|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "58525ac6", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "### Machine Learning (Background): Inner products\n", |
| 9 | + "$\\mathbf{u}\\cdot\\mathbf{v}=\\sum_{i=1}^n u_i v_i \\,\\rightarrow \\lVert \\mathbf{u} \\rVert_{canonical}=\\sqrt{\\mathbf{u}\\cdot\\mathbf{u}}$ <br>\n", |
| 10 | + "$<A,B>_F=tr(A^HB) \\, \\rightarrow\\lVert A \\rVert_F=\\sqrt{<A,A>_F}$\n", |
| 11 | + "###### by Hamed Shah-Hosseini\n", |
| 12 | + "Explanation at: https://www.pinterest.com/HamedShahHosseini/Machine-Learning/Background-Knowledge\n", |
| 13 | + "<br>Explanation in Persian: https://www.instagram.com/words.persian\n", |
| 14 | + "<br>Code that: https://github.com/ostad-ai/Machine-Learning" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 98, |
| 20 | + "id": "ddd68127", |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "# importing the required module\n", |
| 25 | + "# درونبَری سنجانه نیازداشته\n", |
| 26 | + "import numpy as np" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "code", |
| 31 | + "execution_count": 99, |
| 32 | + "id": "b12e168b", |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [ |
| 35 | + { |
| 36 | + "name": "stdout", |
| 37 | + "output_type": "stream", |
| 38 | + "text": [ |
| 39 | + "vector 1: [2 1 1 3]\n", |
| 40 | + "vector 2: [1 2 4 3]\n", |
| 41 | + "dot product: 17\n", |
| 42 | + "1-norm of vector 1: 7.0\n", |
| 43 | + "1-norm of vector 2 10.0\n", |
| 44 | + "2-norm of vector 1: 3.872983346207417\n", |
| 45 | + "2-norm of vector 2 5.477225575051661\n", |
| 46 | + "canonical norm of vector 1: 3.872983346207417\n", |
| 47 | + "canonical norm of vector 2 5.477225575051661\n" |
| 48 | + ] |
| 49 | + } |
| 50 | + ], |
| 51 | + "source": [ |
| 52 | + "# dot product and p-norms, example\n", |
| 53 | + "# فرآورد خجک و پ-هنجارها: نمونه\n", |
| 54 | + "vec1=np.random.randint(1,5,4)\n", |
| 55 | + "vec2=np.random.randint(1,5,4)\n", |
| 56 | + "print('vector 1:',vec1)\n", |
| 57 | + "print('vector 2:',vec2)\n", |
| 58 | + "print('dot product: ',np.dot(vec1,vec2))\n", |
| 59 | + "print('1-norm of vector 1:',np.linalg.norm(vec1,ord=1))\n", |
| 60 | + "print('1-norm of vector 2',np.linalg.norm(vec2,ord=1))\n", |
| 61 | + "print('2-norm of vector 1:',np.linalg.norm(vec1,ord=2))\n", |
| 62 | + "print('2-norm of vector 2',np.linalg.norm(vec2,ord=2))\n", |
| 63 | + "print('canonical norm of vector 1:',np.sqrt(np.dot(vec1,vec1)))\n", |
| 64 | + "print('canonical norm of vector 2',np.sqrt(np.dot(vec2,vec2)))" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": 102, |
| 70 | + "id": "1a0b718b", |
| 71 | + "metadata": {}, |
| 72 | + "outputs": [ |
| 73 | + { |
| 74 | + "name": "stdout", |
| 75 | + "output_type": "stream", |
| 76 | + "text": [ |
| 77 | + "The matrix:\n", |
| 78 | + " [[3 2 2]\n", |
| 79 | + " [3 1 4]\n", |
| 80 | + " [1 3 2]]\n", |
| 81 | + "---------------------\n", |
| 82 | + "Eigenvalues of matrix: [ 6.92434399 1.21506597 -2.13940996]\n", |
| 83 | + "Trace of matrix: 6\n", |
| 84 | + "sum of eigenvalues: 5.999999999999998\n", |
| 85 | + "-------------\n", |
| 86 | + "Determinant of matrix: -18.000000000000004\n", |
| 87 | + "Product of eigenvalues: -18.0\n", |
| 88 | + "------------------\n", |
| 89 | + "Frobenius norm of matrix: 7.54983443527075\n", |
| 90 | + "Norm using Frobenius inner product: 7.54983443527075\n" |
| 91 | + ] |
| 92 | + } |
| 93 | + ], |
| 94 | + "source": [ |
| 95 | + "# Example for trace, determinant, and norm of a matrix\n", |
| 96 | + "# نمونه برای رآس، بَریهنده، و هنجار یک ماتکدان\n", |
| 97 | + "M=np.random.randint(1,5,(3,3))\n", |
| 98 | + "eigs=np.linalg.eigvals(M)\n", |
| 99 | + "detM=np.linalg.det(M)\n", |
| 100 | + "print('The matrix:\\n',M)\n", |
| 101 | + "print('---------------------')\n", |
| 102 | + "print('Eigenvalues of matrix:',eigs)\n", |
| 103 | + "print('Trace of matrix:',np.trace(M))\n", |
| 104 | + "print('sum of eigenvalues:',np.sum(eigs))\n", |
| 105 | + "print('-------------')\n", |
| 106 | + "print('Determinant of matrix: ',detM)\n", |
| 107 | + "print('Product of eigenvalues: ',np.prod(eigs))\n", |
| 108 | + "print('------------------')\n", |
| 109 | + "print('Frobenius norm of matrix:',np.linalg.norm(M,ord='fro'))\n", |
| 110 | + "print('Norm using Frobenius inner product:',np.sqrt(np.trace(M.T@M)))" |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "code", |
| 115 | + "execution_count": null, |
| 116 | + "id": "0df1d5e9", |
| 117 | + "metadata": {}, |
| 118 | + "outputs": [], |
| 119 | + "source": [] |
| 120 | + } |
| 121 | + ], |
| 122 | + "metadata": { |
| 123 | + "kernelspec": { |
| 124 | + "display_name": "Python 3", |
| 125 | + "language": "python", |
| 126 | + "name": "python3" |
| 127 | + }, |
| 128 | + "language_info": { |
| 129 | + "codemirror_mode": { |
| 130 | + "name": "ipython", |
| 131 | + "version": 3 |
| 132 | + }, |
| 133 | + "file_extension": ".py", |
| 134 | + "mimetype": "text/x-python", |
| 135 | + "name": "python", |
| 136 | + "nbconvert_exporter": "python", |
| 137 | + "pygments_lexer": "ipython3", |
| 138 | + "version": "3.8.15" |
| 139 | + } |
| 140 | + }, |
| 141 | + "nbformat": 4, |
| 142 | + "nbformat_minor": 5 |
| 143 | +} |
0 commit comments