Skip to content

Commit e1ae14f

Browse files
committed
new post: YOLOv8-usage
1 parent f3281ea commit e1ae14f

File tree

1 file changed

+151
-0
lines changed

1 file changed

+151
-0
lines changed
Lines changed: 151 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,151 @@
1+
---
2+
title: YOLOv8预训练模型的使用
3+
pin: false
4+
---
5+
6+
环境配置什么的都不写了,简单记录一下[YOLOv8](https://yolov8.com)的用途。
7+
8+
## 目标检测 Object Detection
9+
10+
看看[这个](https://colab.research.google.com/drive/1XJmFLZ5Egsd-miQM9yGInNvS39JsEHEm?usp=share_link)代码文件吧。
11+
12+
检测多张图片的时候还是用命令行比较方便:
13+
14+
```bash
15+
yolo predict model=yolov8n.pt source="/images" conf=0.5 save=True project="/images"
16+
```
17+
18+
这里用的是最小的`yolov8n.pt`模型,初次运行会把模型下载到当前目录下。
19+
20+
不指定`project`时默认会保存检测结果到`./run/predict`文件夹。
21+
22+
对视频进行目标检测的话改一下上面命令的`source`参数就行。
23+
24+
实时目标检测可以参照下面的代码:
25+
26+
```python
27+
import cv2
28+
from ultralytics import YOLO
29+
30+
model = YOLO("yolov8n.pt")
31+
32+
# 打开摄像头
33+
# 0表示电脑内建摄像头,其他数字可表示外接摄像头
34+
cap = cv2.VideoCapture(0)
35+
36+
# 设置视频窗口
37+
while cap.isOpened():
38+
ret, frame = cap.read()
39+
40+
if not ret:
41+
print("无法读取视频流!")
42+
break
43+
44+
# 对视频帧进行目标检测
45+
results = model(frame)
46+
47+
# 提取检测结果并绘制边界框
48+
for result in results:
49+
frame = result.plot()
50+
51+
# 显示检测结果
52+
cv2.imshow("YOLOv8 实时目标检测", frame)
53+
54+
if cv2.waitKey(1) & 0xFF == ord('q'):
55+
break
56+
57+
# 释放摄像头和关闭所有OpenCV窗口
58+
cap.release()
59+
cv2.destroyAllWindows()
60+
61+
```
62+
63+
我用的是mac加iPhone,运行上面代码后使用的是iPhone的摄像头,举着手机到处拍就可以进行实时目标检测了。
64+
65+
66+
## 目标跟踪 Object Tracking
67+
68+
对视频文件做目标跟踪:`yolo task=detect mode=track model=yolov8n.pt source=video.mp4 conf=0.5 iou=0.5 show=True save=True`
69+
70+
## 图像分割 Instance Segmentation
71+
72+
yolo task=segment mode=predict model=yolov8n-seg.pt source=imgs
73+
74+
## 实时运动检测 Motion Detection
75+
76+
```python
77+
import cv2
78+
import torch
79+
from ultralytics import YOLO
80+
81+
# 加载 YOLOv8 预训练模型
82+
model = YOLO("yolov8n.pt") # 目标检测模型
83+
# model = YOLO("yolov8n-seg.pt") # 若要进行实例分割,可切换到分割模型
84+
85+
# 读取摄像头
86+
cap = cv2.VideoCapture(0) # 0 表示默认摄像头
87+
88+
prev_objects = {} # 记录上一帧的目标位置
89+
90+
while cap.isOpened():
91+
success, frame = cap.read()
92+
if not success:
93+
break # 若无法读取帧,则退出循环
94+
95+
# YOLOv8 目标检测
96+
results = model(frame)
97+
98+
current_objects = {} # 记录当前帧目标位置
99+
frame_with_boxes = frame.copy()
100+
101+
for result in results:
102+
boxes = result.boxes.xyxy # 获取边界框坐标
103+
classes = result.boxes.cls # 获取类别索引
104+
confidences = result.boxes.conf # 获取置信度
105+
106+
for box, cls, conf in zip(boxes, classes, confidences):
107+
x1, y1, x2, y2 = map(int, box)
108+
label = f"{model.names[int(cls)]} {conf:.2f}"
109+
110+
# 记录当前帧的目标位置
111+
current_objects[label] = (x1, y1, x2, y2)
112+
113+
# 绘制边界框
114+
color = (0, 255, 0) # 绿色
115+
cv2.rectangle(frame_with_boxes, (x1, y1), (x2, y2), color, 2)
116+
cv2.putText(frame_with_boxes, label, (x1, y1 - 10),
117+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
118+
119+
# 检测运动(比较前后帧的目标位置变化)
120+
if label in prev_objects:
121+
x1_prev, y1_prev, x2_prev, y2_prev = prev_objects[label]
122+
movement = abs(x1 - x1_prev) + abs(y1 - y1_prev) + abs(x2 - x2_prev) + abs(y2 - y2_prev)
123+
124+
# 如果位移超过阈值,则认为目标在运动
125+
if movement > 30:
126+
cv2.putText(frame_with_boxes, "Moving!", (x1, y1 - 30),
127+
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)
128+
129+
prev_objects = current_objects # 更新上一帧数据
130+
131+
cv2.imshow("YOLOv8 Live Motion Detection", frame_with_boxes)
132+
133+
# 按 'q' 键退出
134+
if cv2.waitKey(1) & 0xFF == ord("q"):
135+
break
136+
137+
cap.release()
138+
cv2.destroyAllWindows()
139+
```
140+
141+
## 其他
142+
143+
- 自定义目标检测 Custome Object Detection
144+
145+
- 类别识别于分类 Class Recognition & Classification
146+
147+
- 异常检测 Anomaly Detection
148+
149+
- 模型推理 Model Inference
150+
151+
上面这些都是大模型给列出的用途,不展开了。后面去试试自己训练模型。

0 commit comments

Comments
 (0)