-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathintersections.py
415 lines (359 loc) · 15.3 KB
/
intersections.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# ***************************************************************************
# * Copyright (c) 2009, 2010 Yorik van Havre <[email protected]> *
# * Copyright (c) 2009, 2010 Ken Cline <[email protected]> *
# * *
# * This file is part of the FreeCAD CAx development system. *
# * *
# * This program is free software; you can redistribute it and/or modify *
# * it under the terms of the GNU Lesser General Public License (LGPL) *
# * as published by the Free Software Foundation; either version 2 of *
# * the License, or (at your option) any later version. *
# * for detail see the LICENCE text file. *
# * *
# * FreeCAD is distributed in the hope that it will be useful, *
# * but WITHOUT ANY WARRANTY; without even the implied warranty of *
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
# * GNU Library General Public License for more details. *
# * *
# * You should have received a copy of the GNU Library General Public *
# * License along with FreeCAD; if not, write to the Free Software *
# * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *
# * USA *
# * *
# ***************************************************************************
"""Provides various functions to calculate intersections of shapes."""
## @package intersections
# \ingroup draftgeoutils
# \brief Provides various functions to calculate intersections of shapes.
import lazy_loader.lazy_loader as lz
import FreeCAD as App
import DraftVecUtils
from draftgeoutils.general import precision, vec, geomType, isPtOnEdge
from draftgeoutils.edges import findMidpoint
# Delay import of module until first use because it is heavy
Part = lz.LazyLoader("Part", globals(), "Part")
## \addtogroup draftgeoutils
# @{
def findIntersection(edge1, edge2,
infinite1=False, infinite2=False,
ex1=False, ex2=False,
dts=True, findAll=False):
"""Return a list containing the intersection points of 2 edges.
You can also feed 4 points instead of `edge1` and `edge2`.
If `dts` is used, `Shape.section()` is used.
"""
def getLineIntersections(pt1, pt2, pt3, pt4, infinite1, infinite2):
if pt1:
# first check if we don't already have coincident endpoints
if pt1 in [pt3, pt4]:
return [pt1]
elif (pt2 in [pt3, pt4]):
return [pt2]
norm1 = pt2.sub(pt1).cross(pt3.sub(pt1))
norm2 = pt2.sub(pt4).cross(pt3.sub(pt4))
if not DraftVecUtils.isNull(norm1):
try:
norm1.normalize()
except Part.OCCError:
return []
if not DraftVecUtils.isNull(norm2):
try:
norm2.normalize()
except Part.OCCError:
return []
if DraftVecUtils.isNull(norm1.cross(norm2)):
vec1 = pt2.sub(pt1)
vec2 = pt4.sub(pt3)
if DraftVecUtils.isNull(vec1) or DraftVecUtils.isNull(vec2):
return [] # One of the lines has zero-length
try:
vec1.normalize()
vec2.normalize()
except Part.OCCError:
return []
norm3 = vec1.cross(vec2)
denom = norm3.x + norm3.y + norm3.z
if not DraftVecUtils.isNull(norm3) and denom != 0:
k = ((pt3.z - pt1.z) * (vec2.x - vec2.y)
+ (pt3.y - pt1.y) * (vec2.z - vec2.x)
+ (pt3.x - pt1.x) * (vec2.y - vec2.z))/denom
vec1.scale(k, k, k)
intp = pt1.add(vec1)
if infinite1 is False and not isPtOnEdge(intp, edge1):
return []
if infinite2 is False and not isPtOnEdge(intp, edge2):
return []
return [intp]
else:
return [] # Lines have same direction
else:
return [] # Lines aren't on same plane
tol = pow(10, -precision())
# First, check bound boxes
if (isinstance(edge1, Part.Edge) and isinstance(edge2, Part.Edge)
and (not infinite1) and (not infinite2)):
bb1 = edge1.BoundBox
bb1.enlarge(tol) # enlarge one box to account for rounding errors
if not bb1.intersect(edge2.BoundBox):
return [] # bound boxes don't intersect
# First, try to use Shape.section if possible
if (dts and isinstance(edge1, Part.Edge) and isinstance(edge2, Part.Edge)
and (not infinite1) and (not infinite2)):
return [v.Point for v in edge1.section((edge2), tol).Vertexes]
pt1 = None
if isinstance(edge1, App.Vector) and isinstance(edge2, App.Vector):
# we got points directly
pt1 = edge1
pt2 = edge2
pt3 = infinite1
pt4 = infinite2
infinite1 = ex1
infinite2 = ex2
return getLineIntersections(pt1, pt2, pt3, pt4, infinite1, infinite2)
elif (geomType(edge1) == "Line") and (geomType(edge2) == "Line"):
# we have 2 straight lines
pt1, pt2, pt3, pt4 = [edge1.Vertexes[0].Point,
edge1.Vertexes[1].Point,
edge2.Vertexes[0].Point,
edge2.Vertexes[1].Point]
return getLineIntersections(pt1, pt2, pt3, pt4, infinite1, infinite2)
elif ((geomType(edge1) == "Circle") and (geomType(edge2) == "Line")
or (geomType(edge1) == "Line") and (geomType(edge2) == "Circle")):
# deals with an arc or circle and a line
edges = [edge1, edge2]
for edge in edges:
if geomType(edge) == "Line":
line = edge
else:
arc = edge
dirVec = vec(line)
dirVec.normalize()
pt1 = line.Vertexes[0].Point
pt2 = line.Vertexes[1].Point
pt3 = arc.Vertexes[0].Point
pt4 = arc.Vertexes[-1].Point
center = arc.Curve.Center
int = []
# first check for coincident endpoints
if DraftVecUtils.equals(pt1, pt3) or DraftVecUtils.equals(pt1, pt4):
if findAll:
int.append(pt1)
else:
return [pt1]
elif pt2 in [pt3, pt4]:
if findAll:
int.append(pt2)
else:
return [pt2]
if DraftVecUtils.isNull(pt1.sub(center).cross(pt2.sub(center)).cross(arc.Curve.Axis)):
# Line and Arc are on same plane
dOnLine = center.sub(pt1).dot(dirVec)
onLine = App.Vector(dirVec)
onLine.scale(dOnLine, dOnLine, dOnLine)
toLine = pt1.sub(center).add(onLine)
if toLine.Length < arc.Curve.Radius:
dOnLine = (arc.Curve.Radius**2 - toLine.Length**2)**(0.5)
onLine = App.Vector(dirVec)
onLine.scale(dOnLine, dOnLine, dOnLine)
int += [center.add(toLine).add(onLine)]
onLine = App.Vector(dirVec)
onLine.scale(-dOnLine, -dOnLine, -dOnLine)
int += [center.add(toLine).add(onLine)]
elif round(toLine.Length - arc.Curve.Radius, precision()) == 0:
int = [center.add(toLine)]
else:
return []
else:
# Line isn't on Arc's plane
if dirVec.dot(arc.Curve.Axis) != 0:
toPlane = App.Vector(arc.Curve.Axis)
toPlane.normalize()
d = pt1.dot(toPlane)
if not d:
return []
dToPlane = center.sub(pt1).dot(toPlane)
toPlane = App.Vector(pt1)
toPlane.scale(dToPlane/d, dToPlane/d, dToPlane/d)
ptOnPlane = toPlane.add(pt1)
if round(ptOnPlane.sub(center).Length - arc.Curve.Radius,
precision()) == 0:
int = [ptOnPlane]
else:
return []
else:
return []
if infinite1 is False:
for i in range(len(int) - 1, -1, -1):
if not isPtOnEdge(int[i], edge1):
del int[i]
if infinite2 is False:
for i in range(len(int) - 1, -1, -1):
if not isPtOnEdge(int[i], edge2):
del int[i]
return int
elif (geomType(edge1) == "Circle") and (geomType(edge2) == "Circle"):
# deals with 2 arcs or circles
cent1, cent2 = edge1.Curve.Center, edge2.Curve.Center
rad1, rad2 = edge1.Curve.Radius, edge2.Curve.Radius
axis1, axis2 = edge1.Curve.Axis, edge2.Curve.Axis
c2c = cent2.sub(cent1)
if cent1.sub(cent2).Length == 0:
# circles are concentric
return []
if DraftVecUtils.isNull(axis1.cross(axis2)):
if round(c2c.dot(axis1), precision()) == 0:
# circles are on same plane
dc2c = c2c.Length
if not DraftVecUtils.isNull(c2c):
c2c.normalize()
if (round(rad1 + rad2 - dc2c, precision()) < 0
or round(rad1 - dc2c - rad2, precision()) > 0
or round(rad2 - dc2c - rad1, precision()) > 0):
return []
else:
norm = c2c.cross(axis1)
if not DraftVecUtils.isNull(norm):
norm.normalize()
if DraftVecUtils.isNull(norm):
x = 0
else:
x = (dc2c**2 + rad1**2 - rad2**2) / (2*dc2c)
y = abs(rad1**2 - x**2)**(0.5)
c2c.scale(x, x, x)
if round(y, precision()) != 0:
norm.scale(y, y, y)
int = [cent1.add(c2c).add(norm)]
int += [cent1.add(c2c).sub(norm)]
else:
int = [cent1.add(c2c)]
else:
return [] # circles are on parallel planes
else:
# circles aren't on same plane
axis1.normalize()
axis2.normalize()
U = axis1.cross(axis2)
V = axis1.cross(U)
dToPlane = c2c.dot(axis2)
d = V.add(cent1).dot(axis2)
V.scale(dToPlane/d, dToPlane/d, dToPlane/d)
PtOn2Planes = V.add(cent1)
planeIntersectionVector = U.add(PtOn2Planes)
intTemp = findIntersection(planeIntersectionVector,
edge1, True, True)
int = []
for pt in intTemp:
if round(pt.sub(cent2).Length-rad2, precision()) == 0:
int += [pt]
if infinite1 is False:
for i in range(len(int) - 1, -1, -1):
if not isPtOnEdge(int[i], edge1):
del int[i]
if infinite2 is False:
for i in range(len(int) - 1, -1, -1):
if not isPtOnEdge(int[i], edge2):
del int[i]
return int
else:
print("DraftGeomUtils: Unsupported curve type: "
"(" + str(edge1.Curve) + ", " + str(edge2.Curve) + ")")
return []
def wiresIntersect(wire1, wire2):
"""Return True if some of the edges of the wires are intersecting.
Otherwise return `False`.
"""
for e1 in wire1.Edges:
for e2 in wire2.Edges:
if findIntersection(e1, e2, dts=False):
return True
return False
def connect(edges, closed=False, wireNedge=False):
"""Connect the edges in the given list by their intersections."""
inters_list = [] # List of intersections (with the previous edge).
for i, curr in enumerate(edges):
if i > 0:
prev = edges[i - 1]
elif closed:
prev = edges[-1]
else:
inters_list.append(None)
continue
curr_inters_list = (findIntersection(prev, curr, True, True))
if len(curr_inters_list) == 0:
inters_list.append(None)
elif len(curr_inters_list) == 1:
inters_list.append(curr_inters_list[0])
else:
inters = curr_inters_list[DraftVecUtils.closest(curr.Vertexes[0].Point,
curr_inters_list)]
inters_list.append(inters)
new_edges_full = []
new_edges = []
for i, curr in enumerate(edges):
curr_sta = inters_list[i]
if i < (len(edges) - 1):
curr_end = inters_list[i + 1]
elif closed:
curr_end = inters_list[0]
else:
curr_end = None
if curr_sta is None:
curr_sta = curr.Vertexes[0].Point
if i > 0:
prev = edges[i - 1]
elif closed:
prev = edges[-1]
else:
prev = None
if prev is not None:
prev_end = prev.Vertexes[-1].Point
new_edges_full.append(Part.LineSegment(prev_end, curr_sta).toShape())
if curr_end is None:
curr_end = curr.Vertexes[-1].Point
if curr_sta != curr_end:
if geomType(curr) == "Line":
n = Part.LineSegment(curr_sta, curr_end).toShape()
new_edges.append(n)
new_edges_full.append(n)
elif geomType(curr) == "Circle":
n = Part.Arc(curr_sta, findMidpoint(curr), curr_end).toShape()
new_edges.append(n)
new_edges_full.append(n)
try:
wire = Part.Wire(new_edges_full)
# TODO May phase out wire if bind() can do without it later and do with
# only connectEdges so no need bind() to find 'touching edges' there
if wireNedge:
return (wire, new_edges_full, new_edges)
else:
return wire
except Part.OCCError:
print("DraftGeomUtils.connect: unable to connect edges")
for edge in new_edges:
print(edge.Curve, " ",
edge.Vertexes[0].Point, " ",
edge.Vertexes[-1].Point)
return None
def angleBisection(edge1, edge2):
"""Return an edge that bisects the angle between the 2 straight edges."""
if geomType(edge1) != "Line" or geomType(edge2) != "Line":
return None
p1 = edge1.Vertexes[0].Point
p2 = edge1.Vertexes[-1].Point
p3 = edge2.Vertexes[0].Point
p4 = edge2.Vertexes[-1].Point
intersect = findIntersection(edge1, edge2, True, True)
if intersect:
line1Dir = p2.sub(p1)
angleDiff = DraftVecUtils.angle(line1Dir, p4.sub(p3))
ang = angleDiff * 0.5
origin = intersect[0]
line1Dir.normalize()
direction = DraftVecUtils.rotate(line1Dir, ang)
else:
diff = p3.sub(p1)
origin = p1.add(diff.multiply(0.5))
direction = p2.sub(p1)
direction.normalize()
return Part.LineSegment(origin, origin.add(direction)).toShape()
## @}