diff --git a/.github/workflows/docbuild-and-upload.yml b/.github/workflows/docbuild-and-upload.yml index e982b18ec7274..ba9e30e088c66 100644 --- a/.github/workflows/docbuild-and-upload.yml +++ b/.github/workflows/docbuild-and-upload.yml @@ -57,8 +57,6 @@ jobs: run: python web/pandas_web.py web/pandas --target-path=web/build - name: Build documentation - # TEMP don't let errors fail the build until all string dtype changes are fixed - continue-on-error: true run: doc/make.py --warnings-are-errors - name: Build the interactive terminal diff --git a/doc/source/user_guide/basics.rst b/doc/source/user_guide/basics.rst index 8155aa0ae03fa..3fdd15462b51e 100644 --- a/doc/source/user_guide/basics.rst +++ b/doc/source/user_guide/basics.rst @@ -590,7 +590,7 @@ arguments. The special value ``all`` can also be used: .. ipython:: python - frame.describe(include=["object"]) + frame.describe(include=["str"]) frame.describe(include=["number"]) frame.describe(include="all") diff --git a/doc/source/whatsnew/v0.13.0.rst b/doc/source/whatsnew/v0.13.0.rst index 8e323d8aac5e3..30f7f4dc97e63 100644 --- a/doc/source/whatsnew/v0.13.0.rst +++ b/doc/source/whatsnew/v0.13.0.rst @@ -184,7 +184,7 @@ API changes .. ipython:: python :okwarning: - dfc.loc[0]['A'] = 1111 + dfc.loc[0]['B'] = 1111 :: @@ -198,7 +198,7 @@ API changes .. ipython:: python - dfc.loc[0, 'A'] = 11 + dfc.loc[0, 'B'] = 1111 dfc - ``Panel.reindex`` has the following call signature ``Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)`` diff --git a/doc/source/whatsnew/v0.15.0.rst b/doc/source/whatsnew/v0.15.0.rst index 1ee7c5cbc6b9e..4e745f042d5c8 100644 --- a/doc/source/whatsnew/v0.15.0.rst +++ b/doc/source/whatsnew/v0.15.0.rst @@ -1025,20 +1025,49 @@ Other: - :func:`describe` on mixed-types DataFrames is more flexible. Type-based column filtering is now possible via the ``include``/``exclude`` arguments. See the :ref:`docs ` (:issue:`8164`). - .. ipython:: python + .. code-block:: python - df = pd.DataFrame({'catA': ['foo', 'foo', 'bar'] * 8, - 'catB': ['a', 'b', 'c', 'd'] * 6, - 'numC': np.arange(24), - 'numD': np.arange(24.) + .5}) - df.describe(include=["object"]) - df.describe(include=["number", "object"], exclude=["float"]) + >>> df = pd.DataFrame({'catA': ['foo', 'foo', 'bar'] * 8, + ... 'catB': ['a', 'b', 'c', 'd'] * 6, + ... 'numC': np.arange(24), + ... 'numD': np.arange(24.) + .5}) + >>> df.describe(include=["object"]) + catA catB + count 24 24 + unique 2 4 + top foo a + freq 16 6 + >>> df.describe(include=["number", "object"], exclude=["float"]) + catA catB numC + count 24 24 24.000000 + unique 2 4 NaN + top foo a NaN + freq 16 6 NaN + mean NaN NaN 11.500000 + std NaN NaN 7.071068 + min NaN NaN 0.000000 + 25% NaN NaN 5.750000 + 50% NaN NaN 11.500000 + 75% NaN NaN 17.250000 + max NaN NaN 23.000000 Requesting all columns is possible with the shorthand 'all' - .. ipython:: python + .. code-block:: python - df.describe(include='all') + >>> df.describe(include='all') + catA catB numC numD + count 24 24 24.000000 24.000000 + unique 2 4 NaN NaN + top foo a NaN NaN + freq 16 6 NaN NaN + mean NaN NaN 11.500000 12.000000 + std NaN NaN 7.071068 7.071068 + min NaN NaN 0.000000 0.500000 + 25% NaN NaN 5.750000 6.250000 + 50% NaN NaN 11.500000 12.000000 + 75% NaN NaN 17.250000 17.750000 + max NaN NaN 23.000000 23.500000 Without those arguments, ``describe`` will behave as before, including only numerical columns or, if none are, only categorical columns. See also the :ref:`docs `