forked from sgrieve/PoolTable
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPoolTable.py
285 lines (205 loc) · 8.19 KB
/
PoolTable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# -*- coding: utf-8 -*-
"""
Created on Sun Jul 12 21:32:26 2015
@author: Stuart Grieve
"""
import cv2
import numpy as np
import matplotlib.pyplot as plt
import Indexer
def Test():
img = LoadImage('img/pool_crop_2.png')
hsv = ToHSV(img)
lower_color, upper_color = GetClothColor(hsv)
contours = GetContours(hsv, lower_color, upper_color,7)
TableContour = MaskTableBed(contours)
warp = TransformToOverhead(img,TableContour)
#Now the table is cropped and warped, lets find the balls
hsv = ToHSV(warp)
lower_color, upper_color = GetClothColor(hsv)
contours = GetContours(hsv, lower_color, upper_color,17)
BallData = FindTheBalls(warp, contours)
print lower_color
CueBall(BallData)
def CueBall(BallData):
data = BallData[1][2]
#this mask does not reflect the boundary between data and nodata.
mask = cv2.inRange(data, (0,0,10), (180,255,255))
# cv2.imshow('result1',mask)
# cv2.imshow('result',data)
#
# cv2.waitKey(0)
# cv2.destroyAllWindows()
hist = cv2.calcHist([data], [0], mask, [180], [0, 180])
plt.plot(hist)
plt.show()
hist = cv2.calcHist([data], [1], mask, [256], [0, 256])
plt.plot(hist)
plt.show()
hist = cv2.calcHist([data], [2], mask, [256], [0, 256])
plt.plot(hist)
plt.show()
def LoadImage(filename):
"""
Loads an image file
"""
#img is loaded in bgr colorspace
return cv2.imread(filename)
def ToHSV(img):
"""
Convert an image from BGR to HSV colorspace
"""
return cv2.cvtColor(img.copy(), cv2.COLOR_BGR2HSV)
def GetClothColor(hsv,search_width=45):
"""
Find the most common HSV values in the image.
In a well lit image, this will be the cloth
"""
hist = cv2.calcHist([hsv], [1], None, [180], [0, 180])
h_max = Indexer.get_index_of_max(hist)[0]
hist = cv2.calcHist([hsv], [1], None, [256], [0, 256])
s_max = Indexer.get_index_of_max(hist)[0]
hist = cv2.calcHist([hsv], [2], None, [256], [0, 256])
v_max = Indexer.get_index_of_max(hist)[0]
# define range of blue color in HSV
lower_color = np.array([h_max-search_width,s_max-search_width,v_max-search_width])
upper_color = np.array([h_max+search_width,s_max+search_width,v_max+search_width])
return lower_color, upper_color
def MaskTableBed(contours):
"""
Mask out the table bed, assuming that it will be the biggest contour.
"""
#The largest area should be the table bed
areas = []
for c in contours:
areas.append(cv2.contourArea(c))
#return the contour that delineates the table bed
largest_contour = Indexer.get_index_of_max(areas)
return contours[largest_contour[0]]
def distbetween(x1,y1,x2,y2):
"""
Compute the distance between points (x1,y1) and (x2,y2)
"""
return np.sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1))
def Get_UL_Coord(contour,pad=10):
"""
Get the upper left coordinate of the contour.
"""
dists = []
for c in contour:
dists.append(distbetween(c[0][0],c[0][1],0,0))
return (contour[Indexer.get_index_of_min(dists)[0]][0][0]-pad,contour[Indexer.get_index_of_min(dists)[0]][0][1]-pad)
def Get_UR_Coord(contour,imgXmax, pad=10):
"""
Get the upper right coordinate of the contour.
"""
dists = []
for c in contour:
dists.append(distbetween(c[0][0],c[0][1],imgXmax,0))
return (contour[Indexer.get_index_of_min(dists)[0]][0][0]+pad,contour[Indexer.get_index_of_min(dists)[0]][0][1]-pad)
def Get_LL_Coord(contour,imgYmax, pad=10):
"""
Get the lower left coordinate of the contour.
"""
dists = []
for c in contour:
dists.append(distbetween(c[0][0],c[0][1],0,imgYmax))
return (contour[Indexer.get_index_of_min(dists)[0]][0][0]-pad,contour[Indexer.get_index_of_min(dists)[0]][0][1]+pad)
def Get_LR_Coord(contour,imgXmax,imgYmax, pad=10):
"""
Get the lower right coordinate of the contour.
"""
dists = []
for c in contour:
dists.append(distbetween(c[0][0],c[0][1],imgXmax,imgYmax))
return (contour[Indexer.get_index_of_min(dists)[0]][0][0]+pad,contour[Indexer.get_index_of_min(dists)[0]][0][1]+pad)
def TransformToOverhead(img,contour):
"""
Get the corner coordinates of the table bed by finding the minumum
distance to the corners of the image for each point in the contour.
Transform code is built upon code from: http://www.pyimagesearch.com/2014/05/05/building-pokedex-python-opencv-perspective-warping-step-5-6/
"""
#get dimensions of image
height, width, channels = img.shape
#find the 4 corners of the table bed
UL = Get_UL_Coord(contour)
UR = Get_UR_Coord(contour,width)
LL = Get_LL_Coord(contour,height)
LR = Get_LR_Coord(contour,width,height)
#store the coordinates in a numpy array
rect = np.zeros((4, 2), dtype = "float32")
rect[0]= [UL[0],UL[1]]
rect[1]= [UR[0],UR[1]]
rect[2]= [LR[0],LR[1]]
rect[3]= [LL[0],LL[1]]
#get the width at the bottom and top of the image
widthA = distbetween(LL[0],LL[1],LR[0],LR[1])
widthB = distbetween(UL[0],UL[1],UR[0],UR[1])
#choose the maximum width
maxWidth = max(int(widthA), int(widthB))
maxHeight = (maxWidth*2) #pool tables are twice as long as they are wide
# construct our destination points which will be used to
# map the image to a top-down, "birds eye" view
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype = "float32")
# calculate the perspective transform matrix and warp
# the perspective to grab the screen
M = cv2.getPerspectiveTransform(rect, dst)
warp = cv2.warpPerspective(img, M, (maxWidth, maxHeight))
return warp
def GetContours(hsv, lower_color, upper_color,filter_radius):
"""
Returns the contours generated from the given color range
"""
# Threshold the HSV image to get only cloth colors
mask = cv2.inRange(hsv, lower_color, upper_color)
#use a median filter to get rid of speckle noise
median = cv2.medianBlur(mask,filter_radius)
#get the contours of the filtered mask
#this modifies median in place!
_, contours, _ = cv2.findContours(median,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
return contours
def FindTheBalls(img, contours, similarity_threshold=5):
"""
Find and circle all of the balls on the table.
Currently struggles with balls on the rail. Not yet tested on clusters.
Returns a three-tuple containing a tuple of x,y coords, a radius and the masked
out area of the image. Needs to be made into a ball object.
"""
#dimensions of image
height,width, channels = img.shape
#compare the difference in area of a min bounding circle and the cotour area
diffs = []
indexes = []
for i,contour in enumerate(contours):
contourArea = cv2.contourArea(contour)
(x,y),radius = cv2.minEnclosingCircle(contour)
circleArea = 3.141 * (radius**2)
diffs.append(abs(circleArea-contourArea))
indexes.append(i)
sorted_data = sorted(zip(diffs,indexes))
diffs = [x[0] for x in sorted_data]
indexes = [x[1] for x in sorted_data]
#list of center coords as tuples
centers = []
radii = []
masks = []
for i,d in zip(indexes,diffs):
#if the contour is a similar shape to the circle it is likely to be a ball.
if (d < diffs[0] * similarity_threshold):
(x,y),radius = cv2.minEnclosingCircle(contours[i])
center = (int(x),int(y))
radius = int(radius)
#remove .copy() to display a circle round each ball
cv2.circle(img.copy(),center,radius,(0,0,255),2)
centers.append(center)
radii.append(radius)
circle_img = np.zeros((height,width), np.uint8)
cv2.circle(circle_img,center,radius,1,thickness=-1)
masked_data = cv2.bitwise_and(img, img, mask=circle_img)
masks.append(masked_data)
return zip(centers,radii,masks)
Test()