-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
163 lines (98 loc) · 6.97 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# AnthropoAgeR <img src="inst/figures/AnthropoAgeR.png" align="right" width="180" height="190"/>
## Authors
Omar Yaxmehen Bello-Chavolla, Carlos Alberto Fermín-Martínez <https://bellolab.org>
Instituto Nacional de Geriatría, Mexico City, Mexico
[](https://www.instagram.com/bellochavolla_lab/)
[](https://github.com/oyaxbell)
[](https://www.facebook.com/bellochavollalab)
------------------------------------------------------------------------
The `AnthropoAgeR` package cfacilitate estimation of second-generation biological aging measures derived from body-composition measures (AnthropoAge, S-AnthropoAge) and PhenoAge in R. This package also allows for estimation of sex-stratified accelerated aging measures PhenoAgeAccel and AnthropoAgeAccel. These metrics are derived from work by Fermín-Martínez CA et al (Aging Cell, 2023) and Levine M et al (Aging, 2018).
AnthropoAge is a second-generation biological aging biomarker developed to estimate 10-year mortality years expressed as age using anthropometric measurements. The full version of AnthropoAge uses chronological age, sex, ethnicity, weight, height, waist circumference, subscapular and triceps skinfold thickness (for women), and arm and thigh circunference (for men). The simplified version of AnthropoAge uses the body-mass index and the waist-to-height ratio. The full version of AnthropoAge can be calculated using the `anthropoage()` function, whilst the simplified version can be calculated using the `s_anthropoage()` function.
PhenoAge is a second-generation aging biomarker developed to estimate 10-year mortality years expressed as age using blood biomarker measurements. Phenoage uses chronological age, fasting plasma glucose, serum creatinine, alkaline phosphatase, lymphocyte percentage, red cell distribution width, mean cell volume, serum albumin, and c-reactive protein. PhenoAge can be calculated using the `phenoage()` function.
## Installation
You can install the development version of `AnthropoAgeR` from Github
``` r
# install.package("remotes") #In case you have not installed it.
remotes::install_github("oyaxbell/AnthropoAgeR")
```
Alternatively, you will soon be able install the released version of `AnthropoAge` from [CRAN](https://CRAN.R-project.org) with:
``` r
# not approved yet
# install.packages("globorisk")
```
## Example
### AnthropoAge calculation
To calculate AnthropoAge use the `anthropoage()` function. The following code provides an example for a calculation for males and females using AnthropoAge. The function can also be used to calculate AnthropoAge in a large cohort.
``` r
library(AnthropoAgeR)
## Male
age1<-anthropoage(Age=31, Sex="Men", Weight=75,
Height=1.73, Ethnicity="Mexican-American",
Thigh_circumference=49.5, Arm_circumference=27.7,
Subscapular_skinfold=17, Triceps_skinfold=17.2)
age1
## Female
age2<-anthropoage(Age=24, Sex="Women", Weight=61,
Height=1.62, Ethnicity="Mexican-American",
Subscapular_skinfold=17, Triceps_skinfold=17.2,
Thigh_circumference=49.5, Arm_circumference=27.7)
age2
```
### S- AnthropoAge calculation
To calculate S-AnthropoAge use the `s_anthropoage()`function. The following code provides an example for a calculation for males and for a datset using AnthropoAge. The function can also be used to calculate AnthropoAge in a large cohort; for this latter purpose the`s_anthropoage_fast()` function is recommended.
``` r
library(AnthropoAgeR)
## Calculate s_anthropoage in a single individual ##
age1<-s_anthropoage(Age=31, Sex="Men", Weight=75,
Height=1.73, Ethnicity="Mexican American")
age1
## Calculate AnthropoAge in a dataset ##
df<-data.frame(Age=c(24, 31, 27), Sex=c("Women", "Men", "Men"),
Weight=c(61, 73, 68), Height=c(1.61, 1.73, 1.68),
Waist=c(76, 82, 91), Ethnicity=c("Mexican-American",
"Mexican-American","Mexican-American"))
df$AnthropoAge<-s_anthropoage_fast(Age=df$Age, Sex=df$Sex, Weight=df$Weight,
Height=df$Height, Ethnicity=df$Ethnicity)
df$AnthropoAge
```
### PhenoAge calculation
To calculate PhenoAge use the `phenoage()`function. The following code provides an example for a calculation of PhenoAge in a single individual.
``` r
library(AnthropoAgeR)
## Calculate phenoage in a single individual ##
age1<-phenoage(Age=40, CRP=0.02, Lymph=23.9, Glu=95,
Alb=4.4, MCV=93.6, RCDW=12, AP=52,
WBC=5.7, Cr=0.7)
age1
```
### Age acceleration
To calculate accelerated aging metrics derived from AnthropoAge, S-AnthropoAge and PhenoAge, the `age_accel()` function must be used. This provides a sex-based estimate of accelerated aging for all metrics. AnthropoAgeAccel is interpreted as the average deviation of biological from chronological age and is specific for each population. Values >0 indicate accelerated aging rates, whilst values<0 indicate non-accelerated aging rates.
``` r
library(AnthropoAgeR)
## Calculate age acceleration in a single individual ##
accel<-age_accel(Age=31, BA=26.2, Sex="Men")
accel
## Calculate age acceleration in a dataset ##
data<-data.frame(Age=c(23,34,45,33,56,76,61,41,32,27),
BA=c(25.2,30.6,44.2,33.5,61.2,81.1,57.2,40.7,35.2,26.1),
Sex=c("Men", "Women", "Women", "Men", "Women", "Men",
"Men", "Men", "Women", "Women"))
data$accel<-age_accel(Age=data$Age, BA=data$BA, Sex=data$Sex)
data$accel
hist(data$accel)
```
## References
Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, Whitsel EA, Wilson JG, Reiner AP, Aviv A, Lohman K, Liu Y, Ferrucci L, Horvath S. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018 Apr 18;10(4):573-591. doi: https://doi.org/10.18632/aging.101414. PMID: 29676998; PMCID: PMC5940111.
Fermín-Martínez CA, Márquez-Salinas A, Guerra EC, Zavala-Romero L, Antonio-Villa NE, Fernández-Chirino L, Sandoval-Colin E, Barquera-Guevara DA, Campos Muñoz A, Vargas-Vázquez A, Paz-Cabrera CD, Ramírez-García D, Gutiérrez-Robledo LM, Bello-Chavolla OY. AnthropoAge, a novel approach to integrate body composition into the estimation of biological age. Aging Cell. 2023 Jan;22(1):e13756. doi: https://doi.org/10.1111/acel.13756. Epub 2022 Dec 22. PMID: 36547004; PMCID: PMC9835580.