|
| 1 | +--- |
| 2 | +title: YOLOv8预训练模型的使用 |
| 3 | +pin: false |
| 4 | +--- |
| 5 | + |
| 6 | +环境配置什么的都不写了,简单记录一下[YOLOv8](https://yolov8.com)的用途。 |
| 7 | + |
| 8 | +## 目标检测 Object Detection |
| 9 | + |
| 10 | +看看[这个](https://colab.research.google.com/drive/1XJmFLZ5Egsd-miQM9yGInNvS39JsEHEm?usp=share_link)代码文件吧。 |
| 11 | + |
| 12 | +检测多张图片的时候还是用命令行比较方便: |
| 13 | + |
| 14 | +```bash |
| 15 | +yolo predict model=yolov8n.pt source="/images" conf=0.5 save=True project="/images" |
| 16 | +``` |
| 17 | + |
| 18 | +这里用的是最小的`yolov8n.pt`模型,初次运行会把模型下载到当前目录下。 |
| 19 | + |
| 20 | +不指定`project`时默认会保存检测结果到`./run/predict`文件夹。 |
| 21 | + |
| 22 | +对视频进行目标检测的话改一下上面命令的`source`参数就行。 |
| 23 | + |
| 24 | +实时目标检测可以参照下面的代码: |
| 25 | + |
| 26 | +```python |
| 27 | +import cv2 |
| 28 | +from ultralytics import YOLO |
| 29 | + |
| 30 | +model = YOLO("yolov8n.pt") |
| 31 | + |
| 32 | +# 打开摄像头 |
| 33 | +# 0表示电脑内建摄像头,其他数字可表示外接摄像头 |
| 34 | +cap = cv2.VideoCapture(0) |
| 35 | + |
| 36 | +# 设置视频窗口 |
| 37 | +while cap.isOpened(): |
| 38 | + ret, frame = cap.read() |
| 39 | + |
| 40 | + if not ret: |
| 41 | + print("无法读取视频流!") |
| 42 | + break |
| 43 | + |
| 44 | + # 对视频帧进行目标检测 |
| 45 | + results = model(frame) |
| 46 | + |
| 47 | + # 提取检测结果并绘制边界框 |
| 48 | + for result in results: |
| 49 | + frame = result.plot() |
| 50 | + |
| 51 | + # 显示检测结果 |
| 52 | + cv2.imshow("YOLOv8 实时目标检测", frame) |
| 53 | + |
| 54 | + if cv2.waitKey(1) & 0xFF == ord('q'): |
| 55 | + break |
| 56 | + |
| 57 | +# 释放摄像头和关闭所有OpenCV窗口 |
| 58 | +cap.release() |
| 59 | +cv2.destroyAllWindows() |
| 60 | + |
| 61 | +``` |
| 62 | + |
| 63 | +我用的是mac加iPhone,运行上面代码后使用的是iPhone的摄像头,举着手机到处拍就可以进行实时目标检测了。 |
| 64 | + |
| 65 | + |
| 66 | +## 目标跟踪 Object Tracking |
| 67 | + |
| 68 | +对视频文件做目标跟踪:`yolo task=detect mode=track model=yolov8n.pt source=video.mp4 conf=0.5 iou=0.5 show=True save=True` |
| 69 | + |
| 70 | +## 图像分割 Instance Segmentation |
| 71 | + |
| 72 | +yolo task=segment mode=predict model=yolov8n-seg.pt source=imgs |
| 73 | + |
| 74 | +## 实时运动检测 Motion Detection |
| 75 | + |
| 76 | +```python |
| 77 | +import cv2 |
| 78 | +import torch |
| 79 | +from ultralytics import YOLO |
| 80 | + |
| 81 | +# 加载 YOLOv8 预训练模型 |
| 82 | +model = YOLO("yolov8n.pt") # 目标检测模型 |
| 83 | +# model = YOLO("yolov8n-seg.pt") # 若要进行实例分割,可切换到分割模型 |
| 84 | + |
| 85 | +# 读取摄像头 |
| 86 | +cap = cv2.VideoCapture(0) # 0 表示默认摄像头 |
| 87 | + |
| 88 | +prev_objects = {} # 记录上一帧的目标位置 |
| 89 | + |
| 90 | +while cap.isOpened(): |
| 91 | + success, frame = cap.read() |
| 92 | + if not success: |
| 93 | + break # 若无法读取帧,则退出循环 |
| 94 | + |
| 95 | + # YOLOv8 目标检测 |
| 96 | + results = model(frame) |
| 97 | + |
| 98 | + current_objects = {} # 记录当前帧目标位置 |
| 99 | + frame_with_boxes = frame.copy() |
| 100 | + |
| 101 | + for result in results: |
| 102 | + boxes = result.boxes.xyxy # 获取边界框坐标 |
| 103 | + classes = result.boxes.cls # 获取类别索引 |
| 104 | + confidences = result.boxes.conf # 获取置信度 |
| 105 | + |
| 106 | + for box, cls, conf in zip(boxes, classes, confidences): |
| 107 | + x1, y1, x2, y2 = map(int, box) |
| 108 | + label = f"{model.names[int(cls)]} {conf:.2f}" |
| 109 | + |
| 110 | + # 记录当前帧的目标位置 |
| 111 | + current_objects[label] = (x1, y1, x2, y2) |
| 112 | + |
| 113 | + # 绘制边界框 |
| 114 | + color = (0, 255, 0) # 绿色 |
| 115 | + cv2.rectangle(frame_with_boxes, (x1, y1), (x2, y2), color, 2) |
| 116 | + cv2.putText(frame_with_boxes, label, (x1, y1 - 10), |
| 117 | + cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) |
| 118 | + |
| 119 | + # 检测运动(比较前后帧的目标位置变化) |
| 120 | + if label in prev_objects: |
| 121 | + x1_prev, y1_prev, x2_prev, y2_prev = prev_objects[label] |
| 122 | + movement = abs(x1 - x1_prev) + abs(y1 - y1_prev) + abs(x2 - x2_prev) + abs(y2 - y2_prev) |
| 123 | + |
| 124 | + # 如果位移超过阈值,则认为目标在运动 |
| 125 | + if movement > 30: |
| 126 | + cv2.putText(frame_with_boxes, "Moving!", (x1, y1 - 30), |
| 127 | + cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3) |
| 128 | + |
| 129 | + prev_objects = current_objects # 更新上一帧数据 |
| 130 | + |
| 131 | + cv2.imshow("YOLOv8 Live Motion Detection", frame_with_boxes) |
| 132 | + |
| 133 | + # 按 'q' 键退出 |
| 134 | + if cv2.waitKey(1) & 0xFF == ord("q"): |
| 135 | + break |
| 136 | + |
| 137 | +cap.release() |
| 138 | +cv2.destroyAllWindows() |
| 139 | +``` |
| 140 | + |
| 141 | +## 其他 |
| 142 | + |
| 143 | +- 自定义目标检测 Custome Object Detection |
| 144 | + |
| 145 | +- 类别识别于分类 Class Recognition & Classification |
| 146 | + |
| 147 | +- 异常检测 Anomaly Detection |
| 148 | + |
| 149 | +- 模型推理 Model Inference |
| 150 | + |
| 151 | +上面这些都是大模型给列出的用途,不展开了。后面去试试自己训练模型。 |
0 commit comments