-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmain_text_gen_wiki.py
191 lines (152 loc) · 5.35 KB
/
main_text_gen_wiki.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import decimal
from rich import print
from rich.console import Console
from rich.table import Table
from rich.progress import track
import wikipedia
import re
import os
import random
import sys
from num2words import num2words
from transformers import AutoTokenizer, T5ForConditionalGeneration
from spacy.lang.de import German
from spacy.lang.en import English
from spacy.lang.fr import French
from spacy.lang.it import Italian
# Cleansing
tokenizer = AutoTokenizer.from_pretrained("flexudy/t5-base-multi-sentence-doctor")
model = T5ForConditionalGeneration.from_pretrained("flexudy/t5-base-multi-sentence-doctor")
def clean_sentence(text):
input_text = "repair_sentence: " + text + " context: {}{} </s>"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
outputs = model.generate(input_ids, max_length=128, num_beams=1)
return tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
currencies = {
'de_$': 'Dollar',
'de_€': 'Euro',
'de_₿': 'Bitcoin',
'de_£': 'Pfund',
'en_$': 'dollar',
'en_€': 'euro',
'en_₿': 'bitcoin',
'en_£': 'pound',
}
def normlize_text(text, lang, nlp, clean = False):
# tokenize
doc = nlp(text)
res = []
for token in doc:
new_token = ''
# numbers
if token.like_num:
try:
# ordinals
if token.text.endswith('.'):
#new_token = num2words(token.text, lang=lang, to = 'ordinal')
new_token = token
else:
new_token = num2words(token.text, lang=lang)
except NotImplementedError:
print("Warning, language %s not supported for text normalization." % lang)
new_token = token.text
# currencies
elif token.is_currency:
if lang + '_' + token.text in currencies:
new_token = currencies[lang + '_' + token.text]
else:
new_token = token.text
else:
new_token = token.text
res.append(new_token)
sentence = ' '.join(res)
if clean:
sentence = clean_sentence(sentence)
return sentence
if __name__ == '__main__':
console = Console()
app_folder = os.path.dirname(os.path.realpath(__file__))
texts_folder = os.path.join(app_folder, "texts")
table = Table()
table.add_column("TSS Dataset Collector", style="cyan")
table.add_row("2021 - padmalcom")
table.add_row("www.stonedrum.de")
table.add_row("This tool collects texts from wikipedia and requires internet connection.")
# Select language
default_lang = 'de'
console.print("Please select a [red]language[/red] to collect data for (default [i]%s[/i])." % default_lang)
in_lang = input()
if not in_lang:
in_lang = default_lang
if not in_lang in wikipedia.languages():
console.print("Language [red]%s[/red] is not supported by wikipedia." % in_lang)
sys.exit(0)
console.print("Language is set to [red]%s[/red]." % in_lang)
# Select amount of files
default_file_count = 100
console.print("Please select a [red]file count[/red] (default [i]%d[/i])." % default_file_count)
in_file_count = input()
if not in_file_count or not in_file_count.isdigit():
in_file_count = default_file_count
in_file_count = int(in_file_count)
console.print("Will collect [red]%d[/red] files." % in_file_count)
# Normalize and clean text
console.print("Please specify if you want to [red]normalize (n)[/red] and/or [red]clean (c)[/red] texts (highly experimental). [red](nc)[/red] for both. (default [i]none[/i]).")
normalize_and_clean = input()
normalize_text = 'n' in normalize_and_clean
clean_text = 'c' in normalize_and_clean
console.print("Clean text? [red]%r[/red], normlize text? [red]%r[/red]." % (clean_text, normalize_text))
# split texts by sentences
if in_lang == 'de':
nlp = German()
elif in_lang == 'en':
nlp = English()
elif in_lang == 'fr':
nlp = French()
elif in_lang == 'it':
nlp = Italian()
else:
console.print("The language %s is not supported yet. Please create a github issue." % in_lang)
sys.exit(0)
# collect articles
wikipedia.set_lang(in_lang)
files_written = 0
# wikipedia can only get 500 pages at once
topics = []
while in_file_count > 0:
new_topics = wikipedia.random(pages = in_file_count)
print("New topics %d" % len(new_topics))
topics.extend(new_topics)
in_file_count -= 500
print("Topics: %d" % len(topics))
for n in track(range(len(topics)), description="Processing..."):
try:
page = wikipedia.page(topics[n])
except wikipedia.exceptions.DisambiguationError as e:
random_topic = random.choice(e.options)
try:
page = wikipedia.page(random_topic)
except wikipedia.exceptions.DisambiguationError as e:
print("Topic [red]%s[/red] is an ambiguity. Skipping" % random_topic)
continue
console.print("\n(%d/%d) Processing page on %s..." % (n, len(topics), page.title))
content = page.summary
# clean
# remove text in brackets
pattern1 = r'\(.*?\)'
content = re.sub(pattern1, '', content)
pattern2 = r'==(.*?)=='
content = re.sub(pattern2, '', content)
pattern3 = r'\[.*?\]'
content = re.sub(pattern3, '', content)
if normalize_text:
content = normlize_text(content, in_lang, nlp, clean_text)
i = 0
while os.path.exists(os.path.join(texts_folder, in_lang + "_wiki" + str(i) + ".txt")):
i += 1
text_file_path = os.path.join(texts_folder, in_lang + "_wiki" + str(i) + ".txt")
text_file = open(text_file_path, 'a', encoding = 'utf-8')
text_file.write(content)
text_file.close()
files_written += 1
console.print("%d files were written." % files_written)