-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfacerec_train.py
504 lines (350 loc) · 17.3 KB
/
facerec_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
from __future__ import print_function
import cv2
import cv2.face as face
import numpy as np
# skvideo doesn't seem to be able to handle some mp4 files
#from skvideo.io import vread, vreader
import imageio
import os
import os.path
import sys
import shutil
import csv
import json
from sklearn.model_selection import train_test_split
# Given a directory of original images with directory structure like this:
# <top directory>
# - label #1
# - person1-image1
# - person1-image2
# - person1-image3
# ...
# - label #2
# - person2-image1
# - person2-image2
# - person2-image3
# ...
# - label #3
# ...
#
# this script can do the following tasks:
#
# - print statistics like mean and median dimensions of all images in entire dataset
#
# - scale all images to the same specified dimensions, either enlarge or shrink
# and save them to a different location with the same directory structure
#
# - split an images directory into a pair of train and test directories
#
# - create a CSV file of image paths and labels from the directory structure
#
# - train a face recognizer using preferred algorithm and save the model for inference
def statistics(top_dir):
widths = np.empty((0), dtype=np.uint16)
heights = np.empty((0), dtype=np.uint16)
for label in os.listdir(top_dir):
label_dir = os.path.join(top_dir, label)
for imgfilename in os.listdir(label_dir):
imgfilepath = os.path.join(label_dir, imgfilename)
print(imgfilepath)
img = cv2.imread(imgfilepath)
widths = np.append(widths, img.shape[0])
heights = np.append(heights, img.shape[1])
mean_width = np.mean(widths)
median_width = np.median(widths)
width_hist = np.histogram(widths)
print('Mean width=', mean_width)
print('Median width=', median_width)
print('Width histogram: ', width_hist)
mean_height = np.mean(heights)
median_height = np.median(heights)
height_hist = np.histogram(heights)
print('Mean height=', mean_height)
print('Median height=', median_height)
print('Height histogram: ', height_hist)
def scale(orig_top_dir, scaled_dest_dir, width, height, make_grayscale = True, equalize_hist = False):
if not os.path.exists(scaled_dest_dir):
os.makedirs(scaled_dest_dir)
for label in os.listdir(orig_top_dir):
label_dir = os.path.join(orig_top_dir, label)
dest_label_dir = os.path.join(scaled_dest_dir, label)
if not os.path.exists(dest_label_dir):
os.mkdir(dest_label_dir)
for imgfilename in os.listdir(label_dir):
orig_imgfilepath = os.path.join(label_dir, imgfilename)
print(orig_imgfilepath)
img = cv2.imread(orig_imgfilepath)
if make_grayscale:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if equalize_hist:
print("Equalizing")
img = cv2.equalizeHist(img)
elif equalize_hist:
print("Warning: Invalid arguments. Histogram equalization can be done only if grayscale is enabled. Ignoring")
img = cv2.resize(img, (width, height))
dest_imgfilepath = os.path.join(dest_label_dir, imgfilename)
cv2.imwrite(dest_imgfilepath, img)
print(orig_imgfilepath,' -> ', dest_imgfilepath)
def split_into_train_test_dirs(top_dir, train_dir, test_dir, train_percent):
if not os.path.exists(train_dir):
os.makedirs(train_dir)
if not os.path.exists(test_dir):
os.makedirs(test_dir)
for label in os.listdir(top_dir):
label_dir = os.path.join(top_dir, label)
images = os.listdir(label_dir)
train_indexes = np.random.choice(np.arange(len(images)), int(train_percent * len(images) // 100), replace=False)
for idx in xrange(len(images)):
dest_dir = train_dir if idx in train_indexes else test_dir
dest_label_dir = os.path.join(dest_dir, label)
if not os.path.exists(dest_label_dir):
os.mkdir(dest_label_dir)
src_filename = os.path.join(label_dir, images[idx])
shutil.copy(src_filename, dest_label_dir)
def export_csv(top_dir, dest_csv_file):
with open(dest_csv_file, 'w', encoding='utf-8') as csvfile:
labelwriter = csv.writer(csvfile, delimiter=',')
for label_idx, label in enumerate(os.listdir(top_dir)):
label_dir = os.path.join(top_dir, label)
for imgfilename in os.listdir(label_dir):
imgfilepath = os.path.abspath(os.path.join(label_dir, imgfilename))
labelwriter.writerow([imgfilepath, label, label_idx])
def train(csv_file, train_percent, test_file_csv, models_dir, eigen=True, fischer=True, lbp=True):
# OMG np.genfromtxt is horribly broken when moving from py2 to py3 because it returns byte arrays in py3
# and nothing else can handle byte arrays properly without other conversion hacks.
# Whatever happened to the "pythonic" way?! Avoid!
# data = np.genfromtxt(csv_file, delimiter=',', dtype=None, names=['file','label','labelnum'])
data = []
all_labels = {}
label_counts = {}
labelnum_col = []
with open(csv_file, 'r', encoding='utf-8', newline='') as csvfile:
reader = csv.reader(csvfile)
for row in reader:
f, label, label_idx = row
labelnum_col.append(label_idx)
data.append(row)
if all_labels.get(label_idx) is None:
all_labels[label_idx] = label
label_counts[label_idx] = 1
else:
label_counts[label_idx] += 1
# Every label should have atleast 2 data points. Delete those rows which don't
# satisfy that condition.
data = [ d for d in data if label_counts[ d[2] ] >= 2 ]
labelnum_col = [ d[2] for d in data ]
train_imagefiles, test_imagefiles = train_test_split(data, train_size=train_percent/100.0, stratify=labelnum_col)
with open(test_file_csv, 'w', encoding='utf-8') as csvfile:
testwriter = csv.writer(csvfile, delimiter=',')
for test_imgfile in test_imagefiles:
testwriter.writerow(list(test_imgfile))
training_labels = np.array( [ d[2] for d in train_imagefiles ], dtype = np.int32 )
train_images = []
for train_imgfile in train_imagefiles:
#f = train_imgfile[0].decode("utf-8")
print(f)
img = cv2.imread(train_imgfile[0], cv2.IMREAD_GRAYSCALE)
print(f, img.shape)
train_images.append(img)
if not os.path.exists(models_dir):
os.makedirs(models_dir)
print(train_images[0].shape, len(training_labels))
if eigen:
eigen_recog = face.createEigenFaceRecognizer()
eigen_recog.train(train_images, training_labels)
eigen_recog.save(os.path.join(models_dir, 'eigen.yml'))
print('Eigen done')
if fischer:
fischer_recog = face.createFisherFaceRecognizer()
fischer_recog.train(train_images, training_labels)
fischer_recog.save(os.path.join(models_dir, 'fischer.yml'))
print('Fischer done')
if lbp:
lbp_recog = face.createLBPHFaceRecognizer()
lbp_recog.train(train_images, training_labels)
lbp_recog.save(os.path.join(models_dir, 'lbp.yml'))
print('LBP done')
# Record the training image dimensions because at prediction time we need to resize images
# to those dimensions.
model = {'width' : train_images[0].shape[1], 'height' : train_images[0].shape[0], 'labels' : all_labels}
with open(os.path.join(models_dir, 'model.json'), 'w') as model_file:
json.dump(model, model_file, indent=4, separators=(',', ': '))
def recognize(img_file, expected_label, models_dir, eigen=True, fischer=True, lbp=True, equalize_hist=False):
eigen_label = fischer_label = lbp_label = -1
with open(os.path.join(models_dir, 'model.json'), 'r') as model_file:
model = json.load(model_file)
train_img_size = (model['height'], model['width'])
img = cv2.imread(img_file, cv2.IMREAD_GRAYSCALE)
# If training images were equalized, better to perform the same
# operation during recognition too.
if equalize_hist:
img = cv2.equalizeHist(img)
if img.shape != train_img_size:
img = cv2.resize( img, train_img_size[::-1] )
if eigen:
eigen_recog = face.createEigenFaceRecognizer();
eigen_recog.load(os.path.join(models_dir, 'eigen.yml'))
eigen_label = eigen_recog.predict(img)
print('Eigen done')
if fischer:
fischer_recog = face.createFisherFaceRecognizer();
fischer_recog.load(os.path.join(models_dir, 'fischer.yml'))
fischer_label = fischer_recog.predict(img)
print('Fischer done')
if lbp:
lbp_recog = face.createLBPHFaceRecognizer();
lbp_recog.load(os.path.join(models_dir, 'lbp.yml'))
lbp_label = lbp_recog.predict(img)
print('LBP done')
print(eigen_label, fischer_label, lbp_label)
return eigen_label, fischer_label, lbp_label
def test(test_csv, models_dir, eigen=True, fischer=True, lbp=True):
eigen_label = fischer_label = lbp_label = -1
if eigen:
eigen_recog = face.createEigenFaceRecognizer();
eigen_recog.load(os.path.join(models_dir, 'eigen.yml'))
if fischer:
fischer_recog = face.createFisherFaceRecognizer();
fischer_recog.load(os.path.join(models_dir, 'fischer.yml'))
if lbp:
lbp_recog = face.createLBPHFaceRecognizer();
lbp_recog.load(os.path.join(models_dir, 'lbp.yml'))
with open(os.path.join(models_dir, 'model.json'), 'r') as model_file:
train_img_size = json.load(model_file)
train_img_size = (train_img_size['height'], train_img_size['width'])
#test_imgfiles = np.genfromtxt(test_csv, delimiter=',', dtype=None, names=['file','label','labelnum'])
test_imgfiles = []
with open(test_csv, 'r', encoding='utf-8', newline='') as csvfile:
reader = csv.reader(csvfile)
for row in reader:
f, label, label_idx = row
test_imgfiles.append(row)
eigen_correct = fischer_correct = lbph_correct = 0
for test_imgfile in test_imgfiles:
img = cv2.imread(test_imgfile[0], cv2.IMREAD_GRAYSCALE)
if img.shape != train_img_size:
img = cv2.resize( img, train_img_size[::-1] )
expected_label = int(test_imgfile[2])
eigen_label, eigen_conf = eigen_recog.predict(img) if eigen else (-1,0)
eigen_correct += 1 if eigen_label == expected_label else 0
fischer_label, fischer_conf = fischer_recog.predict(img) if fischer else (-1,0)
fischer_correct += 1 if fischer_label == expected_label else 0
lbp_label, lbp_conf = lbp_recog.predict(img) if lbp else (-1,0)
lbph_correct += 1 if lbp_label == expected_label else 0
print("%s: expected=%d | eigen=%d | fischer=%d | lbph=%d\n" % (
test_imgfile[0], expected_label, eigen_label, fischer_label, lbp_label))
if eigen:
print("Eigenfaces accuracy: ", eigen_correct / len(test_imgfiles))
if fischer:
print("Fischerfaces accuracy: ", fischer_correct / len(test_imgfiles))
if lbp:
print("LBPH accuracy: ", lbph_correct / len(test_imgfiles))
def detect(img_file, detector_xml_path, dest_img_file):
img = cv2.imread(img_file)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
detector = cv2.CascadeClassifier(detector_xml_path)
min_size = (min(50, gray_img.shape[0] // 10), min(50, gray_img.shape[1] // 10))
hits = detector.detectMultiScale(gray_img, 1.1, 4, 0, min_size)
#cv2.groupRectangles(hits, 2)
print(hits)
hits_img = np.copy(img)
for (x,y,w,h) in hits:
cv2.rectangle(hits_img, (x,y), (x+w, y+h), (0,0,255), 2)
cv2.imwrite(dest_img_file, hits_img)
def detectvideo(vid_file, detector_xml_path, dest_img_dir):
if not os.path.exists(dest_img_dir):
os.makedirs(dest_img_dir)
detector = cv2.CascadeClassifier(detector_xml_path)
vid = imageio.get_reader(vid_file, 'ffmpeg')
# If size and source_size are not equal, then device was probably
# rotated (like a mobile) and we should compensate for the rotation.
# Images will have 'source_size' dimensions but we need 'size'.
metadata = vid.get_meta_data()
rotate = False
if metadata['source_size'] != metadata['size']:
print('Rotating')
rotate = True
for i, img in enumerate(vid):
if rotate:
#img = np.transpose(img, axes=(1, 0, 2)).copy()
img = np.rot90(img).copy()
print('Frame ',i, img.shape)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
min_size = (min(20, gray_img.shape[0] // 10), min(20, gray_img.shape[1] // 10))
hits = detector.detectMultiScale(gray_img, 1.1, 3, 0, min_size)
#cv2.groupRectangles(hits, 2)
print(len(hits), ' hits')
hits_img = np.copy(img)
if len(hits) > 0:
for (x,y,w,h) in hits:
cv2.rectangle(hits_img, (x,y), (x+w, y+h), (0,0,255), 2)
cv2.imwrite(os.path.join(dest_img_dir, 'frame-%d.png'%(i)), hits_img)
def recognizemany(img_file, detector_xml_path, models_dir, dest_img_file, eigen=True, fischer=True, lbp=True, equalize_hist=False):
img = cv2.imread(img_file)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#gray_img = cv2.resize(gray_img, (640, 480))
detector = cv2.CascadeClassifier(detector_xml_path)
min_size = (min(50, gray_img.shape[0] // 10), min(50, gray_img.shape[1] // 10))
#min_size = (0,0)
hits = detector.detectMultiScale(gray_img, 1.1, 3, 0, min_size)
eigen_label = fischer_label = lbp_label = -1
with open(os.path.join(models_dir, 'model.json'), 'r') as model_file:
model = json.load(model_file)
train_img_size = (model['height'], model['width'])
labels = model['labels']
print('# hits:', len(hits))
hits_img = np.copy(img)
# If training images were equalized, better to perform the same
# operation during recognition too.
if equalize_hist:
gray_img = cv2.equalizeHist(gray_img)
i = 1
for (x,y,w,h) in hits:
print('ROI ', i)
roi = gray_img[y:y+h, x:x+w]
i += 1
if roi.shape != train_img_size:
roi = cv2.resize( roi, train_img_size[::-1] )
if eigen:
eigen_recog = face.createEigenFaceRecognizer();
eigen_recog.load(os.path.join(models_dir, 'eigen.yml'))
eigen_label = eigen_recog.predict(roi)
print('Eigen done')
if fischer:
fischer_recog = face.createFisherFaceRecognizer();
fischer_recog.load(os.path.join(models_dir, 'fischer.yml'))
fischer_label = fischer_recog.predict(roi)
print('Fischer done')
if lbp:
lbp_recog = face.createLBPHFaceRecognizer();
lbp_recog.load(os.path.join(models_dir, 'lbp.yml'))
lbp_label = lbp_recog.predict(roi)
print('LBP done')
cv2.rectangle(hits_img, (x,y), (x+w, y+h), (255,255,255), 2)
cv2.putText(hits_img, labels[str(fischer_label)], (x, y-5), cv2.FONT_HERSHEY_PLAIN, 2.0, (255,255,255), 2)
print(labels[str(eigen_label)], labels[str(fischer_label)], labels[str(lbp_label)])
#return eigen_label, fischer_label, lbp_label
cv2.imwrite(dest_img_file, hits_img)
#########################################3
if __name__ == '__main__':
if sys.argv[1] == 'stats':
statistics(sys.argv[2])
elif sys.argv[1] == 'resize':
scale( sys.argv[2], sys.argv[3], int(sys.argv[4]), int(sys.argv[5]), bool(sys.argv[6]), bool(sys.argv[7]) )
elif sys.argv[1] == 'split':
split_into_train_test_dirs( sys.argv[2], sys.argv[3], sys.argv[4], int(sys.argv[5]) )
elif sys.argv[1] == 'csv':
export_csv( sys.argv[2], sys.argv[3])
elif sys.argv[1] == 'train':
train( sys.argv[2], int(sys.argv[3]), sys.argv[4], sys.argv[5], bool(sys.argv[6]), bool(sys.argv[7]), bool(sys.argv[8]) )
elif sys.argv[1] == 'test':
test( sys.argv[2], sys.argv[3], bool(sys.argv[4]), bool(sys.argv[5]), bool(sys.argv[6]) )
elif sys.argv[1] == 'recognize':
recognize( sys.argv[2], int(sys.argv[3]), sys.argv[4], bool(sys.argv[5]), bool(sys.argv[6]), bool(sys.argv[7]) )
elif sys.argv[1] == 'detect':
detect( sys.argv[2], sys.argv[3], sys.argv[4])
elif sys.argv[1] == 'recognizemany':
recognizemany( sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5], bool(sys.argv[6]), bool(sys.argv[7]), bool(sys.argv[8]),
bool(sys.argv[9]) )
elif sys.argv[1] == 'detectvideo':
detectvideo( sys.argv[2], sys.argv[3], sys.argv[4])