-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreport.py
250 lines (198 loc) · 7.64 KB
/
report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from datetime import UTC, datetime
from os.path import join
from typing import Any
import matplotlib.pyplot as plt
import pandas as pd
REPORT_DIR = 'report_data'
DATE_FORMAT = '%Y-%m-%d'
DATETIME_FORMAT = f'{DATE_FORMAT} %H:%M:%S'
DPI = 300
plt.rcParams['figure.figsize'] = (16, 8)
pd.set_option('display.max_columns', None)
current_datetime = datetime.now(UTC)
current_datetime_str = current_datetime.strftime(DATETIME_FORMAT)
current_date = current_datetime.date()
current_date_str = current_date.strftime(DATE_FORMAT)
def overpass_to_dataframe(overpass: dict) -> pd.DataFrame:
data = []
for elem in overpass['elements']:
if 'tags' not in elem: # skip additional nodes/ways
continue
tags = elem['tags']
del elem['tags']
elem.update(tags)
data.append(elem)
return pd.json_normalize(data)
def total_aed_plot(df_date: pd.DataFrame) -> dict[str, Any]:
plt.clf()
plt.plot(df_date['date'], df_date['sum'])
plt.title(
'Number of AEDs in the OpenStreetMap database in Poland'
' from first edition, day by day.'
f' As at: {current_date_str}',
fontsize=14,
loc='left',
)
filename = join(REPORT_DIR, 'total_aed.svg')
plt.savefig(filename, dpi=DPI)
total_aed = df_date.iloc[-1]['sum']
return {
'heading': 'Total AED plot',
'heading_level': 2,
'content': f'![]({filename})\nTotal AED: {total_aed}',
}
def current_year_aed_scatter_plot(df_date: pd.DataFrame, year: int) -> dict[str, Any]:
df_year = df_date.loc[df_date['year'] == year]
plt.clf()
plt.plot(df_year['date'], df_year['sum'])
plt.scatter(df_year['date'], df_year['sum'], s=df_year['changes'] * 10, alpha=0.3)
first_day_of_year = datetime(year, 1, 1).date()
first_day_of_year_str = first_day_of_year.strftime(DATE_FORMAT)
plt.title(
'Number of AEDs in the OpenStreetMap database in Poland'
f' from {first_day_of_year_str}, day by day.'
f' As at: {current_date_str}',
fontsize=14,
loc='left',
)
filename = join(REPORT_DIR, 'current_year_aed.svg')
plt.savefig(filename, dpi=DPI)
df_first_day_of_year = df_year.loc[df_year['date'] == first_day_of_year]
first_day_of_year_aed_total = df_first_day_of_year.iloc[0]['sum']
avg_year = df_year['changes'].mean()
return {
'heading': 'Current year AED plot',
'heading_level': 2,
'content': '\\\n'.join(
[
f'![]({filename})',
f'AED for {first_day_of_year_str}: {first_day_of_year_aed_total}',
f'Average daily growth since beginning of the year: {avg_year:.2f}',
]
),
}
def _get_creators_from_cache(cache: dict[str, Any], tag: tuple[str, str]) -> pd.DataFrame:
initial_objects = []
for obj_id, obj_versions in cache['objects'].items():
for obj in obj_versions:
if 'tags' not in obj:
continue
if tag[0] in obj['tags'] and obj['tags'][tag[0]] == tag[1]:
initial_objects.append(obj)
break
return pd.DataFrame(initial_objects)
def top_creators(df: pd.DataFrame, top: int = 25) -> dict[str, Any]:
OSM_USER_URL = 'https://www.openstreetmap.org/user/'
df_users = df['user'].value_counts(sort=True).reset_index()
columns = ['User', 'Created']
df_users.columns = columns
df_users['user_link'] = OSM_USER_URL + df_users['User'].astype(str)
df_users = df_users.sort_values(
by=['Created', 'User'],
ascending=[False, True],
key=lambda x: x.str.lower() if x.dtype == object else x,
).reset_index()
md_content_table = [
f'| # | {columns[0]} | {columns[1]} |',
'| ------------- | ------------- | ------------- |',
]
for index, row in df_users.head(top).iterrows():
user = row[columns[0]].replace('|', '|') # escape pipe character
changesets = row[columns[1]]
url = row['user_link'].replace('|', '|')
md_content_table.append(f'| {index + 1} | [{user}](<{url}>) | {changesets} |')
return {
'heading': 'Top creators',
'heading_level': 2,
'content': '\n'.join(md_content_table),
}
def tag_access_pie(df: pd.DataFrame) -> dict[str, Any]:
access_info = {
'Atr': ['Access', 'No Data'],
'Count': [len(df.index) - df['access'].isna().sum(), df['access'].isna().sum()],
}
df2 = pd.DataFrame(access_info)
plt.clf()
plt.pie(df2['Count'], labels=df2['Atr'], autopct='%1.2f%%')
plt.title(
f'Defibrillators with no access method specified ({current_date})',
fontsize=14,
loc='left',
)
filename = join(REPORT_DIR, 'tag_access.svg')
plt.savefig(filename, dpi=DPI)
return {
'heading': 'Tag access pie',
'heading_level': 2,
'content': f'![]({filename})',
}
def tag_access_details_pie(df: pd.DataFrame) -> dict[str, Any]:
df_access = df['access'].value_counts(sort=True).reset_index()
df_access.columns = ['Access', 'Value']
df_access['Access2'] = df_access['Access'] + '–' + df_access['Value'].astype(str) + ' pc.'
plt.clf()
plt.pie(df_access['Value'], startangle=90)
plt.title(f'Type of access ({current_date})', fontsize=14, loc='left')
plt.legend(title='OSM access metods:', labels=df_access['Access2'])
filename = join(REPORT_DIR, 'tag_access_details.svg')
plt.savefig(filename, dpi=DPI)
return {
'heading': 'Tag access details pie',
'heading_level': 2,
'content': f'![]({filename})',
}
def tag_location_pie(df: pd.DataFrame) -> dict[str, Any]:
loc_info = {
'Atr': ['Location', 'No Data'],
'Count': [
len(df.index) - df['defibrillator:location'].isna().sum(),
df['defibrillator:location'].isna().sum(),
],
}
df3 = pd.DataFrame(loc_info)
plt.clf()
plt.pie(df3['Count'], labels=df3['Atr'], autopct='%1.2f%%')
plt.title(
'Defibrillators without the location description entered ' f'({current_date})',
fontsize=14,
loc='left',
)
filename = join(REPORT_DIR, 'tag_location.svg')
plt.savefig(filename, dpi=DPI)
return {
'heading': 'Tag location pie',
'heading_level': 2,
'content': f'![]({filename})',
}
def simple_md_converter(data: list[dict[str, Any]]) -> str:
content = []
for element in data:
if not isinstance(element, dict):
continue
content.append('{} {}\n{}\n'.format('#' * element['heading_level'], element['heading'], element['content']))
return '\n'.join(content)
def create_report_md(overpass: dict, cache: dict[str, Any]) -> str:
df = overpass_to_dataframe(overpass)
# Initial data processing
df.drop(['type'], axis='columns', inplace=True)
df['year'] = pd.DatetimeIndex(df['timestamp']).year
df['date'] = pd.DatetimeIndex(df['timestamp']).date
df_date = df[['id', 'date']].groupby('date', as_index=False).count().rename(columns={'id': 'changes'})
df_date['sum'] = df_date['changes'].cumsum()
df_date['year'] = pd.DatetimeIndex(df_date['date']).year
md = simple_md_converter(
[
{
'heading': f'AED backup and stats ({current_datetime_str})',
'heading_level': 1,
'content': '',
},
total_aed_plot(df_date),
current_year_aed_scatter_plot(df_date, current_date.year),
top_creators(_get_creators_from_cache(cache, ('emergency', 'defibrillator'))),
tag_access_pie(df),
tag_access_details_pie(df),
tag_location_pie(df),
]
)
return md