-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvalidate_halnet_split.py
196 lines (169 loc) · 9.68 KB
/
validate_halnet_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
from torch.autograd import Variable
import converter
import synthhands_handler
import egodexter_handler
import trainer
import validator
import time
from magic import display_est_time_loop
import losses as my_losses
from debugger import print_verbose
from HALNet import HALNet
import visualize
import converter as conv
import numpy as np
DEBUG_VISUALLY = False
def validate(valid_loader, model, optimizer, valid_vars, control_vars, dataset_name, verbose=True):
losses_main = []
for batch_idx, (data, target) in enumerate(valid_loader):
control_vars['batch_idx'] = batch_idx
if batch_idx < control_vars['iter_size']:
print_verbose("\rPerforming first iteration; current mini-batch: " +
str(batch_idx + 1) + "/" + str(control_vars['iter_size']), verbose, n_tabs=0, erase_line=True)
# start time counter
start = time.time()
# get data and targetas cuda variables
if dataset_name == 'EgoDexter':
_, target_heatmaps = target
else:
target_heatmaps, _, _ = target
data, target_heatmaps = Variable(data), Variable(target_heatmaps)
if valid_vars['use_cuda']:
data = data.cuda()
target_heatmaps = target_heatmaps.cuda()
# visualize if debugging
#losses_main get model output
output = model(data)
# accumulate loss for sub-mini-batch
if valid_vars['cross_entropy']:
loss_func = my_losses.cross_entropy_loss_p_logq
else:
loss_func = my_losses.euclidean_loss
loss = my_losses.calculate_loss_HALNet(loss_func,
output, target_heatmaps, model.joint_ixs, model.WEIGHT_LOSS_INTERMED1,
model.WEIGHT_LOSS_INTERMED2, model.WEIGHT_LOSS_INTERMED3,
model.WEIGHT_LOSS_MAIN, control_vars['iter_size'])
if DEBUG_VISUALLY:
for i in range(control_vars['max_mem_batch']):
filenamebase_idx = (batch_idx * control_vars['max_mem_batch']) + i
filenamebase = valid_loader.dataset.get_filenamebase(filenamebase_idx)
fig = visualize.create_fig()
#visualize.plot_joints_from_heatmaps(output[3][i].data.numpy(), fig=fig,
# title=filenamebase, data=data[i].data.numpy())
#visualize.plot_image_and_heatmap(output[3][i][8].data.numpy(),
# data=data[i].data.numpy(),
# title=filenamebase)
#visualize.savefig('/home/paulo/' + filenamebase.replace('/', '_') + '_heatmap')
labels_colorspace = conv.heatmaps_to_joints_colorspace(output[3][i].data.numpy())
data_crop, crop_coords, labels_heatmaps, labels_colorspace = \
converter.crop_image_get_labels(data[i].data.numpy(), labels_colorspace, range(21))
visualize.plot_image(data_crop, title=filenamebase, fig=fig)
visualize.plot_joints_from_colorspace(labels_colorspace, title=filenamebase, fig=fig, data=data_crop)
#visualize.savefig('/home/paulo/' + filenamebase.replace('/', '_') + '_crop')
visualize.show()
#loss.backward()
valid_vars['total_loss'] += loss
# accumulate pixel dist loss for sub-mini-batch
valid_vars['total_pixel_loss'] = my_losses.accumulate_pixel_dist_loss_multiple(
valid_vars['total_pixel_loss'], output[3], target_heatmaps, control_vars['batch_size'])
if valid_vars['cross_entropy']:
valid_vars['total_pixel_loss_sample'] = my_losses.accumulate_pixel_dist_loss_from_sample_multiple(
valid_vars['total_pixel_loss_sample'], output[3], target_heatmaps, control_vars['batch_size'])
else:
valid_vars['total_pixel_loss_sample'] = [-1] * len(model.joint_ixs)
# get boolean variable stating whether a mini-batch has been completed
minibatch_completed = (batch_idx+1) % control_vars['iter_size'] == 0
if minibatch_completed:
# append total loss
valid_vars['losses'].append(valid_vars['total_loss'].item())
# erase total loss
total_loss = valid_vars['total_loss'].item()
valid_vars['total_loss'] = 0
# append dist loss
valid_vars['pixel_losses'].append(valid_vars['total_pixel_loss'])
# erase pixel dist loss
valid_vars['total_pixel_loss'] = [0] * len(model.joint_ixs)
# append dist loss of sample from output
valid_vars['pixel_losses_sample'].append(valid_vars['total_pixel_loss_sample'])
# erase dist loss of sample from output
valid_vars['total_pixel_loss_sample'] = [0] * len(model.joint_ixs)
# check if loss is better
if valid_vars['losses'][-1] < valid_vars['best_loss']:
valid_vars['best_loss'] = valid_vars['losses'][-1]
#print_verbose(" This is a best loss found so far: " + str(valid_vars['losses'][-1]), verbose)
# log checkpoint
if control_vars['curr_iter'] % control_vars['log_interval'] == 0:
tot_joint_loss_avg = trainer.print_log_info(model, optimizer, 1, total_loss, valid_vars, control_vars, save_best=False, save_a_checkpoint=False)
losses_main.append(tot_joint_loss_avg)
model_dict = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'control_vars': control_vars,
'train_vars': valid_vars,
}
#trainer.save_checkpoint(model_dict,
# filename=valid_vars['checkpoint_filenamebase'] +
# str(control_vars['num_iter']) + '.pth.tar')
# print time lapse
prefix = 'Validating (Epoch #' + str(1) + ' ' + str(control_vars['curr_epoch_iter']) + '/' +\
str(control_vars['tot_iter']) + ')' + ', (Batch ' + str(control_vars['batch_idx']+1) +\
'(' + str(control_vars['iter_size']) + ')' + '/' +\
str(control_vars['num_batches']) + ')' + ', (Iter #' + str(control_vars['curr_iter']) +\
'(' + str(control_vars['batch_size']) + ')' +\
' - log every ' + str(control_vars['log_interval']) + ' iter): '
control_vars['tot_toc'] = display_est_time_loop(control_vars['tot_toc'] + time.time() - start,
control_vars['curr_iter'], control_vars['num_iter'],
prefix=prefix)
control_vars['curr_iter'] += 1
control_vars['start_iter'] = control_vars['curr_iter'] + 1
control_vars['curr_epoch_iter'] += 1
total_avg_loss = np.mean(losses_main)
return valid_vars, control_vars, total_avg_loss
model, optimizer, control_vars, valid_vars, train_control_vars = validator.parse_args(model_class=HALNet)
if valid_vars['use_cuda']:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if "EgoDexter" in valid_vars['root_folder']:
dataset_func = egodexter_handler.EgoDexterDataset
dataset_name = 'EgoDexter'
else:
dataset_func = synthhands_handler.SynthHandsDataset
dataset_name = 'SynthHands'
dataset = dataset_func(root_folder=valid_vars['root_folder'],
type_='split',
joint_ixs=model.joint_ixs,
heatmap_res=(320, 240),
splitfilename=valid_vars['split_filename'])
num_splits = dataset.num_splits
valid_errors = []
for split_ix in range(dataset.num_splits):
print('Performing validation for {} splits at split #{}'.format(num_splits, split_ix + 1))
dataset = dataset_func(root_folder=valid_vars['root_folder'],
type_='split',
joint_ixs=model.joint_ixs,
heatmap_res=(320, 240),
splitfilename=valid_vars['split_filename'],
split_ix=split_ix)
valid_loader = torch.utils.data.DataLoader(
dataset,
batch_size=1,
shuffle=False)
control_vars['log_interval'] = len(valid_loader)
control_vars['num_batches'] = len(valid_loader)
control_vars['n_iter_per_epoch'] = int(len(valid_loader) / control_vars['iter_size'])
control_vars['num_iter'] = len(valid_loader)
control_vars['tot_iter'] = int(len(valid_loader) / control_vars['iter_size'])
control_vars['start_iter_mod'] = control_vars['start_iter'] % control_vars['tot_iter']
trainer.print_header_info(model, valid_loader, control_vars)
control_vars['curr_iter'] = 1
control_vars['curr_epoch_iter'] = 1
valid_vars['total_loss'] = 0
valid_vars['total_pixel_loss'] = [0] * len(model.joint_ixs)
valid_vars['total_pixel_loss_sample'] = [0] * len(model.joint_ixs)
valid_vars, control_vars, tot_joint_loss_avg = validate(valid_loader, model, optimizer,
valid_vars, control_vars,
dataset_name,
control_vars['verbose'], )
valid_errors.append(tot_joint_loss_avg)
print('Mean valid error: {}'.format(np.mean(valid_errors)))
print('Stddev valid error: {}'.format(np.std(valid_errors)))