-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCategoricalErrStat.cs
226 lines (204 loc) · 8.74 KB
/
CategoricalErrStat.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
using EasyMLCore.Extensions;
using EasyMLCore.MLP;
using EasyMLCore.MathTools;
using System;
using System.Collections.Generic;
using System.Text;
using System.Globalization;
namespace EasyMLCore.Data
{
/// <summary>
/// Implements an error statistics of the categorical decisions (multiple features - classes).
/// </summary>
[Serializable]
public class CategoricalErrStat : MultipleDecisionErrStat
{
//Attribute properties
/// <summary>
/// LogLoss statistics.
/// </summary>
public BasicStat ClassificationLogLossStat { get; }
/// <summary>
/// Classification error statistics.
/// </summary>
public BasicStat WrongClassificationStat { get; }
/// <summary>
/// Statistics of the right classifications but with low probability.
/// </summary>
public BasicStat LowProbabilityClassificationStat { get; }
//Constructors
/// <summary>
/// Creates an uninitialized instance.
/// </summary>
/// <param name="outputFeatureNames">Names of output features in this statistics.</param>
public CategoricalErrStat(IEnumerable<string> outputFeatureNames)
: base(outputFeatureNames)
{
ClassificationLogLossStat = new BasicStat();
WrongClassificationStat = new BasicStat();
LowProbabilityClassificationStat = new BasicStat();
return;
}
/// <summary>
/// Creates an initialized instance.
/// </summary>
/// <param name="computableUnit">A computable unit.</param>
/// <param name="dataset">Sample dataset.</param>
public CategoricalErrStat(IComputableTaskSpecific computableUnit, SampleDataset dataset)
: this(computableUnit.OutputFeatureNames)
{
for (int i = 0; i < dataset.Count; i++)
{
Update(computableUnit.Compute(dataset.SampleCollection[i].InputVector),
dataset.SampleCollection[i].OutputVector
);
}
return;
}
/// <summary>
/// The deep copy constructor.
/// </summary>
/// <param name="source">The source instance.</param>
public CategoricalErrStat(CategoricalErrStat source)
: base(source)
{
ClassificationLogLossStat = source.ClassificationLogLossStat.DeepClone();
WrongClassificationStat = source.WrongClassificationStat.DeepClone();
LowProbabilityClassificationStat = source.LowProbabilityClassificationStat.DeepClone();
return;
}
/// <summary>
/// Merger constructor.
/// </summary>
/// <param name="outputFeatureNames">Names of output features in this statistics.</param>
/// <param name="sources">Source instances to be merged together.</param>
public CategoricalErrStat(IEnumerable<string> outputFeatureNames, IEnumerable<TaskErrStatBase> sources)
: this(outputFeatureNames)
{
Merge(sources);
return;
}
//Properties
/// <summary>
/// Binary accuracy.
/// </summary>
public double ClassificationAccuracy { get { return (1d - WrongClassificationStat.ArithAvg); } }
/// <summary>
/// Gets total number of inadequate classifications (wrong plus right having low-probability)
/// </summary>
public int TotalNumOfInadequateClassifications { get { return (int)(WrongClassificationStat.Sum + LowProbabilityClassificationStat.Sum); } }
/// <summary>
/// Computed Cross-Entropy.
/// </summary>
public double ClassificationCrossEntropy { get { return ClassificationLogLossStat.ArithAvg; } }
//Methods
/// <inheritdoc/>
public override void Merge(TaskErrStatBase source)
{
base.Merge(source);
CategoricalErrStat sourceStat = source as CategoricalErrStat;
ClassificationLogLossStat.Merge(sourceStat.ClassificationLogLossStat);
WrongClassificationStat.Merge(sourceStat.WrongClassificationStat);
LowProbabilityClassificationStat.Merge(sourceStat.LowProbabilityClassificationStat);
return;
}
/// <inheritdoc/>
public override void Update(double computedValue, double idealValue)
{
throw new NotImplementedException("Update method with single double arguments is not relevant for categorical (classification) error statistics.");
}
/// <inheritdoc/>
public override void Update(double[] computedVector, double[] idealVector)
{
base.Update(computedVector, idealVector);
//Update LogLoss
for (int i = 0; i < NumOfOutputFeatures; i++)
{
if (idealVector[i] >= Common.BinDecisionBorder)
{
ClassificationLogLossStat.AddSample(ComputeLogLoss(computedVector[i], idealVector[i]));
}
}
//Update categorical summary statistics
int computedMaxIdx = computedVector.IndexOfMax(out int count);
int idealMaxIdx = idealVector.IndexOfMax(out _);
if (computedMaxIdx != idealMaxIdx || (computedMaxIdx == idealMaxIdx && count > 1))
{
//Wrong classification
WrongClassificationStat.AddSample(1d);
}
else
{
//Right classification
WrongClassificationStat.AddSample(0d);
if (computedVector[computedMaxIdx] < Common.BinDecisionBorder)
{
//Low probability classification
LowProbabilityClassificationStat.AddSample(1d);
}
else
{
//Enaugh probability classification
LowProbabilityClassificationStat.AddSample(0d);
}
}
return;
}
/// <inheritdoc/>
public override bool IsBetter(TaskErrStatBase other)
{
CategoricalErrStat otherStat = other as CategoricalErrStat;
if (otherStat.WrongClassificationStat.Sum < WrongClassificationStat.Sum)
{
return true;
}
else if (otherStat.WrongClassificationStat.Sum == WrongClassificationStat.Sum)
{
if(otherStat.LowProbabilityClassificationStat.Sum < LowProbabilityClassificationStat.Sum)
{
return true;
}
else if (otherStat.LowProbabilityClassificationStat.Sum == LowProbabilityClassificationStat.Sum)
{
if (otherStat.ClassificationLogLossStat.RootMeanSquare < ClassificationLogLossStat.RootMeanSquare)
{
return true;
}
}
}
return false;
}
/// <summary>
/// Creates the deep copy instance.
/// </summary>
public override TaskErrStatBase DeepClone()
{
return new CategoricalErrStat(this);
}
/// <inheritdoc/>
public override string GetReportText(bool detail = false, int margin = 0)
{
StringBuilder sb = new StringBuilder();
sb.Append($"Categorical Accuracy : {(ClassificationAccuracy * 100d).ToString("F2", CultureInfo.InvariantCulture)}%{Environment.NewLine}");
sb.Append($"Categorical Errors : {WrongClassificationStat.Sum.ToString(CultureInfo.InvariantCulture)}{Environment.NewLine}");
sb.Append($"Low Probabilities : {LowProbabilityClassificationStat.Sum.ToString(CultureInfo.InvariantCulture)}{Environment.NewLine}");
sb.Append($"Cross Entropy : {ClassificationCrossEntropy.ToString("F5", CultureInfo.InvariantCulture)}{Environment.NewLine}");
sb.Append($"Total RMSE : {TotalPrecisionStat.RootMeanSquare.ToString("F5", CultureInfo.InvariantCulture)}{Environment.NewLine}");
sb.Append($"Samples : {NumOfSamples.ToString(CultureInfo.InvariantCulture)}{Environment.NewLine}");
if (detail)
{
sb.Append($"Class labels one by one >>>{Environment.NewLine}");
for (int classIdx = 0; classIdx < NumOfOutputFeatures; classIdx++)
{
sb.Append(FeatureBinDecisionStats[classIdx].GetReportText(detail, 4));
}
}
string report = sb.ToString();
if (margin > 0)
{
report = report.Indent(margin);
}
return report;
}
}//CategoricalErrStat
}//Namespace