@@ -23,27 +23,29 @@ software_environments:
23
23
conda : envs/r.yml
24
24
apptainer : envs/r.sif
25
25
envmodule : fcps # not true, but
26
+ rmarkdown :
27
+ description : " R with some plotting dependencies"
28
+ conda : envs/rmarkdown.yml
29
+ apptainer : envs/r.sif # not true, but
30
+ envmodule : fcps # not true, but
26
31
fcps :
27
32
description : " CRAN's FCPS"
28
33
conda : envs/fcps.yml
29
34
apptainer : envs/fcps.sif
30
35
envmodule : fcps
31
36
metric_collectors :
32
- - id : biometrics
33
- name : " Biologically-relevant performance metrics gathering and postprocessing ."
34
- software_environment : " R "
37
+ - id : plotting
38
+ name : " Single-backend metric collector ."
39
+ software_environment : " rmarkdown "
35
40
repository :
36
- url : https://github.com/omnibenchmark-example/metric-collector.git
37
- commit : ef4a601
41
+ url : https://github.com/imallona/clustering_report
42
+ commit : 0a4ddff
38
43
inputs :
39
44
- metrics.scores
40
45
outputs :
41
- - id : biometrics.report.html
42
- path : " {input}/{name}/biometrics_report.html"
43
- - id : biometrics.tsv
44
- path : " {input}/{name}/biometrics.tsv"
46
+ - id : plotting.html
47
+ path : " {input}/{name}/plotting_report.html"
45
48
stages :
46
-
47
49
# # clustbench data ##########################################################
48
50
49
51
- id : data
@@ -55,68 +57,68 @@ stages:
55
57
url : https://github.com/imallona/clustbench_data
56
58
commit : 366c5a2
57
59
parameters : # comments depict the possible cardinalities and the number of curated labelsets
58
- - values : ["--dataset_generator", "fcps", "--dataset_name", "atom"] # 2 1
59
- - values : ["--dataset_generator", "fcps", "--dataset_name", "chainlink"] # 2 1
60
- - values : ["--dataset_generator", "fcps", "--dataset_name", "engytime"] # 2 2
61
- - values : ["--dataset_generator", "fcps", "--dataset_name", "hepta"] # 7 1
62
- - values : ["--dataset_generator", "fcps", "--dataset_name", "lsun"] # 3 1
63
- - values : ["--dataset_generator", "fcps", "--dataset_name", "target"] # 2, 6 2
64
- - values : ["--dataset_generator", "fcps", "--dataset_name", "tetra"] # 4 1
65
- - values : ["--dataset_generator", "fcps", "--dataset_name", "twodiamonds"] # 2 1
66
- - values : ["--dataset_generator", "fcps", "--dataset_name", "wingnut"] # 2 1
67
- - values : ["--dataset_generator", "graves", "--dataset_name", "dense"] # 2 1
68
- - values : ["--dataset_generator", "graves", "--dataset_name", "fuzzyx"] # 2, 4, 5 6
69
- - values : ["--dataset_generator", "graves", "--dataset_name", "line"] # 2 1
70
- - values : ["--dataset_generator", "graves", "--dataset_name", "parabolic"] # 2, 4 2
71
- - values : ["--dataset_generator", "graves", "--dataset_name", "ring"] # 2 1
72
- - values : ["--dataset_generator", "graves", "--dataset_name", "ring_noisy"] # 2 1
73
- - values : ["--dataset_generator", "graves", "--dataset_name", "ring_outliers"] # 2, 5 2
74
- - values : ["--dataset_generator", "graves", "--dataset_name", "zigzag"] # 3, 5 2
75
- - values : ["--dataset_generator", "graves", "--dataset_name", "zigzag_noisy"] # 3, 5 2
76
- - values : ["--dataset_generator", "graves", "--dataset_name", "zigzag_outliers"] # 3, 5 2
77
- - values : ["--dataset_generator", "other", "--dataset_name", "chameleon_t4_8k"] # 6 1
78
- - values : ["--dataset_generator", "other", "--dataset_name", "chameleon_t5_8k"] # 6 1
79
- - values : ["--dataset_generator", "other", "--dataset_name", "hdbscan"] # 6 1
80
- - values : ["--dataset_generator", "other", "--dataset_name", "iris"] # 3 1
81
- - values : ["--dataset_generator", "other", "--dataset_name", "iris5"] # 3 1
82
- - values : ["--dataset_generator", "other", "--dataset_name", "square"] # 2 1
83
- - values : ["--dataset_generator", "sipu", "--dataset_name", "aggregation"] # 7 1
84
- - values : ["--dataset_generator", "sipu", "--dataset_name", "compound"] # 4, 5, 6 5
85
- - values : ["--dataset_generator", "sipu", "--dataset_name", "flame"] # 2 2
86
- - values : ["--dataset_generator", "sipu", "--dataset_name", "jain"] # 2 1
87
- - values : ["--dataset_generator", "sipu", "--dataset_name", "pathbased"] # 3, 4 2
88
- - values : ["--dataset_generator", "sipu", "--dataset_name", "r15"] # 8, 9, 15 3
89
- - values : ["--dataset_generator", "sipu", "--dataset_name", "spiral"] # 3 1
90
- - values : ["--dataset_generator", "sipu", "--dataset_name", "unbalance"] # 8 1
91
- - values : ["--dataset_generator", "uci", "--dataset_name", "ecoli"] # 8 1
92
- - values : ["--dataset_generator", "uci", "--dataset_name", "ionosphere"] # 2 1
93
- - values : ["--dataset_generator", "uci", "--dataset_name", "sonar"] # 2 1
94
- - values : ["--dataset_generator", "uci", "--dataset_name", "statlog"] # 7 1
95
- - values : ["--dataset_generator", "uci", "--dataset_name", "wdbc"] # 2 1
96
- - values : ["--dataset_generator", "uci", "--dataset_name", "wine"] # 3 1
97
- - values : ["--dataset_generator", "uci", "--dataset_name", "yeast"] # 10 1
98
- - values : ["--dataset_generator", "wut", "--dataset_name", "circles"] # 4 1
99
- - values : ["--dataset_generator", "wut", "--dataset_name", "cross"] # 4 1
100
- - values : ["--dataset_generator", "wut", "--dataset_name", "graph"] # 10 1
101
- - values : ["--dataset_generator", "wut", "--dataset_name", "isolation"] # 3 1
102
- - values : ["--dataset_generator", "wut", "--dataset_name", "labirynth"] # 6 1
103
- - values : ["--dataset_generator", "wut", "--dataset_name", "mk1"] # 3 1
104
- - values : ["--dataset_generator", "wut", "--dataset_name", "mk2"] # 2 1
105
- - values : ["--dataset_generator", "wut", "--dataset_name", "mk3"] # 3 1
106
- - values : ["--dataset_generator", "wut", "--dataset_name", "mk4"] # 3 1
107
- - values : ["--dataset_generator", "wut", "--dataset_name", "olympic"] # 5 1
108
- - values : ["--dataset_generator", "wut", "--dataset_name", "smile"] # 4, 6 2
109
- - values : ["--dataset_generator", "wut", "--dataset_name", "stripes"] # 2 1
110
- - values : ["--dataset_generator", "wut", "--dataset_name", "trajectories"] # 4 1
111
- - values : ["--dataset_generator", "wut", "--dataset_name", "trapped_lovers"] # 3 1
112
- - values : ["--dataset_generator", "wut", "--dataset_name", "twosplashes"] # 2 1
113
- - values : ["--dataset_generator", "wut", "--dataset_name", "windows"] # 5 1
114
- - values : ["--dataset_generator", "wut", "--dataset_name", "x1"] # 3 1
115
- - values : ["--dataset_generator", "wut", "--dataset_name", "x2"] # 3 1
116
- - values : ["--dataset_generator", "wut", "--dataset_name", "x3"] # 4 1
117
- - values : ["--dataset_generator", "wut", "--dataset_name", "z1"] # 3 1
118
- - values : ["--dataset_generator", "wut", "--dataset_name", "z2"] # 5 1
119
- - values : ["--dataset_generator", "wut", "--dataset_name", "z3"] # 4 1
60
+ - values : ["--dataset_generator", "fcps", "--dataset_name", "atom"] # 2 1
61
+ # - values: ["--dataset_generator", "fcps", "--dataset_name", "chainlink"] # 2 1
62
+ # - values: ["--dataset_generator", "fcps", "--dataset_name", "engytime"] # 2 2
63
+ # - values: ["--dataset_generator", "fcps", "--dataset_name", "hepta"] # 7 1
64
+ # - values: ["--dataset_generator", "fcps", "--dataset_name", "lsun"] # 3 1
65
+ # - values: ["--dataset_generator", "fcps", "--dataset_name", "target"] # 2, 6 2
66
+ # - values: ["--dataset_generator", "fcps", "--dataset_name", "tetra"] # 4 1
67
+ # - values: ["--dataset_generator", "fcps", "--dataset_name", "twodiamonds"] # 2 1
68
+ # - values: ["--dataset_generator", "fcps", "--dataset_name", "wingnut"] # 2 1
69
+ # - values: ["--dataset_generator", "graves", "--dataset_name", "dense"] # 2 1
70
+ # - values: ["--dataset_generator", "graves", "--dataset_name", "fuzzyx"] # 2, 4, 5 6
71
+ # - values: ["--dataset_generator", "graves", "--dataset_name", "line"] # 2 1
72
+ # - values: ["--dataset_generator", "graves", "--dataset_name", "parabolic"] # 2, 4 2
73
+ # - values: ["--dataset_generator", "graves", "--dataset_name", "ring"] # 2 1
74
+ # - values: ["--dataset_generator", "graves", "--dataset_name", "ring_noisy"] # 2 1
75
+ # - values: ["--dataset_generator", "graves", "--dataset_name", "ring_outliers"] # 2, 5 2
76
+ # - values: ["--dataset_generator", "graves", "--dataset_name", "zigzag"] # 3, 5 2
77
+ # - values: ["--dataset_generator", "graves", "--dataset_name", "zigzag_noisy"] # 3, 5 2
78
+ # - values: ["--dataset_generator", "graves", "--dataset_name", "zigzag_outliers"] # 3, 5 2
79
+ # - values: ["--dataset_generator", "other", "--dataset_name", "chameleon_t4_8k"] # 6 1
80
+ # - values: ["--dataset_generator", "other", "--dataset_name", "chameleon_t5_8k"] # 6 1
81
+ # - values: ["--dataset_generator", "other", "--dataset_name", "hdbscan"] # 6 1
82
+ # - values: ["--dataset_generator", "other", "--dataset_name", "iris"] # 3 1
83
+ # - values: ["--dataset_generator", "other", "--dataset_name", "iris5"] # 3 1
84
+ # - values: ["--dataset_generator", "other", "--dataset_name", "square"] # 2 1
85
+ # - values: ["--dataset_generator", "sipu", "--dataset_name", "aggregation"] # 7 1
86
+ # - values: ["--dataset_generator", "sipu", "--dataset_name", "compound"] # 4, 5, 6 5
87
+ # - values: ["--dataset_generator", "sipu", "--dataset_name", "flame"] # 2 2
88
+ # - values: ["--dataset_generator", "sipu", "--dataset_name", "jain"] # 2 1
89
+ # - values: ["--dataset_generator", "sipu", "--dataset_name", "pathbased"] # 3, 4 2
90
+ # - values: ["--dataset_generator", "sipu", "--dataset_name", "r15"] # 8, 9, 15 3
91
+ # - values: ["--dataset_generator", "sipu", "--dataset_name", "spiral"] # 3 1
92
+ # - values: ["--dataset_generator", "sipu", "--dataset_name", "unbalance"] # 8 1
93
+ # - values: ["--dataset_generator", "uci", "--dataset_name", "ecoli"] # 8 1
94
+ # - values: ["--dataset_generator", "uci", "--dataset_name", "ionosphere"] # 2 1
95
+ # - values: ["--dataset_generator", "uci", "--dataset_name", "sonar"] # 2 1
96
+ # - values: ["--dataset_generator", "uci", "--dataset_name", "statlog"] # 7 1
97
+ # - values: ["--dataset_generator", "uci", "--dataset_name", "wdbc"] # 2 1
98
+ # - values: ["--dataset_generator", "uci", "--dataset_name", "wine"] # 3 1
99
+ # - values: ["--dataset_generator", "uci", "--dataset_name", "yeast"] # 10 1
100
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "circles"] # 4 1
101
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "cross"] # 4 1
102
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "graph"] # 10 1
103
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "isolation"] # 3 1
104
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "labirynth"] # 6 1
105
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "mk1"] # 3 1
106
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "mk2"] # 2 1
107
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "mk3"] # 3 1
108
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "mk4"] # 3 1
109
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "olympic"] # 5 1
110
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "smile"] # 4, 6 2
111
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "stripes"] # 2 1
112
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "trajectories"] # 4 1
113
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "trapped_lovers"] # 3 1
114
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "twosplashes"] # 2 1
115
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "windows"] # 5 1
116
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "x1"] # 3 1
117
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "x2"] # 3 1
118
+ - values : ["--dataset_generator", "wut", "--dataset_name", "x3"] # 4 1
119
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "z1"] # 3 1
120
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "z2"] # 5 1
121
+ # - values: ["--dataset_generator", "wut", "--dataset_name", "z3"] # 4 1
120
122
outputs :
121
123
- id : data.matrix
122
124
path : " {input}/{stage}/{module}/{params}/{dataset}.data.gz"
@@ -226,90 +228,4 @@ stages:
226
228
- data.true_labels
227
229
outputs :
228
230
- id : metrics.scores
229
- path : " {input}/{stage}/{module}/{params}/{dataset}.scores.gz"
230
-
231
- # ## daniel's data ###########################################################################
232
-
233
- # - id: danielsdata
234
- # modules:
235
- # - id: iris_manual
236
- # name: "Iris Dataset"
237
- # software_environment: "sklearn"
238
- # repository:
239
- # url: https://github.com/omnibenchmark-example/iris.git
240
- # commit: 47c63f0
241
- # - id: penguins
242
- # name: "Penguins Dataset"
243
- # software_environment: "sklearn"
244
- # repository:
245
- # url: https://github.com/omnibenchmark-example/penguins.git
246
- # commit: 9032478
247
- # outputs:
248
- # - id: data.features
249
- # path: "{input}/{stage}/{module}/{params}/{dataset}.features.csv"
250
- # - id: data.labels
251
- # path: "{input}/{stage}/{module}/{params}/{dataset}.labels.csv"
252
-
253
- # ## daniel's distances ########################################################################
254
-
255
- # - id: distances
256
- # modules:
257
- # - id: D1
258
- # software_environment: "sklearn"
259
- # parameters:
260
- # - values: ["--measure", "cosine"]
261
- # - values: ["--measure", "euclidean"]
262
- # - values: ["--measure", "manhattan"]
263
- # - values: ["--measure", "chebyshev"]
264
- # repository:
265
- # url: https://github.com/omnibenchmark-example/distance.git
266
- # commit: dd99d4f
267
- # inputs:
268
- # - entries:
269
- # - data.features
270
- # outputs:
271
- # - id: distances
272
- # path: "{input}/{stage}/{module}/{params}/{dataset}.distances.csv"
273
-
274
- # ## daniel's methods ###################################################################
275
-
276
- # - id: danielmethods
277
- # modules:
278
- # - id: kmeans
279
- # software_environment: "sklearn"
280
- # repository:
281
- # url: https://github.com/omnibenchmark-example/kmeans.git
282
- # commit: 049c8b1
283
- # - id: ward
284
- # software_environment: "R"
285
- # repository:
286
- # url: https://github.com/omnibenchmark-example/ward.git
287
- # commit: 976e3f3
288
- # inputs:
289
- # - entries:
290
- # - distances
291
- # outputs:
292
- # - id: methods.clusters
293
- # path: "{input}/{stage}/{module}/{params}/{dataset}.clusters.csv"
294
-
295
- # ## daniel's metrics ###################################################################
296
-
297
- # - id: danielsmetrics
298
- # modules:
299
- # - id: ari
300
- # software_environment: "R"
301
- # repository:
302
- # url: https://github.com/omnibenchmark-example/ari.git
303
- # commit: 72708f0
304
- # - id: accuracy
305
- # software_environment: "R"
306
- # repository:
307
- # url: https://github.com/omnibenchmark-example/accuracy.git
308
- # commit: e26b32f
309
- # inputs:
310
- # - entries:
311
- # - methods.clusters
312
- # - data.labels
313
- # outputs:
314
- # - id: metrics.mapping
315
- # path: "{input}/{stage}/{module}/{params}/{dataset}.metrics.txt"
231
+ path : " {input}/{stage}/{module}/{params}/{dataset}.scores.gz"
0 commit comments