Skip to content

[Question] Gym and stable baselines compatible issue #3285

Open
@AbhayGoyal

Description

@AbhayGoyal

I am using gym 0.21.0 and stable baslines master 2.4.0a8.

The error i am facing is

Traceback (most recent call last):
  File "/home/aghnw/.conda/envs/RL-agent/mine-env-main/trainer_sac.py", line 11, in <module>
    model = SAC(MlpPolicy, env, verbose=1)
  File "/home/aghnw/.conda/envs/RL-agent/lib/python3.9/site-packages/stable_baselines3/sac/sac.py", line 120, in __init__
    super().__init__(
  File "/home/aghnw/.conda/envs/RL-agent/lib/python3.9/site-packages/stable_baselines3/common/off_policy_algorithm.py", line 110, in __init__
    super().__init__(
  File "/home/aghnw/.conda/envs/RL-agent/lib/python3.9/site-packages/stable_baselines3/common/base_class.py", line 169, in __init__
    env = self._wrap_env(env, self.verbose, monitor_wrapper)
  File "/home/aghnw/.conda/envs/RL-agent/lib/python3.9/site-packages/stable_baselines3/common/base_class.py", line 216, in _wrap_env
    env = _patch_env(env)
  File "/home/aghnw/.conda/envs/RL-agent/lib/python3.9/site-packages/stable_baselines3/common/vec_env/patch_gym.py", line 60, in _patch_env
    return shimmy.GymV21CompatibilityV0(env=env)
  File "/home/aghnw/.conda/envs/RL-agent/lib/python3.9/site-packages/shimmy/openai_gym_compatibility.py", line 204, in __init__
    self.observation_space = _convert_space(gym_env.observation_space)
  File "/home/aghnw/.conda/envs/RL-agent/lib/python3.9/site-packages/shimmy/openai_gym_compatibility.py", line 323, in _convert_space
    elif isinstance(space, gym.spaces.Sequence):
AttributeError: module 'gym.spaces' has no attribute 'Sequence'

My code is

import gym
import numpy as np
from mine import MineEnv

from stable_baselines3.sac.policies import MlpPolicy
from stable_baselines3 import SAC

# env = gym.make('Pendulum-v0')
env = MineEnv() 

model = SAC(MlpPolicy, env, verbose=1)
model.learn(total_timesteps=50000, log_interval=10)
model.save("sac_pendulum")

del model # remove to demonstrate saving and loading

# model = SAC.load("sac_pendulum")

obs = env.reset()
while True:
    action, _states = model.predict(obs)
    obs, rewards, dones, info = env.step(action)
    env.render()

where MineEnv() is my custom Environment based on gym Env

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions