diff --git a/pandas/core/arrays/interval.py b/pandas/core/arrays/interval.py index 4bcbe2eedee47..097baa44c6042 100644 --- a/pandas/core/arrays/interval.py +++ b/pandas/core/arrays/interval.py @@ -1932,8 +1932,8 @@ def isin(self, values: ArrayLike) -> npt.NDArray[np.bool_]: if self.dtype == values.dtype: # GH#38353 instead of casting to object, operating on a # complex128 ndarray is much more performant. - left = self._combined.view("complex128") - right = values._combined.view("complex128") + left = self._combined + right = values._combined # error: Argument 1 to "isin" has incompatible type # "Union[ExtensionArray, ndarray[Any, Any], # ndarray[Any, dtype[Any]]]"; expected @@ -1941,7 +1941,7 @@ def isin(self, values: ArrayLike) -> npt.NDArray[np.bool_]: # _NestedSequence[_SupportsArray[dtype[Any]]], bool, # int, float, complex, str, bytes, _NestedSequence[ # Union[bool, int, float, complex, str, bytes]]]" - return np.isin(left, right).ravel() # type: ignore[arg-type] + return np.isin(left, right).ravel() elif needs_i8_conversion(self.left.dtype) ^ needs_i8_conversion( values.left.dtype @@ -1963,18 +1963,21 @@ def _combined(self) -> IntervalSide: comb = left._concat_same_type( # type: ignore[union-attr] [left, right], axis=1 ) + comb = comb.view("complex128")[:, 0] else: - comb = np.concatenate([left, right], axis=1) + comb = (np.array(left.ravel(), dtype=complex)) + ( + 1j * np.array(right.ravel(), dtype=complex) + ) return comb def _from_combined(self, combined: np.ndarray) -> IntervalArray: """ Create a new IntervalArray with our dtype from a 1D complex128 ndarray. """ - nc = combined.view("i8").reshape(-1, 2) dtype = self._left.dtype if needs_i8_conversion(dtype): + nc = combined.view("i8").reshape(-1, 2) assert isinstance(self._left, (DatetimeArray, TimedeltaArray)) new_left: DatetimeArray | TimedeltaArray | np.ndarray = type( self._left @@ -1985,16 +1988,14 @@ def _from_combined(self, combined: np.ndarray) -> IntervalArray: )._from_sequence(nc[:, 1], dtype=dtype) else: assert isinstance(dtype, np.dtype) - new_left = nc[:, 0].view(dtype) - new_right = nc[:, 1].view(dtype) + new_left = np.real(combined).astype(dtype).ravel() + new_right = np.imag(combined).astype(dtype).ravel() return self._shallow_copy(left=new_left, right=new_right) def unique(self) -> IntervalArray: # No overload variant of "__getitem__" of "ExtensionArray" matches argument # type "Tuple[slice, int]" - nc = unique( - self._combined.view("complex128")[:, 0] # type: ignore[call-overload] - ) + nc = unique(self._combined) nc = nc[:, None] return self._from_combined(nc) diff --git a/pandas/tests/arrays/interval/test_interval.py b/pandas/tests/arrays/interval/test_interval.py index 8e13dcf25ceba..5c31545bbb6f9 100644 --- a/pandas/tests/arrays/interval/test_interval.py +++ b/pandas/tests/arrays/interval/test_interval.py @@ -111,6 +111,31 @@ def test_shift_datetime(self): with pytest.raises(TypeError, match=msg): a.shift(1, fill_value=np.timedelta64("NaT", "ns")) + def test_unique_with_negatives(self): + # GH#61917 + idx_pos = IntervalIndex.from_tuples( + [(3, 4), (3, 4), (2, 3), (2, 3), (1, 2), (1, 2)] + ) + result = idx_pos.unique() + expected = IntervalIndex.from_tuples([(3, 4), (2, 3), (1, 2)]) + tm.assert_index_equal(result, expected) + + idx_neg = IntervalIndex.from_tuples( + [(-4, -3), (-4, -3), (-3, -2), (-3, -2), (-2, -1), (-2, -1)] + ) + result = idx_neg.unique() + expected = IntervalIndex.from_tuples([(-4, -3), (-3, -2), (-2, -1)]) + tm.assert_index_equal(result, expected) + + idx_mix = IntervalIndex.from_tuples( + [(1, 2), (0, 1), (-1, 0), (-2, -1), (-3, -2), (-3, -2)] + ) + result = idx_mix.unique() + expected = IntervalIndex.from_tuples( + [(1, 2), (0, 1), (-1, 0), (-2, -1), (-3, -2)] + ) + tm.assert_index_equal(result, expected) + class TestSetitem: def test_set_na(self, left_right_dtypes):