-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultipleDecisionErrStat.cs
216 lines (197 loc) · 8.66 KB
/
MultipleDecisionErrStat.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
using EasyMLCore.MLP;
using EasyMLCore.MathTools;
using System;
using System.Collections.Generic;
using System.Globalization;
using System.Text;
using EasyMLCore.Extensions;
namespace EasyMLCore.Data
{
/// <summary>
/// Implements an error statistics of the multiple binary decisions.
/// </summary>
[Serializable]
public class MultipleDecisionErrStat : MultiplePrecisionErrStat
{
//Constants
//Attribute properties
/// <summary>
/// Holds the precision error statistics for each feature.
/// </summary>
public SingleDecisionErrStat[] FeatureBinDecisionStats { get; }
/// <summary>
/// Total error statistics of wrong (false flag) decisions.
/// </summary>
/// <remarks>
/// FalseFlagStat[0] contains error statistics about the "false" samples.
/// FalseFlagStat[1] contains error statistics about the "true" samples.
/// </remarks>
public BasicStat[] TotalBinFalseFlagStat { get; }
/// <summary>
/// Total statistics of the wrong decisions.
/// </summary>
public BasicStat TotalBinWrongDecisionStat { get; }
/// <summary>
/// Total LogLoss statistics.
/// </summary>
public BasicStat TotalBinLogLossStat { get; }
//Constructors
/// <summary>
/// Creates an uninitialized instance.
/// </summary>
/// <param name="outputFeatureNames">Names of output features in this statistics.</param>
public MultipleDecisionErrStat(IEnumerable<string> outputFeatureNames)
: base(outputFeatureNames)
{
FeatureBinDecisionStats = new SingleDecisionErrStat[NumOfOutputFeatures];
for(int i = 0; i < NumOfOutputFeatures; i++)
{
FeatureBinDecisionStats[i] = new SingleDecisionErrStat(OutputFeatureNames[i]);
}
TotalBinFalseFlagStat = new BasicStat[2];
TotalBinFalseFlagStat[0] = new BasicStat();
TotalBinFalseFlagStat[1] = new BasicStat();
TotalBinWrongDecisionStat = new BasicStat();
TotalBinLogLossStat = new BasicStat();
return;
}
/// <summary>
/// Creates an initialized instance.
/// </summary>
/// <param name="computableUnit">A computable unit.</param>
/// <param name="dataset">Sample dataset.</param>
public MultipleDecisionErrStat(IComputableTaskSpecific computableUnit, SampleDataset dataset)
: this(computableUnit.OutputFeatureNames)
{
for (int i = 0; i < dataset.Count; i++)
{
Update(computableUnit.Compute(dataset.SampleCollection[i].InputVector),
dataset.SampleCollection[i].OutputVector
);
}
return;
}
/// <summary>
/// The deep copy constructor.
/// </summary>
/// <param name="source">The source instance.</param>
public MultipleDecisionErrStat(MultipleDecisionErrStat source)
: base(source)
{
FeatureBinDecisionStats = new SingleDecisionErrStat[NumOfOutputFeatures];
for (int i = 0; i < NumOfOutputFeatures; i++)
{
FeatureBinDecisionStats[i] = new SingleDecisionErrStat(source.FeatureBinDecisionStats[i]);
}
TotalBinFalseFlagStat = new BasicStat[2];
TotalBinFalseFlagStat[0] = source.TotalBinFalseFlagStat[0].DeepClone();
TotalBinFalseFlagStat[1] = source.TotalBinFalseFlagStat[1].DeepClone();
TotalBinWrongDecisionStat = source.TotalBinWrongDecisionStat.DeepClone();
TotalBinLogLossStat = source.TotalBinLogLossStat.DeepClone();
return;
}
/// <summary>
/// Merger constructor.
/// </summary>
/// <param name="outputFeatureNames">Names of output features in this statistics.</param>
/// <param name="sources">Source instances to be merged together.</param>
public MultipleDecisionErrStat(IEnumerable<string> outputFeatureNames, IEnumerable<TaskErrStatBase> sources)
: this(outputFeatureNames)
{
Merge(sources);
return;
}
//Properties
/// <summary>
/// Computed Cross-Entropy.
/// </summary>
public double TotalBinCrossEntropy { get { return TotalBinLogLossStat.ArithAvg; } }
/// <summary>
/// Binary accuracy.
/// </summary>
public double BinaryAccuracy { get { return (1d - TotalBinWrongDecisionStat.ArithAvg); } }
//Instance methods
/// <inheritdoc/>
public override void Merge(TaskErrStatBase source)
{
base.Merge(source);
MultipleDecisionErrStat sourceStat = source as MultipleDecisionErrStat;
for (int i = 0; i < NumOfOutputFeatures; i++)
{
FeatureBinDecisionStats[i].Merge(sourceStat.FeatureBinDecisionStats[i]);
}
TotalBinFalseFlagStat[0].Merge(sourceStat.TotalBinFalseFlagStat[0]);
TotalBinFalseFlagStat[1].Merge(sourceStat.TotalBinFalseFlagStat[1]);
TotalBinWrongDecisionStat.Merge(sourceStat.TotalBinWrongDecisionStat);
TotalBinLogLossStat.Merge(sourceStat.TotalBinLogLossStat);
return;
}
/// <inheritdoc/>
public override void Update(double computedValue, double idealValue)
{
throw new NotImplementedException("Update method with single double arguments is not relevant for multiple error statistics.");
}
/// <inheritdoc/>
public override void Update(double[] computedVector, double[] idealVector)
{
base.Update(computedVector, idealVector);
for (int i = 0; i < NumOfOutputFeatures; i++)
{
double computedValue = computedVector[i];
double idealValue = idealVector[i];
FeatureBinDecisionStats[i].Update(computedVector[i], idealVector[i]);
int idealBinVal = (idealValue >= Common.BinDecisionBorder) ? 1 : 0;
int errValue = Common.HaveSameBinaryMeaning(computedValue, idealValue) ? 0 : 1;
TotalBinFalseFlagStat[idealBinVal].AddSample(errValue);
TotalBinWrongDecisionStat.AddSample(errValue);
TotalBinLogLossStat.AddSample(ComputeLogLoss(computedValue, idealValue));
}
return;
}
/// <inheritdoc/>
public override bool IsBetter(TaskErrStatBase other)
{
MultipleDecisionErrStat otherStat = other as MultipleDecisionErrStat;
if(otherStat.TotalBinWrongDecisionStat.Sum < TotalBinWrongDecisionStat.Sum)
{
return true;
}
else if (otherStat.TotalBinWrongDecisionStat.Sum == TotalBinWrongDecisionStat.Sum)
{
if(otherStat.TotalBinLogLossStat.RootMeanSquare < TotalBinLogLossStat.RootMeanSquare)
{
return true;
}
}
return false;
}
/// <summary>
/// Creates the deep copy instance.
/// </summary>
public override TaskErrStatBase DeepClone()
{
return new MultipleDecisionErrStat(this);
}
/// <inheritdoc/>
public override string GetReportText(bool detail = false, int margin = 0)
{
StringBuilder sb = new StringBuilder();
sb.Append($"Total Binary Accuracy: {(BinaryAccuracy * 100d).ToString("F2", CultureInfo.InvariantCulture)}%{Environment.NewLine}");
sb.Append($"Total Decision Errors: {TotalBinWrongDecisionStat.Sum.ToString(CultureInfo.InvariantCulture)}{Environment.NewLine}");
sb.Append($"Total Cross Entropy : {TotalBinCrossEntropy.ToString("F5", CultureInfo.InvariantCulture)}{Environment.NewLine}");
sb.Append($"Total RMSE : {TotalPrecisionStat.RootMeanSquare.ToString("F5", CultureInfo.InvariantCulture)}{Environment.NewLine}");
sb.Append($"Samples : {NumOfSamples.ToString(CultureInfo.InvariantCulture)}{Environment.NewLine}");
sb.Append($"Binary features one by one >>>{Environment.NewLine}");
for (int featureIdx = 0; featureIdx < NumOfOutputFeatures; featureIdx++)
{
sb.Append(FeatureBinDecisionStats[featureIdx].GetReportText(detail, 4));
}
string report = sb.ToString();
if (margin > 0)
{
report = report.Indent(margin);
}
return report;
}
}//MultipleDecisionErrStat
}//Namespace