-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathoptimal_hybrid_index.cpp
542 lines (448 loc) · 19.2 KB
/
optimal_hybrid_index.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#include <fstream>
#include <iostream>
#include <algorithm>
#include <thread>
#include <numeric>
#include <boost/lexical_cast.hpp>
#include <boost/filesystem/operations.hpp>
#include <succinct/mapper.hpp>
#include <stxxl/vector>
#include <stxxl/io>
#include <stxxl/sort>
#include "configuration.hpp"
#include "index_types.hpp"
#include "util.hpp"
#include "verify_collection.hpp"
#include "mixed_block.hpp"
#include "index_build_utils.hpp"
using ds2i::logger;
typedef uint32_t block_id_type; // XXX for memory reasons, but would need size_t for very large indexes
struct lambda_point {
block_id_type block_id;
float lambda;
ds2i::mixed_block::space_time_point st;
struct comparator {
bool operator()(lambda_point const& lhs, lambda_point const& rhs) const
{
return lhs.lambda < rhs.lambda;
}
static lambda_point min_value()
{
lambda_point val;
val.lambda = std::numeric_limits<float>::min();
return val;
}
static lambda_point max_value()
{
lambda_point val;
val.lambda = std::numeric_limits<float>::max();
return val;
}
};
};
typedef stxxl::vector<lambda_point> lambda_vector_type;
template <typename InputCollectionType>
struct lambdas_computer : ds2i::semiasync_queue::job {
lambdas_computer(block_id_type block_id_base,
typename InputCollectionType::document_enumerator e,
ds2i::predictors_vec_type const& predictors,
std::vector<uint32_t>& counts,
ds2i::progress_logger& plog,
lambda_vector_type& lambda_points)
: m_block_id_base(block_id_base)
, m_e(e)
, m_predictors(predictors)
, m_plog(plog)
, m_lambda_points(lambda_points)
{
m_counts.swap(counts);
}
virtual void prepare()
{
using namespace ds2i;
using namespace time_prediction;
auto blocks = m_e.get_blocks();
assert(m_counts.empty() || m_counts.size() == 2 * blocks.size());
bool heuristic_greedy = configuration::get().heuristic_greedy;
block_id_type cur_block_id = m_block_id_base;
for (auto const& input_block: blocks) {
static const uint32_t smoothing = 1; // Laplace smoothing
uint32_t docs_exp = smoothing, freqs_exp = smoothing;
if (!m_counts.empty()) {
docs_exp += m_counts[2 * input_block.index];
freqs_exp += m_counts[2 * input_block.index + 1];
}
thread_local std::vector<uint32_t> values;
auto append_lambdas = [&](std::vector<mixed_block::space_time_point>& points,
block_id_type block_id) {
// sort by space, time
std::sort(points.begin(), points.end());
// smallest point is always added with lambda=0
m_points_buf.push_back(lambda_point { block_id, 0, points.front() });
for (auto const& cur: points) {
while (true) {
auto const& prev = m_points_buf.back();
// if this point is dominated we can skip it
if (cur.time >= prev.st.time) break;
auto lambda = (cur.space - prev.st.space) / (prev.st.time - cur.time);
if (!heuristic_greedy && lambda < prev.lambda) {
m_points_buf.pop_back();
} else {
m_points_buf.push_back(lambda_point { block_id, lambda, cur });
break;
}
}
}
};
input_block.decode_doc_gaps(values);
auto docs_sts = mixed_block::compute_space_time(values, input_block.doc_gaps_universe,
m_predictors, docs_exp);
append_lambdas(docs_sts, cur_block_id++);
input_block.decode_freqs(values);
auto freqs_sts = mixed_block::compute_space_time(values, uint32_t(-1),
m_predictors, freqs_exp);
append_lambdas(freqs_sts, cur_block_id++);
}
succinct::util::dispose(m_counts);
}
virtual void commit()
{
// m_lambda_points.insert(m_lambda_points.end(),
// m_points_buf.begin(), m_points_buf.end());
std::copy(m_points_buf.begin(), m_points_buf.end(),
std::back_inserter(m_lambda_points));
m_plog.done_sequence(m_e.size());
}
block_id_type m_block_id_base;
typename InputCollectionType::document_enumerator m_e;
ds2i::predictors_vec_type const& m_predictors;
std::vector<uint32_t> m_counts;
ds2i::progress_logger& m_plog;
double m_lambda;
std::vector<lambda_point> m_points_buf;
lambda_vector_type& m_lambda_points;
};
template <typename InputCollectionType>
void compute_lambdas(InputCollectionType const& input_coll,
size_t num_blocks,
const char* predictors_filename,
const char* block_stats_filename,
const char* lambdas_filename)
{
using namespace ds2i;
using namespace time_prediction;
logger() << "Computing lambdas" << std::endl;
progress_logger plog;
auto predictors = load_predictors(predictors_filename);
std::ifstream block_stats(block_stats_filename);
double tick = get_time_usecs();
double user_tick = get_user_time_usecs();
std::string line;
uint32_t block_counts_list;
std::vector<uint32_t> block_counts;
bool block_counts_consumed = true;
block_id_type block_id_base = 0;
size_t freq_zero_lists = 0;
size_t freq_zero_blocks = 0;
stxxl::syscall_file lpfile(lambdas_filename,
stxxl::file::DIRECT | stxxl::file::CREAT | stxxl::file::RDWR);
lambda_vector_type lambda_points(&lpfile);
semiasync_queue queue(1 << 24);
for (size_t l = 0; l < input_coll.size(); ++l) {
if (block_counts_consumed) {
block_counts_consumed = false;
read_block_stats(block_stats, block_counts_list, block_counts);
}
auto e = input_coll[l];
typedef lambdas_computer<InputCollectionType> job_type;
std::shared_ptr<job_type> job;
if (l == block_counts_list) {
freq_zero_blocks += std::accumulate(block_counts.begin(), block_counts.end(), size_t(0),
[](size_t accum, uint32_t freq) {
return accum + (freq == 0);
});
block_counts_consumed = true;
job.reset(new job_type(block_id_base, e, predictors, block_counts, plog, lambda_points));
} else {
freq_zero_lists += 1;
freq_zero_blocks += 2 * e.num_blocks();
std::vector<uint32_t> empty_counts;
job.reset(new job_type(block_id_base, e, predictors, empty_counts, plog, lambda_points));
}
block_id_base += 2 * e.num_blocks();
queue.add_job(job, 2 * e.size());
}
assert(block_id_base == num_blocks); (void)num_blocks;
stats_line()
("freq_zero_lists", freq_zero_lists)
("freq_zero_blocks", freq_zero_blocks)
;
queue.complete();
plog.log();
logger() << lambda_points.size() << " lambda points" << std::endl;
logger() << "Sorting lambda points" << std::endl;
double elapsed_secs = (get_time_usecs() - tick) / 1000000;
double user_elapsed_secs = (get_user_time_usecs() - user_tick) / 1000000;
stats_line()
("worker_threads", configuration::get().worker_threads)
("lambda_computation_time", elapsed_secs)
("lambda_computation_user_time", user_elapsed_secs)
("is_heuristic", configuration::get().heuristic_greedy)
;
tick = get_time_usecs();
user_tick = get_user_time_usecs();
static const size_t sort_memory = size_t(16) * 1024 * 1024 * 1024; // XXX
stxxl::sort(lambda_points.begin(), lambda_points.end(),
lambda_point::comparator(),
sort_memory);
elapsed_secs = (get_time_usecs() - tick) / 1000000;
user_elapsed_secs = (get_user_time_usecs() - user_tick) / 1000000;
stats_line()
("worker_threads", configuration::get().worker_threads)
("lambda_sorting_time", elapsed_secs)
("lambda_sorting_user_time", user_elapsed_secs)
("is_heuristic", configuration::get().heuristic_greedy)
;
}
template <typename InputCollectionType, typename CollectionBuilder>
struct list_transformer : ds2i::semiasync_queue::job {
list_transformer(CollectionBuilder& b,
typename InputCollectionType::document_enumerator e,
std::vector<ds2i::mixed_block::block_type>::const_iterator block_type_begin,
std::vector<ds2i::mixed_block::compr_param_type>::const_iterator block_param_begin,
ds2i::progress_logger& plog)
: m_b(b)
, m_e(e)
, m_block_type(block_type_begin)
, m_block_param(block_param_begin)
, m_plog(plog)
{}
virtual void prepare()
{
using namespace ds2i;
typedef typename InputCollectionType::document_enumerator::block_data input_block_type;
typedef mixed_block::block_transformer<input_block_type> output_block_type;
auto blocks = m_e.get_blocks();
std::vector<output_block_type> output_blocks;
for (auto const& input_block: blocks) {
auto docs_type = *m_block_type++;
auto freqs_type = *m_block_type++;
auto docs_param = *m_block_param++;
auto freqs_param = *m_block_param++;
output_blocks.emplace_back(input_block,
docs_type, freqs_type,
docs_param, freqs_param);
}
block_posting_list<mixed_block>::write_blocks(m_buf, m_e.size(), output_blocks);
}
virtual void commit()
{
m_b.add_posting_list(m_buf);
m_plog.done_sequence(m_e.size());
}
CollectionBuilder& m_b;
typename InputCollectionType::document_enumerator m_e;
std::vector<ds2i::mixed_block::block_type>::const_iterator m_block_type;
std::vector<ds2i::mixed_block::compr_param_type>::const_iterator m_block_param;
ds2i::progress_logger& m_plog;
std::vector<uint8_t> m_buf;
};
template <typename InputCollectionType>
void optimal_hybrid_index(ds2i::global_parameters const& params,
const char* predictors_filename,
const char* block_stats_filename,
const char* input_filename,
const char* output_filename,
const char* lambdas_filename,
size_t budget)
{
using namespace ds2i;
InputCollectionType input_coll;
boost::iostreams::mapped_file_source m(input_filename);
succinct::mapper::map(input_coll, m);
logger() << "Processing " << input_coll.size() << " posting lists" << std::endl;
size_t num_blocks = 0;
size_t partial_blocks = 0;
size_t space_base = 8; // space overhead independent of block compression method
for (size_t l = 0; l < input_coll.size(); ++l) {
auto e = input_coll[l];
num_blocks += 2 * e.num_blocks();
// list length in vbyte
space_base += succinct::util::ceil_div(succinct::broadword::msb(e.size()) + 1, 7);
space_base += e.num_blocks() * 4; // max docid
space_base += (e.num_blocks() - 1) * 4; // endpoint
if (e.size() % mixed_block::block_size != 0) {
partial_blocks += 2;
}
}
logger() << num_blocks << " overall blocks" << std::endl;
if (boost::filesystem::exists(lambdas_filename)) {
logger() << "Found lambdas file " << lambdas_filename << ", skipping recomputation" << std::endl;
logger() << "To recompute lambdas, remove file" << std::endl;
} else {
compute_lambdas(input_coll, num_blocks, predictors_filename,
block_stats_filename, lambdas_filename);
}
stxxl::syscall_file lpfile(lambdas_filename,
stxxl::file::DIRECT | stxxl::file::RDONLY);
lambda_vector_type lambda_points(&lpfile);
double tick = get_time_usecs();
double user_tick = get_user_time_usecs();
logger() << "Computing space-time tradeoffs" << std::endl;
std::vector<uint16_t> block_spaces(num_blocks);
std::vector<float> block_times(num_blocks);
std::vector<mixed_block::block_type> block_types(num_blocks);
std::vector<mixed_block::compr_param_type> block_params(num_blocks);
size_t cur_space = space_base;
double cur_time = 0;
size_t seen_lambdas = 0;
float first_nonzero_lambda = true;
std::ofstream lambdas_log;
if (budget == 0) {
lambdas_log.open(output_filename, std::ios::out);
}
for (auto const& lpid: lambda_vector_type::bufreader_type(lambda_points)) {
assert(lpid.block_id < num_blocks);
cur_space -= block_spaces[lpid.block_id];
cur_time -= block_times[lpid.block_id];
block_spaces[lpid.block_id] = lpid.st.space;
block_times[lpid.block_id] = lpid.st.time;
block_types[lpid.block_id] = lpid.st.type;
block_params[lpid.block_id] = lpid.st.param;
cur_space += block_spaces[lpid.block_id];
cur_time += block_times[lpid.block_id];
if (lpid.lambda > 0) { // we are past the initial frontier
if (first_nonzero_lambda) {
logger() << "Minimum feasible space: " << cur_space << std::endl;
first_nonzero_lambda = false;
}
if (budget == 0) {
// just print out a sample of the trade-offs
if (seen_lambdas % (num_blocks / 2000) == 0) {
lambdas_log << lpid.lambda << '\t' << cur_space << '\t' << cur_time << '\n';
}
seen_lambdas += 1;
} else if (cur_space > budget) { // XXX replace with >=
break;
}
}
}
succinct::util::dispose(block_spaces);
succinct::util::dispose(block_times);
if (budget == 0) {
logger() << "Done" << std::endl;
return; // done, just reporting the trade-offs
}
double elapsed_secs = (get_time_usecs() - tick) / 1000000;
double user_elapsed_secs = (get_user_time_usecs() - user_tick) / 1000000;
stats_line()
("worker_threads", configuration::get().worker_threads)
("greedy_time", elapsed_secs)
("greedy_user_time", user_elapsed_secs)
;
logger() << "Found trade-off. Space: " << cur_space
<< " Time: " << cur_time << std::endl;
stats_line()
("found_space", cur_space)
("found_time", cur_time)
;
typedef std::tuple<uint32_t, uint32_t> type_param_pair;
std::map<type_param_pair, size_t> type_counts;
for (size_t i = 0; i < num_blocks; ++i) {
type_counts[type_param_pair((uint8_t)block_types[i], block_params[i])] += 1;
}
std::vector<std::pair<type_param_pair, size_t>> type_counts_vec;
for (uint8_t t = 0; t < mixed_block::block_types; ++t) {
for (uint8_t param = 0; param < mixed_block::compr_params((mixed_block::block_type)t); ++param) {
auto tp = type_param_pair(t, param);
type_counts_vec.push_back(std::make_pair(tp, type_counts[tp]));
}
}
stats_line()
("blocks", num_blocks)
("partial_blocks", partial_blocks)
("type_counts", type_counts_vec)
;
tick = get_time_usecs();
user_tick = get_user_time_usecs();
typedef typename block_mixed_index::builder builder_type;
builder_type builder(input_coll.num_docs(), params);
progress_logger plog;
semiasync_queue queue(1 << 24);
auto block_types_it = block_types.begin();
auto block_params_it = block_params.begin();
for (size_t l = 0; l < input_coll.size(); ++l) {
auto e = input_coll[l];
typedef list_transformer<InputCollectionType, builder_type> job_type;
std::shared_ptr<job_type> job(new job_type(builder, e,
block_types_it,
block_params_it,
plog));
block_types_it += 2 * e.num_blocks();
block_params_it += 2 * e.num_blocks();
queue.add_job(job, 2 * e.size());
}
assert(block_types_it == block_types.end());
assert(block_params_it == block_params.end());
queue.complete();
plog.log();
block_mixed_index coll;
builder.build(coll);
elapsed_secs = (get_time_usecs() - tick) / 1000000;
user_elapsed_secs = (get_user_time_usecs() - user_tick) / 1000000;
logger() << "Collection built in "
<< elapsed_secs << " seconds" << std::endl;
stats_line()
("worker_threads", configuration::get().worker_threads)
("construction_time", elapsed_secs)
("construction_user_time", user_elapsed_secs)
;
dump_stats(coll, "block_mixed", plog.postings);
if (output_filename) {
succinct::mapper::freeze(coll, output_filename);
}
}
int main(int argc, const char** argv) {
using namespace ds2i;
if (argc < 5) {
std::cerr << "Usage: " << argv[0]
<< " <index type> <predictors> <block_stats> <input_index> <lambdas_filename> <budget> [output_index] [--check <collection_basename>]"
<< std::endl;
return 1;
}
std::string type = argv[1];
const char* predictors_filename = argv[2];
const char* block_stats_filename = argv[3];
const char* input_filename = argv[4];
const char* lambdas_filename = argv[5];
size_t budget = boost::lexical_cast<size_t>(argv[6]);
const char* output_filename = nullptr;
if (argc > 7) {
output_filename = argv[7];
}
bool check = false;
const char* collection_basename = nullptr;
if (argc > 9 && std::string(argv[8]) == "--check") {
check = true;
collection_basename = argv[9];
}
ds2i::global_parameters params;
if (false) {
#define LOOP_BODY(R, DATA, T) \
} else if (type == BOOST_PP_STRINGIZE(T)) { \
optimal_hybrid_index<BOOST_PP_CAT(T, _index)> \
(params, predictors_filename, block_stats_filename, \
input_filename, output_filename, lambdas_filename, budget); \
if (check) { \
binary_freq_collection input(collection_basename); \
verify_collection<binary_freq_collection, block_mixed_index> \
(input, output_filename); \
} \
/**/
BOOST_PP_SEQ_FOR_EACH(LOOP_BODY, _, DS2I_BLOCK_INDEX_TYPES);
#undef LOOP_BODY
} else {
logger() << "ERROR: Unknown type " << type << std::endl;
}
return 0;
}