-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathjagsNEC_input.R
194 lines (171 loc) · 6.25 KB
/
jagsNEC_input.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright 2020 Australian Institute of Marine Science
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' jagsNEC_input
#'
#' Checks the model inputs for a jagsNEC model fit
#'
#' @inheritParams fit.jagsNEC
#'
#' @details
#'
#' This is a wrapper function to test input data criteria and write the jags model file for use in a jagsNEC model fit
#'
#' @export
#' @return Modified elements of the jagsNEC input data.
jagsNEC_input <- function(data,
x.var,
y.var,
trials.var,
x.type,
y.type,
params,
over.disp,
model) {
if (is.na(y.type) == F) {
if (over.disp == TRUE & y.type == "beta") {
y.type <- NA
}
}
check_inputs(data = data, x.var = x.var, y.var = y.var, trials.var = trials.var)
# extract the data
y.dat <- data[, y.var]
x.dat <- data[, x.var]
# check the data are lower at high x compared to low x (ie the response variable declines within increase in the x)
if (mean(y.dat[which(x.dat < mean(x.dat))]) < mean(y.dat[which(x.dat > mean(x.dat))]) & model != "NECHormesis") {
stop("The mean value of the response for the lower half of the
concentration data are lower than that of the upper half of the concentration data.
jagsNEC only fits concentration response data where the
response declines with increasing values of concentration.")
}
# check variable type x.var
if (is.na(x.type) == TRUE) { # if the x.var is not specified, then guess
if (class(x.dat) == "integer") {
stop("jagsNEC does not currently support integer concentration data. Please provide
a numeric x.var")
}
if (class(x.dat) == "numeric" & max(x.dat) > 1 & min(x.dat) >= 0) {
x.type <- "gamma"
}
if (class(x.dat) == "numeric" & max(x.dat) <= 1 & min(x.dat) >= 0) {
x.type <- "beta"
}
if (class(x.dat) == "numeric" & min(x.dat) < 0) {
x.type <- "gaussian"
}
}
# check variable type y.var
if (is.na(y.type) == T) { # if the y.var is not specified, then guess
if (class(y.dat) == "numeric" & max(y.dat) > 1 & min(y.dat) >= 0) {
y.type <- "gamma"
}
if (class(y.dat) == "numeric" & max(y.dat) <= 1 & min(y.dat) >= 0) {
y.type <- "beta"
}
if (class(y.dat) == "numeric" & min(y.dat) < 0) {
y.type <- "gaussian"
}
if (class(y.dat) == "integer" & min(y.dat) >= 0 & is.na(trials.var) == TRUE) {
y.type <- "poisson"
}
if (is.na(trials.var) != TRUE & class(y.dat) != "integer") {
stop("You have supplied a trials.var argument, suggesting you wish to model a binomial.
Please ensure y.var is an integer representing the number of successes.")
}
if (class(y.dat) == "integer" & min(y.dat) >= 0 & is.na(trials.var) != TRUE) {
y.type <- "binomial"
}
}
# check there is a valid model type
if (is.na(match(model, c(
"NEC3param", "NECsigmoidal", "NEC4param", "NECHormesis",
"ECx4param", "ECxWeibull1", "ECxWeibull2", "ECxLinear", "ECxExp", "ECxsigmoidal"
)))) {
stop("The model type you have specified does not extist.")
}
if (y.type == "poisson" & over.disp == TRUE) {
y.type <- "negbin"
}
if (y.type == "binomial" & over.disp == TRUE) {
y.type <- "beta"
data[, y.var] <- data[, y.var] / data[, trials.var]
}
if (y.type == "gamma") {
params <- c(params, "shape")
}
if (y.type == "gaussian") {
params <- c(params, "alpha", "sigma")
}
if (y.type == "negbin") {
params <- c(params, "size")
}
# error catching for 0 for gamma by adding very small value (no tweedie available in jags)
if (min(data[, x.var]) == 0 & x.type == "gamma") {
tt <- data[, x.var]
min.val <- min(tt[which(tt > 0)])
data[which(tt == 0), x.var] <- tt[which(tt == 0)] + (min.val / 100)
}
if (min(data[, y.var]) == 0 & y.type == "gamma") {
tt <- data[, y.var]
min.val <- min(tt[which(tt > 0)])
data[which(tt == 0), y.var] <- tt[which(tt == 0)] + (min.val / 100)
}
# error catching for 0 for beta by adding very small value (beta does not take zero)
if (min(data[, x.var]) == 0 & x.type == "beta") {
tt <- data[, x.var]
min.val <- min(tt[which(tt > 0)])
data[which(tt == 0), x.var] <- tt[which(tt == 0)] + (min.val / 100)
}
if (min(data[, y.var]) == 0 & y.type == "beta") {
tt <- data[, y.var]
min.val <- min(tt[which(tt > 0)])
data[which(tt == 0), y.var] <- tt[which(tt == 0)] + (min.val / 100)
}
# error catching for 1 for beta by subtracting very small value (beta does not take 1)
if (max(data[, x.var]) == 1 & x.type == "beta") {
tt <- data[, x.var]
data[which(tt == 1), x.var] <- tt[which(tt == 1)] - 0.001
}
if (max(data[, y.var]) == 1 & y.type == "beta") {
tt <- data[, y.var]
data[which(tt == 1), y.var] <- tt[which(tt == 1)] - 0.001
}
# create jags model data list
mod.dat <<- list(
x = data[, x.var], # concentration
y = data[, y.var], # response (successes)
N = nrow(data)
) # Sample size
response <- data[, y.var]
if (y.type == "binomial") {
mod.dat$trials <- data[, trials.var] # number of "trials"
response <- data[, y.var] / data[, trials.var]
if (max(response) > 1) {
stop(paste("Your successes as indicated in ", y.var, " exceed the number of trials contained in ", trials.var, ".", sep = ""))
}
}
mod.file <- Write.jagsModFile(x.type, y.type, mod.dat, params, model)
init.fun <- mod.file$init.fun
params <- mod.file$params
return(list(
params = params,
response = response,
mod.dat = mod.dat,
data = data,
y.type = y.type,
x.type = x.type,
x.dat = x.dat,
y.dat = y.dat,
init.fun = init.fun
))
}