H1iOsa9eu\nFBQUxDoMSSC5ubmsXbs21mFIlDV/sDl7tgbG84vkAEMSn5T3qUnfEVKXcl72Kb3/l9pJ1O9J9cn7\npCnWo3k6bF0l268/ElmJ2gFJw+zZukd9RQpT3qemgoIC5X2KUs7LPtr/p4765H3SFOuFGwvj89SV\n/FgHICIiIiIiIommUawDEBEREREREZGykubIuoiIiCS3eL7kTUREJNxUrKe4Tz/9lAsuuIA1a9Zw\n6623ctVV0bu1ZqNGjVi9ejUHH3xwRNZfUFBAt27d2Lt3L40aVTyJ5Pbbb+fzzz9n6tSpNbadPHky\nq1ev5plnnolIrCLxLpn7CkkccXvJW33lxzqAqinnRQTUF9RVt27deOKJJ+jbt29Y1qfT4GMgKycL\nM4vYX1ZOVq1jueuuu+jbty87duyIavJBdAZXqW4bEyZMYOrUqbWOR4PBSLSprwgIV+4tWLCAvn37\n0qZNm0p3/AUFBfTt25dWrVrRs2dP3njjjWrX17dvXzp27EibNm045phjeOmll8rMf+655+jatSut\nW7fm3HPPZfv27WH5f0hyi5e8T4acv+++++jevTvp6enk5ORw3XXXUVJSEppf15wHuP/++zn44IM5\n8MADOfLII1m9enVonnJewiVe+gFIjr4gkenIegxE+shAYX7tTxEsKChg+PDhkQumGsky8uUPP/xA\n48aNYx2GJCH1FQHh6itatWrF6NGjGTFiBLfddluF+cOHD6dPnz7MmzePl19+mfPPP5/Vq1fTrl27\nStd3//33c/jhh9O0aVPeffddzjzzTFatWkVmZiYrVqzgsssuY968eRxzzDGMGTOGyy+/nBkzZoTl\n/yLJK17yPhlyfsiQIYwcOZKMjAy2b9/OeeedxwMPPMC4ceOAuuf8448/zlNPPcW8efM47LDD+Pzz\nz8nIyABIiJw3s+bAIqAZgRrgBXefXK7NacBsYE1w0ovufktUA5W46QcgOfqCRKYj6ynsjDPO4B//\n+AdXXnklaWlprF69mu+//57f/e535Obmkp2dzRVXXMGePYF7Py5cuJDOnTvzP//zP2RmZtKpUydm\nz54d2mm1b9+e22+/PbT+9957j5NPPpmMjAw6derEb37zG/bu3VtpLNVttybfffcd1113HV27diUj\nI4Of/vSnoWXdnWeffZbc3Fw6duxY5gv65MmT+dWvflXpOteuXUteXh7p6en079+fLVu2hOYVFBTQ\nqFEjnnzySXJzcznjjDMAWLx4MX369CEjI4NjjjmGhQsXhpY5/fTTmThxIqeccgppaWmcddZZFBUV\n1er/JxJrydJXHH/88Vx44YV069atwrxVq1axdOlS8vPzad68Oeeeey5HH300s2bNqnJ9Rx11FE2b\nNg0937t3L+vXrwcCR9gGDx5Mnz59aNmyJTfffDMvvvgiu3fvrlWsIrGULDnfrVu3UDH9ww8/hE6p\nhcCpvXXJeXfnpptu4t577+Wwww4Lrb9NmzZAYuS8u+8BTnf3Y4DewNlmdkIlTRe5+7HBPxXqKSxZ\n+oK5c+dy7LHHkp6eTm5uLpMnl/mNiqeffpquXbvSoUMHbrnlFrp168abb74JBHL/jjvuoEePHnTo\n0IFhw4aVOWvmmWeeCS1b2YGAhlKxnsLeeOMNTj31VB566CG+/vprevTowfXXX8/q1atZvnw5q1ev\nZuPGjdx0002hZTZv3sz333/Ppk2bmDx5MmPGjGH69OksXbqURYsWcfPNN1NQUABA48aNue+++ygq\nKuJf//oXb775Jg8//HClsdS03epcd911LF26lMWLF1NUVMRdd91V5rrzt99+m1WrVvH6669z0003\n8cknn4TmVXV6zYgRIzj++OPZsmULf/jDH5g2bVqFNosWLeLjjz/m1VdfZdOmTQwcOJCJEyeybds2\npkyZwnnnncfWrVtD7WfMmMG0adP46quv2LNnD1OmTKnV/08k1pKlr6jOihUrOPjgg2nVqlVoWq9e\nvVixYkW1yw0aNIgWLVpw4oknkpeXx3HHHRdaX69evULtDj74YJo3b86nn37a4FhFIi2Zcn7GjBmk\np6fToUMHli9fzmWXXQbAypUr65TzGzZsYMOGDXzwwQd06dKF7t27k5+fH5qfKDnv7t8EHzYncHS9\nskOXOvdYgOTpCw488ECeeeYZduzYwcsvv8wjjzwSunRt5cqVXHnllcyYMYMvvviCHTt2sGnTptCy\nDzzwAC+99BL//Oc/2bRpExkZGVxxxRWhZa+44gqmT5/Opk2b2Lp1Kxs3bqzXa10VFetSxmOPPca9\n995Leno6rVq1Yvz48WVO4WrWrBk33HADjRs3ZtiwYWzZsoVx48bRsmVLevbsSc+ePXn//fcBOPbY\nYznhhBMwM7p06cKvf/3rMkeb67Ldqrg7Tz31FA888ABZWYHre0488cTQ0S4zIz8/n2bNmnH00UfT\nq1evUHxVWbduHUuWLOGmm26iadOmnHrqqQwaNKhMGzNj8uTJtGjRgubNm/Pss8/y85//nP79+wOB\nXyKPO+445s6dG1pm1KhRdO/enebNmzN06FCWLVtW4/9PJF4lWl9Rk127dpGenl5mWlpaGjt37qx2\nuTlz5rBr1y7mzZtHv379Grw+kXiVqDk/fPhwduzYwapVq7jsssvo2LEjUPcc3bBhAwCvvfYaK1as\n4M0332TGjBk88cQT9VpfrJhZIzNbCmwGXnP39yppdpKZLTOzl82sZ5RDlDiXiH3BT3/6U4488kgA\nfvSjHzFs2LDQdmbNmsXgwYM56aSTaNKkSYUfAB599FFuvfVWsrOzadq0KRMnTuSFF16gpKSEWbNm\nMWjQIPr06UPTpk25+eabw36dva5Zl5CvvvqKb775hh//+MehaSUlJWWuF2nXrl3oQ9iiRQuA0I5v\n37Rdu3YBgdNKr732WpYsWcK3337L3r17y6y7LtutypYtW9izZ0+1o0RmZmaGHrds2TIUX1W++OIL\nMjIyQv8/gNzc3NCOep+cnJzQ44KCAmbOnMmcOXOAwI8Ie/fuDZ0iD5CVtX8wj9rEIRKvErGvqMmB\nBx7I119/XWbajh07aN26NRDYuRcUFGBmzJs3jz59+oTaNW7cmP79+3PffffRo0cPBg4cWOP6RBJJ\nMuR89+7d6dmzJ5dffjmzZs2qc87vOwJ//fXX07p1a1q3bs3YsWOZO3cuo0ePTpicd/cS4BgzSwP+\nZmY93X1lqSb/Abq4+zdmdjbwN+DQWMQq8SdR+4J3332X8ePH8+GHH/L999/z/fff88tf/hKATZs2\n0blz5zLxlR63oqCggHPOOSd01q6707RpUwoLCyss27JlyyrHvKgvFesS0r59e1q2bMmKFSvIzs5u\n8Pouv/xyjj32WP785z/TsmVL7r///kqvBWvIdtu3b88BBxzAZ599xlFHHdXgmAGys7PZtm0b3377\nbaiTWbduXYVbupX+5axz585cfPHFPProo2GJQSSeJWJfUZMjjzySNWvWsHv37tCX8vfff5+LLroI\ngA8//LDGdezdu5fPPvsstL7SZ/F89tlnFBcXc+ih+s4riSdZcr64uJg1awLjptU157/99luaNWtW\nZlrp7wGJlvPu/rWZ/QM4C1hZavquUo/nmdnDZtbW3SsdaKf0pQB5eXnk5eVFLGaJvUTtC0aMGMHV\nV1/Nq6++StOmTfntb38bulQ1Ozu7zOUq3377bZnLWLt06cKTTz7JSSedVGG92dnZfPzxx6Hn33zz\nTZllq7JgwQIWLFhQq9h1GryEmBljxoxh3LhxfPXVVwBs3LiR+fPn12t9O3fuJC0tjZYtW/Lxxx/z\nv//7v/XebqNGjVi0aFGly1566aVce+21fPHFF5SUlLB48WKKi4uBuo0iua9tly5dOO6445g0aRLF\nxcW89dZboSPm5dvuc9FFFzFnzhzmz59PSUkJ3333HQsXLixzzUs8MrMnzKzQzJaXmpZhZvPN7BMz\ne9XM0kvNm2Bmq8zsIzPrV/laJdklYl8Bgbzds2cP33//PSUlJezZsyfUVxxyyCH07t2byZMns2fP\nHl588UU+/PBDzjvvvErX9cknn/DKK6/w3XffsXfvXp599ln++c9/ctpppwFw4YUXMmfOHN5++212\n797NxIkTOe+888pcHyuSKBI155944onQcitXruSOO+7gzDPPBOqe8y1atGDYsGHcdddd7Nq1iw0b\nNjB16tTQZXKJkPNm1n7fPt3MWgA/Az4u1yaz1OMTAKuqUIdAsb7vT4V68kvUvmDXrl1kZGSE7t7y\n3HPPheadf/75zJkzJ1Q/lP4BCmDs2LHccMMNrFu3Dggc5d93vfv555/P3//+d9555x2Ki4uZOHFi\nrWqPvLy8MrlTHRXrKa78dRV33nknPXr04MQTT6RNmzb069ev2sFRyi9f+vmUKVOYPn06aWlpjB07\nlmHDhlXZtrrtrl+/nrS0tCqPnE+ZMoWjjjqK448/nnbt2jF+/PjQfVSri6+6/8tzzz3H4sWLadeu\nHTfffDMjR46sdj05OTnMnj2b2267jQ4dOpCbm8uUKVOqjCOOPAX0LzdtPPC6ux8GvAlMAAhetzYU\nOAI4G3jY4vg/JuGVDH3FokWLaNGiBQMHDmT9+vW0bNkyNM4EwPPPP897771HRkYGN954I7Nmzary\ndDZ3Jz8/n8zMTDp27MiDDz7IzJkz6d27NwA9e/bkkUceYcSIEWRlZfHtt9/y0EMPVfn6iMSbZMj5\nt99+m6OOOorWrVszcOBABg4cyK233hqaX5ecB3jwwQdp1aoVBx10EH369OGiiy7ikksuARIm57OB\nf5jZMuDfwKvuPtfMxprZr4NtzjezD4PXtd8HXBCrYCU+JENf8PDDD/PHP/6R9PR0brnlFi64YP/H\numfPnjz44INccMEFHHTQQaSlpdGxY0eaN28OwDXXXMOQIUPo168f6enpnHzyybz77ruhZR966CGG\nDx/OQQcdRLt27cpcJhsOFun715mZR+MeeWYW0fsR1lt+xaOwWTlZgfsnRkhmp0w2b9gcsfVH2/Tp\n01m5cmWZHWwyM7NKf5ULTg97cWxmucAcdz86+Pxj4DR3LzSzLGCBux9uZuMBd/c7g+3mAfnu/u9K\n1pnaeV8f+eorGiqR+4po5324KefrKV953xDK+diKVt5HS8z6l3z1Aw0Vzr5g9+7dtGnThtWrV5Ob\nmxuG6ParT97rmvUYSKbkiIYLL7ww1iGkmo7uXgjg7pvNbN+oIJ2Af5VqtzE4TSJEfUXdqK+QZKC8\nrz3lvCQr9QN109C+4O9//ztnnHEGJSUlXHfddRx99NFhL9TrS6fBi0hNkudncxERERGRUmbPns1B\nBx1ETk4On332Gc8//3ysQwrRkXURKa/QzDJLnQb/ZXD6RqBzqXY5wWmV0gixInVXlxFiw83MfguM\nBkqAD4BRQCvgz0AusBYY6u47YhKgiIhIBDz22GM89thjsQ6jUrpmPdLy6zYiuUgMrlnvSuCa9aOC\nz+8Eitz9TjO7Hshw9/HBAeamAz8hcPr7a8AhlSV4yud9feSrr0hlsb5+1cwOAt4CDnf3783sz8Bc\noCew1d3vKt0fVLK8cr4+8pX3qSrWOR8OumY9TPLVD6SK+uS9ToMXSWFm9hzwDnComa0zs1HAHcDP\nzOwT4Izgc9x9JTCTwP1Y5wJXJNVeWkQaA63MrAnQgsCZM0OAacH504BfxCg2ERGRlKPT4EVSmLuP\nqGLWmVW0vx24PXIRiUgsuPsmM7sbWAd8A8x399f3XRITbFN6wEkRERGJMBXrIiIiKc7M2hA4ip4L\n7AD+YmYXUnGAySrPptE4FSJ1F8txKkQk/qlYj7Dm7ZoHroERqaV4uVWERJf6itQWB3l/JrDG3YsA\nzOyvwMlUPeBkBaWLdakd5X3q2pfz5X/Ymjx5cowiklhRP5A66rOvV7EeYXt+s6f+C+drwAmRVBHq\nK/KV9xIT64ATzewAYA+B8SreA3YBlwB3AiOB2bEKMBnt+c0e5bxIimtQrZCK8lOrz6xxgDkze8LM\nCs1sealpk8xsg5n9N/h3VmTDFBERkUhx93eBF4ClwPuAAVMJFOkVBpwUkcRjZs3N7N9mttTMPjCz\nSVW0e8DMVpnZMjPrHe04RWS/2hxZfwp4EHi63PR73P2e8IckIiIi0ebuk4Hy5+AWUcWAkyKSWNx9\nj5md7u7fmFlj4G0zmxf8sQ4AMzsb6O7uh5jZT4BHgBNjFbNIqqvxyLq7vwVsq2SWLq4QEREREUkQ\n7v5N8GFzAgftyp9PPITgATp3/zeQbmaZ0YtQREpryH3WrwqeHvO4maWHLSIREREREQk7M2tkZkuB\nzcBr7v5euSadgPWlnm8MThORGKjvAHMPAze5u5vZLcA9wOiqGut2LiJ1p9u5iIiISDi5ewlwjJml\nAX8zs57uvrK+69N3fJG6q8t3fKvNaHpmlgvMcfej6zIvON+jMWKfmUF+xDcTXfmpNdqhVM/McPeE\nuPxEed8A+cp72S9R8l453wD5ynnZL5o5b2Z/BHaXHoPKzB4B/uHufw4+/xg4zd0LK1k+KnkfLUnZ\nvySj/OTrM6vL+9qeBm+UukY9eK/Vfc4FPqx/eCIiIiIiEklm1n7fpatm1gL4GfBxuWYvARcH25wI\nbK+sUBeR6KjxNHgzew7IA9qZ2TpgEnB68FYOJcBaYGwEYxQRERERkYbJBqaZWSMCB+z+7O5zzWws\n4O4+Nfh8gJmtBnYDo2IZsEiqq7FYd/cRlUx+KgKxiIiIiIhIBLj7B8CxlUx/tNzzq6IWlIhUqyGj\nwYuIiIiIiIhIBKhYFxEREREREYkzKtZFpAIz+62ZfWhmy81supk1M7MMM5tvZp+Y2av7BqkRERER\nEZHwU7EuImWY2UHAb4Bjg7dkbAIMB8YDr7v7YcCbwITYRSkiIiIiktxUrItIZRoDrcysCdAC2AgM\nAaYF508DfhGj2EREREREkp6KdREpw903AXcD6wgU6Tvc/XUgc9+9Vt19M9AxdlGKiIiIiCQ3Fesi\nUoaZtSFwFD0XOIjAEfYLAS/XtPxzEREREREJkxrvsy4iKedMYI27FwGY2V+Bk4FCM8t090IzywK+\nrG4l+fn5ocd5eXnk5eVFLGCRZLFgwQIWLFgQ6zBEREQkDqhYF5Hy1gEnmtkBwB7gDOA9YBdwCXAn\nMBKYXd1KShfrIlI75X/Ymjx5cuyCEZGkYmY5wNNAJlACPObuD5RrcxqB/fua4KQX3f2WqAYqIiEq\n1kWkDHd/18xeAJYCxcF/pwKtgZlmdilQAAyNXZQiIiJSR3uBa919mZkdCPzHzOa7+8fl2i1y98Ex\niE9EylGxLiIVuPtkoPwhvSICp8iLiIhIggkODrs5+HiXmX0EdALKF+sW7dhEpHIaYE5EREREJIWY\nWVegN/DvSmafZGbLzOxlM+sZ1cBEpAwV6yIiIoKZpZvZX8zsIzNbYWY/MbMMM5tvZp+Y2atmlh7r\nOEWkYYKnwL8AXOPuu8rN/g/Qxd17A38C/hbt+ERkP50GLyIiIgD3A3Pd/Zdm1gRoBdwAvO7ud5nZ\n9cAEYHwsgxSR+gvm9gvAM+5eYaDY0sW7u88zs4fNrO2+O8SUpzu/iNRdXe78Yu6RvVWymXmktxHc\nDuRHfDPRlQ/ReO0kMZgZ7p4Q15Ep7xsgX3kv+0Ur780sDVjq7t3LTf8YOK3ULRsXuPvhlSyvnK+v\nfOW87BfpnDezp4Et7n5tFfMz3b0w+PgEYKa7d62ibVTyPlqSsn9JRvnJ12dWl/c6si4iIiLdgC1m\n9hTQC1gCjANCX9zdfbOZdYxhjCLSAGbWB7gQ+MDMlgJO4OyZXMDdfSpwvpldTuBuMN8CF8QqXhFR\nsS4iIiKB7wPHAle6+xIzu5fA6e7lD18k1+EMkRTi7m8DjWto8xDwUHQiEpGaqFiXqMrKyaJwY2Gs\nwwirzE6ZbN6wOdZhiIg0xAZgvbsvCT6fRaBYL9x3WmzwNPgvq1qBrl0Vqbu6XLsqIqlH16zHs/zk\nvCZD71P96Jr1Srejz5MktWjmvZktBMa4+6dmNgloGZxV5O53BgeYy3D3CgPMKecbIF85L/tpXx87\nSdm/JKP85Oszdc26iIiI1ORqYLqZNQXWAKMInDI708wuBQqAoTGMT0REJKWoWBcRERHc/X3g+Epm\nnRntWERERAQaxToAERERERERESlLxbqIiIiIiIhInFGxLiIiIiIiIhJnVKyLiIiIiIiIxBkV6yIi\nIiIiIiJxpsZi3cyeMLNCM1tealqGmc03s0/M7FUzS49smCISbWaWbmZ/MbOPzGyFmf1EuS8iIpKY\nzCzHzN4M7tM/MLOrq2j3gJmtMrNlZtY72nGKyH61ObL+FNC/3LTxwOvufhjwJjAh3IGJSMzdD8x1\n9yOAXsDHKPdFREQS1V7gWnc/EjgJuNLMDi/dwMzOBrq7+yHAWOCR6IcpIvvUWKy7+1vAtnKThwDT\ngo+nAb8Ic1wiEkNmlgac6u5PAbj7XnffgXJfREQkIbn7ZndfFny8C/gI6FSu2RDg6WCbfwPpZpYZ\n1UBFJKS+16x3dPdCCCQ+0DF8IYlIHOgGbDGzp8zsv2Y21cxaApnKfRERkcRmZl2B3sC/y83qBKwv\n9XwjFQt6EYmScA0w52Faj4jEhybAscBD7n4ssJvAKfDlc125LyIikkDM7EDgBeCa4BF2EYlTTeq5\nXKGZZbp7oZllAV9W1zg/Pz/0OC8vj7y8vHpuViR1LFiwgAULFsRq8xuA9e6+JPh8FoFivda5r7wX\nqbsY572IJDkza0KgUH/G3WdX0mQj0LnU85zgtEppXy9Sd3XZ15t7zQfGgqfKzHH3o4LP7wSK3P1O\nM7seyHD38VUs67XZRkOZGeRHfDPRlQ/ReO2iSe9T/ZkZ7m4R39D+7S0Exrj7p2Y2CWgZnFVj7ivv\nGyA/+fJe6i/aeV9fyvkGyFfOy36RznkzexrY4u7XVjF/AHClu//czE4E7nP3E6toG5W8j5ak7F+S\nUX7y9ZnV5X2NR9bN7DkgD2hnZuuAScAdwF/M7FKgABgavnBFJE5cDUw3s6bAGmAU0BiYqdwXERFJ\nLGbWB7gQ+MDMlhK4lO0GIBdwd5/q7nPNbICZrSZwCdyo2EUsIjUW6+4+oopZZ4Y5FhGJI+7+PnB8\nJbOU+yIiIgnG3d8m8KN7Te2uikI4IlIL4RpgTkRERERERETCRMW6iIiIiIiISJxRsS4iIiIiIiIS\nZ1Ssi4iIiIiIiMQZFesiIiIiIiIicUbFuoiIiABgZo3M7L9m9lLweYaZzTezT8zsVTNLj3WMIiIi\nqULFuoiIiOxzDbCy1PPxwOvufhjwJjAhJlGJiIikIBXrIiIigpnlAAOAx0tNHgJMCz6eBvwi2nGJ\niIikKhUtUIHEAAAgAElEQVTrIiIiAnAv8HvAS03LdPdCAHffDHSMRWAiIiKpSMW6iIhIijOznwOF\n7r4MsGqaejXzRCTOmdkTZlZoZsurmH+amW0Pjl3xXzP7Q7RjFJH9msQ6ABEREYm5PsBgMxsAtABa\nm9kzwGYzy3T3QjPLAr6sagX5+fmhx3l5eeTl5UU2YpEksGDBAhYsWBDNTT4FPAg8XU2bRe4+OErx\niEg1VKyLiIikOHe/AbgBAkfWgOvc/VdmdhdwCXAnMBKYXdU6ShfrIlI75X/Ymjx5ckS35+5vmVlu\nDc2qO7tGRKJIp8GLiEhEZeVkYWZJ85eVkxXrlzSa7gB+ZmafAGcEn4tIcjvJzJaZ2ctm1jPWwYik\nMh1ZFxGRiCrcWAj5sY4ifArzC2MdQkS5+0JgYfBxEXBmbCMSkSj6D9DF3b8xs7OBvwGHxjgmkZSl\nYl1ERERERHD3XaUezzOzh82sbfCHuwo0VoVI3dVlrAoV6yJSKTNrBCwBNrj7YDPLAP4M5AJrgaHu\nviOGIYqIiEjdGVVcl75vQMng4xMAq6pQB41VIVIfdRmrQtesi0hVrgFWlno+Hnjd3Q8D3gQmxCQq\nERERqRczew54BzjUzNaZ2SgzG2tmvw42Od/MPjSzpcB9wAUxC1ZEdGRdRCoysxxgAHArcG1w8hDg\ntODjacACAgW8iIiIJAB3H1HD/IeAh6IUjojUQEfWRaQy9wK/B7zUtNCpce6+GegYi8BERERERFKB\njqyLSBlm9nOg0N2XmVleNU29mnkadEakHuoy6IyIiIgkNxXrIlJeH2CwmQ0AWgCtzewZYPO+gWfM\nLAv4srqVaNAZkbqry6AzIiIiktx0GryIlOHuN7h7F3c/GBgGvOnuvwLmAJcEm40EZscoRBERERGR\npKdiXURq6w7gZ2b2CXBG8LmIiIiIiESAToMXkSq5+0JgYfBxEXBmbCMSEREREUkNOrIuIiIiIiIi\nEmdUrIuIiIiIiIjEmQYV62a21szeN7OlZvZuuIISEREREZHwMrMnzKzQzJZX0+YBM1tlZsvMrHc0\n4xORshp6ZL0EyHP3Y9z9hHAEJCIiIiIiEfEU0L+qmWZ2NtDd3Q8BxgKPRCswEamoocW6hWEdIiIi\nIiISYe7+FrCtmiZDgKeDbf8NpJtZZjRiE5GKGlpoO/Camb1nZmPCEZCIiIiIiMREJ2B9qecbg9NE\nJAYaeuu2Pu7+hZl1IFC0fxT8xU5ERERERERE6qlBxbq7fxH89ysz+ytwAlChWM/Pzw89zsvLIy8v\nryGbFUkJCxYsYMGCBbEOQ0RERFLHRqBzqec5wWmV0nd8kbqry3d8c/d6bcTMWgKN3H2XmbUC5gOT\n3X1+uXZe323UMR7Ij/hmoisfovHaRZPep/ozM9zdIr6hMFDeN0C+8j7u5UfvPUqUvFfON0B+8uW8\n1F80ct7MugJz3P2oSuYNAK5095+b2YnAfe5+YhXriUreR0tS9i/JKD/5+szq8r4hR9Yzgb+amQfX\nM718oS4iIiLxz8xyCAwqlUngTi+PufsDZpYB/BnIBdYCQ919R8wCFZEGMbPngDygnZmtAyYBzQB3\n96nuPtfMBpjZamA3MCp20YpIvYt1d/8c0L0XRUREEt9e4Fp3X2ZmBwL/MbP5BL6ov+7ud5nZ9cAE\nYHwsA5X4l5WTReHGwliHEVaZnTLZvGFzrMNoMHcfUYs2V0UjFhGpWUMHmBMREZEE5+6bgc3Bx7vM\n7CMC16oOAU4LNpsGLEDFutSgcGNh0p1OXJifXD8+iEhi0D3SRUREJCR4PWtvYDGQ6e6FECroO8Yu\nMhERkdSiYl1EREQACJ4C/wJwjbvvAsqP4pNco/qIiIjEMZ0GLyIVaLApkdRjZk0IFOrPuPvs4ORC\nM8t090IzywK+rGp53cJJpO50m1YRqY6KdRGpjAabEkk9TwIr3f3+UtNeAi4B7gRGArMrWQ4oW6yL\nSO2U/2Fr8uTJsQtGROKOToMXkQrcfbO7Lws+3gWUHmxqWrDZNOAXsYlQRMLJzPoAFwJ9zWypmf3X\nzM4iUKT/zMw+Ac4A7ohlnCIiIqlER9ZFpFrVDTZlZhpsSiQJuPvbQOMqZp8ZzVhEREQkQEfWRaRK\nGmxKRERERCQ2dGRdRCqlwaZEok+DTYmIiMg+KtZFpCoabEokyjTYlIhEUnAsivsInF37hLvfWW7+\naQT27WuCk15091uiG6WI7KNiXUQqKDXY1AdmtpTA6e43ECjSZ5rZpUABMDR2UYqIiEhtmVkj4E8E\nBovcBLxnZrPd/eNyTRe5++CoBygiFahYF5EKNNiUiIhI0jkBWOXuBQBm9jyBu7yUL9Yt2oGJSOU0\nwJyIiIiISPLrBKwv9XxDcFp5J5nZMjN72cx6Ric0EamMjqyLiIiIiAjAf4Au7v6NmZ0N/A04NMYx\niaQsFesiIiIiIslvI9Cl1POc4LSQ4G1a9z2eZ2YPm1lbdy+qbIW684tI3dXlzi8q1kVEREREkt97\nQA8zywW+AIYBw0s32Hd71uDjEwCrqlAH3flFpD7qcucXFesiIiIiIknO3X8ws6uA+ey/ddtHZjY2\nMNunAueb2eVAMfAtcEHsIhYRFesiIiIiIinA3V8BDis37dFSjx8CHop2XCJSOY0GLyIiIiIiIhJn\nVKyLiIiIiIiIxBkV6yIiIiIiIiJxRsW6iIiIiIiISJxRsS4iIiIiIiISZ1Ssi4iIiIiIiMQZFesi\nIiIiIiIicUbFuoiIiIiIiEicUbEuIiIiIiIiEmcaVKyb2Vlm9rGZfWpm14crKBGJX8p7kdSinBdJ\nHrXJZzN7wMxWmdkyM+sd7RhFZL96F+tm1gj4E9AfOBIYbmaHhyuwuPZ5rAOQGuk9ioiUzXt9nhKD\n3qewS9mcB32eEoXep1qrTT6b2dlAd3c/BBgLPBL1QCV8lB8JryFH1k8AVrl7gbsXA88DQ8ITVpxb\nG+sApEZrYx1A0krNvF8b6wCkVtbGOoCklJo5D/o8JYq1sQ4godQmn4cATwO4+7+BdDPLjG6YEjZr\nYx2ANFRDivVOwPpSzzcEp4lI8lLei6QW5bxI8qhNPpdvs7GSNiISJRpgTkRERERERCTONGnAshuB\nLqWe5wSnVWBmDdhMHeRHZzMALIzOZqL22kVTfpS2E6X3CJL0fapc6ua9Pk8Nkx+l7ahvDrfUzXnQ\n56kh8qO4Lb1PtVWbfN4IdK6hTUgSvCZl5cc6gAiI4veXaEm6z101GlKsvwf0MLNc4AtgGDC8fCN3\nT51XUyT5Ke9FUotyXiR51CafXwKuBP5sZicC2929sLKVKe9FIq/exbq7/2BmVwHzCZxO/4S7fxS2\nyEQk7ijvRVKLcl4keVSVz2Y2NjDbp7r7XDMbYGargd3AqFjGLJLqzN1jHYOIiIiIiIiIlKIB5kRE\nRERERETiTEOuWReJG2Z2OIF7g+67vchG4CWdrimSvJT3IqlFOS8iqUZH1hvAzHQdTxwws+uB5wED\n3g3+GTDDzMbHMjZJLsr5+KG8l2hR3scH5bxI/akfS1y6Zr0BzGydu3epuaVEkpl9Chzp7sXlpjcD\nVrj7IbGJTJKNcj5+KO8lWpT38UE5L1J/6scSl06Dr4GZLa9qFpAZzVikSiXAQUBBuenZwXkitaac\nTxjKewkb5X1CUM6LVEP9WHJSsV6zTKA/sK3cdAPeiX44UolxwBtmtgpYH5zWBegBXBWzqCRRKecT\ng/Jewkl5H/+U8yLVUz+WhFSs1+zvwIHuvqz8DDNbEP1wpDx3f8XMDgVOoOygM++5+w+xi0wSlHI+\nASjvJcyU93FOOS9SI/VjSUjXrIuIiIiIiIjEGY0GLyIiIiIiIhJnVKyLiIiIiIiIxBkV6yIiIiIi\nIiJxRsW6iIiIiIiISJxRsS4iIiIiIiISZ1Ssi4iIiIiIiMQZFesiIiIiIiIicUbFuoiIiIiIiEic\nUbEuIiIiIiIiEmdUrIuIiIiIiIjEGRXrIiIiIiIiInGmxmLdzHLM7E0zW2FmH5jZb4LTJ5nZBjP7\nb/DvrMiHKyLhUkluXx2cnmFm883sEzN71czSSy0zwcxWmdlHZtYvdtGLSH3UZ5+uvBdJTvX5HiAi\n0WXuXn0Dsywgy92XmdmBwH+AIcAFwE53vyfyYYpIuFWT26OAre5+l5ldD2S4+3gz6wlMB44HcoDX\ngUO8pk5EROJGXffpZnYE8BzKe5GkU9fvAbGMVSRV1Xhk3d03u/uy4ONdwEdAp+Bsi2BsIhJBVeR2\nDoEd9bRgs2nAL4KPBwPPu/ted18LrAJOiGrQItIg9dinD0F5L5KU6vE9QESirE7XrJtZV6A38O/g\npKvMbJmZPa5TZEQSV6ncXgxkunshBHbkQMdgs07A+lKLbWT/l3wRSTC13Kcr70VSQC2/B4hIlNW6\nWA+eHvMCcE3w17eHgYPdvTewGdDp8CIJqJLcLn96q053FUkytdin3x3L+EQkevQ9QCR+NalNIzNr\nQiCJn3H32QDu/lWpJo8Bc6pYVgkuEibuHtZLTyrLbaDQzDLdvTB4PduXwekbgc6lFs8JTqtsvcp7\nkTCJRt5Xs0+vVd4r50XCJ9w5X506fg8ov6zyXiRMqsr72h5ZfxJY6e7375sQTN59zgU+rGbjSfU3\nadKkmMegv9R7jyKkQm4DLwGXBB+PBGaXmj7MzJqZWTegB/BuVSuO9eulz1Pq/SXj+xQhddmn1zrv\no/F6ZGbmRugliZ3MzNyYf84S+S/Z8j4G6vI9oIJYv176LKXeXzK+T9Wp8ci6mfUBLgQ+MLOlBE6F\nuQEYYWa9gRJgLTC2pnWJSPyoJrfvBGaa2aVAATAUwN1XmtlMYCVQDFzhNfUwIhJX6rpPj7e8Lyws\nIHpn5OYH/yKrsFBj9Ups1PV7gIhEX43Furu/DTSuZNYr4Q9HRKKlmtwGOLOKZW4Hbo9YUCISUfXZ\npyvvRZJTfb4HiEh01Wk0eAnIy8uLdQhSA71HEk76PCUGvU8SXnmxDkBqQXkv4aLPUmJItffJIn02\nm5npTFmRMDAzPIqDzjSE8l4kPBIl76OV82ZG8g1MbTVesyipI1FyHrSvFwmX6vK+VqPBS/R07dqV\ngoKCWIchMZSbm8vatWtjHYbEOfUVyUV5L7WhvE8eynmpL/UDias+ea8j63Em+MtKrMOQGKrqM6Bf\n26U09RXJJdHzXkfWG6L2uay8Tx6JnvMQvbzPyuoaHFwyeWRm5rJ589p6Lat+IHHVJ+9VrMcZJaBo\nBy61ob4iuSR63qtYbwgV66ko0XMelPcNU/9cVj+QuOqT9xpgTkRERERERCTOqFgXERERERERiTMq\n1iUmRo0axcSJEyO6jdNPP50nn3yy0nnr168nLS0tdCpKdW0LCgpo1KgRJSUlEYtV6icrqytmllR/\nWVldY/2yxp1o9BciEj+U8yKSiP3A5MmT+dWvfhXWdapYTwCRLkhSsTjo3LkzX3/9dfA6qJrVtp1E\nV2DAGU+qv4YMoqO+onrFxcX88pe/pFu3bjRq1IhFixZVaHP99dfTvn17OnTowPjx46td33333Uf3\n7t1JT08nJyeH6667rsyPegUFBfTt25dWrVrRs2dP3njjjbD/nyS1Keer99FHH3H88cfTtm1b2rVr\nR79+/fjoo4/KtKlLzgP897//5bTTTqN169ZkZ2fz4IMPhuYp5yVW1BfEj3DXDCrWE0CkC5JkG2Ez\n2jTIh8QL9RU1O/XUU5k+fTrZ2dkV5j366KO89NJLfPDBByxfvpw5c+YwderUKtc1ZMgQlixZwo4d\nO/jwww9ZtmwZDzzwQGj+8OHD+fGPf0xRURG33HIL559/Plu3bo3I/0tSk3K+ep06dWLmzJkUFRWx\nZcsWBg0axLBhw0Lz65rzW7du5eyzz+byyy9n27ZtrF69mn79+oXmK+clVtQXJC8V61Jr3bp1Y8qU\nKfTq1YvWrVszZswYvvzySwYMGEBaWhr9+vVjx44dofZDhw4lOzubjIwM8vLyWLlyZZXr/vvf/84x\nxxxDRkYGp5xyCh988EGt45o9ezbHHHMM6enpHHLIIcyfPz80b+3atZxyyimkpaVx1llnUVRUBFR/\nantJSQm/+93v6NChAz169ODll18uM//000/nD3/4A6eccgqtWrXi888/5+uvv2b06NEcdNBBdO7c\nmT/+8Y+hIn7atGmceuqp/P73v6dt27Z0796dV155pdb/P5FEFI/9RdOmTbn66qs5+eSTadSo4u7v\n6aef5rrrriM7O5vs7Gx+97vf8X//93/V/h8zMjIA+OGHH2jUqBGrV68G4NNPP2Xp0qXk5+fTvHlz\nzj33XI4++mhmzZpVq1hFEk085nxaWhrdunUD9ufoZ599Fppf15y/5557OOussxg2bBhNmjShVatW\nHHbYYQCsWrVKOS8pLx77ge3btzNo0CA6duxIu3btGDRoEJs2bQrNX7t2Laeddhrp6en069ePq666\nqsyp7IsXL6ZPnz5kZGRwzDHHsHDhwjLL5uXlkZ6eTv/+/dmyZUtdXq5aUbEudfLiiy/yxhtv8Omn\nn/LSSy8xYMAA7rjjDrZs2cIPP/xQ5qjSgAED+Oyzz/jyyy859thjufDCCytd59KlSxk9ejSPPfYY\nRUVFjB07lsGDB1NcXFxjPO+++y4jR47k7rvvZseOHSxatIiuXbuG5s+YMYNp06bx1VdfsWfPHqZM\nmRKaV9VpKlOnTmXu3Lm8//77LFmyhBdeeKFCm2effZbHH3+cnTt30qVLF0aOHEnz5s1Zs2YNS5cu\n5bXXXuPxxx8vE+cRRxzB1q1b+f3vf8/o0aNr/L+JJLp46y9qsmLFCnr16hV63qtXL1asWFHtMjNm\nzCA9PZ0OHTqwfPlyLrvsMgBWrlzJwQcfTKtWreq0PpFEFq85n5GRQcuWLbnmmmu48cYbQ9PrmvOL\nFy8mIyODPn36kJmZyZAhQ1i/fn1oXcp5kfjrB0pKSrj00ktZv34969ato2XLllx55ZWh+SNGjODE\nE09k69atTJo0iWeeeSZUI2zcuJGBAwcyceJEtm3bxpQpUzjvvPNCZ8yMGDGC448/ni1btvCHP/yB\nadOmNeSlq5SKdamT3/zmN7Rv357s7GxOPfVUfvKTn3D00UfTrFkzzjnnHJYuXRpqe8kll9CyZUua\nNm3KxIkTef/999m5c2eFdT722GNcdtllHHfccZgZv/rVr2jevDmLFy+uMZ4nn3yS0aNH07dvXwCy\ns7M59NBDQ/NHjRpF9+7dad68OUOHDmXZsmU1rvMvf/kL48aN46CDDqJNmzZMmDChQptLLrmEww8/\nnEaNGlFUVMS8efO49957OeCAA2jfvj3jxo1jxowZofa5ublceumlmBkjR45k8+bNfPnllzXGIpLI\n4q2/qMmuXbtIT08PPU9LS2PXrl3VLjN8+HB27NjBqlWruOyyy+jYsWOl69q3vsr+TyLJIl5zftu2\nbezYsYM//elPZYrzuub8hg0bePrpp3nwwQdZv349Xbt2Zfjw4ZWua9/6lPOSauKtH2jbti3nnHMO\nzZs3p1WrVkyYMCE0Zs26detYsmQJkydPpkmTJvTp04fBgweHlp0+fTo///nP6d+/PwBnnHEGxx13\nHHPnzmX9+vUsWbKEm266iaZNm3LqqacyaNCghr58FahYlzrJzMwMPW7RokWF5/t2ciUlJYwfP54e\nPXrQpk0bunXrhplVenpIQUEBd999N23btqVt27ZkZGSwYcOGMqeoVGX9+vV07969yvlZWVmhxy1b\ntqzxizfApk2b6Ny5c+h5bm5uhTal5xcUFFBcXEx2dnYo/ssuu6zM/7V0HC1atMDdaxWLSCKLt/6i\nJgceeCBff/116PmOHTs48MADAbj99ttp3bo1aWlpXHHFFRWW7d69Oz179uTyyy+vdF371te6desG\nxykSr+I551u0aMHYsWO5+OKLQ9upa863aNGCc845h2OPPZZmzZoxadIk3nnnHXbu3KmcFwmKt37g\n22+/ZezYsXTt2pU2bdpw2mmnsX37dtydL774grZt23LAAQeE2pf/jj9z5swy23377bf54osv2LRp\nExkZGbRo0SLUvrKaoaFUrEtETJ8+nTlz5vDmm2+yfft21q5di7tXOhhb586dufHGGykqKqKoqIht\n27axa9cuLrjgghq307lz5zLXn4VDdnZ26LQ2CCRqeaVPoe/cuTMHHHAAW7duDcW/fft2li9fHta4\nRJJVtPqLmhx55JG8//77oefLli3jyCOPBGDChAns3LmTr7/+mocffrjS5YuLi1mzZk1oXWvWrGH3\n7t2h+e+//35ofSKpLFY5/8MPP/DNN9+wceNGoO45f/TRR1e4hG7fc+W8SN1Eqx+4++67WbVqFe+9\n9x7bt28PHVV3d7KzsykqKuK7774LtS9dA3Tu3JmLL764zHZ37tzJ//t//4/s7Gy2bdvGt99+G2q/\nbt26hrwklVKxLhGxa9cumjdvTkZGBrt372bChAlVXiM+ZswYHnnkEd59910Adu/ezdy5c0M7vFGj\nRnHppZdWuuzo0aN56qmn+Mc//oG7s2nTJj799NNaxVjVKO5Dhw7lgQceYOPGjWzbto0777yz2vVk\nZWXRr18/fvvb37Jz507cnTVr1lR6WygRqSha/QXA999/H9op79mzhz179oTmXXzxxdxzzz1s2rSJ\njRs3cs899zBq1Kgq1/XEE0/w1VdfAYFr1O+44w7OPPNMAA455BB69+7N5MmT2bNnDy+++CIffvgh\n5513Xh1eGZHkFK2cf/3111m2bBklJSV8/fXXXHvttbRt25YjjjgCqHvOjxo1ir/+9a8sX76c4uJi\nbr75Zk455RRat26tnBepo2j1Azt37qRFixakpaVRVFREfn5+aF6XLl047rjjyM/Pp7i4mH/961/M\nmTMnNP+iiy5izpw5zJ8/n5KSEr777jsWLlzIpk2bQstOmjSJ4uJi3nrrrTLLhouKdam1qn5NrszF\nF19Mly5d6NSpEz/60Y84+eSTq2z74x//mMcee4yrrrqKtm3bcuihh5YZoGH9+vWccsoplS57/PHH\n89RTTzFu3DjS09PJy8sLHQmv6T6HpeeXfjxmzBj69+9Pr169OO644yrsaCtb79NPP833339Pz549\nadu2Lb/85S/ZvHlzrbYtkozisb8AOOyww2jVqhWbNm3irLPOomXLlqFfwseOHcugQYM46qij6NWr\nF4MHD2bMmDFVruvtt9/mqKOOonXr1gwcOJCBAwdy6623huY///zzvPfee2RkZHDjjTcya9Ys2rVr\nV+X6RBJZPOb89u3bGT58OG3atOGQQw7h888/55VXXqFZs2ZA3XP+9NNP57bbbmPAgAFkZWWxZs0a\nnnvuudB85bykunjsB8aNG8c333xD+/btOfnkkxkwYECZ+dOnT+edd96hffv2TJw4kWHDhtG8eXMA\ncnJymD17NrfddhsdOnQgNzeXKVOmhO4mNX36dBYvXky7du24+eabGTlyZPUvUD1YpO8RbWau+1DX\nnplVOOKbldU1ovc3zMzMZfPmtRFbf0MUFxfTu3dvli9fTuPGjWMdTlRU9hkoNT0hqvxo5X1gJ5Bs\n/Uvl73+FVuorKkjk/iLR81453xC1y3mo+DlRzivnY0l53xC1z/sKS2r/X0a4+4Fhw4ZxxBFHMGnS\npDBEV1Z98l7Fepyp6k2U1KEdeJ22Q6ruwNVXJJdEz3vlfEPUv1iXxJXoOQ/K+4YJb7Eu9bdkyRLa\ntm1Lt27dePXVVzn33HP517/+VebOEeFSn7yv8TR4M8sxszfNbIWZfWBmVwenZ5jZfDP7xMxeNbP0\nmtYVSVlZXTGzhP8TERGJlPrs081sgpmtMrOPzKxf7KIXEREJr82bN5OXl0fr1q0ZN24cjzzySEQK\n9fqq8ci6mWUBWe6+zMwOBP4DDAFGAVvd/S4zux7IcPfxlSyvX93qRL+WpTr92l6n7ZAceV+ajqyn\nomjlfV336WbWE5gOHA/kAK8Dh5RPcOV8Q+jIeirSvr5O2yGV877CkuoHElZEjqy7+2Z3XxZ8vAv4\niMAOewiw78r+acAv6hm3iIiIREE99umDgefdfa+7rwVWASdENWgREZEUVafR4M2sK9AbWAxkunsh\nBHb+QMdwByciIiKRUct9eidgfanFNganiYiISITVulgPni73AnBN8Nf48sfwdT6GiIhIAtA+XURE\nJP41qU0jM2tCYKf+jLvPDk4uNLNMdy8MXgP3ZVXLl775fF5eHnl5efUOWCRVLFiwgAULFsQ6DBFJ\nMnXcp28EOpdaPCc4rQLt60XqTvt6EalOrW7dZmZPA1vc/dpS0+4Eitz9Tg0wFz7Nm3dlz57I3SdR\n4l9ubi5r166tMF2DzlS6HZIh78uq3cAxXbt2paBAfUWyiGbe12WfXmqAuZ8QOP39NTTAXJjVfrAo\n5X3y0L6+TtshlfO+PPUDias+eV+b0eD7AIuADwhkigM3AO8CMwn84l4ADHX37ZUsr0SuN432KPtF\n6Ev7E8BAoNDdjw5OmwSMYf+RtRvc/ZXgvAnApcBeAqfPzq9ivcr7elPey34RGA2+zvv0YN6PBoqp\nIu+V8w2hnJf9olms1/U7QCXLK+/rTXkv+zWoWA/DxpXI9aZElv3+f3v3E2LrXd4B/PtIcNEWQgjN\nvW2iuYipRgmkLcZFuxgpGN0YV6F1V2kRgou6SrLKdWcKuirZaJAUkqZxYTFdaGLlLEIXtRQJ9KZ6\nodwkXryj1CB1F83TxZxmxsn8f8+c8573fD5w8cw75+T3OO/5zu993vfM+zunZv1Pk/wyyd/vm6j/\nt7u/su+5dyd5Jscs4TR/rtyfmdyza12ussn8EDLPriU36yc+Bjjk9XJ/ZnLPrkFLtwHT1d0vJXnj\ngG8d9AvjgVjCCQAm4ZTHAMAKaNaBg3y+qn5QVV+rqpvn2yzhBADTd9AxALACmnVgvyeSvK+7701y\nI05tpXwAAA4fSURBVMmXV1wPALAc+48Bjv04PHB+TrR0G7A5uvtne778apLn549PvIRTYhknOAvL\nOAGrdMQxwIHM9XB6p5nr3WBu1Nx8gl3nddOZqrqU5Pnuvmf+9cXuvjF//IUkH+nuz5x0Caf56+T+\nzOSeXW4w945xIvNM2bIzf9JjgENeK/dnJvfsOir3rqzDBquqZ5JsJbm1ql5L8liSj1XVvUneSnIt\nyeeSpLuvVNVzSa5kZwmnh5YySwMAC3eaYwBgNVxZHzVn3di1LlfYErkfRu7ZtS65l/khZJ5d65L5\nRO6HkXt2WboNAAAA1ohmHQAAAEZGsw4AAAAjo1kHAACAkdGsAwAAwMho1gEAAGBkNOsAAAAwMpp1\nAAAAGBnNOgAAAIyMZh0AAABGRrMOAAAAI6NZBwAAgJG5adUFsFkuXryU7e1XV13GQl24cGdu3Li2\n6jIAAIAJOfbKelU9WVXbVfXynm2PVdWPq+o/5v8+cb5lMhU7jXpP6t/UTj4A03XaOb2qHq2qq1X1\nSlV9fDVVA8BmOsnH4L+e5P4Dtn+lu/9o/u/bC64LAFi8E8/pVXV3kgeT3J3kk0meqKpaXqkAsNmO\nbda7+6UkbxzwLRM2AKyRU87pDyR5trt/1d3XklxNct85lgcA7DHkBnOfr6ofVNXXqurmhVUEACzb\nQXP67Ule3/Oc6/NtAMASnLVZfyLJ+7r73iQ3knxlcSUBAEu0f07/8orrAQByxrvBd/fP9nz51STP\nH/X8y5cvv/14a2srW1tbZxkWNspsNstsNlt1GcDEHTGnX0/ynj3fu2O+7UDmejg9cz1wlOru459U\ndSnJ8919z/zri919Y/74C0k+0t2fOeS1fZIxhtq55835j7NclWX87JbJfhowSlW6ey3uFSH3Q0wv\n95zdeeT+pHN6VX0oydNJPpqdj7+/mOSug8It80PIPLvM9QeOE7lnyo7K/bFX1qvqmSRbSW6tqteS\nPJbkY1V1b5K3klxL8rmFVQsAnIvTzOndfaWqnktyJcmbSR5aypE5AJDkhFfWBw3grNsA0zvrZj8N\nGMXZ9oPGifcTU7YuuZf5IWSeXeuS+UTuh5F7dh2V+yF3gwcAAADOgWYdAAAARkazDgAAACOjWQcA\nAICR0awDAADAyGjWYYNV1ZNVtV1VL+/ZdktVvVBVP6yq71TVzXu+92hVXa2qV6rq46upGgAY6rTH\nAMDyadZhs309yf37tj2S5Lvd/YEk30vyaJJU1YeSPJjk7iSfTPJE7aynAgCsnxMfAwCroVmHDdbd\nLyV5Y9/mB5I8NX/8VJJPzx9/Ksmz3f2r7r6W5GqS+5ZRJwCwWKc8BgBWQLMO7Hdbd28nSXffSHLb\nfPvtSV7f87zr820AwDQcdgwArIBmHThOr7oAAGAlHAPACt206gKA0dmuqgvdvV1VF5P8dL79epL3\n7HneHfNtB7p8+fLbj7e2trK1tbX4SmFiZrNZZrPZqssANtdhxwAHMtfD6Z1mrq/u8z1hVlV93mPM\nx8n0Tv5VlvGzWyb7acAoVenuhd/QraouJXm+u++Zf/14kp939+NV9XCSW7r7kfkN5p5O8tHsfPz9\nxSR3HRRwuR9iernn7M4r94sm80PIPLuWnfmTHgMc8lq5PzO5Z9dRuXdlHTZYVT2TZCvJrVX1WpLH\nknwpyTeq6rNJXs3OHeDT3Veq6rkkV5K8meShpczSAMDCneYYAFgNV9ZHbXpn3eynAaOsyRW2RO6H\nmV7uObt1yb3MDyHz7FqXzCdyP4zcs+uo3LvBHAAAAIyMZh0AAABGRrMOAAAAI6NZBwAAgJHRrAMA\nAMDIHNusV9WTVbVdVS/v2XZLVb1QVT+squ9U1c3nWyYAMNRp5/SqerSqrlbVK1X18dVUDQCb6SRX\n1r+e5P592x5J8t3u/kCS7yV5dNGFAQALd+I5vao+lJ01lu9O8skkT9TOGkoAwBIc26x390tJ3ti3\n+YEkT80fP5Xk0wuuCwBYsFPO6Z9K8mx3/6q7ryW5muS+ZdQJAJz9b9Zv6+7tJOnuG0luW1xJAMAS\nHTan357k9T3Puz7fBgAswaJuMNcL+u8AAKtlTgeAEbjpjK/brqoL3b1dVReT/PSoJ1++fPntx1tb\nW9na2jrjsLA5ZrNZZrPZqssApu+wOf16kvfsed4d820HMtfD6ZnrgaNU9/En0KvqUpLnu/ue+deP\nJ/l5dz9eVQ8nuaW7HznktX2SMYbauefN1C4GVJbxs1sm+2nAKFXp7rW4uZPcDzG93HN255H7k87p\n8xvMPZ3ko9n5+PuLSe46KNwyP4TMs8tcf+A4kXum7KjcH3tlvaqeSbKV5Naqei3JY0m+lOQbVfXZ\nJK9m526xAMCInWZO7+4rVfVckitJ3kzy0FKOzAGAJCe8sj5oAGfdBpjeWTf7acAozrYfNE68n5iy\ndcm9zA8h8+xal8wncj+M3LPrqNwv6gZzAAAAwIJo1gEAAGBkNOsAAAAwMpp1AAAAGBnNOgAAAIyM\nZh0AAABGRrMOAAAAI6NZBwAAgJHRrAMAAMDIaNYBAABgZDTrAAAAMDKadQAAABiZm1ZdADBOVXUt\nyS+SvJXkze6+r6puSfKPSe5Mci3Jg939i5UVCQAs3EHHAKutCDaTK+vAYd5KstXdf7hnkn4kyXe7\n+wNJvpfk0ZVVBwCcl4OOAYAl06wDh6m883fEA0memj9+Ksmnl1oRALAMBx0DAEsmhMBhOsmLVfX9\nqvqr+bYL3b2dJN19I8ltK6sOADgve48B/nrVxcCm8jfrwGH+pLt/UlW/m+SFqvphdibvvfZ/DQCs\nv73HAC9W1Svd/dKqi4JNo1kHDtTdP5n/78+q6p+S3Jdku6oudPd2VV1M8tPDXn/58uW3H29tbWVr\na+t8C4YJmM1mmc1mqy4D2HD7jgG+mZ1jgHc06+Z6OL3TzPXVfb4Xxqqqz3uM+TiZ3kW+yjJ+dstk\nPw0YpSrdXec+0M5Yv5XkXd39y6r67SQvJPlikj9L8vPufryqHk5yS3c/csDr5f7Mppd7zm6ZuR9C\n5oeQeXaNIfOHHQN09wv7nif3Zyb37Doq94OurFvWASbrQpJvVlVn5/fE0939QlX9e5LnquqzSV5N\n8uAqiwQWx3KNwNyBxwArrgk20qAr61X130n+uLvfOOI5zrqd2fTOutlPA0YZwdn2k5L7IaaXe85u\nyZ+oececXlWPJ/mf7v5bn6Y5LzLPLnP9geNE7pmyo3I/9G7wlnUAgGmwXCMAjMjQRtuyDgAwDZZr\nBIARGXo3eMs6AMA0WK6Rhbh48VK2t19ddRkLdeHCnblx49qqywA2zKBm3bIOcH4s4QQsk+UaWZSd\nRn1a53W2t8/nz8jN9cBRznyDOcs6LMP0bj5hPw0YxU1nDhon3k9M2bJyb7nGVZpe5u2nAaOY6w8a\nJ95PTNl5Ld1mWQcAmAbLNQLAyAxauu1EAzjrNsD0zrrZTwNGcbb9oHHi/cSUrUvuZX6I6WXefhow\nyppkPpH7YaaXe87uPJduAwAAABZMsw7Aubp48VKqajL/Ll68tOofKQCwAXwMftSm9xEZ+2nAKD4a\nd9A48X4av+ntp+Xto3XJvcwPIfPrwVy/n9wPMb3cc3bndYM5AAAANtzFi5fmyzZOx4ULd+bGjWsr\nrcGV9VGb3lk3+2nAKM62HzROvJ/Gb3r7yZX1/WR+CJlfD+b6/eR+CLlfD6vPvb9ZBwAAgJHRrAMA\nAMDIaNYBAABgZDTrAAAAMDKadQAAABgZzToAAACMjGYdAAAARkazDgAAACOjWQcAAICR0awDAADA\nyGjWAQAAYGQ06wAAADAymnUAAAAYGc06AAAAjIxmHQAAAEZmULNeVZ+oqv+qqh9V1cOLKmr8Zqsu\ngGPNVl3AZG1m7merLoATma26gEnazMwn3k/rYrbqAiZpM3M/W3UBnMhs1QUs1Zmb9ap6V5K/S3J/\nkg8n+Yuq+uCiChu32aoL4FizVRcwSZub+9mqC+BEZqsuYHI2N/OJ99O6mK26gMnZ3NzPVl0AJzJb\ndQFLNeTK+n1Jrnb3q939ZpJnkzywmLKAkZJ72CwyD5tH7mEkhjTrtyd5fc/XP55vA6ZL7mGzyDxs\nHrmHkbhpGYNU1TKGSbKscZLki0sZZXk/u2Va1v+n5eyjZKr7aZjp5d77aZhp7adp7qNhppf5xPtp\nCPtpE0wv9+b6YeynRRvSrF9P8t49X98x3/YbunuK70TYVHIPm0XmYfPIPYzEkI/Bfz/J+6vqzqp6\nd5I/T/KtxZQFjJTcw2aRedg8cg8jceYr693966r6fJIXstP0P9ndryysMmB05B42i8zD5pF7GI/q\n7lXXAAAAAOwx5GPwAAAAwDlYyt3g4bxV1Qezswbo/y8tcj3Jt3xsi7PwfoLNI/ewWWSedeDK+gBV\n9ZerroGkqh5O8mx21ov4t/m/SvIPVfXIKmtj/Xg/rT+/mzktuV9/cs9pyPz625TM+5v1Aarqte5+\n7/HP5DxV1Y+SfLi739y3/d1J/rO771pNZawj76f153czpyX360/uOQ2ZX3+bknkfgz9GVb182LeS\nXFhmLRzqrSS/n+TVfdt/b/49OA3vpzXgdzMLJvdrQO5ZIJlfAzKvWT+JC0nuT/LGvu2V5F+XXw4H\n+Jsk/1JVV5O8Pt/23iTvT/L5lVXFuvJ+Wg9+N7NIcr8e5J5Fkfn1sPGZ16wf75+T/E53/2D/N6pq\ntvxy2K+7v11Vf5DkvvzmTUK+392/Xl1lrCPvp7XhdzMLI/drQ+5ZCJlfGxufeX+zDgAAACPjbvAA\nAAAwMpp1AAAAGBnNOgAAAIyMZh0AAABGRrMOAAAAI/N/tTHGE9xHv/sAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -620,16 +629,24 @@ }, { "cell_type": "code", - "execution_count": 399, + "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/kiki/anaconda/lib/python2.7/site-packages/pandas/core/frame.py:1997: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", + " \"DataFrame index.\", UserWarning)\n" + ] + }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGndJREFUeJzt3X2YFfV99/H3R1AJBhCTAvEJjN4qaomxNdGY3tmojQQS\npaSlBbU+944PkTZ3VUijQL2MkruaoBIvidGgTSIam0KtDWarazQ1xQdUjErQqiiW9SEKahFZ+N5/\nzCCHhd0Zds+cmWU/r+s6186ZM3t+n12G893f/GZ+o4jAzMysMzuUHcDMzKrPxcLMzDK5WJiZWSYX\nCzMzy+RiYWZmmVwszMwsU6HFQtIPJLVKeqJm3WBJd0taKmmhpEE1r02VtEzS05K+UGQ2MzPLr+ie\nxU3Ace3WTQGaI+IA4B5gKoCkg4AJwEjgi8D3JKngfGZmlkOhxSIiHgDebLf6BGBuujwXGJcuHw/c\nGhFtEfECsAz4VJH5zMwsnzLGLIZERCtARKwEhqTr9wBeqtluRbrOzMxKVoUBbs83YmZWcX1LaLNV\n0tCIaJU0DHg1Xb8C2Ktmuz3TdVuQ5AJjZtYFEdGlseBG9CyUPjZaAJyaLp8CzK9Z/xeSdpK0D7Af\nsKijN42Iyj2mTZtWegZncqbemMuZ8j26o9CehaQfA03ARyQtB6YBVwC3SzodeJHkDCgi4ilJtwFP\nAeuAc6K7P52ZmdVFocUiIiZ18NKxHWx/OXB5cYnMzKwrqjDAvd1oamoqO8IWnCkfZ8qvirmcqXjq\niUd6JPkIlZnZNpJEVHiA28ys8kaMGIGk7eIxYsSIuv9+3LMwM+ODv7rLjlEXHf0s7lmYmVmhXCzM\nzCyTi4WZmWVysTAzs0xlzA1lZtYjnDflhkLf/9orzsy97ezZs/nhD3/IkiVLmDRpEjfeeGOBybbk\nYmFm1gPsscceXHzxxSxcuJA1a9Y0vH0XCzOzHmDcuOQ+cQ899BArVmx1Qu5CeczCzMwyuViYmVkm\nFwszM8vkYmFmZplcLMzMeoD169fz3nvvsX79etra2li7di3r169vWPueSNDMerx6XA8xe+ZZlZ5I\ncMaMGcyYMQNp0zyA06ZN45JLLtli2yImEnSxMLMerzcUi23hWWfNzKwULhZmZpbJxcLMzDK5WJiZ\nWSYXCzMzy+RiYWZmmVwszMwsk4uFmZllcrEwM7NMvvmRmVkH/u6mhwp9/8tOOzz3tu+//z7nnHMO\nzc3NvPnmm+y7775861vfYvTo0QUm3MQ9CzOzHqCtrY29996b+++/n1WrVnHppZcyYcIEli9f3pD2\nXSzMzHqA/v37c8kll7DXXnsBMHbsWPbZZx8eeeSRhrTvYmFm1gO1traybNkyDj744Ia052JhZtbD\ntLW1cdJJJ3Hqqaey//77N6RNFwszsx4kIjjppJPYeeedueaaaxrWrs+GMjPrQc444wxef/117rrr\nLvr06dOwdl0szMx6iK9+9as888wzNDc3s9NOOzW0bRcLM7MObMt1EEVbvnw5c+bMoV+/fgwdOhRI\n7nx3/fXXM3HixMLbL61YSPob4AxgA7AEOA3YBZgHDAdeACZExKqyMpqZVcXee+/Nhg0bSmu/lAFu\nSbsDXwMOi4hRJEVrIjAFaI6IA4B7gKll5DMzs82VeTZUH2AXSX2BDwErgBOAuenrc4FxJWUzM7Ma\npRSLiHgFuBJYTlIkVkVEMzA0IlrTbVYCQ8rIZ2ZmmytlzELSriS9iOHAKuB2SScC0W7T9s8/MH36\n9A+Wm5qaaGpqqntOM7OerKWlhZaWlrq8lyI6/DwujKQ/BY6LiLPS5ycDRwBHA00R0SppGHBvRIzc\nyvdHGbnNrJrOm3JDt99j9syz2F4+VyRt9WdJ16sr71nWmMVy4AhJ/SQJOAZ4ClgAnJpucwowv5x4\nZmZWK/MwlKR9gZcjYq2kJmAUcHNEvNXVRiNikaSfAouBdenXOcAA4DZJpwMvAhO62oaZmdVPnjGL\nO4A/lLQfyQf6fODHwJjuNBwRM4AZ7Vb/Dji2O+9rZmb1l+cw1IaIaAP+BLgmIi4APlZsLDMzq5I8\nPYt1kiaSjCF8OV23Y3GRzMyq4aonny30/b9+yH7btP3JJ59Mc3Mza9asYdiwYVxwwQWcccYZBaXb\nXJ6exWnAkcBlEfG8pH2AW4qNZWZm7U2dOpXnn3+et956iwULFvDNb36TxYsXN6TtzGIREU9FxPkR\n8RNJg4EBETGzAdnMzKzGQQcdRL9+/YDkvhaSeO655xrSdmaxkNQiaaCk3YBHge9Luqr4aGZm1t65\n557LLrvswsiRI9l9990ZM6Zb5xrllucw1KCIWA2MJzll9tP4jCUzs1LMnj2bd955hwceeIDx48ez\n8847N6TdPMWir6SPkVzzcGfBeczMLIMkPvOZz/DSSy9x3XXXNaTNPMXi74GFwLMR8ZCkjwPLio1l\nZmZZ2traqjNmERG3R8SoiDgnff5fEfGV4qOZmdlGr732GvPmzePdd99lw4YNLFy4kFtvvZVjj23M\nqECe6T76kdzR7mCg38b1EXF6gbnMzEq3rddBFEkS1113HWeffTYbNmxg+PDhzJo1i7Fjxzak/TwX\n5d0CPAMcR3JI6kTg6SJDmZnZ5j760Y/WbbrxrsgzZrFfRFwMvBsRc4GxwKeLjWVmZlWSp1isS7++\nJekQYBC+g52ZWa+S5zDUnPTK7YtJ7jfxYeCSQlM1UNFzv5StSsdcrTzb+35uxcssFhGx8RZU9wEf\nLzaOmZlVUYfFQtLXO/vGiPCUH2ZmvURnPYsBDUthZmaV1mGxSO9kZ2bWKwz+yBAklR2jLoYPH173\n98xzUd5cYPLGe26ng91X+qI8M+vIoqWvNbS9lau6P5neqD/7h9zbHjJobbfb2xbXXnFmQ9vbmjyn\nzo7aWCgAIuJN4JPFRTIzs6rJUyx2SHsTAKT3tchzyq2ZmW0n8nzoXwk8KOn29PmfAZcVF8nMzKom\nz3UWN0t6GDg6XTU+Ip4qNpaZmVVJrsNJaXFwgTAz66XyjFmYmVkv52JhZmaZXCzMzCxTZrGQNF7S\nMkmrJK2W9Lak1Y0IZ2Zm1ZBngPvbwJcjwnfHMzPrpfIchmp1oTAz693y9CweljQP+GfggwlRIuKf\nCktlZmaVkqdYDAT+B/hCzboAXCzMzHqJPFdwn9aIIGZmVl2d3Snvwoj4tqRrSHoSm4mI8wtNZmZm\nldFZz2LjoPbDjQhiZmbV1dmd8v4l/Tq3iIYlDQJuAA4BNgCnA78F5gHDgReACRGxqoj2zcwsvzKv\n4J4F3BURI4FPAM8AU4DmiDgAuAeYWmI+MzNLlVIsJA0E/igibgKIiLa0B3ECsLEnMxcYV0Y+MzPb\nXFk9i32A1yXdJOlRSXMk9QeGRkQrQESsBIaUlM/MzGpknjor6feAs4ARtdtHxOndbPcw4NyIeFjS\nd0gOQbU/62qLs7DMzKzx8lyUNx+4H2gG1tep3ZeBlyJi45lWd5AUi1ZJQyOiVdIw4NWO3mD69Okf\nLDc1NdHU1FSnaGZm24eWlhZaWlrq8l55ikX/iLioLq2l0mLwkqT9I+K3wDHAb9LHqcBM4BSSQrVV\ntcXCzMy21P4P6RkzZnT5vfIUizsljYmIu7rcytadD/xI0o7AfwGnAX2A2ySdDrwITKhzm2Zm1gV5\nisVk4BuS3gfeBwRERAzsTsMR8Thw+FZeOrY772tmZvWXZ26oAY0IYmZm1ZXnTnmSdJKki9Pne0n6\nVPHRzMysKvJcZ/E94EhgUvr8HWB2YYnMzKxy8oxZfDoiDpO0GCAi3pS0U8G5zMysQvL0LNZJ6kN6\ngVx6kd6GQlOZmVml5CkWVwM/A4ZIugx4APhWoanMzKxS8pwN9SNJj5BcOCdgXEQ8nfFtZma2Hckz\nZgHQSjLlR1/gQ5IOi4hHi4tlZmZVkmciwUtJpuB4jk0T+wVwdHGxzMysSvL0LCYA+0bE+0WHMTOz\nasozwP0ksGvRQczMrLry9CwuBxZLehJYu3FlRBxfWCozM6uUPMViLsmU4Uvw9RVmZr1SnmLxPxFx\ndeFJzMyssvIUi/slXQ4sYPPDUD511sysl8hTLD6Zfj2iZp1PnTUz60XyXMH9+UYEMTOz6spzP4tB\nkq6S9HD6uFLSoEaEMzOzashzncWNwNskF+dNAFYDNxUZyszMqiXPmMW+EfGVmuczJD1WVCAzM6ue\nPD2LNZI+u/GJpKOANcVFMjOzqsnTszgbmJuOUwj4HXBKoanMzKxS8pwN9RjwCUkD0+erC09lZmaV\nkudsqOck/QiYBOxVfCQzM6uaPGMWBwHXAx8B/l9aPH5WbCwzM6uSPMViPbAu/boBeDV9mJlZL5Fn\ngHs1yYyzVwHfj4g3io1kZmZVk6dnMRH4JXAOcKukGZKOKTaWmZlVSZ6zoeYD8yUdCHwR+GvgQuBD\nBWczM7OKyHM21B2SngVmAf2BvwQGFx3MzMyqI/dtVSNifdFhzMysmvIchnq4EUHMzKy68gxwm5lZ\nL9dhsUgnDETSzo2LY2ZmVdRZz+Lq9OuDjQhiZmbV1dmYxTpJc4A9JF3d/sWIOL+4WGZmViWdFYsv\nAccCxwGPFNG4pB2Ah4GXI+J4SYOBecBw4AVgQkSsKqJtMzPLr8NiERGvk1yx/XREPF5Q+5OBp4CB\n6fMpQHNEfFvSRcDUdJ2ZmZUoz9lQb0j6maRX08cdkvbsbsPpe4wBbqhZfQIwN12eC4zrbjtmZtZ9\neYrFTcACYPf08S/puu76DnABEDXrhkZEK0BErASG1KEdMzPrpjzFYkhE3BQRbenjh8DvdadRSWOB\n1vQufOpk0+jkNTMza5A80328Lukk4Cfp84lAd6cpPwo4XtIYkgkJB0i6BVgpaWhEtEoaRif3zZg+\nffoHy01NTTQ1NXUzkpnZ9qWlpYWWlpa6vJciOv/jXdJw4BrgSJK/9P8DOD8iltclgPQ54P+mZ0N9\nG3gjImamA9yDI2KLAW5JkZU7r6uefLYu71NVXz9kv7IjWAU0ej9ftPS1hra3srmxP98hg9Y2tL1r\nrzizLu8jiYjo7GhOh/LMDfUicHxX3rwLrgBuk3Q68CIwoUHtmplZJ/IchipURNwH3Jcu/47k2g4z\nM6sQTyRoZmaZ8tz8aJ8868zMbPuVp2dxx1bW/bTeQczMrLo6HLNI77l9MDBI0vialwYC/YoOZmZm\n1dHZAPcBJJMJ7gp8uWb928BZRYYyM7Nq6WwiwfnAfElHRoTvaWFm1ovlOXX2WUnfAEbUbh8RpxcV\nyszMqiVPsZgP3A80A+uLjWNmZlWUp1j0j4iLCk9iZmaVlefU2TvTCf/MzKyXylMsJpMUjDWSVkt6\nW9LqooOZmVl15JlIcEAjgpiZWXVlFgtJ/3tr6yPil/WPY2ZmVZRngPuCmuV+wKeAR4CjC0lkZmaV\nk+cwVO3V20jaC/huYYnMzKxyujJF+cvAyHoHMTOz6sozZnENye1UISkuhwKPFhnKzMyqJc+YxcM1\ny23ATyLiVwXlMTOzCsozZjFX0k7A/umqpcVGMjOzqslzGKoJmAu8AAjYS9IpPnXWzKz3yHMY6krg\nCxGxFEDS/sBPgD8oMpiZmVVHnrOhdtxYKAAi4rfAjsVFMjOzqsk1wC3pBuAf0+cnsvmgt5mZbefy\nFIuzgXOB89Pn9wPfKyyRmZlVTp6zodYCV6UPMzPrhTLHLCR9SdJiSb/zFOVmZr1TnsNQ3wXGA0si\nIrI2NjOz7U+es6FeAp50oTAz673y9CwuBO6SdB+wduPKiPAYhplZL5GnWFwGvENyL4udio1jZmZV\nlKdY7B4RhxSexMzMKivPmMVdkr5QeBIzM6usPMXibODnktb41Fkzs94pz0V5AxoRxMzMqivPmAWS\nBgP/i2SQGwBPUW5m1nvkuZ/FmcBkYE/gMeAI4EHg6GKjmZlZVeQZs5gMHA68GBGfBz4JvNWdRiXt\nKekeSb+RtETS+en6wZLulrRU0kJJg7rTjpmZ1UeeYvFeRLwHIGnniHgGOKCb7bYBX4+Ig4EjgXMl\nHQhMAZoj4gDgHmBqN9sxM7M6yDNm8bKkXYF/Bn4h6U3gxe40GhErgZXp8juSniY5zHUC8Ll0s7lA\nC0kBMTOzEuU5G+pP0sXpku4FBgE/r1cASSOAQ4FfA0MjojVtd6WkIfVqx8zMui7X2VAbRcR99Wxc\n0oeBnwKT0x5G+8kKO5y8cPr06R8sNzU10dTUVM9oZmY9XktLCy0tLXV5r20qFvUkqS9JobglIuan\nq1slDY2IVknDgFc7+v7aYmFmZltq/4f0jBkzuvxeeQa4i3Ij8FREzKpZtwA4NV0+BZjf/pvMzKzx\nSulZSDoKOBFYImkxyeGmbwAzgdsknU4yiD6hjHxmZra5UopFRPwK6NPBy8c2MouZmWUr8zCUmZn1\nEC4WZmaWycXCzMwyuViYmVkmFwszM8vkYmFmZplcLMzMLJOLhZmZZXKxMDOzTC4WZmaWycXCzMwy\nuViYmVkmFwszM8vkYmFmZplcLMzMLJOLhZmZZXKxMDOzTC4WZmaWycXCzMwyuViYmVkmFwszM8vk\nYmFmZplcLMzMLJOLhZmZZXKxMDOzTC4WZmaWqW/ZAXqbRUtfa2h7f/fQmw1t77LTDm9oe2bWGO5Z\nmJlZJhcLMzPL5GJhZmaZXCzMzCyTi4WZmWVysTAzs0w+dXY796tFzzS0vfOWPt7Q9q694syGtmfW\nW7lnYWZmmSpZLCSNlvSMpN9KuqjsPGZmvV3lioWkHYBrgeOAg4GJkg4sN1U+zz70n2VH2MJbK54u\nO8IWVixfWnaELbS0tJQdYQtVzATez/Oq4n7eHZUrFsCngGUR8WJErANuBU4oOVMuz1XxP9Er/k+U\nRxU/mKuYCbyf51XF/bw7qlgs9gBeqnn+crrOzMxKUsViYWZmFaOIKDvDZiQdAUyPiNHp8ylARMTM\nmm2qFdrMrIeICHXl+6pYLPoAS4FjgP8GFgETI6J6ByXNzHqJyl2UFxHrJZ0H3E1ymOwHLhRmZuWq\nXM/CzMyqp0cMcEsaLOluSUslLZQ0qJNtd5D0qKQFZWeStKekeyT9RtISSecXlCXzIkZJV0taJukx\nSYcWkWNbc0maJOnx9PGApN8vO1PNdodLWidpfBUySWqStFjSk5LuLTuTpIGSFqT70xJJpzYg0w8k\ntUp6opNtGrqfZ2UqaR/P/D2l223bPh4RlX8AM4EL0+WLgCs62fZvgH8EFpSdCRgGHJouf5hkLObA\nOufYAXgWGA7sCDzWvg3gi8C/psufBn7dgH+zPLmOAAaly6OLzpUnU812/w7cCYwvOxMwCPgNsEf6\n/KMVyDQVuHxjHuANoG/BuT4LHAo80cHrZeznWZkauo/nyVTzb7xN+3iP6FmQXJQ3N12eC4zb2kaS\n9gTGADdUIVNErIyIx9Lld4Cnqf81I3kuYjwBuDnN8Z/AIElD65xjm3NFxK8jYlX69NcUfz1N3gs+\nvwb8FHi14Dx5M00C7oiIFQAR8XoFMgUwIF0eALwREW1FhoqIB4DObirf8P08K1MJ+3ie3xN0YR/v\nKcViSES0QvIBDAzpYLvvABeQ7MhVyQSApBEk1b7el7/muYix/TYrtrJNvW3rxZVnAv9WaKIcmSTt\nDoyLiOuALp1iWO9MwP7AbpLulfSQpJMrkOla4CBJrwCPA5MLzpRHGfv5tmjEPp6pq/t4Zc6GkvQL\noPavAJF86H9zK5tvUQwkjQVaI+IxSU3U4T96dzPVvM+HSar45LSHYTUkfR44jaT7XLbvkhxW3KgR\nBSNLX+Aw4GhgF+BBSQ9GxLMlZjoOWBwRR0vaF/iFpFHev7due9jHK1MsIuKPO3otHawZGhGtkoax\n9a7TUcDxksYAHwIGSLo5Iv6yxExI6ktSKG6JiPldzdKJFcDeNc/3TNe132avjG3KyIWkUcAcYHRE\nZHWdG5HpD4FbJYnkWPwXJa2LiKJOmMiT6WXg9Yh4D3hP0i+BT5CMK5SV6TTgcoCIeE7S88CBwMMF\nZcqjjP08U4P38Ty6to8XPdhSpwGbmcBF6XKnA9zpNp+jMQPcmZlIjqFeVWCOPmwajNyJZDByZLtt\nxrBp4O8IGjPIlifX3sAy4IgG7UeZmdptfxPFD3Dn+T0dCPwi3bY/sAQ4qORMs4Fp6fJQksM/uzXg\n33AEsKSD1xq+n+fI1NB9PE+mdtvl3scbFr6bP/huQDPJ2UR3A7um6z8G3LmV7RtRLDIzkfR21qf/\n2RYDj5L8dVHvLKPTHMuAKem6/wP8Vc0216YfAI8DhzXo363TXMD3Sc6ieTT9/SwqO1O7bW8sulhs\nw7/f35KcEfUE8LWyM6X7+cI0zxMksywUnenHwCvAWmA5Se+m1P08K1NJ+3jm76lm29z7uC/KMzOz\nTD3lbCgzMyuRi4WZmWVysTAzs0wuFmZmlsnFwszMMrlYmJlZJhcLszqT9GVJF9bpvd6ux/uYdZev\nszDrAkl9ImJ9A9pZHREDi27HLIt7FtarSeov6c70xkJPSJog6XlJu6Wv/8HGmw1JmibpZkn3A7dI\nelDSyJr3ulfSYZJOkXRNeoOgF9q1tVxSH0kfl/Rv6Syy90naP91mhKT/SG+Wc2ljfxtmHXOxsN5u\nNLAiIj4ZEaOAn7PlDMK1z0cCx0TEJJL7PPw5QDqZ5LCIeHTj90TEamCxpM+l674E/DztkcwBzouI\nw0mm1b8u3WYWMDsiPgH8dz1/ULPucLGw3m4J8MeSLpf02fQDvrMpmxdExPvp8u3AV9LlCSSzC7d3\nG2lBAf4CmCdpF+AzwO2SFgPXs2kq/KNIihDALV35gcyKUJkpys3KEBHLJB1GMmPppZLuAdax6Q+p\nfu2+5d2a731F0hvpfZX/nGSytvYWAJdJGkxyT4p7SG6x+2ZEHLa1SGzqyVThXhpmgHsW1stJ+hiw\nJiJ+DPwDyQf6CyRz/sOmnkNH5gEXAgMj4sn2L0bEuyT3eJhFMhtxRMTbwPOS/rQmx6h08VfAxHT5\nxC79UGYFcLGw3u73gUXp4aBLgEuBvwdmSVoEZN1X+g6SXsW8TraZR/LBf2vNuhOBMyQ9JulJ4Ph0\n/V8D50p6nGQacLNK8KmzZmaWyT0LMzPL5GJhZmaZXCzMzCyTi4WZmWVysTAzs0wuFmZmlsnFwszM\nMrlYmJlZpv8PBE6Y5/68UeMAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -638,7 +655,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -658,7 +675,7 @@ }, { "cell_type": "code", - "execution_count": 400, + "execution_count": 10, "metadata": { "collapsed": false }, @@ -667,7 +684,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH6JJREFUeJzt3XuYFeWV7/Hvj7uIIsZ4A22NRgWNo86AiSYnrTGCl6ij\nhEEiJ95mYoz3ExVygrSaxEsSM96j8RJMdMDoyQjGgDLaiYZEjKKCKKKPgBIhqAgaEbms88cucNt0\ndxXNrr0L+vd5nn669rvfXbWqKXr1W29VLUUEZmZmrelQ6wDMzKz4nCzMzCyVk4WZmaVysjAzs1RO\nFmZmlsrJwszMUuWaLCR1lfSkpGmSpksanbT3kvSwpFmSJknqWfaZkZJmS3pR0uF5xmdmZtko7/ss\nJHWPiA8kdQT+BJwDnAC8HRFXS7oY6BURIyT1A+4G+gN9gMnAZ8M3g5iZ1VTup6Ei4oNksSvQCQjg\nWGBM0j4GOC5ZPgYYGxErI2IOMBsYkHeMZmbWutyThaQOkqYBC4BHIuIpYLuIWAgQEQuAbZPuvYHX\nyz4+P2kzM7MaqsbIYnVE7E/ptNIASXtTGl18olvecZiZWdt1qtaGImKppEZgELBQ0nYRsVDS9sDf\nk27zgZ3KPtYnafsESU4uZmZtEBFqy+dyneCWtA2wIiKWSNoMmARcCXwZeCcirmphgvtASqefHqGZ\nCW5JFZvzvmbGKxVZD8Ckm65j4JnnVGx9lbD0vl/T0NBQ6zA+oaGhwTFlUMSYoJhxOaZsJLU5WeQ9\nstgBGCOpA6VTXuMi4iFJfwHulXQqMBcYAhARMyXdC8wEVgBn+kooM7PayzVZRMR04IBm2t8BDmvh\nM1cAV+QZl5mZrR/fwV1Bu/U/sNYhrKO+vr7WIazDMWVTxJigmHE5pvzlflNeHoo6Z1FEF+yze61D\nMLOCKPKchZlZq3bZZRfmzp1b6zA2KXV1dcyZM6ei63SyMLOamjt3LhvjGY4ik9o0eGiV5yzMzCyV\nk4WZmaVysjAzs1ROFmZmbTBmzBi+9KUv1TqMqvEEt5kVzlkjbst1/TdceXpF1pPHRHJLbrzxRn75\ny18yffp0hg0bxh133FG1bYOThZnZRqF3796MGjWKSZMmsWzZsqpv36ehzMxa8cYbb3DCCSew7bbb\n8ulPf5pzzmn+YaHnnXceO++8Mz179qR///488cQTa9976qmn6N+/Pz179mSHHXbgu9/9LgDLly9n\n+PDhbLPNNvTq1YsDDzyQRYsWNbv+4447jmOOOYatt9668juZgZOFmVkLVq9ezdFHH82uu+7KvHnz\nmD9/PkOHDm2274ABA3j++edZvHgxw4YN4+tf/zofffQRAOeeey7nnXceS5Ys4dVXX2XIkCFAad5j\n6dKlzJ8/n3feeYef//znbLbZZlXbv/XhZGFm1oKpU6fy5ptvcvXVV9OtWze6dOnCQQcd1GzfYcOG\nsdVWW9GhQwfOP/98li9fzqxZswDo0qULr7zyCm+//Tbdu3dnwIBStejOnTvz9ttv8/LLLyOJ/fff\nnx49elRt/9aHk4WZWQtef/116urq6NAh/VflT37yE/r160evXr3o1asXS5cu5a233gLg9ttvZ9as\nWey1114ceOCB/O53vwNg+PDhDBw4kKFDh9KnTx9GjBjBqlWrct2ntnKyMDNrwU477cS8efNYvXp1\nq/0ef/xxfvzjH3PfffexePFiFi9ezJZbbrn2MSa77bYb99xzD4sWLeKiiy5i8ODBLFu2jE6dOjFq\n1CheeOEFpkyZwoQJE7jrrruqsWvrzcnCzKwFAwYMYIcddmDEiBF88MEHLF++nClTpqzT7/3336dz\n58586lOf4qOPPuKyyy7jvffeW/v+3XffvXaU0bNnTyTRoUMHGhsbmTFjBqtXr6ZHjx507ty5xVHM\nqlWr+PDDD1m1ahUrV65k+fLlVR2F+NJZMyucSt0HsaE6dOjAhAkTOPvss9l5553p0KEDw4YNW2fe\nYuDAgQwcOJA99tiDHj16cP7557PTTjutfX/ixIlccMEFLFu2jLq6OsaNG0fXrl1ZsGABZ5xxBvPn\nz6dHjx4MHTqU4cOHNxvLD37wAy699NK193bcfffdjB49mksuuSS/H0AZ17NwPQuzmkpqLNQ6jE1K\nSz/TDaln4dNQZmaWysnCzMxSOVmYmVkqJwszM0vlZGFmZqmcLMzMLJWThZmZpXKyMDOzVE4WZmZt\n4LKqZmY19n/vfCrX9f/wlP4VWU+1yqp+9NFHnHnmmUyePJnFixez22678aMf/YhBgwZVZfuQ88hC\nUh9Jj0p6QdJ0SWcn7aMlvSHpmeRrUNlnRkqaLelFSYfnGZ+Z2cZg5cqV7Lzzzjz++OMsWbKEyy+/\nnCFDhjBv3ryqxZD3aaiVwAURsTfwBeAsSXsl710TEQckXxMBJPUFhgB9gSOAm1TNiuhmZk0Uoaxq\n9+7dueSSS9Y+nPCoo45i11135emnn85hj5uXa7KIiAUR8Wyy/D7wItA7ebu5JHAsMDYiVkbEHGA2\nMCDPGM3MWlLUsqoLFy5k9uzZ7L333pXb2RRVm+CWtAuwH/Bk0nSWpGcl3SapZ9LWG3i97GPz+Ti5\nmJlVVRHLqq5cuZKTTjqJk08+mT322KOyO9yKqiQLST2A+4BzkxHGTcBnImI/YAHw02rEYWa2PopW\nVjUiOOmkk+jatSvXX399ZXYyo9yvhpLUiVKi+FVEPAAQEeUn5X4BTEiW5wM7lb3XJ2lbR0NDw9rl\n+vp66uvrKxazmRl8sqxqawljTVnVxx57jH79+gGw9dZbr1NWFeD+++9n8ODBvPPOO2y22WaMGjWK\nUaNGMW/ePI444gj23HNPTjnllGa3c9ppp/HWW2/x0EMP0bFjx9T4GxsbaWxsXM+9bl41Lp29A5gZ\nEdeuaZC0fUQsSF4eD8xIlscDd0v6GaXTT7sDU5tbaXmyMDPLQ3lZ1YaGBjp27MjTTz+9zqmopmVV\nr7zyynXKqg4cOJBtttlmnbKq22yzDf369Ustq3rGGWfw0ksvMXnyZLp06ZIp/qZ/SF966aXr/0NI\n5JosJB0MfAOYLmkaEMD3gGGS9gNWA3OAbwFExExJ9wIzgRXAmRUriWdmG41K3QexoYpSVnXevHnc\neuutdOvWje222w4o3eNxyy23cOKJJ+b7Q0i4rKrLqprVlMuqVp7LqpqZWU04WZiZWSonCzMzS+Vk\nYWZmqZwszMwslZOFmZmlcrIwM7NUThZmZpbKycLMrA1cVtXMrMbyfrJCpZ5sUM3abMOHD2fy5Mks\nW7aM7bffngsvvJDTTjutatv3yMLMbCMwcuRIXnvtNd59913Gjx/P97//faZNm1a17TtZmJm1oghl\nVQH69etHt27dgFJdC0m8+uqrFd7bljlZmJm1oGhlVb/zne+w+eab07dvX3bccUeOPPLIyu90C1KT\nhaTNJXVIlveQdIykzvmHZmZWW0Urq3rjjTfy/vvv88QTT3D88cfTtWvXyu90C7KMLP4IdJPUG3gY\nGA78Ms+gzMyKoGhlVaE0qX7QQQfx+uuvc/PNN2/4TmaUJVkoIj6gVNHupoj4OrB3vmGZmdVeeVnV\n1qwpq3rfffexePFiFi9ezJZbbrlOWdVFixZx0UUXMXjwYJYtW0anTp0YNWoUL7zwAlOmTGHChAnc\nddddmWJbuXJl4eYsJOkLlCre/S5pSy/+ama2kSsvq/rBBx+wfPlypkyZsk6/pmVVL7vssnXKqq4Z\nZTQtqzpjxgxWr17dalnVRYsWMW7cOP7xj3+wevVqJk2axNixYznssMPy2/kmstxncR4wEvhtRLwg\n6TPAY/mGZWbtWVEqPBalrKokbr75Zr797W+zevVq6urquPbaaznqqKNy/xmsjWF9yhkmE909ImJp\nfiFlisNlVTMqyn86s5a4rGrl1aSsqqR7JG0paXNgBjBT0oVt2ZiZmW2cssxZ9EtGEscBvwd2pXRF\nlJmZtRNZkkXn5L6K44DxEbEC8JjRzKwdyZIsbgHmAJsDf5RUB9R0zsLMzKor9WqoiLgOuK6saa6k\nQ/ILyczMiibTI8olHUXpRrxuZc2X5RKRmZkVTmqykPRzoDtwCHAbMBiYmnNcZtZO1NXVVbUuRHtQ\nV1dX8XVmGVkcFBH7Sno+Ii6V9FNKV0WZmW2wOXPm1DoEyyDLBPey5PsHknYEVgA75BeSmZkVTZaR\nxYOStgJ+DDxD6bLZ23KNyszMCiV1ZBERl0fEuxFxP1AH7BURo7KsXFIfSY9KekHSdEnnJO29JD0s\naZakSZJ6ln1mpKTZkl6UdHhbd8zMzCqnxZGFpONbeY+I+H8Z1r8SuCAinpXUA3ha0sPAKcDkiLha\n0sWUHlQ4QlI/YAjQF+gDTJb02Yo9CMrMzNqktdNQX2vlvQBSk0VELAAWJMvvS3qRUhI4Fvhy0m0M\n0AiMAI4BxkbESmCOpNnAAODJtG2ZmVl+WkwWEXFKJTckaRdgP+AvwHYRsTDZzgJJ2ybdegN/LvvY\n/KTNzMxqKMt9Fj8Cro6Id5PXvYD/ExHfz7qR5BTUfcC5yQij6Wml9T7N1NDQsHa5vr6e+vr69V2F\nmdkmrbGxkcbGxoqsK7WehaRpEbF/k7ZnIuKATBuQOgEPAr+PiGuTtheB+ohYKGl74LGI6CtpBBAR\ncVXSbyIwOiKebLJO17PIyPUszGyNXOtZAB0ldS3b2GZA11b6N3UHMHNNokiMB05Olr8JPFDWPlRS\nF0m7Arvju8XNzGouy30WdwP/I+nO5PUplCalU0k6mFLt7umSplE63fQ94CrgXkmnAnMpXQFFRMyU\ndC8wk9LNf2f6Sigzs9rLVFZV0iBgTWXwRyJiUq5Rpcfj01AZ+TSUma2xIaehMj11NiImAhPbsgEz\nM9v4ZZmzMDOzds7JwszMUjlZmJlZqiw35R0MNFB6iGAnQJTuhfhMvqGZmVlRZJngvh04H3gaWJVv\nOGZmVkRZksWSiHBlPDOzdixLsnhM0o8pPWV2+ZrGiHgmt6jMzKxQsiSLA5Pv/1LWFsChlQ/HzMyK\nKDVZRMQh1QjEzMyKq7VKeSdFxK8lXdDc+xFxTX5hmZlZkbQ2stg8+b5FNQIxM7Piaq1S3i3J90ur\nF46ZmRWR7+A2M7NUThZmZpbKycLMzFJleTZUV+AEYJfy/hFxWX5hmZlZkWS5Ke8BYAmlZ0MtT+lr\nZmaboCzJok9EDMo9EjMzK6wscxZTJH0u90jMzKywsowsvgicLOk1Sqeh1tSz2DfXyMzMrDCyJIsj\nco/CzMwKLfU0VETMBXYCDk2WP8jyOTMz23Sk/tKXNBq4GBiZNHUGfp1nUGZmVixZRgj/ChwD/AMg\nIv6GHy5oZtauZEkWH0VEUCp4hKTNU/qbmdkmJkuyuFfSLcBWkv4dmAz8It+wzMysSLJUyvuJpK8C\nS4E9gUsi4pHcIzMzs8LIdFVTkhwuB34EPC1p6yyfk3S7pIWSni9rGy3pDUnPJF+Dyt4bKWm2pBcl\nHb6e+2JmZjnJ8iDBbwGXAh8Cq0luygM+k2H9dwLXA3c1ab+maVlWSX2BIUBfoA8wWdJnk/kSMzOr\noSw35X0X2Cci3lrflUfEE5LqmnlLzbQdC4yNiJXAHEmzgQHAk+u7XTMzq6wsp6FepXQjXiWdJelZ\nSbdJ6pm09QZeL+szP2kzM7MayzKyGEnpYYJPUvaI8og4p43bvAm4LCJC0g+AnwKnr+9KGhoa1i7X\n19dTX1/fxnDMzDZNjY2NNDY2VmRdSpsSkDQVeAKYTmnOAoCIGJNpA6XTUBOae/Bg+XuSRpRWG1cl\n700ERkfEOqehJFVsKuOaGa9UZD1FdcE+u9c6BDMrCElERHPTAKmyjCw6R8QFbVl5QpTNUUjaPiIW\nJC+PB2Yky+OBuyX9jNLpp92BqRuwXTMzq5AsyeL3kv4DmMAnT0O9k/ZBSfcA9cCnJM0DRgOHSNqP\n0ihlDvCtZH0zJd0LzARWAGf6Sigzs2LIchrqtWaaIyKyXDqbC5+Gys6nocxsjVxPQ0XErm1ZsZmZ\nbTpcl8LMzFI5WZiZWaoWk4Wkg5PvXasXjpmZFVFrI4vrku9/rkYgZmZWXK1NcK+QdCvQW9J1Td/c\ngDu4zcxsI9NasjgaOAwYCDxdnXDMzKyIWkwWyVNmx0p6MSKeq2JMZmZWMFmuhnpb0m8l/T35ul9S\nn9wjMzOzwsiSLO6k9NymHZOvCUmbmZm1E1mSxbYRcWdErEy+fgl8Oue4zMysQLIki7cknSSpY/J1\nEvB23oGZmVlxZEkWp1Kqjb0AeBMYDJySZ1BmZlYsWR4kOBc4pgqxmJlZQfnZUGZmlsrJwszMUqUm\nC0nr1LNors3MzDZdWUYW9zfTdl+lAzEzs+JqcYJb0l7A3kBPSceXvbUl0C3vwMzMrDhauxpqT0oP\nE9wK+FpZ+3vAv+cZlJmZFUtrDxJ8AHhA0hciwjUtzMzasdT7LIBXJH0P2KW8f0ScmldQZmZWLFmS\nxQPA48BkYFW+4ZiZWRFlSRbdI+Li3CMxM7PCynLp7IOSjsw9EjMzK6wsyeJcSgljmaSlkt6TtDTv\nwMzMrDiyPEhwi2oEYmZmxZWaLCT9r+baI+KPlQ/HzMyKKMsE94Vly92AAcDTwKFpH5R0O6Ub+xZG\nxL5JWy9gHFAHzAGGRMSS5L2RlOpnrATOjYiHM++JmZnlJnXOIiK+Vvb1VWAfYHHG9d8JDGzSNgKY\nHBF7Ao8CIwEk9aNUZKkvcARwkyRl3I6ZmeWoLY8of4PSL/RUEfEE6yaWY4ExyfIY4Lhk+RhgbFLn\new4wm9IoxszMaizLnMX1QCQvOwD7Ac9swDa3jYiFABGxQNK2SXtvoPyxIvOTNjMzq7EscxZ/LVte\nCfxXRPypgjFEepd1NTQ0rF2ur6+nvr6+QuGYmW0aGhsbaWxsrMi6FJH+u1pSF2CP5OWsiFiReQNS\nHTChbIL7RaA+IhZK2h54LCL6ShoBRERclfSbCIyOiCebWWdkiTuLa2a8UpH1FNUF++xe6xDMrCAk\nERFtmgvOUimvntL8wY3ATcDLLV1O29Iqkq81xgMnJ8vfpPTsqTXtQyV1SSrx7Q5MXY/tmJlZTrKc\nhvopcHhEzAKQtAfwX8A/p31Q0j1APfApSfOA0cCVwG8knQrMpXQFFBExU9K9wExgBXBmxYYPZma2\nQbIki85rEgVARLwsqXOWlUfEsBbeOqyF/lcAV2RZt5mZVU+mCW5JtwG/Tl5/g09OepuZ2SYuS7L4\nNvAd4Jzk9eOU5i7MzKydyHQ1VNFszFdDTZ21qKrb221plr8HKueHp/Sv6vbMLLu8r4Y6WtI0Se/4\nEeVmZu1Tlj87/xM4Hpjuq5PMzNqnLM+Geh2Y4URhZtZ+ZRlZXAQ8JOkPwPI1jRFxTW5RmZlZoWRJ\nFj8E3qdUy6JLvuGYmVkRZUkWO0bEPrlHYmZmhZVlzuIhSYfnHomZmRVWlmTxbWCipGW+dNbMrH1K\nPQ0VEVtUIxAzMyuuTLf3SuoFfJbSJDcAEfHHvIIyM7NiyVJW9XTgXKAP8CzweUrlTw/NNzSrhD9N\nfamq2ztr1nNV3d4NV55e1e2ZtVdZ5izOBfoDcyPiEGB/4N1cozIzs0LJkiw+jIgPASR1jYiXgD3z\nDcvMzIoky5zFG5K2Av4beETSYkoV7szMrJ3IcjXUvyaLDZIeA3oCE3ONyszMCmW9ih1ExB/yCsTM\nzIory5yFmZm1c04WZmaWysnCzMxSOVmYmVkqJwszM0vlZGFmZqmcLMzMLJWThZmZpXKyMDOzVOt1\nB3clSZoDLAFWAysiYkBSN2McUAfMAYZExJJaxWhmZiW1HFmsBuojYv+IGJC0jQAmR8SewKPAyJpF\nZ2Zma9UyWaiZ7R8LjEmWxwDHVTUiMzNrVi2TRVB65PlTSTU+gO0iYiFARCwAtq1ZdGZmtlbN5iyA\ngyPiTUmfBh6WNItSAinX9LWZmdVAzZJFRLyZfF8k6b+BAcBCSdtFxEJJ2wN/b+nzDQ0Na5fr6+up\nr6/PN2Azs41MY2MjjY2NFVmXIqr/x7uk7kCHiHhf0ubAw8ClwFeAdyLiKkkXA70iYkQzn49KxX3N\njFcqsp6sps5aVNXtLZhc3f3bp+fyqm7vhitPT+9kZgBIIiLUls/WamSxHfBbSZHEcHdEPCzpr8C9\nkk6lVLp1SI3iM9ukVPuPomq7YJ/dax3CJq8mySIiXgP2a6b9HeCw6kdkZhuzs0bcVusQclWEEbTv\n4DYzs1ROFmZmlsrJwszMUjlZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAzs1ROFmZmlsrJ\nwszMUjlZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAzs1ROFmZmlsrJwszMUjlZmJlZqk61\nDsDMNj1TZy2q6vYWLOla1e3t03N5VbdXBB5ZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAz\ns1ROFmZmlqqQyULSIEkvSXpZ0sW1jsfMrL0rXLKQ1AG4ARgI7A2cKGmv2kaVzStPPVnrENbx7vwX\nax3COubPm1XrENbR2NhY6xDWUcSYwMd5VkU8zjdE4ZIFMACYHRFzI2IFMBY4tsYxZfJqEf8T/c3/\nibIo4i/mIsYEPs6zKuJxviGKmCx6A6+XvX4jaTMzsxopYrIwM7OCUUTUOoZPkPR5oCEiBiWvRwAR\nEVeV9SlW0GZmG4mIUFs+V8Rk0RGYBXwFeBOYCpwYEcU7KWlm1k4U7hHlEbFK0lnAw5ROk93uRGFm\nVluFG1mYmVnxbBQT3JJ6SXpY0ixJkyT1bKVvB0nPSBpf65gk9ZH0qKQXJE2XdE5OsaTexCjpOkmz\nJT0rab884ljfuCQNk/Rc8vWEpM/VOqayfv0lrZB0fBFiklQvaZqkGZIeq3VMkraUND45nqZLOrkK\nMd0uaaGk51vpU9XjPC2mGh3jqT+npN/6HeMRUfgv4CrgomT5YuDKVvqeD/waGF/rmIDtgf2S5R6U\n5mL2qnAcHYBXgDqgM/Bs020ARwC/S5YPBP5ShX+zLHF9HuiZLA/KO64sMZX1+x/gQeD4WscE9ARe\nAHonr7cpQEwjgSvWxAO8DXTKOa4vAvsBz7fwfi2O87SYqnqMZ4mp7N94vY7xjWJkQemmvDHJ8hjg\nuOY6SeoDHAncVoSYImJBRDybLL8PvEjl7xnJchPjscBdSRxPAj0lbVfhONY7roj4S0QsSV7+hfzv\np8l6w+fZwH3A33OOJ2tMw4D7I2I+QES8VYCYAtgiWd4CeDsiVuYZVEQ8ASxupUvVj/O0mGpwjGf5\nOUEbjvGNJVlsGxELofQLGNi2hX4/Ay6kdCAXJSYAJO1CKdtX+vbXLDcxNu0zv5k+lba+N1eeDvw+\n14gyxCRpR+C4iLgZaNMlhpWOCdgD2FrSY5KekjS8ADHdAPST9DfgOeDcnGPKohbH+fqoxjGeqq3H\neGGuhpL0CFD+V4Ao/dL/fjPd10kGko4CFkbEs5LqqcB/9A2NqWw9PShl8XOTEYaVkXQIcAql4XOt\n/Sel04prVCNhpOkEHAAcCmwO/FnSnyPilRrGNBCYFhGHStoNeETSvj6+m7cpHOOFSRYR8dWW3ksm\na7aLiIWStqf5odPBwDGSjgQ2A7aQdFdE/O8axoSkTpQSxa8i4oG2xtKK+cDOZa/7JG1N++yU0qcW\ncSFpX+BWYFBEpA2dqxHTvwBjJYnSufgjJK2IiLwumMgS0xvAWxHxIfChpD8C/0RpXqFWMZ0CXAEQ\nEa9Keg3YC/hrTjFlUYvjPFWVj/Es2naM5z3ZUqEJm6uAi5PlVie4kz5fpjoT3KkxUTqHek2OcXTk\n48nILpQmI/s26XMkH0/8fZ7qTLJliWtnYDbw+SodR6kxNel/J/lPcGf5Oe0FPJL07Q5MB/rVOKYb\ngdHJ8naUTv9sXYV/w12A6S28V/XjPENMVT3Gs8TUpF/mY7xqwW/gjm8NTKZ0NdHDwFZJ+w7Ag830\nr0aySI2J0mhnVfKfbRrwDKW/Liody6AkjtnAiKTtW8B/lPW5IfkF8BxwQJX+3VqNC/gFpatonkl+\nPlNrHVOTvnfknSzW49/vu5SuiHoeOLvWMSXH+aQknucpPWUh75juAf4GLAfmURrd1PQ4T4upRsd4\n6s+prG/mY9w35ZmZWaqN5WooMzOrIScLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAzs1ROFmYVJulr\nki6q0Lreq8R6zDaU77MwawNJHSNiVRW2szQitsx7O2ZpPLKwdk1Sd0kPJoWFnpc0RNJrkrZO3v/n\nNcWGJI2WdJekx4FfSfqzpL5l63pM0gGSvinp+qRA0Jwm25onqaOkz0j6ffIU2T9I2iPps4ukKUmx\nnMur+9Mwa5mThbV3g4D5EbF/ROwLTGTdJwiXv+4LfCUihlGq8/BvAMnDJLePiGfWfCYilgLTJH05\naTsamJiMSG4FzoqI/pQeq39z0uda4MaI+CfgzUruqNmGcLKw9m468FVJV0j6YvILvrVHNo+PiI+S\n5d8AJyTLQyg9Xbipe0kSCjAUGCdpc+Ag4DeSpgG38PGj8A+mlIQAftWWHTLLQ2EeUW5WCxExW9IB\nlJ5YermkR4EVfPyHVLcmH/lH2Wf/JuntpK7yv1F6WFtT44EfSupFqSbFo5RK7C6OiAOaC4mPRzJF\nqKVhBnhkYe2cpB2AZRFxD/ATSr/Q51B65j98PHJoyTjgImDLiJjR9M2I+AelGg/XUnoacUTEe8Br\nkgaXxbFvsvgn4MRk+Rtt2imzHDhZWHv3OWBqcjroEuBy4DLgWklTgbS60vdTGlWMa6XPOEq/+MeW\ntX0DOE3Ss5JmAMck7ecB35H0HKXHgJsVgi+dNTOzVB5ZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZ\nmaVysjAzs1ROFmZmlsrJwszMUv1/eAValfv14SMAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -676,7 +693,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -705,7 +722,7 @@ }, { "cell_type": "code", - "execution_count": 401, + "execution_count": 11, "metadata": { "collapsed": false }, @@ -742,7 +759,7 @@ }, { "cell_type": "code", - "execution_count": 402, + "execution_count": 12, "metadata": { "collapsed": false }, @@ -796,19 +813,17 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": { "collapsed": true }, - "outputs": [], "source": [ - "This gave a slight improvement " + "I played around a bit to see how to achieve the best means of weighting the values in this column - one thing I did not have a chance to try was weighting by percentages of survival in the training data. " ] }, { "cell_type": "code", - "execution_count": 447, + "execution_count": 13, "metadata": { "collapsed": false }, @@ -817,7 +832,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.821609710551\n" + "0.835137254902\n" ] } ], @@ -837,24 +852,15 @@ ] }, { - "cell_type": "code", - "execution_count": 448, - "metadata": { - "collapsed": true - }, - "outputs": [], + "cell_type": "markdown", + "metadata": {}, "source": [ - "alg.fit(train[predictors], train['Survived'])\n", - "predictions = alg.predict(test[predictors])\n", - "submission = pd.DataFrame({\n", - " 'PassengerId': test['PassengerId'],\n", - " 'Survived': predictions\n", - " })" + "Overall, I saw values for the mean range from around 0.819 to 0.837, so there was a definite improvement. However, when actually testing this in Kaggle, I actually went down in accuracy, from 0.7799 to around 0.75120 and 0.7713. Thus, I think I will also try changing the model variables to see if that helps." ] }, { "cell_type": "code", - "execution_count": 449, + "execution_count": 14, "metadata": { "collapsed": false }, @@ -863,7 +869,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.828371615313\n" + "0.836311858077\n" ] } ], @@ -876,18 +882,25 @@ "print(scores.mean())" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In changing model variables, the mean improved at most by 0.02. However, the Kaggle score did not improve, so that suggests that I need to change my model to make it more accurate. " + ] + }, { "cell_type": "code", - "execution_count": 450, + "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAE2CAYAAACqSMMWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHCRJREFUeJzt3Xu0XHV99/H3J4kXLiZGJTlWkVsFAQGleHv0qaei1jtU\nBKVqAcGnXcvbo61K6qOJVK2laFVc2lqRxgst8FAEfEQihWnVVkEBQS6xFkW85LhQQYF6QT7PH3tP\nMjk558ycc2Znz2/yea01K3v27Ml8M2vymd/89m//frJNRESUYUnbBURExOAS2hERBUloR0QUJKEd\nEVGQhHZEREES2hERBekb2pL2lXS1pKvqP++Q9FpJKyVtkLRR0iWSVmyPgiMidmSazzhtSUuA7wFP\nAF4N/Nj2qZLeDKy0fXIzZUZEBMy/e+TpwH/ZvhU4Alhf718PHDnMwiIiYlvzDe0XA2fV26ttTwHY\n3gSsGmZhERGxrYFDW9J9gBcA59a7pver5Hr4iIiGLZvHsc8Gvmb7tvr+lKTVtqckTQA/mulJkhLm\nERELYFvT982ne+RY4B977l8IHF9vHwdcMMcLF3tbu3Zt6zXsqPWXXHvqb/9Wev2zGSi0Je1MdRLy\nn3t2/xXwDEkbgcOBdw/yd0VExMINFNq277a9m+2f9+z7ie2n297P9jNt395cme057bT3IWnkbhMT\ne7b91kREC+bTp71DuuuuOxjFc6xTU9t0dc1ocnKy2UIaVHLtkPrbVnr9s5nXxTULegHJTb9GkyQx\niqENmrPfKyLKJgkv8kRkRES0LKEdEVGQhHZEREES2hERBUloR0QUJKEdEVGQhHZEREES2hERBUlo\nR0QUJKEdEVGQhHZEREES2hERBUloR0QUJKEdEVGQhHZEREES2hERBUloR0QUJKEdEVGQhHZEREES\n2hERBUloR0QUZKDQlrRC0rmSbpR0vaQnSFopaYOkjZIukbSi6WIjInZ0g7a03w981vb+wCHATcDJ\nwKW29wMuA9Y0U2JERHTJ9twHSMuBq23vM23/TcBTbU9JmgA6th81w/Pd7zVGmSRgFOsXJb+vETE3\nSdjW9P2DtLT3Am6TdKakqyR9RNLOwGrbUwC2NwGrhltyRERMt2zAYw4FXmX7q5L+hqprZHozb9Zm\n37p16zZvT05OMjk5Oe9CIyLGWafTodPp9D1ukO6R1cB/2N67vv8UqtDeB5js6R65vO7znv78dI80\nIt0jEeNswd0jdRfIrZL2rXcdDlwPXAgcX+87DrhgOKVGRMRs+ra0ASQdAnwUuA9wM3ACsBQ4B9gd\nuAU4xvbtMzw3Le1GpKUdMc5ma2kPFNqLfOGEdiMS2hHjbDGjRyIiYkQktCMiCpLQjogoSEI7IqIg\nCe2IiIIktCMiCpLQjogoSEI7IqIgCe2IiIIktCMiCpLQjogoSEI7IqIgCe2IiIIktCMiCpLQjogo\nSEI7IqIgCe2IiIIktCMiCpLQjogoSEI7IqIgCe2IiIIktCMiCpLQjogoyLJBDpL0HeAO4F7g17Yf\nL2klcDawB/Ad4BjbdzRUZ0REMHhL+15g0vZjbT++3ncycKnt/YDLgDVNFBgREVsMGtqa4dgjgPX1\n9nrgyGEVFRERMxs0tA18XtKVkk6q9622PQVgexOwqokCIyJii4H6tIEn2/6hpN2ADZI2UgV5r+n3\nN1u3bt3m7cnJSSYnJ+dZZkTEeOt0OnQ6nb7HyZ41a2d+grQWuBM4iaqfe0rSBHC57f1nON7zfY1R\nIok5vo9aJEp+XyNibpKwren7+3aPSNpZ0q719i7AM4HrgAuB4+vDjgMuGFq1ERExo74tbUl7AedT\nNTeXAZ+y/W5JDwLOAXYHbqEa8nf7DM9PS7sRaWlHjLPZWtrz7h5ZwAsntBuR0I4YZwvuHomIiNGR\n0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKiIAntiIiC\nJLQjIgqS0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKi\nIAOHtqQlkq6SdGF9f6WkDZI2SrpE0ormyoyICJhfS/t1wA09908GLrW9H3AZsGaYhUVExLYGCm1J\nDweeA3y0Z/cRwPp6ez1w5HBLi4iI6QZtaf8N8EbAPftW254CsL0JWDXk2iIiYppl/Q6Q9FxgyvY1\nkibnONSzPbBu3brN25OTk0xOzvXXRETseDqdDp1Op+9xsmfN2uoA6V3Ay4B7gJ2ABwDnA4cBk7an\nJE0Al9vef4bnu99rjDJJzPF91CJR8vsaEXOThG1N39+3e8T2n9t+hO29gZcAl9l+OXARcHx92HHA\nBUOsNyIiZrCYcdrvBp4haSNweH0/IiIa1Ld7ZNEvkO6RhqR7JGKcLbh7JCIiRkdCOyKiIAntiIiC\nJLQjIgqS0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKi\nIAntiIiCJLQjIgqS0I6IKEhCOyKiIAntiIiCJLQjIgqS0I6IKEhCOyKiIAntiIiC9A1tSfeT9BVJ\nV0u6TtLaev9KSRskbZR0iaQVzZcbEbFjk+3+B0k7275b0lLgS8BrgaOAH9s+VdKbgZW2T57huR7k\nNUaVJGAU6xclv68RMTdJ2Nb0/QN1j9i+u968H7CMKsWOANbX+9cDRw6hzoiImMNAoS1piaSrgU3A\n521fCay2PQVgexOwqrkyIyICqlZzX7bvBR4raTlwvqQD2bbPYNbf6uvWrdu8PTk5yeTk5LwLjYgY\nZ51Oh06n0/e4gfq0t3qC9FbgbuAkYNL2lKQJ4HLb+89wfPq0G5E+7YhxtuA+bUkP6Y4MkbQT8Azg\nRuBC4Pj6sOOAC4ZWbUREzGiQ7pGHAuslLaEK+bNtf1bSl4FzJL0CuAU4psE6IyKCBXSPzPsF0j3S\nkHSPRIyzRQ35i4iI0ZDQjogoSEI7IqIgCe2IiIIktCMiCpLQjogoSEI7IqIgCe2IiIIktCMiCpLQ\njogoSEI7IqIgCe2IiIIMtAjCYlWTLo2W1av3YNOm77RdRkTEvGyXWf5KniUvs/xFRBsyy19ExBhI\naEfEjCYm9kTSyN0mJvZs+61pVbpH+h2V7pHYQeWz3650j0REjIGEdkREQRLaEREFSWhHRBQkoR0R\nUZCEdkREQfqGtqSHS7pM0vWSrpP02nr/SkkbJG2UdImkFc2XGxGxY+s7TlvSBDBh+xpJuwJfA44A\nTgB+bPtUSW8GVto+eYbnZ5x2I3aMsarRnnz227Xgcdq2N9m+pt6+E7gReDhVcK+vD1sPHDm8ciMi\nYibz6tOWtCfwGODLwGrbU1AFO7Bq2MVFRMTWBp6ate4a+b/A62zfWXV7bGWO3yvrerYn61tERHR1\nOh06nU7f4waae0TSMuAzwMW231/vuxGYtD1V93tfbnv/GZ6bPu1G7Bj9etGefPbbtdi5Rz4G3NAN\n7NqFwPH19nHABYuqMCIi+hpk9MiTgX8DrqP62jXw58AVwDnA7sAtwDG2b5/h+WlpN2LHaG1Ee/LZ\nb9dsLe1MzdrvqHxwYweVz367MjVrRMQYSGhHRBQkoR0RUZCEdkREQRLaEREFSWhHRBQkoR0RUZCE\ndkREQRLaEREFSWhHRBQkoR0RUZCEdkREQRLaEREFSWjHyJqY2BNJI3mbmNiz7bcndlCZmrXfUZme\nsjWj+95D3v82jf97D5maNSJiLCS0IyIKktCOiChIQjsioiAJ7YiIgiS0IyIKktCOiChIQjsioiB9\nQ1vSGZKmJF3bs2+lpA2SNkq6RNKKZsuMiAgYrKV9JvD70/adDFxqez/gMmDNsAuLiIht9Q1t218E\nfjpt9xHA+np7PXDkkOuKiIgZLLRPe5XtKQDbm4BVwyspIiJms2xIf0+f2VvW9WxP1reIiOjqdDp0\nOp2+xw00y5+kPYCLbB9c378RmLQ9JWkCuNz2/rM8N7P8NWL8Zzob3fce8v63afzfe1j8LH+qb10X\nAsfX28cBFyyquoiIGEjflraks6j6Mx4MTAFrgU8D5wK7A7cAx9i+fZbnp6XdiPFvbYzuew95/9s0\n/u89zN7SziII/Y7KB7c1o/veQ97/No3/ew9ZBCEiYiwktCMiCpLQjogoSEI7IqIgCe2IiIIktCMi\nCpLQjogoSEI7IqIgCe2IiIIktCMiCpLQjogoSEI7IqIgCe2IiIIktCMiCpLQjogoSEI7IqIgCe2I\niIIktCMiCpLQjmjIxMSeSBrJ28TEnm2/PbFAWSOy31FZJ681o/vewyDvf+pvyvh/9iFrRO6wRrW1\nl5ZexMKkpd3vqMJbGyXXP7q1Q+pvU1rai/lLnyXpJknflPTmxfxdERHR34JDW9IS4IPA7wMHAsdK\netSwCouIWIxOp9N2CY1YTEv78cB/2r7F9q+BfwKOGE5ZERGLk9De1sOAW3vuf6/eFxERDcnokYgY\nS6ed9r7WR0k1MXJq2SKe+33gET33H17vm8E2J0BHQnV2fKAjG61joXaM+kezdkj9bRr8sz96pqZu\nWVT9Cx7yJ2kpsBE4HPghcAVwrO0bF1xNRETMacEtbdu/kfRqYANVN8sZCeyIiGY1fnFNREQMT05E\nRkQUJKEdEVGQxYwemZWkfYDv2f6lpEngYODjtm9v4vUiYnjqQQar6ckH299tr6Lo1UiftqRrgMOA\nPYHPAhcAB9p+ztBfbMgk/QXwdtv31PeXA++3fUK7lc1N0nXMPLuPANs+eDuXtCCqxkK9FNjb9imS\nHgFM2L6i5dLmJOki5phdyfYLtmM5CybpNcBaYAq4t95d0udnX+DDwGrbj5Z0MPAC2+9oubShaaSl\nDdxr+x5JfwCcbvt0SVc39FrDtgz4iqQTqFobHwROb7ekgTyv7QKG5ENUYfE04BTg58B5wOPaLGoA\np9V/vhCYAD5Z3z+WKgBL8TpgP9s/bruQBfp74I3A3wHYvlbSWUBCu49fSzoWOA54fr3vPg291lDZ\nXiPpUuArwE+B37X9rZbL6sv2LW3XMCRPsH1o90ve9k8l3bftovqx/a8Akt5j+7Cehy6S9NWWylqI\nW4E72i5iEXa2fcW0i1fuaauYJjQV2icAfwK80/a3Je0FfKKh1xoqSb8LfICqlXcQcLqkE23/oN3K\n5ibp58zdPbJ8O5e0UL+u+1QNIGk3tvxML8Eukva2fTNA/dnfpeWa+pL0hnrzZqAj6f8Bv+w+bvu9\nrRQ2f7fV59S6n58XUV38NzYaCW3bNwCvBZC0EniA7b9q4rUacBpwdP1vQNILgcuAkZ521vYD2q5h\nSD4AnA+skvRO4EXA/2m3pHl5PVXo3Uz1hbkH8MftljSQ7ufnu/XtvvUNRnMlhNm8CvgI8ChJ3we+\nDbys3ZKGq6kTkR3gBVRfCl8DfgR8yfYb5nreKJC01PZvpu178Kj38Ulabvtnkh400+O2f7K9a1qo\nel72w6lC719Ku9JW0v3Y8iV/k+1fznX8KJF0tO1z++0bdZJ2AZbY/nnbtQxbU6F9te3HSjoJ2N32\nWknXlnAGWtJq4F3Aw2w/S9IBwJNsn9FyaXOS9Bnbz5P0baqWUW+nnm3v3VJpA6u7Ra63PdK/auYi\naWfgDcAetl8p6ZFUJ/Y+03JpA5F0le1D++0bVZJ+A/w1sMZ1uJVU/yCa6tNeJumhwDHAWxp6jab8\nA3AmW+r+JnA2MNKhbft59Z97tV3LQtXz2WyU9IiCxwWfSfXr8kn1/e8D5wIjHdqSng08B3iYpA/0\nPLScsk7kXU910eAGSS+uf2GWOyXgDJq6IvIU4BLgW7avlLQ38J8NvdawPcT2OdQnv+rx2r+Z+ynt\nqyfv6m4f2GYti7QSuF7Sv0i6sHtru6h52Mf2qcCvAWzfTRmh8QPgq8AvqL50urcLqZYULMU9tt8E\nfBT4gqTfoaw++b6aOhF5LlXronv/ZuCoJl6rAXdJejBbzj4/kTKGQL2Cakw5VCN1Sv05+Na2C1ik\nX0naiS2fn33oGYUxqmx/Hfi6pLPq5QNLJQDbZ0u6HjiLref9L15Tl7HfHziRasHf+3f3235FE683\nZG+gal3sI+lLwG5UIxhKUkLLbkbd8c4FWwt8Dthd0qeAJwPHt1rR/FwlaXrL9A6qVvg7Rv2EPHBS\nd8P2NyT9T8Zs7dqm+rQ/AdxE9bPqFKrLkkd6BICkxwG32r5K0lOphmkdRTVf+PdaLW4wD6yvQF0C\nLK+HKm5m+5/bKWt+6l82pwP7Uw05WwrcVco4c9ufl3QV8ESqL8/X2b6t5bLm42Kq7sCz6vsvAXYG\nNlGd73n+zE9rl6Sn2b4M2EPSHtMevrONmprS9OiRa20fLOk+wBdsP3HoLzYk9X+0p9v+SX2BzT8B\nrwEeA+xve6Rb25LOnONhF/Irh/rqwZdQda8dBvwRsK/tNa0WNiBJp9h+W8/9JcAnbL+0xbIGNtfo\nEUnX2T6ordrmIunt9Si1mf4fFPP5H0Rjl7HXf94u6dFU39KrGnqtYVnaM5b5xcBHbJ8HnFdPgDXS\nRn1Cq/mw/a2e8fJn1pe0FxHaVN0ia2z/ZT1e+xyglHl3AJZKenx3gq76F+jS+rGRHUVie23959j8\nP5hNU6NHPlJfCflWqv7hG4BTG3qtYVkqqfsldjjVVZBdTX25DZ2k1ZLOkHRxff8ASSe2Xdc83F3P\nNXKNpFMlvZ6y5n1/BXCQpDXARUDH9rp2S5qXk4AzJH1b0neohrq+sr5Y5S9brWwOkp7f2y0i6W2S\nvl6PPip2GOxMstxYTdJbqMap3kZ1tvlQ25b028B6209utcAB1WF9JvAW24fUX0RXj+rP2unq/3hT\nVP3ZrwdWAB8a9Um7JPV2KdyHapa5L1GP77d9VRt1LZSkFQC2Sxg5haRrgSfavlvS84D3Us2w+Fiq\naSlKGrY4p6GGds+kMzMa9Uln6pNgDwU22L6r3rcvsGsp/+kkXWn7cd3zCvW+a2w/pu3a5lL4BTVI\nunyOh237adutmEWou3SOopoLv3cRhFPaqmkQkr5u+5B6+2PAxu58R7kicm5FT1pk+8sz7PtmG7Us\nQqnjzD9NPbZc0nm2SxnXD4Dt36tPOh5t++y261mEC6g+L1+jgPHlPSRpV+Buqu7ND/U8dv+Zn1Km\noYa27bcP8++LBSl1nHnv2PKRnydlJrbvlfRGqmkPSvVw289qu4gFeB9wDfAz4EbbXwWQ9FjGbGrW\nRk7wSFov6YE991fWP1miYXU3zlOB/0E11vxA29e2W9VAPMt2aS6V9GeSdpf0oO6t7aLm4d8lFXH+\no5ftj1F97k+kOjfVtYlqfv+x0eg47X77YvimX1RTuwO4zvaPtnc9g6pnZ7uLqsW9E9XPXChsEQdV\nsyxOV8QsiwCSbgB+m2oe6l9S3hqj51Gd/P2c7ZIWzxhYU0PZlkhaafunAHVLo5hhc4U7kWqGue6J\nsUmq/sm96gs/RnIFIdtL+x81+kqeZbH27LYLWKQPU7WsT5d0LnCm7Y0t1zRUTQXpe4AvSzqnvn80\n8M6GXiu2tozqCs4p2Dw/+MeBJwD/RiHLvpWsvqDsALaed+fj7VU0ONu3SHoK8EjbZ6pa7m3Xtusa\nlO1LqbqoVlAN+btU0q1UC/5+svDJsIAGx2mrWjygO8zpMtfLd0WzJN1g+4Ce+6JaWOCAdFE1T9Ja\nql83BwCfpWq5fnHUp0Hoqus/jGrhhn0l/RZwbinXKUC10hTVEmMvp5py9lPAU4CDbE+2WNpQDLWl\nXc/u9ydUfWLXAX9bz0cd209H0mfYMjXuUfW+XYDb2ytrh/Ei4BCqC5pOqH/pfLLlmubjD6guSLkK\nwPYPJBUzlFfS+cB+VL8on2+7O3Lk7Hpem+INu3tkPdW8I1+gamHsD/zvIb9GzO1VwAupWhZQTam5\nur5Y6Pdaq2rH8d/10L97JC2nWh9197aLmodf1VcCd8f5j/xK8tN8wPaMFzrZPmx7F9OEYYf2Ad3L\npSWdAVwx5L8/+qj/w91MNTXo0VSjAM5rt6odylfr4a5/T3UC+E7gP9otaV7OkfR3VFP9vpJqLpWP\ntlxTX72jpmYaQVXK1MSDGPZl7FtdLjpul4+Osvpy+2Pr221UF3j8me3pcwvHdiJpT2B5IePkN5P0\nDOCZVMP9LrH9+ZZL6muWKVm7xmpq1mGHdnesLWw93raosbYlknQvVbfUid3JlSTdXMr44HFSt/Se\nQnWR0Bdtn99ySYsi6UslnYgcd8O+jH0sxtoW6oVUiwdcLulzVIs4FLvsWKkkfYjqRPw/1rv+WNLT\nbb+qxbIWa+TXWJT0MtufnG3SulGfrG4+csHLmLD9aeDT9YmjI6hOAK+S9GHgfNsbWi1wx/E0qnHy\n3RN564Hr2y1p0UqYVqB7wrSYkS4Llfm0x5iqhSiOBl5s+/C269kR1MMtX2X7lvr+HsAHbY/k2opd\ns0x/ANWvtb+1vdv2rCdml9COGAJJF1G1SFcAj6MaOWWqK1GvGPWLOvqcyCtmGa96lZrXsO184C9o\nq6ZhS2hHDIGkp871uO1/3V617MgkfZ1qwqjrgM0TRo3T+5/QjmhAfWFNb0vvJ3McPjLqKzjfBfyW\n7WfX01E8yfYZLZc2EElfsf2EtutoUkI7Yogk/S/gFOAXVC297nDXIoZejsEao38IPBLYQM/KO6Us\nFziIjB6JGK43Ao+2fVvbhSzQQ2yfo2o1eWzfU19/UYqDqCaKehpbukfMlsnripfQjhiu/2LLAg4l\nKnWN0a6jgb1t/6rtQpqS0I4YrjVUS3Z9ha1/nr+2vZLmpdQ1Rru+ATyQaqKusZQ+7YghknQF8EW2\nHb2wvrWi5qnux96Pqj9+Y0kLB0jqAAcDV7L1l2aG/EXEtkpfaELSUuC5bDvOuYjLwGcbejlOQ/7S\nPRIxXBfXI0guYuuWXhFD/qjq/gXTfimUYpzCeTZpaUcM0Risxn5tKSuvz6Q+cXo61QIs9wWWAneN\n0wyjaWlHDNEYrMZ+saRnFjzB2AepZrs8l2qtyz8C9m21oiFb0nYBEeNA0pt6to+e9ti7tn9FC/Zl\n4HxJ/y3pZ5J+LulnbRc1H/V88ktt/8b2mcCz2q5pmBLaEcPxkp7tNdMeKyk03gs8CdjZ9nLbDyis\na+FuSfcFrpF0qqTXM2Y5N1b/mIgWaZbtme6PsluBb7jck10vp8q1V1OtorU7cFSrFQ1Z+rQjhsOz\nbM90f5TdDHTqOUh6R7+M9JA/SY+w/d3uPOZUI2De3mZNTUloRwzHIXXfr4CdevqBBdy/vbLm7dv1\n7b71rRSfBg4FkHSe7bFqXfdKaEcMwbisj2q71NZpbxdUEcMrFyqhHRGbSdoNeBNwID2/EGyP+ix5\nc3VPjZWciIyIXp8CbgL2ouoT/g7VPB6j7pDuEEXg4Hq7yCGL/eSKyIjYTNLXbP9O75WRkq60/bi2\na4tKukciold3Rr8fSnou8APgQS3WE9MktCOi1zskrQD+lGoOj+XA69stKXqleyQioiBpaUcEkt42\nx8O2/RfbrZiYU1raEYGkP51h9y7AicCDbe+6nUuKWSS0I2Irkh4AvI4qsM8B3mN7bNdcLE26RyIC\nAEkPolrY96XAeuBQ2z9tt6qYLqEdEUj6a+CFwEeAg2zf2XJJMYt0j0QEku6lmtXvHra+DFxUJyJL\nmlN7rCW0IyIKkrlHIiIKktCOiChIQjsioiAJ7YiIgiS0IyIK8v8BHhTDJw0IZYkAAAAASUVORK5C\nYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAEjCAYAAAD5U1A+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFtxJREFUeJzt3X+QZWV95/H3hxlkkR+TEZgeDD9UXNC4MUqtmOguThZT\nGLOBiW5wibsFQWt3a2Ngw5bFENeAZk2JFTflarIlJUs6bHAdloriVtYZyeTqxkQk/CgRZdQ1TCBh\nmiA/hUQnw3f/uKe5zUz/uD19L6fP3Per6tace/o+fb51qvszTz/nnOdJVSFJ6oZD2i5AkjQ8Q1uS\nOsTQlqQOMbQlqUMMbUnqEENbkjpkqNBOckmSu5rXxc2+9Um2J9mZZFuSdeMtVZK0ZGgneQXwDuAf\nA68C/nmSU4AtwM1VdRqwA7h8nIVKkobrab8cuKWqvl9Ve4EvAm8BzgGmm89MA5vHU6IkadYwof01\n4J82wyHPB94MnAhMVdUMQFXtBjaMr0xJEsDapT5QVfckuQr4PPA94A5g73wfHXFtkqR9LBnaAFV1\nLXAtQJIPAPcBM0mmqmomyUbgwfnaJjHMJekAVFX23Tfs3SPHNf+eBPwccD1wE3Bh85ELgM+MpMqO\nmJo6mapa1uuKK65YdpuD9eW58Fx4LhZ/LWSonjZwY5IXAHuAf19VjzdDJluTXATsAs5buPnB19me\nmdnvP0BJGrthh0fOnGffw8AbR16RJGlBPhH5HNq0aVPbJawanosBz8WA52JpWWzsZCQHSOpgHB6B\nLDruJEkrkYQ60AuRkqTVwdCWpA4xtCWpQwxtSeoQQ1uSOsTQlqQOMbQlqUMMbUnqEENbkjrE0Jak\nDjG0JalDDG1J6hBDW5I6xNCWpA4ZdrmxX0nytSRfTfL7SZ7XrM6+PcnOJNuSrBt3sZI06ZYM7SQv\nBH4ZOL2qXkl/tZvzgS3AzVV1GrADuHychUqShh8eWQMckWQtcDjwV8C5wHTz9Wlg8+jLkyTNtWRo\nV9VfAx8G/pJ+WD9WVTcDU1U103xmN7BhnIVKkoYbHvkh+r3qk4EX0u9xv5391xBz7S1JGrNhVmN/\nI/CdZvV1kvwB8DpgJslUVc0k2Qg8uPC3uHLO9qbmJUma1ev16PV6S35uyYV9k5wBXAO8Bvg+cC1w\nK3AS8HBVXZXkMmB9VW2Zp70L+0rSMi20sO9Qq7EnuQL4l8Ae4A7gncBRwFbgRGAXcF5VPTpPW0Nb\nkpZpRaG9wgMb2pK0TAuFtk9ESlKHGNqS1CGGtiR1iKEtSR1iaEtShxjaktQhhrYkdYihLUkdYmhL\nUocY2pLUIYa2JHWIoS1JHWJoS1KHGNqS1CGGtiR1iKEtSR0yzMK+pya5I8ntzb+PJbk4yfok25Ps\nTLItybrnomBJmmTLWrkmySHA/cBrgXcB362qD7lGpCSN1qhWrnkj8P+q6j7gXGC62T8NbF5ZiZKk\npSw3tN8GXN9sT1XVDEBV7QY2jLIwSdL+hg7tJIcC5wA3NLv2HRtwrECSxmztMj7708BtVfVQ834m\nyVRVzSTZCDy4cNMr52xval6SpFm9Xo9er7fk54a+EJnkk8Dnqmq6eX8V8HBVXeWFSEkarYUuRA4V\n2kmeD+wCXlJVTzT7XgBsBU5svnZeVT06T1tDW/vZuPFFzMzsaruMkZqaOpndu+9tuwwdJFYU2is8\nsKGt/STh4Pu58GdCozOqW/4kSS0ytCWpQwxtSeoQQ1uSOsTQlqQOWc7DNVohb3OTtFLe8nfAln97\nl7e5zWnluZAW5S1/knQQMLQlqUMMbUnqEENbkjrE0JakDjG0JalDDG1J6hBDW5I6xNCWpA4ZKrST\nrEtyQ5JvJLk7yWuTrE+yPcnOJNuSrBt3sZI06YbtaX8E+MOqejnwY8A9wBbg5qo6DdgBXD6eEiVJ\ns5aceyTJ0cAdVXXKPvvvAd4wZzX2XlW9bJ72zj0y28L5NgatPBfSolYy98iLgYeSXJvk9iRXNwv9\nTlXVDEBV7QY2jLZkSdK+hpmadS1wOvBLVfXnSX6L/tDIvl2KRboYV87Z3tS8JEmzer0evV5vyc8N\nMzwyBfxZVb2kef9P6If2KcCmOcMjf9yMee/b3uGR2RYOCQxaeS6kRR3w8EgzBHJfklObXWcBdwM3\nARc2+y4APjOaUiVJCxlqEYQkPwZ8AjgU+A7wi8AaYCtwIrALOK+qHp2nrT3t2Rb2LgetPBfSohbq\nabtyzQEztPsM7QFDW6PjyjWSdBAwtCWpQwxtSeoQQ1uSOsTQlqQOMbQlqUMMbUnqEENbkjrE0Jak\nDjG0JalDDG1J6hBDW5I6xNCWpA4xtCWpQwxtSeqQYdaIJMm9wGPA08CeqjojyXrgU8DJwL30F0F4\nbEx1SpIYvqf9NP31IF9dVWc0+7YAN1fVacAO4PJxFChJGhg2tDPPZ88FppvtaWDzqIqSJM1v2NAu\n4PNJbk3yzmbfVLPoL1W1G9gwjgIlSQNDjWkDr6+qB5IcB2xPspP9F/hzcTxJGrOhQruqHmj+/Zsk\nnwbOAGaSTFXVTJKNwIMLf4cr52xval6SpFm9Xo9er7fk55ZcjT3J84FDqup7SY4AtgPvA84CHq6q\nq5JcBqyvqi3ztHc19tkWrkA+aOW5kBa10Grsw/S0p4A/6Icva4Hfr6rtSf4c2JrkImAXcN5IK5Yk\n7WfJnvaKD2BPe9DC3uWgledCWtRCPW2fiJSkDjG0JalDDG1J6hBDW5I6xNCWpA4xtCWpQwxtSeoQ\nQ1uSOsTQlqQOMbQlqUMMbUnqEENbkjrE0JakDjG0JalDDG1J6hBDW5I6ZOjQTnJIktuT3NS8X59k\ne5KdSbYlWTe+MiVJsLye9iXA1+e83wLcXFWnATuAy0dZmCRpf0OFdpITgDcDn5iz+1xgutmeBjaP\ntjRJ0r6G7Wn/FvBunr2o31RVzQBU1W5gw4hrkyTtY8nQTvIzwExV3Qnst8jkHK5oKkljtnaIz7we\nOCfJm4HDgaOSXAfsTjJVVTNJNgIPLvwtrpyzval5SZJm9Xo9er3ekp9L1fAd5CRvAP5jVZ2T5EPA\nd6vqqiSXAeurass8berg7ISH5Zw7gCQcfOdi+ecBPBfSUpJQVfuNbqzkPu0PAj+VZCdwVvNekjRG\ny+ppH9AB7GkPWti7HLTyXEiLGkdPW5L0HDO0JalDDG1J6hBDW5I6xNCWpA4xtCWpQwxtSeoQQ1uS\nOsTQlqQOMbQlqUMMbUnqEENbkjrE0JakDjG0JalDDG1J6hBDW5I6ZJiFfQ9LckuSO5LcleSKZv/6\nJNuT7EyyLcm68ZcrSZNtqJVrkjy/qp5Ksgb4EnAx8Fb6a0R+yDUih2zhai2DVp4LaVErWrmmqp5q\nNg+jv4J7AecC083+aWDzCOqUJC1iqNBOckiSO4DdwOer6lZgqqpmAKpqN7BhfGVKkmD4nvbTVfVq\n4ATgjCSvYP+/bf27UJLGbO1yPlxVjyfpAW8CZpJMVdVMko3Agwu3vHLO9qbmJUma1ev16PV6S35u\nyQuRSY4F9lTVY0kOB7YBHwTeADxcVVd5IXLIFl58G7TyXEiLWuhC5DA97eOB6SSH0B9O+VRV/WGS\nLwNbk1wE7ALOG2nFkqT9DHXL34oOYE970MLe5aCV50Ja1Ipu+ZMkrQ6GtiR1iKEtSR1iaEtShxja\nktQhhrYkdYihLUkdYmhLUocY2pLUIcuaMErS6G3c+CJmZna1XcZITU2dzO7d97ZdxkHJx9gPmI+x\n9/kY+4DnYsBH+lfKx9gl6SBgaEtShxjaktQhhrYkdYihLUkdsmRoJzkhyY4kdye5K8nFzf71SbYn\n2ZlkW5J14y9XkibbMD3tvwcurapXAD8B/FKSlwFbgJur6jRgB3D5+MqUJMEQoV1Vu6vqzmb7e8A3\ngBOAc4Hp5mPTwOZxFSlJ6lvWmHaSFwGvAr4MTFXVDPSDHdgw6uIkSc82dGgnORL4X8AlTY9738ed\nfPxJksZsqLlHkqylH9jXVdVnmt0zSaaqaibJRuDBhb/DlXO2NzUvSdKsXq9Hr9db8nNDzT2S5PeA\nh6rq0jn7rgIerqqrklwGrK+qLfO0de6R2RbOMTFo5bkYtPJcaB4LzT2yZGgneT3wReAu+j9ZBfwq\n8BVgK3AisAs4r6oenae9oT3bwl/OQSvPxaCV50LzOODQHsGBDe3ZFv5yDlp5LgatPBeah7P8SdJB\nwNCWpA4xtCWpQwxtSeoQQ1uSOsTQlqQOMbQlqUMMbUnqEENbkjrE0JakDhlqlj9Jei5s3PgiZmZ2\ntV3GSE1Nnczu3feO7Ps598gBc+6RPufbGPBcDHguBg78XDj3iCR1nKEtSR1iaEtShxjaktQhS4Z2\nkmuSzCT56px965NsT7IzybYk68ZbpiQJhutpXwucvc++LcDNVXUasAO4fNSFSZL2t2RoV9WfAI/s\ns/tcYLrZngY2j7guSdI8DnRMe0NVzQBU1W5gw+hKkiQtZFRPRC5x5/iVc7Y3NS9J0qxer0ev11vy\nc0M9EZnkZOCzVfXK5v03gE1VNZNkI/DHVfXyBdr6RORsC5/2GrTyXAxaeS4GrTwXg1YrfCIyzWvW\nTcCFzfYFwGeWXZEkadmW7GknuZ7+eMYxwAxwBfBp4AbgRGAXcF5VPbpAe3vasy3sRQxaeS4GrTwX\ng1aei0GrBXraThh1wAztPn85BzwXA56LASeMkqSJZWhLUocY2pLUIYa2JHWIoS1JHWJoS1KHGNqS\n1CGGtiR1iKEtSR1iaEtShxjaktQhhrYkdYihLUkdYmhLUocY2pLUISsK7SRvSnJPkm8muWxURUmS\n5nfAoZ3kEOBjwNnAK4Dzk7xsVIVJkva3kp72GcC3qmpXVe0B/idw7mjKkiTNZyWh/cPAfXPe39/s\nkySNiRciJalD1q6g7V8BJ815f0Kzbx77rU15UOgvQrrsViOvo20Hdh7Ac/GsliOtYzXwXAwc+LmY\n53sd6GrsSdYAO4GzgAeArwDnV9U3RladJOlZDrinXVV7k7wL2E5/mOUaA1uSxuuAe9qSpOeeFyIl\nqUMM7TFLcniS09quQ9LBYeyhneSQJEeP+zirUZKfBe4EPte8f1WSm9qtSqtBklOSHNZsb0pycZIf\narsurX5jCe0k1yc5OskRwNeAryd59ziOtcpdSf/J0UcBqupO4MVtFtSWJL+eZO2c90cnubbNmlp2\nI7A3yUuBq4ETgevbLakd6ftXSX6teX9SkjParmu1GldP+0eq6nFgM/B/6AfVvx7TsVazPVX12D77\nJvXK71rgliSvTPJTwK3AbS3X1Kanq+rvgZ8DPlpV7waOb7mmtvwO8BPA+c37J4Dfbq+c1W0lD9cs\n5tAkh9IP7Y9V1Z4kkxhWdyf5BWBNkn8IXAz8acs1taKqLk9yM3AL8AhwZlV9u+Wy2rQnyfnABcDP\nNvsObbGeNr22qk5PcgdAVT2S5HltF7Vajaun/XHgXuAI4ItJTgYeH9OxVrNfpj8D4veBT9I/B/+h\n1YpakuRM4L8C7wd6wEeTvLDVotr1i/R7lx+oqr9I8mLgupZrasue5mG9AkhyHPB0uyWtXs/ZfdpJ\n1jZ/DmoCJfkKcGFVfb15/xbgN6pq4qfzTbIeOLGqvtp2LW1I8nbgbcDpwDTwL4D/VFU3tFrYKjWW\n0E5yCXAt/bGpTwCvBrZU1faRH2wVSvJZFhm7rqpznsNyVoUka6pq7z77jqmq77ZVU5uS9IBz6A9R\n3gY8CHypqi5ts662NHPxn0V/4pE/8unqhY1rTPuiqvpIkrOB9fQvQl5H/5H3SfCbbRewCh2b5DeA\nH66qNyX5EfrDA9e0XFdb1lXV40neCfxeVV2RZOJ62s2wyN3NX1z3tF1PF4xrTHt2Sqs3A9dV1d1z\n9h30quoLVfUF4FWz23P3tV1fS34X2MbgDolvMqHj+421SY4HzgP+d9vFtKX562tnkpOW/LCA8YX2\nbUm20w/tbUmOYjIvLFwwz74Ln+siVoljq2orzc9Bc31j7+JNDmrvp/+f2Ler6tYkLwG+1XJNbVlP\n/06rP0py0+yr7aJWq3ENj7yDfo/yO1X1VJJj6F8tnwjNrVy/ALx4nx++o4CH26mqdU82Pwezdwj8\nOLDvPewTo7nIdsOc998B3tpeRa16b9sFdMlYQruqnk7yF8CpSf7BOI6xyv0p/TnGjwU+PGf/E8DE\njVs2LgVuAk5J8iXgOPp3CUyk5vfiHfRvCX3md6SqLmqtqJY0w4Ya0lhCu7m4cgn91WzuBH4c+DPg\nn43jeKtNVe0CdtG/0DbRkrwGuK+qbk/yBuDf0u9Rbqe/ruikuo7+hbez6Q+VvB2YyDsmmr+6Pgq8\nHHgesAZ4sqomcs6ipYxrTPsS4DXArqr6Sfq3/D06pmOtOkn+pPn3iSSPz3k9kWTSHjL6OPCDZvt1\nwHvoP6L8CP05NybVS6vqvfTDaRr4GeC1LdfUlo/Rf4T9W8DhwDvxMfYFjSu0/66q/g4gyWFVdQ8w\nSdOTHgFQVUdV1dFzXkdNYO9hTVXNjuO/Dbi6qm5sAuulLdbVtj3Nv48m+UfAOmBDi/W0qpnSYE1V\n7a2qa4E3tV3TajWuC5H3N9NMfhr4fJJH6A8XTIpJnGdlIWvmPA17FvBv5nxtXD9/XXB18yTke+mP\n9R8J/Fq7JbXmqWaukTuTfIj+9SDn+l/A2B9jb8Yx1wGfq6ofLPX5g0GS+4H/stDXq2rBrx1skryH\n/q2fDwEnAadXVTVTkk5X1etbLVCta+YmmqE/nv0r9PPidyZ8QrEFjTS0k7xgsa/P+TP5oJbkAeC/\nscADRVX1vue2onY1F5qOB7ZX1ZPNvlOBI6vq9laLe44lWfQx9Qn7D/2kqvrLtuvomlH/eXob/aGB\nuWE1+76Al4z4eKvVA1X1/raLWC2q6svz7PtmG7WsAke1XcAq8mn6k0SR5MaqmtT71JdlpKFdVRO5\nKss8JuaRfS3PpP2VtYS5vyeT0qFbsZEO9ic5O8l+D0wkeWuzWsmkOKvtArS6JZmeuyZkkvVJ/nub\nNbWgFtjWIkY9pv0lYHNV/c0++48FPltVE/+wiQSQ5I6qevVS+w5mSfYCT9LvcR8OPDX7JaAm8PbY\noYx6TPuwfQMboKoeahb5ldR3SJL1VfUIPHMRf6JugayqNW3X0EWj/iE5er4Vapr1Ig8f8bGkLvsw\n8OUkW5v3Pw98oMV61BGjHh75IDAFvGvOrV1HAh8BHqqqy0Z2MKnjmoUgZufj2TG7FJu0mFGH9lrg\nP9OfO2D2CciT6K9O8t6q2rNQW2kSNLP7/Tv6j/DfBVzj2qlajnGtEXk4g3klvl1Vfzvyg0gdlORT\n9Ocd+b/ATwP3VtUkr+CjZRpXaP868L7ZHkSSo4GPVNXELIQgzSfJXVX1o832WuArVXV6y2WpQ8Y1\nKcta4JYkr2zuz76V/tOS0qR7ZojQYREdiLFNGJXkLPoLlj4CnOnkL9Kz7k2GZ9+f7L3JGsq4hkfO\npD9h0v8AfpT+wp3vqKq/HvnBJGmCjOtm/t8Efn72FqYkbwF2AC8b0/EkaSKMq6e9pqr27rPvmKr6\n7sgPJkkTZFwXIo9Nck2Sz8EzDxFsHtOxJGlijCu0fxfYRn/ie4BvAt6LKkkrNLaedlVtBZ6GZ25t\n2rt4E0nSUsYV2k8mOYZmjtxmuanHxnQsSZoY47p75FL6K0yf0syxfRyw3+IIkqTlGfXKNa9JsrFZ\nrPUNwK8C3we2A/eP8liSNIlGPTzyceAHzfbrgPcAv03/qcirR3wsSZo4ox4eWVNVDzfbbwOurqob\ngRuT3DniY0nSxBl1T3tNM3MZ9Be33THnaxO1lJIkjcOog/STwBeSPAT8Lf05g0nyUrx7RJJWbOSP\nsTe39x0PbJ+z5NipwJHNBUpJ0gEa29SskqTRG9fDNZKkMTC0JalDDG1J6hBDW5I6xNCWpA75/4gd\nHz84HD2TAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -897,7 +910,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.828371615313\n" + "0.840855275444\n" ] } ], @@ -914,8 +927,9 @@ "plt.xticks(range(len(predictors)), predictors, rotation='vertical')\n", "plt.show()\n", "\n", - "# Pick only the four best features.\n", + "# Pick only the best features.\n", "#predictors = [\"Pclass\", \"Sex\", \"Fare\", \"Title\"]\n", + "predictors = [\"SexClass\", \"Title\", \"Sex\", \"Pclass\", \"Fare\"]\n", "\n", "alg = RandomForestClassifier(random_state=1, n_estimators=150, min_samples_split=8, min_samples_leaf=5)\n", "# Compute the accuracy score for all the cross validation folds. (much simpler than what we did before!)\n", @@ -925,9 +939,16 @@ "print(scores.mean())" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By seeing which factors had the largest effect, I was able to select only those to use and get a pretty high result with my train data (0.841). However, in Kaggle my score actually remained the same when I submitted it. So, the last thing I tried was to change the type of model by using three algorithms, gradient boosting and logistic regression along with random forest, and taking the average of the three. " + ] + }, { "cell_type": "code", - "execution_count": 460, + "execution_count": 35, "metadata": { "collapsed": false }, @@ -936,14 +957,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.820426487093\n" + "0.813692480359\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/home/kiki/anaconda/lib/python2.7/site-packages/IPython/kernel/__main__.py:34: FutureWarning: in the future, boolean array-likes will be handled as a boolean array index\n" + "/home/kiki/anaconda/lib/python2.7/site-packages/IPython/kernel/__main__.py:35: FutureWarning: in the future, boolean array-likes will be handled as a boolean array index\n" ] } ], @@ -951,8 +972,9 @@ "# The algorithms we want to ensemble.\n", "# We're using the more linear predictors for the logistic regression, and everything with the gradient boosting classifier.\n", "algorithms = [\n", - " [GradientBoostingClassifier(random_state=1, n_estimators=25, max_depth=3), [\"Pclass\", \"Sex\", \"AgeFill\", \"Fare\", \"Embarked\", \"FamilySize\", \"Title\", \"NameLength\", \"SexClass\"]],\n", - " [LogisticRegression(random_state=1), [\"Pclass\", \"Sex\", \"Fare\", \"FamilySize\", \"Title\", \"AgeFill\", \"Embarked\", \"NameLength\", \"SexClass\"]]\n", + " [GradientBoostingClassifier(random_state=1, n_estimators=25, max_depth=3), [\"Sex\", \"NameLength\", \"SexClass\", \"Pclass\", \"Fare\", \"Embarked\", \"Title\", \"FamilySize\"]],\n", + " [RandomForestClassifier(random_state=1, n_estimators=150, min_samples_split=8, min_samples_leaf=5), [\"Sex\", \"NameLength\", \"SexClass\", \"Pclass\", \"Fare\", \"Embarked\", \"Title\", \"FamilySize\"]],\n", + " [LogisticRegression(random_state=1), [\"Sex\", \"NameLength\", \"SexClass\", \"Pclass\", \"Fare\", \"Embarked\", \"Title\", \"FamilySize\"]]\n", "]\n", "\n", "# Initialize the cross validation folds\n", @@ -971,7 +993,7 @@ " test_predictions = alg.predict_proba(train[predictors].iloc[test1,:].astype(float))[:,1]\n", " full_test_predictions.append(test_predictions)\n", " # Use a simple ensembling scheme -- just average the predictions to get the final classification.\n", - " test_predictions = (full_test_predictions[0] + full_test_predictions[1]) / 2\n", + " test_predictions = (full_test_predictions[0] + full_test_predictions[1] + full_test_predictions[2]) / 3\n", " # Any value over .5 is assumed to be a 1 prediction, and below .5 is a 0 prediction.\n", " test_predictions[test_predictions <= .5] = 0\n", " test_predictions[test_predictions > .5] = 1\n", @@ -987,9 +1009,9 @@ }, { "cell_type": "code", - "execution_count": 461, + "execution_count": 30, "metadata": { - "collapsed": false + "collapsed": true }, "outputs": [], "source": [ @@ -1014,7 +1036,7 @@ }, { "cell_type": "code", - "execution_count": 462, + "execution_count": 28, "metadata": { "collapsed": true }, @@ -1023,6 +1045,15 @@ "submission.to_csv('kaggle.csv', index=False)" ] }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "In the end, this also did not improve my score, but I learned much more about how the models actually work. I think that implementing my own column, 'SexClass', helped my model significantly, but I need to figure out a better method of weighting. Overall, I think that my score on Kaggle did not improve because right now the weighting is very tailored to the train data, and is not necessarily very adaptable. In order to increase my scores with this model from 0.77033 to beat my highest score of 0.7799 and improve it in general, the weighting of different factors and variables is definitely where I would start. " + ] + }, { "cell_type": "code", "execution_count": null,