-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_kp.py
162 lines (122 loc) · 4.79 KB
/
train_kp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from progressbar import ProgressBar
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from config import gen_args
from data import PhysicsDataset, load_data
from models_kp import KeyPointNet
from utils import rand_int, count_parameters, Tee, AverageMeter, get_lr, set_seed
args = gen_args()
set_seed(args.random_seed)
os.system('mkdir -p ' + args.outf_kp)
os.system('mkdir -p ' + args.dataf)
if args.stage == 'kp':
tee = Tee(os.path.join(args.outf_kp, 'train.log'), 'w')
else:
raise AssertionError("Unsupported stage %s" % args.stage)
print(args)
# generate data
trans_to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
datasets = {}
dataloaders = {}
data_n_batches = {}
for phase in ['train', 'valid']:
datasets[phase] = PhysicsDataset(args, phase=phase, trans_to_tensor=trans_to_tensor)
if args.gen_data:
datasets[phase].gen_data()
else:
datasets[phase].load_data()
dataloaders[phase] = DataLoader(
datasets[phase], batch_size=args.batch_size,
shuffle=True if phase == 'train' else False,
num_workers=args.num_workers)
data_n_batches[phase] = len(dataloaders[phase])
args.stat = datasets['train'].stat
use_gpu = torch.cuda.is_available()
'''
define model for keypoint detection
'''
model_kp = KeyPointNet(args, use_gpu=use_gpu)
print("model_kp #params: %d" % count_parameters(model_kp))
if args.stage == 'kp':
if args.kp_epoch >= 0:
model_kp_path = os.path.join(
args.outf_kp, 'net_kp_epoch_%d_iter_%d.pth' % (args.kp_epoch, args.kp_iter))
print("Loading saved ckp from %s" % model_kp_path)
model_kp.load_state_dict(torch.load(model_kp_path))
# criterion
criterionMSE = nn.MSELoss()
# optimizer
if args.stage == 'kp':
params = model_kp.parameters()
else:
raise AssertionError('Unknown stage %s' % args.stage)
optimizer = optim.Adam(params, lr=args.lr, betas=(args.beta1, 0.999))
scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.6, patience=2, verbose=True)
if use_gpu:
model_kp = model_kp.cuda()
criterionMSE = criterionMSE.cuda()
if args.stage == 'kp':
st_epoch = args.kp_epoch if args.kp_epoch > 0 else 0
log_fout = open(os.path.join(args.outf_kp, 'log_st_epoch_%d.txt' % st_epoch), 'w')
best_valid_loss = np.inf
for epoch in range(st_epoch, args.n_epoch):
phases = ['train', 'valid'] if args.eval == 0 else ['valid']
for phase in phases:
model_kp.train(phase == 'train')
meter_loss = AverageMeter()
meter_loss_rec = AverageMeter()
bar = ProgressBar(max_value=data_n_batches[phase])
loader = dataloaders[phase]
for i, data in bar(enumerate(loader)):
if use_gpu:
if isinstance(data, list):
data = [d.cuda() for d in data]
else:
data = data.cuda()
with torch.set_grad_enabled(phase == 'train'):
if args.stage == 'kp':
src, des = data
des_pred, src_kp_feat, des_kp_feat = model_kp(src, des)
# reconstruction loss
loss_rec = criterionMSE(des_pred, des) * 10.
loss = loss_rec
meter_loss.update(loss.item(), src.size(0))
if phase == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % args.log_per_iter == 0:
log = '%s [%d/%d][%d/%d] Loss: %.6f (%.6f), LR: %.6f' % (
phase, epoch, args.n_epoch, i, data_n_batches[phase],
loss.item(), meter_loss.avg,
get_lr(optimizer))
print()
print(log)
log_fout.write(log + '\n')
log_fout.flush()
if phase == 'train' and i % args.ckp_per_iter == 0:
if args.stage == 'kp':
torch.save(model_kp.state_dict(), '%s/net_kp_epoch_%d_iter_%d.pth' % (args.outf_kp, epoch, i))
log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
phase, epoch, args.n_epoch, meter_loss.avg, best_valid_loss)
print(log)
log_fout.write(log + '\n')
log_fout.flush()
if phase == 'valid' and not args.eval:
scheduler.step(meter_loss.avg)
if meter_loss.avg < best_valid_loss:
best_valid_loss = meter_loss.avg
if args.stage == 'kp':
torch.save(model_kp.state_dict(), '%s/net_best.pth' % (args.outf_kp))
log_fout.close()