-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiplePrecisionErrStat.cs
165 lines (147 loc) · 6.05 KB
/
MultiplePrecisionErrStat.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
using EasyMLCore.MLP;
using EasyMLCore.MathTools;
using System;
using System.Collections.Generic;
using System.Text;
using EasyMLCore.Extensions;
using System.Globalization;
namespace EasyMLCore.Data
{
[Serializable]
public class MultiplePrecisionErrStat : TaskErrStatBase
{
//Attribute properties
/// <summary>
/// Holds the precision error statistics for each feature.
/// </summary>
public SinglePrecisionErrStat[] FeaturePrecisionStats { get; }
/// <summary>
/// The precision statistics. A pallet of statistics indicators about how close or distant are
/// computed values and ideal values.
/// </summary>
public BasicStat TotalPrecisionStat { get; }
//Constructors
/// <summary>
/// Creates an uninitialized instance.
/// </summary>
/// <param name="outputFeatureNames">Names of output features in this statistics.</param>
public MultiplePrecisionErrStat(IEnumerable<string> outputFeatureNames)
:base(outputFeatureNames)
{
FeaturePrecisionStats = new SinglePrecisionErrStat[NumOfOutputFeatures];
for(int i = 0; i < NumOfOutputFeatures; i++)
{
FeaturePrecisionStats[i] = new SinglePrecisionErrStat(OutputFeatureNames[i]);
}
TotalPrecisionStat = new BasicStat();
}
/// <summary>
/// Creates an initialized instance.
/// </summary>
/// <param name="computableUnit">A computable unit.</param>
/// <param name="dataset">Sample dataset.</param>
public MultiplePrecisionErrStat(IComputableTaskSpecific computableUnit, SampleDataset dataset)
: this(computableUnit.OutputFeatureNames)
{
for (int i = 0; i < dataset.Count; i++)
{
Update(computableUnit.Compute(dataset.SampleCollection[i].InputVector),
dataset.SampleCollection[i].OutputVector
);
}
return;
}
/// <summary>
/// Copy constructor.
/// </summary>
/// <param name="source">The source instance.</param>
public MultiplePrecisionErrStat(MultiplePrecisionErrStat source)
: base(source)
{
FeaturePrecisionStats = new SinglePrecisionErrStat[NumOfOutputFeatures];
for (int i = 0; i < NumOfOutputFeatures; i++)
{
FeaturePrecisionStats[i] = new SinglePrecisionErrStat(source.FeaturePrecisionStats[i]);
}
TotalPrecisionStat = source.TotalPrecisionStat.DeepClone();
return;
}
/// <summary>
/// Merger constructor.
/// </summary>
/// <param name="outputFeatureNames">Names of output features in this statistics.</param>
/// <param name="sources">Source instances to be merged together.</param>
public MultiplePrecisionErrStat(IEnumerable<string> outputFeatureNames, IEnumerable<TaskErrStatBase> sources)
: this(outputFeatureNames)
{
Merge(sources);
return;
}
//Properties
/// <summary>
/// Mean Squared Error (numerical precision).
/// </summary>
public double MSE { get { return TotalPrecisionStat.MeanSquare; } }
/// <inheritdoc/>
public override int NumOfSamples { get { return TotalPrecisionStat.NumOfSamples / NumOfOutputFeatures; } }
//Methods
/// <summary>
/// Merges another statistics with this statistics.
/// </summary>
/// <param name="source">Another statistics.</param>
public override void Merge(TaskErrStatBase source)
{
MultiplePrecisionErrStat sourceStat = source as MultiplePrecisionErrStat;
for(int i = 0; i < NumOfOutputFeatures; i++)
{
FeaturePrecisionStats[i].Merge(sourceStat.FeaturePrecisionStats[i]);
}
TotalPrecisionStat.Merge(sourceStat.TotalPrecisionStat);
return;
}
/// <inheritdoc/>
public override void Update(double computedValue, double idealValue)
{
throw new NotImplementedException("Update method with single double arguments is not relevant for multiple error statistics.");
}
/// <inheritdoc/>
public override void Update(double[] computedVector, double[] idealVector)
{
for(int i = 0; i < NumOfOutputFeatures; i++)
{
FeaturePrecisionStats[i].Update(computedVector[i], idealVector[i]);
TotalPrecisionStat.AddSample(Math.Abs(idealVector[i] - computedVector[i]));
}
return;
}
/// <inheritdoc/>
public override bool IsBetter(TaskErrStatBase other)
{
MultiplePrecisionErrStat otherStat = other as MultiplePrecisionErrStat;
return otherStat.TotalPrecisionStat.RootMeanSquare < TotalPrecisionStat.RootMeanSquare;
}
/// <inheritdoc/>
public override TaskErrStatBase DeepClone()
{
return new MultiplePrecisionErrStat(this);
}
/// <inheritdoc/>
public override string GetReportText(bool detail = false, int margin = 0)
{
StringBuilder sb = new StringBuilder();
sb.Append($"Total RMSE: {TotalPrecisionStat.RootMeanSquare.ToString("F5", CultureInfo.InvariantCulture)}{Environment.NewLine}");
sb.Append($"Samples : {NumOfSamples.ToString(CultureInfo.InvariantCulture)}{Environment.NewLine}");
sb.Append($"Features one by one >>>{Environment.NewLine}");
for (int featureIdx = 0; featureIdx < NumOfOutputFeatures; featureIdx++)
{
sb.Append(FeaturePrecisionStats[featureIdx].GetReportText(detail, 4));
}
string report = sb.ToString();
if (margin > 0)
{
report = report.Indent(margin);
}
return report;
}
}//PrecisionErrStat
}//Namespace