33## DBsection(Taylor series)
44## Level(3)
55## MO(1)
6+ ## Static(1)
67## This problem is a good template for questions with Taylor Polynomials
78
89DOCUMENT();
@@ -24,7 +25,7 @@ Context("Numeric");
2425#Number of decimals to use in the approximation
2526$dec = 3;
2627
27- $smallDec = 10**{ -$dec} ;
28+ $smallDec = 10**( -$dec)/2 ;
2829Context()->flags->set(
2930 tolerance=>$smallDec,
3031 tolType=>"absolute"
@@ -43,23 +44,23 @@ $x = 10;
4344$f[0] = Formula("(1+x)^(1/2)");
4445
4546# The zero degree approximation
46- $tn[0] = $f[0]->eval(x=>"$a");
47+ $tn[0] = Real( $f[0]->eval(x=>"$a") );
4748
4849# code to compute the nth degree approximation
4950$nfact = 1;
5051for my $i (1..$n)
5152{
52- $f[$i] = $f[$i-1]->D;
53- $fa = $f[$i]->eval(x=>"$a" );
54- $tn[$i] = $tn[$i-1]+$fa*($x-$a)**($i)/$nfact;
53+ $f[$i] = $f[$i-1]->D('x') ;
54+ $fa = $f[$i]->eval(x=>$a );
55+ $tn[$i] = Formula( $tn[$i-1]+$fa*($x-$a)**($i)/$nfact) ;
5556$nfact = $nfact*($i+1);
5657}
5758
58- #decreasing the number of decimal places
59- for my $i (1..$n)
60- {
61- $sTn[$i] = sprintf("%0.4f",$tn[$i]);
62- }
59+ ## decreasing the number of decimal places
60+ # for my $i (1..$n)
61+ # {
62+ # $sTn[$i] = sprintf("%0.4f",$tn[$i]);
63+ # }
6364
6465Context()->texStrings;
6566BEGIN_TEXT
@@ -81,36 +82,44 @@ Context()->normalStrings;
8182
8283Context()->texStrings;
8384BEGIN_TEXT
84- $BR $BBOLD Use $dec decimal places in your answer $EBOLD
85+ $BR $BBOLD Your answer must be accurate to at least $dec decimal places. $EBOLD
8586
8687$PAR
8788END_TEXT
8889Context()->normalStrings;
8990
90- for $i (1..$n)
91- {
92- ANS(Compute("$sTn[$i]")->cmp() );
93- }
91+ #for $i (1..$n)
92+ #{
93+ #ANS(Compute("$sTn[$i]")->cmp() );
94+ #}
95+
96+ #for $i (1..$n) {
97+ #ANS(Compute($tn[$i]->eval(x=>$x))->cmp());
98+ #}
9499
100+ ANS(Compute($tn[1])->cmp());
101+ ANS(Compute($tn[2])->cmp());
102+ ANS(Compute($tn[3])->cmp());
95103
96104
97105# You will have to change most of the solution to fit the question
98106Context()->texStrings;
99107BEGIN_SOLUTION
100108$PAR SOLUTION $PAR
101- In general the \(n^{th}\) degree approximation of \(f($ x)\) about \(x=$a\) is given by:
102- $BR \(T_n = f($a) + f'($a)($x- a) + \ldots + \frac{f^n($x)}{n! }($x-$a)^n\)
109+ In general the \(n^{th}\) degree approximation of \(f(x)\) about \(x=$a\) is given by:
110+ $BR \(T_n = f($a) + f'($a)(x-$ a) + \ldots + \frac{1}{n!}{f^{(n)}($a) }($x-$a)^n\)
103111
104112$PAR
105- \(f'(x) = \frac{1}{x\sqrt{1+x}}\),
106- $BR \(f''(x) = -\frac{1}{4(1+x)^{\frac{3}{2}}}\),
107- $BR \(f'''(x) = \frac{3}{8(1+x)^{\frac{5}{2}}}\).
113+ Here,
114+ \(f'(x) = \frac{1}{2}(x+1)^{-1/2}\),
115+ $BR \(f''(x) = -\frac{1}{4}(x+1)^{-3/2}\),
116+ $BR \(f'''(x) = \frac{3}{8}(x+1)^{-5/2}\).
108117
109118$PAR
110119Therefore,
111- $BR \(T_1 = $sTn [1]\),
112- $PAR \(T_2 = $sTn [2]\),
113- $PAR \(T_3 = $sTn [3]\).
120+ $BR \(T_1($x) \approx $tn [1]\),
121+ $PAR \(T_2($x) \approx $tn [2]\),
122+ $PAR \(T_3($x) \approx $tn [3]\).
114123
115124END_SOLUTION
116125Context()->normalStrings;
0 commit comments