-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForm1.cs
251 lines (226 loc) · 10.2 KB
/
Form1.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
* Combination Padlock Hacker
*
* For assiting with the math involved in calcuating the digits of a typical 0-39 combination padlock.
*
* MIT License
*
* Copyright (c) 2023 pahtzo
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Credits to:
* The SANS Holiday Hack Challenge 2023
* https://www.sans.org/mlp/holiday-hack-challenge-2023/
*
* Helpful Lock Picker
* https://www.youtube.com/watch?v=27rE5ZvWLU0
* https://docs.google.com/document/d/1QhKZLDr22G0RpuTSGm0M6pz4dG82IByesim3elwfw98/edit
*
* Flaticon for the lock icon.
* https://www.flaticon.com/free-icons/combination
*/
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
namespace ComboLockHack
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
private void Form1_Load(object sender, EventArgs e)
{
comboBox_stickynum.Text = "0";
comboBox_guess_even.Text = "0";
comboBox_guess_odd.Text = "1";
comboBox_stickynum.SelectedIndex = 0;
comboBox_guess_even.SelectedIndex = 0;
comboBox_guess_odd.SelectedIndex = 0;
comboBox_stickynum.DropDownStyle = ComboBoxStyle.DropDownList;
comboBox_guess_even.DropDownStyle = ComboBoxStyle.DropDownList;
comboBox_guess_odd.DropDownStyle = ComboBoxStyle.DropDownList;
calculateCombinations(this, null);
}
private void calculateCombinations(object sender, EventArgs e)
{
int combo_mod = 0;
int first_digit = 0;
int guess_num_odd = 0;
int guess_num_even = 0;
int[] third_digits = new int[8];
int[] second_digits = new int[10];
/*
* Grab the "sticky" number, add 5 MOD 40 to get the first digit in the combo.
* Get the combination modulus from the first digit MOD 4 for future calculations.
*/
first_digit = (Convert.ToInt32(comboBox_stickynum.Items[comboBox_stickynum.SelectedIndex].ToString()) + 5) % 40;
combo_mod = first_digit % 4;
/*
* If the first digit is even, the guess number is also even, and vice-versa for odd.
* Because of this, we don't need to find the opposite odd or even guess number.
*/
if(first_digit % 2 == 0)
{
comboBox_guess_even.Enabled = true;
comboBox_guess_odd.Enabled = false;
}
else
{
comboBox_guess_even.Enabled = false;
comboBox_guess_odd.Enabled = true;
}
guess_num_odd = Convert.ToInt32(comboBox_guess_odd.Items[comboBox_guess_odd.SelectedIndex].ToString());
guess_num_even = Convert.ToInt32(comboBox_guess_even.Items[comboBox_guess_even.SelectedIndex].ToString());
/*
* Fill the third number array with guess numbers. Add 10 to each previous number 3 times.
* If the guess numbers are say 2 and 5 then the array will be:
* 2, 12, 22, 32, 5, 15, 25, 35
*/
for(int x = 0; x < third_digits.Length / 2; x++)
{
third_digits[x] = (guess_num_odd + (x * 10)) % 40;
third_digits[x + third_digits.Length / 2] = (guess_num_even + (x * 10)) % 40;
}
/*
* Using the third_digits array, find each element's remainder from element MOD 4.
* If the remainder doesn't match our combination modulus, ("sticky" number + 5 MOD 40) MOD 4, then set it to -1.
* We'll sort it later and grab the last two elements as they will be the two
* options for the third digit in the combo.
* 2, 12, 22, 32, 5, 15, 25, 35 -> -1, -1, -1, -1, -1, -1, 12, 32
*/
for (int x = 0; x < third_digits.Length; x++)
{
if(third_digits[x] % 4 != combo_mod)
{
third_digits[x] = -1;
}
}
/*
* Fill the two second number arrays using the combo modulus + 2 and combo modulus + 6,
* then add 8 to each previous element 4 times with MOD 40.
*
* This will look like:
* 2, 10, 18, 26, 34, 6, 14, 22, 30, 38
*
* Changed this to have two second number arrays, one for third digit A, and one for third digit B,
* eliminating any digits that are within 2 of each third digit candidate.
* That will get us from 10 options to 8.
* So for this list it will look like:
*
* 2, 6, 10, 14, 18, 22, 26, 30, 34, 38
*
*/
for (int x = 0; x < second_digits.Length / 2; x++)
{
second_digits[x] = (combo_mod + 2 + (x * 8)) % 40;
second_digits[x + second_digits.Length / 2] = (combo_mod + 6 + (x * 8)) % 40;
}
// Sort the third digit array and grab the last two elements into a new, smaller array.
Array.Sort(third_digits);
int[] t = new int[2];
t[0] = third_digits[third_digits.Length - 2];
t[1] = third_digits[third_digits.Length - 1];
int[] second_digitsA = new int[second_digits.Length];
int[] second_digitsB = new int[second_digits.Length];
Array.Copy(second_digits, second_digitsA, second_digitsA.Length);
Array.Copy(second_digits, second_digitsB, second_digitsB.Length);
// A painful way to account for negative digits and wrapping backwards MOD 40.
int[] within_two_A = {
(t[0] - 2) % 40 < 0 ? ((t[0] - 2) % 40) + 40 : (t[0] - 2) % 40,
(t[0] - 1) % 40 < 0 ? ((t[0] - 1) % 40) + 40 : (t[0] - 1) % 40,
t[0],
(t[0] + 1) % 40,
(t[0] + 2) % 40
};
int[] within_two_B = {
(t[1] - 2) % 40 < 0 ? ((t[1] - 2) % 40) + 40 : (t[1] - 2) % 40,
(t[1] - 1) % 40 < 0 ? ((t[1] - 1) % 40) + 40 : (t[1] - 1) % 40,
t[1],
(t[1] + 1) % 40,
(t[1] + 2) % 40
};
/*
* Remove any second digits within 2 of the third digits.
* Since the third digit A and B candidates are 12 and 32
* in our example, our two second digit arrays will be:
*
* A: 2, 6, 18, 22, 26, 30, 34, 38
* B: 2, 6, 10, 14, 18, 22, 26, 38
*
*/
second_digitsA = second_digitsA.Except(within_two_A).ToArray();
second_digitsB = second_digitsB.Except(within_two_B).ToArray();
// Sort the arrays
Array.Sort(second_digitsA);
Array.Sort(second_digitsB);
// Print it all out into the text box for the lockpicker.
String strsecondA = String.Join(", ", second_digitsA);
String strsecondB = String.Join(", ", second_digitsB);
StringBuilder sb = new StringBuilder();
sb.Append("Set A Combinations :\r\n");
for (int x = 0; x < second_digitsA.Length; x++)
{
sb.AppendFormat("{0:D} - ", first_digit);
sb.AppendFormat("{0:D} - ", second_digitsA[x]);
sb.AppendFormat("{0:D}", t[0]);
sb.AppendLine();
}
sb.Append("\r\nSet B Combinations :\r\n");
for (int x = 0; x < second_digitsB.Length; x++)
{
sb.AppendFormat("{0:D} - ", first_digit);
sb.AppendFormat("{0:D} - ", second_digitsB[x]);
sb.AppendFormat("{0:D}", t[1]);
sb.AppendLine();
}
String outstr = "";
outstr = sb.ToString();
textBox1.Text =
"Combination Modulus : " + combo_mod.ToString() + "\r\n" +
"First Digit : " + first_digit.ToString() + "\r\n\r\n" +
"Second Digits - Set A : " + strsecondA + "\r\n" +
"Third Digit - Set A : " + t[0] + "\r\n\r\n" +
"Second Digits - Set B : " + strsecondB + "\r\n" +
"Third Digit - Set B : " + t[1] + "\r\n\r\n" +
outstr
;
}
private void comboBox_firstnum_SelectedIndexChanged(object sender, EventArgs e)
{
calculateCombinations(this,null);
}
private void comboBox_guessnum2_SelectedIndexChanged(object sender, EventArgs e)
{
calculateCombinations(this, null);
}
private void comboBox_guessnum1_SelectedIndexChanged(object sender, EventArgs e)
{
calculateCombinations(this, null);
}
}
}