-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSampleDataset.cs
1148 lines (1105 loc) · 52.6 KB
/
SampleDataset.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
using EasyMLCore.Extensions;
using EasyMLCore.MathTools;
using System;
using System.Collections.Generic;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
namespace EasyMLCore.Data
{
/// <summary>
/// Implements sample dataset of identifiable samples of input and output vector pairs.
/// </summary>
[Serializable]
public class SampleDataset : SerializableObject
{
//Enums
/// <summary>
/// Specifies where are output features in csv data row.
/// </summary>
public enum CsvOutputFeaturesPosition
{
/// <summary>
/// Csv data row begins with output features.
/// </summary>
First,
/// <summary>
/// Csv data row ends with output features.
/// </summary>
Last
}
/// <summary>
/// Specifies how are output features presented in csv data row.
/// </summary>
public enum CsvOutputFeaturesPresence
{
/// <summary>
/// Each output feature has its own output value. In case of classification task, each class has own 0/1 column.
/// </summary>
Separately,
/// <summary>
/// Task is a classification and classes are represented as a 0-based index.
/// </summary>
ClassesAsNumberFrom0,
/// <summary>
/// Task is a classification and classes are represented as a 1-based index.
/// </summary>
ClassesAsNumberFrom1
}
//Constants
/// <summary>
/// The maximum ratio of one data fold.
/// </summary>
public const double MaxRatioOfFoldData = 0.5d;
//Attribute properties
/// <summary>
/// The collection of vector pair samples.
/// </summary>
public List<Sample> SampleCollection { get; }
//Attributes
private readonly Dictionary<int, Sample> _sampleIDRef;
//Constructors
/// <summary>
/// Creates an uninitialized instance.
/// </summary>
public SampleDataset()
{
SampleCollection = new List<Sample>();
_sampleIDRef = new Dictionary<int, Sample>();
return;
}
/// <summary>
/// Creates an uninitialized instance.
/// </summary>
/// <param name="expectedNumOfSamples">Expected number of vector pair samples.</param>
public SampleDataset(int expectedNumOfSamples)
{
SampleCollection = new List<Sample>(expectedNumOfSamples);
_sampleIDRef = new Dictionary<int, Sample>(expectedNumOfSamples);
return;
}
/// <summary>
/// Creates an initialized instance.
/// </summary>
/// <param name="sampleCollection">The collection of vector pair samples.</param>
public SampleDataset(ICollection<Sample> sampleCollection)
: this(sampleCollection.Count)
{
foreach (Sample sample in sampleCollection)
{
AddSample(sample);
}
return;
}
/// <summary>
/// Creates an initialized instance.
/// </summary>
/// <param name="datasetCollection">The collection of datasets (folds).</param>
public SampleDataset(ICollection<SampleDataset> datasetCollection)
: this()
{
foreach (SampleDataset dataset in datasetCollection)
{
foreach (Sample sample in dataset.SampleCollection)
{
AddSample(sample);
}
}
return;
}
/// <summary>
/// Creates an initialized instance.
/// </summary>
/// <param name="inputVectorCollection">The collection of input vectors.</param>
/// <param name="outputVectorCollection">The collection of output vectors.</param>
public SampleDataset(IList<double[]> inputVectorCollection, IList<double[]> outputVectorCollection)
: this(Math.Min(inputVectorCollection.Count, outputVectorCollection.Count))
{
int count = Math.Min(inputVectorCollection.Count, outputVectorCollection.Count);
for (int i = 0; i < count; i++)
{
AddSampleInternal(new Sample(i, inputVectorCollection[i], outputVectorCollection[i]));
}
return;
}
//Properties
/// <summary>
/// Checks basic consistency.
/// </summary>
public bool IsConsistent
{
get
{
if (SampleCollection.Count > 0)
{
int outputLength = SampleCollection[0].OutputVector.Length;
for (int i = 1; i < SampleCollection.Count; i++)
{
if (SampleCollection[i].OutputVector.Length != outputLength)
{
return false;
}
}
}
return true;
}
}
/// <summary>
/// Checks equality of input vector lengths and output vector lengths.
/// </summary>
public bool IsUniform
{
get
{
if (SampleCollection.Count > 0)
{
int inputLength = SampleCollection[0].InputVector.Length;
int outputLength = SampleCollection[0].OutputVector.Length;
for (int i = 1; i < SampleCollection.Count; i++)
{
if (SampleCollection[i].InputVector.Length != inputLength ||
SampleCollection[i].OutputVector.Length != outputLength
)
{
return false;
}
}
}
return true;
}
}
/// <summary>
/// Gets number of contained sample vector pairs.
/// </summary>
public int Count { get { return SampleCollection.Count; } }
/// <summary>
/// Gets input vector length of the first sample in the collection
/// or -1 if there are no samples.
/// </summary>
public int FirstInputVectorLength
{
get
{
if (Count > 0)
{
return SampleCollection[0].InputVector.Length;
}
else
{
return -1;
}
}
}
/// <summary>
/// Gets output vector length of the first sample in the collection
/// or 0 if there are no samples.
/// </summary>
public int FirstOutputVectorLength
{
get
{
if (Count > 0)
{
return SampleCollection[0].OutputVector.Length;
}
else
{
return 0;
}
}
}
//Static methods
/// <summary>
/// Loads a dataset from csv data.
/// </summary>
/// <param name="csvData">Csv data holder.</param>
/// <param name="outputFeaturesPosition">Specifies where are output features in csv data row.</param>
/// <param name="outputFeaturesPresence">Specifies how are output features presented in csv data row.</param>
/// <param name="numOfOutputFeatures">Number of output features.</param>
public static SampleDataset Load(CsvDataHolder csvData,
CsvOutputFeaturesPosition outputFeaturesPosition,
CsvOutputFeaturesPresence outputFeaturesPresence,
int numOfOutputFeatures
)
{
SampleDataset dataset = new SampleDataset();
int numOfOutputFeaturesInCsv = outputFeaturesPresence == CsvOutputFeaturesPresence.Separately ? numOfOutputFeatures : 1;
foreach (DelimitedStringValues dataRow in csvData.DataRowCollection)
{
int numOfInputValues = dataRow.NumOfStringValues - numOfOutputFeaturesInCsv;
//Check data length
if (numOfInputValues <= 0)
{
throw new ArgumentException("Incorrect length of data row.", nameof(csvData));
}
//Input data
int inputDataOffset = outputFeaturesPosition == CsvOutputFeaturesPosition.First ? numOfOutputFeaturesInCsv : 0;
double[] inputData = new double[numOfInputValues];
for (int i = 0; i < numOfInputValues; i++)
{
inputData[i] = dataRow.GetValueAt(inputDataOffset + i).ParseDouble(true, $"Can't parse double data value {dataRow.GetValueAt(inputDataOffset + i)}.");
}
//Output data
int outputDataOffset = outputFeaturesPosition == CsvOutputFeaturesPosition.First ? 0 : numOfInputValues;
double[] outputData = new double[numOfOutputFeatures];
if(outputFeaturesPresence == CsvOutputFeaturesPresence.Separately)
{
for (int i = 0; i < numOfOutputFeaturesInCsv; i++)
{
outputData[i] = dataRow.GetValueAt(outputDataOffset + i).ParseDouble(true, $"Can't parse double data value {dataRow.GetValueAt(outputDataOffset + i)}.");
}
}
else
{
int classIndex = (int)dataRow.GetValueAt(outputDataOffset).ParseDouble(true, $"Can't parse class index {dataRow.GetValueAt(outputDataOffset)}.");
if(outputFeaturesPresence == CsvOutputFeaturesPresence.ClassesAsNumberFrom1)
{
--classIndex;
}
if(classIndex < 0 || classIndex >= outputData.Length)
{
throw new ApplicationException($"Invalid class index {classIndex} at row {dataset.Count + 1}.");
}
outputData[classIndex] = 1d;
}
dataset.AddSample(dataset.Count, inputData, outputData);
}
return dataset;
}
/// <summary>
/// Loads time-serie csv data (each row = 1 timepoint) and creates patternized sample dataset.
/// </summary>
/// <param name="csvData">Csv data holder.</param>
/// <param name="numOfInputTimePoints">Requested number of timepoints in an input pattern.</param>
/// <param name="outputFieldNameCollection">Output field names.</param>
/// <param name="inputFieldNameCollection">Input field names (when null, output field names are used).</param>
/// <remarks>
/// Useable for time-series regression task.
/// In resulting dataset, multivariate flat input vector is always in a groupped form:
/// {v1[t1],v2[t1],v1[t2],v2[t2],v1[t3],v2[t3],...}
/// where "v" means variable and "t" means time point.
/// </remarks>
public static SampleDataset LoadAndPatternize(CsvDataHolder csvData,
int numOfInputTimePoints,
List<string> outputFieldNameCollection,
List<string> inputFieldNameCollection = null
)
{
//Indexes of input/output fields
List<int> inputFieldIndexes = new List<int>();
List<int> outputFieldIndexes = new List<int>();
//Collect indexes of output fields
foreach (string name in outputFieldNameCollection)
{
int fieldIdx = csvData.ColNameCollection.IndexOf(name);
if (fieldIdx == -1)
{
throw new ArgumentException($"Output field name {name} was not found in the csv data column names.", nameof(csvData));
}
outputFieldIndexes.Add(fieldIdx);
}
//Input fields
if (inputFieldNameCollection == null)
{
//Not specified -> use output fields
inputFieldIndexes = new List<int>(outputFieldIndexes);
}
else
{
//Collect indexes of input fields
foreach (string name in inputFieldNameCollection)
{
int fieldIdx = csvData.ColNameCollection.IndexOf(name);
if (fieldIdx == -1)
{
throw new ArgumentException($"Input field name {name} was not found in the csv data column names.", nameof(csvData));
}
inputFieldIndexes.Add(fieldIdx);
}
}
//Patternize data
//Prepare input and output vectors
List<double[]> inputVectorCollection = new List<double[]>(csvData.DataRowCollection.Count);
List<double[]> outputVectorCollection = new List<double[]>(csvData.DataRowCollection.Count);
for (int masterRowIdx = 0; masterRowIdx < csvData.DataRowCollection.Count - numOfInputTimePoints; masterRowIdx++)
{
//Input vector
double[] inputVector = new double[inputFieldIndexes.Count * numOfInputTimePoints];
for (int timepointRowSubIdx = 0, vectorIdx = 0; timepointRowSubIdx < numOfInputTimePoints; timepointRowSubIdx++)
{
for (int i = 0; i < inputFieldIndexes.Count; i++, vectorIdx++)
{
string value = csvData.DataRowCollection[masterRowIdx + timepointRowSubIdx].GetValueAt(inputFieldIndexes[i]);
inputVector[vectorIdx] = value.ParseDouble(true, $"Can't parse double value {value}.");
}
}
inputVectorCollection.Add(inputVector);
//Output vector
double[] outputVector = new double[outputFieldIndexes.Count];
for (int i = 0; i < outputFieldIndexes.Count; i++)
{
string value = csvData.DataRowCollection[masterRowIdx + numOfInputTimePoints].GetValueAt(outputFieldIndexes[i]);
outputVector[i] = value.ParseDouble(true, $"Can't parse double value {value}.");
}
outputVectorCollection.Add(outputVector);
}
//Create and return new dataset
return new SampleDataset(inputVectorCollection, outputVectorCollection);
}
/// <summary>
/// Creates dataset from time-serie csv data.
/// </summary>
/// <param name="csvData">Csv data holder.</param>
/// <param name="inputFieldNameCollection">Input field names.</param>
/// <param name="outputFieldNameCollection">Output field names.</param>
/// <param name="remainingInputVector">The last unused input vector (next input).</param>
/// <remarks>
/// Useable for time-series regression task.
/// </remarks>
public static SampleDataset Load(CsvDataHolder csvData,
List<string> inputFieldNameCollection,
List<string> outputFieldNameCollection,
out double[] remainingInputVector
)
{
remainingInputVector = null;
List<int> inputFieldIndexes = new List<int>();
List<int> outputFieldIndexes = new List<int>();
if (inputFieldNameCollection != null)
{
//Check the number of fields
if (csvData.ColNameCollection.NumOfStringValues < inputFieldNameCollection.Count)
{
throw new ArgumentException("The number of column names in csv data is less than the number of the input fields.", nameof(csvData));
}
//Collect indexes of allowed input fields
foreach (string name in inputFieldNameCollection)
{
int fieldIdx = csvData.ColNameCollection.IndexOf(name);
if (fieldIdx == -1)
{
throw new ArgumentException($"The input field name {name} was not found in the csv data column names.", nameof(csvData));
}
inputFieldIndexes.Add(fieldIdx);
}
}
else
{
int[] indexes = new int[csvData.ColNameCollection.NumOfStringValues];
indexes.Indices();
inputFieldIndexes = new List<int>(indexes);
}
for (int i = 0; i < outputFieldNameCollection.Count; i++)
{
int fieldIdx = csvData.ColNameCollection.IndexOf(outputFieldNameCollection[i]);
if (fieldIdx == -1)
{
throw new ArgumentException($"The output field name {outputFieldNameCollection[i]} was not found in the csv data column names.", nameof(csvData));
}
outputFieldIndexes.Add(fieldIdx);
}
//Prepare input and output vectors
List<double[]> inputVectorCollection = new List<double[]>(csvData.DataRowCollection.Count);
List<double[]> outputVectorCollection = new List<double[]>(csvData.DataRowCollection.Count);
for (int i = 0; i < csvData.DataRowCollection.Count; i++)
{
//Input vector
double[] inputVector = new double[inputFieldIndexes.Count];
for (int j = 0; j < inputFieldIndexes.Count; j++)
{
inputVector[j] = csvData.DataRowCollection[i].GetValueAt(inputFieldIndexes[j]).ParseDouble(true, $"Can't parse double value {csvData.DataRowCollection[i].GetValueAt(inputFieldIndexes[j])}.");
}
if (i < csvData.DataRowCollection.Count - 1)
{
//Within the dataset
inputVectorCollection.Add(inputVector);
}
else
{
//Remaining input vector out of the dataset
remainingInputVector = inputVector;
}
if (i > 0)
{
//Output vector
double[] outputVector = new double[outputFieldIndexes.Count];
for (int j = 0; j < outputFieldIndexes.Count; j++)
{
outputVector[j] = csvData.DataRowCollection[i].GetValueAt(outputFieldIndexes[j]).ParseDouble(true, $"Can't parse double value {csvData.DataRowCollection[i].GetValueAt(outputFieldIndexes[j])}.");
}
outputVectorCollection.Add(outputVector);
}
}
//Create and return dataset
return new SampleDataset(inputVectorCollection, outputVectorCollection);
}
/// <summary>
/// Loads csv datafile containing time-serie data where each row
/// contains variable(features) data of one time point.
/// Then converts loaded time-serie data so that input vector contains
/// features data from specified number of time points and
/// output vector contains features data from immediately followed time point.
/// Then splits data to the training and testing datasets and
/// saves them as two csv files (training and testing).
/// Output features are at the end of data line.
/// </summary>
/// <remarks>
/// Useable for regression tasks when you want to work with fixed-length patterns instead of continuous time-series.
/// </remarks>
/// <param name="timeSeriesDataFile">The name of a csv datafile containing the time-serie data.</param>
/// <param name="featureNames">The names of features to be used from every time-serie time-point (for both input and output vectors).</param>
/// <param name="numOfInputTimePoints">Specifies how many time-points of time-serie should constitute input vector.</param>
/// <param name="testDataRatio">Specifies what ratio from all data to use as the testing data.</param>
/// <param name="outputTrainDataFile">The name of a csv datafile where to save training data.</param>
/// <param name="outputTestDataFile">The name of a csv datafile where to save testing data.</param>
/// <param name="delimiter">Data items delimiter.</param>
public static void LoadPatternizeAndSave(string timeSeriesDataFile,
List<string> featureNames,
int numOfInputTimePoints,
double testDataRatio,
string outputTrainDataFile,
string outputTestDataFile,
char delimiter = CsvDataHolder.DefaultDelimiter
)
{
//Time series data
CsvDataHolder csvData = new CsvDataHolder(timeSeriesDataFile);
SampleDataset allData = SampleDataset.LoadAndPatternize(csvData, numOfInputTimePoints, featureNames);
//Split data to training and testing data
int numOfTestingSamples = (int)Math.Round(allData.Count * testDataRatio, MidpointRounding.AwayFromZero);
if (numOfTestingSamples < 1)
{
throw new ArgumentException("Too low testDataRatio or few data samples.", nameof(testDataRatio));
}
SampleDataset trainingData = new SampleDataset();
SampleDataset testingData = new SampleDataset();
for (int i = 0; i < allData.Count; i++)
{
if (i < allData.Count - numOfTestingSamples)
{
trainingData.AddSample(trainingData.Count,
(double[])allData.SampleCollection[i].InputVector.Clone(),
(double[])allData.SampleCollection[i].OutputVector.Clone()
);
}
else
{
testingData.AddSample(testingData.Count,
(double[])allData.SampleCollection[i].InputVector.Clone(),
(double[])allData.SampleCollection[i].OutputVector.Clone()
);
}
}
//Save the data
trainingData.SaveAsCsv(outputTrainDataFile, CsvOutputFeaturesPosition.Last, CsvOutputFeaturesPresence.Separately, delimiter);
testingData.SaveAsCsv(outputTestDataFile, CsvOutputFeaturesPosition.Last, CsvOutputFeaturesPresence.Separately, delimiter);
return;
}
//Methods
/// <summary>
/// Saves dataset as csv file.
/// </summary>
/// <param name="fileName">Name of the output csv file.</param>
/// <param name="outputFeaturesPosition">Specifies where are output features in csv data row.</param>
/// <param name="outputFeaturesPresence">Specifies how are output features presented in csv data row.</param>
/// <param name="delimiter">Data delimiter to be used.</param>
public void SaveAsCsv(string fileName,
CsvOutputFeaturesPosition outputFeaturesPosition,
CsvOutputFeaturesPresence outputFeaturesPresence,
char delimiter = CsvDataHolder.DefaultDelimiter
)
{
CsvDataHolder csvDataHolder = new CsvDataHolder(delimiter, null, Count);
foreach (Sample sample in SampleCollection)
{
double[] outputValues;
if (outputFeaturesPresence == CsvOutputFeaturesPresence.Separately)
{
outputValues = sample.OutputVector;
}
else
{
outputValues = new double[1];
outputValues[0] = sample.OutputVector.IndexOfMax(out _) + (outputFeaturesPresence == CsvOutputFeaturesPresence.ClassesAsNumberFrom1 ? 1 : 0);
}
double[] allValues = (double[])(outputFeaturesPosition == CsvOutputFeaturesPosition.First ? outputValues.Concat(sample.InputVector) : sample.InputVector.Concat(outputValues));
DelimitedStringValues dsv = new DelimitedStringValues(allValues.Length);
foreach (double value in allValues)
{
dsv.AddValue(value.ToString(CultureInfo.InvariantCulture));
}
csvDataHolder.DataRowCollection.Add(dsv);
}
csvDataHolder.Save(fileName);
return;
}
/// <summary>
/// Data in input vectors is considered as a time series data.
/// This function changes an order of data in input vectors to be organized according
/// to given variable schema. See the TimeSeriesPattern class and its FlatVarSchema enum
/// for detailed information about the multivariate schemas.
/// </summary>
/// <param name="numOfVariables">Number of varibles in input vector.</param>
/// <param name="newFlatVarSchema">New multivariate schema to be applied.</param>
/// <returns>New dataset with converted input patterns.</returns>
/// <seealso cref="TimeSeriesPattern"/>
public SampleDataset ConvertInputFlatVarSchema(int numOfVariables, TimeSeriesPattern.FlatVarSchema newFlatVarSchema)
{
if(numOfVariables <= 0 || FirstInputVectorLength % numOfVariables != 0)
{
throw new ArgumentException($"Inconsistent or invalid specified number of variables ({numOfVariables}) for input vector length ({FirstInputVectorLength})", nameof(numOfVariables));
}
//Loop and convert samples
SampleDataset dataset = new SampleDataset();
foreach(Sample sample in SampleCollection)
{
TimeSeriesPattern tsp = new TimeSeriesPattern(sample.InputVector,
numOfVariables,
newFlatVarSchema == TimeSeriesPattern.FlatVarSchema.VarSequence ? TimeSeriesPattern.FlatVarSchema.Groupped : TimeSeriesPattern.FlatVarSchema.VarSequence
);
double[] convertedInputVector = tsp.Flattenize(newFlatVarSchema);
dataset.AddSample(sample.ID, convertedInputVector, sample.OutputVector);
}
return dataset;
}
/// <summary>
/// Adds specified sample instance directly.
/// </summary>
/// <param name="sample">A sample instance to be directly added.</param>
private void AddSampleInternal(Sample sample)
{
try
{
_sampleIDRef.Add(sample.ID, sample);
}
catch (Exception)
{
throw new ArgumentException("Sample with the same ID already exists.", nameof(sample));
}
SampleCollection.Add(sample);
return;
}
/// <summary>
/// Adds new sample into the dataset.
/// </summary>
/// <param name="sample">A sample to be added.</param>
public void AddSample(Sample sample)
{
AddSampleInternal(new Sample(sample));
return;
}
/// <summary>
/// Adds new sample into the dataset.
/// </summary>
/// <param name="id">Sample ID.</param>
/// <param name="inputVector">Input vector.</param>
/// <param name="outputVector">Output vector.</param>
public void AddSample(int id, double[] inputVector, double[] outputVector)
{
AddSampleInternal(new Sample(id, inputVector, outputVector));
return;
}
/// <summary>
/// Gets sample by sample ID.
/// </summary>
/// <param name="sampleID">Sample ID.</param>
public Sample GetSample(int sampleID)
{
if (_sampleIDRef.TryGetValue(sampleID, out Sample sample))
{
return sample;
}
return null;
}
/// <summary>
/// Sorts samples in ascending order by ID.
/// </summary>
public void SortByID()
{
SampleCollection.Sort(Sample.IDComparer);
return;
}
/// <summary>
/// Adds all samples from another dataset.
/// </summary>
/// <param name="dataset">Another dataset.</param>
public void Add(SampleDataset dataset)
{
foreach (Sample sample in dataset.SampleCollection)
{
AddSample(sample);
}
return;
}
/// <summary>
/// Creates a shallow clone.
/// </summary>
public SampleDataset ShallowClone()
{
return new SampleDataset(SampleCollection);
}
/// <summary>
/// Randomly shuffles samples.
/// </summary>
/// <param name="rand">Random generator to be used.</param>
public void Shuffle(Random rand)
{
List<Sample> tmp = new List<Sample>(SampleCollection);
SampleCollection.Clear();
int[] shuffledIndices = new int[tmp.Count];
shuffledIndices.Indices();
rand.Shuffle(shuffledIndices);
for (int i = 0; i < shuffledIndices.Length; i++)
{
SampleCollection.Add(tmp[shuffledIndices[i]]);
}
return;
}
/// <summary>
/// Simply minces this dataset to sub-datasets having specified nuber of samples.
/// Note that the last sub-dataset can have smaller number of samples.
/// </summary>
/// <param name="numOfSubDatasetSamples">Desired nuber of samples in sub-dataset.</param>
/// <returns>List of smaller sub-datasets.</returns>
public List<SampleDataset> Folderize(int numOfSubDatasetSamples)
{
if (numOfSubDatasetSamples <= 0) numOfSubDatasetSamples = 1;
int numOfSubDatasets = Count / numOfSubDatasetSamples;
if (numOfSubDatasets == 0) ++numOfSubDatasets;
if (numOfSubDatasets * numOfSubDatasetSamples < Count) ++numOfSubDatasets;
List<SampleDataset> subDatasets = new List<SampleDataset>(numOfSubDatasets);
for (int subDatasetIdx = 0, sampleIdx = 0; subDatasetIdx < numOfSubDatasets; subDatasetIdx++)
{
SampleDataset subDataset = new SampleDataset(numOfSubDatasetSamples);
for(int i = 0; i < numOfSubDatasetSamples && sampleIdx < Count; i++, sampleIdx++)
{
subDataset.AddSample(SampleCollection[sampleIdx]);
}
subDatasets.Add(subDataset);
}
return subDatasets;
}
/// <summary>
/// Minces this dataset to a collection of smaller folds (sub-datasets).
/// </summary>
/// <remarks>
/// When output task is Categorical then is checked consistency that always only one feature is true
/// in the output vector.
/// When output task is Categorical then is ensured that every fold contains all categories in the +- same distribution as on whole dataset.
/// When output task is Binary with one output feature then is ensured that every fold contains 0 and 1 in the +- same distribution as on whole dataset.
/// </remarks>
/// <param name="foldDataRatio">Requested samples ratio constituting single fold (sub-dataset).</param>
/// <param name="taskType">Type of computation output task (purpose of folderization).</param>
/// <returns>Created folds (sub-datasets).</returns>
public List<SampleDataset> Folderize(double foldDataRatio, OutputTaskType taskType)
{
if (Count < 2)
{
throw new InvalidOperationException($"Insufficient number of samples ({Count.ToString(CultureInfo.InvariantCulture)}). Minimum is 2.");
}
int numOfOutputs = FirstOutputVectorLength;
List<SampleDataset> foldCollection = new List<SampleDataset>();
//Fold data ratio basic correction
if (foldDataRatio > MaxRatioOfFoldData)
{
foldDataRatio = MaxRatioOfFoldData;
}
//Prelimitary fold size estimation
int foldSize = Math.Max(1, (int)Math.Round(Count * foldDataRatio, 0, MidpointRounding.AwayFromZero));
//Prelimitary number of folds
int numOfFolds = (int)Math.Round((double)Count / foldSize, MidpointRounding.AwayFromZero);
//Folds creation
if (taskType == OutputTaskType.Regression || (taskType == OutputTaskType.Binary && numOfOutputs > 1))
{
//Simple split
int samplesPos = 0;
for (int foldIdx = 0; foldIdx < numOfFolds; foldIdx++)
{
SampleDataset fold = new SampleDataset(foldSize);
for (int i = 0; i < foldSize && samplesPos < Count; i++)
{
fold.AddSample(SampleCollection[samplesPos]);
++samplesPos;
}
foldCollection.Add(fold);
}
//Remaining samples
for (int i = 0; i < Count - samplesPos; i++)
{
int foldIdx = i % foldCollection.Count;
foldCollection[foldIdx].AddSample(SampleCollection[samplesPos + i]);
}
}//Non-balanced output
else
{
double binBorder = BinFeatureFilter.GetBinaryBorder(FeatureFilterBase.FeatureUse.Output);
//Keep balanced 0/1 ratios on output
if (numOfOutputs == 1)
{
//Only one binary output
//Investigation of the output data metrics
BinDistribution refBinDistr = new BinDistribution(binBorder);
refBinDistr.Update(from sample in SampleCollection select sample.OutputVector, 0);
int min01 = Math.Min(refBinDistr.NumOf[0], refBinDistr.NumOf[1]);
if (min01 < 2)
{
throw new InvalidOperationException($"Insufficient bin 0 or 1 samples (less than 2).");
}
if (numOfFolds > min01)
{
numOfFolds = min01;
}
//Scan data
int[] bin0SampleIdxs = new int[refBinDistr.NumOf[0]];
int bin0SamplesPos = 0;
int[] bin1SampleIdxs = new int[refBinDistr.NumOf[1]];
int bin1SamplesPos = 0;
for (int i = 0; i < Count; i++)
{
if (SampleCollection[i].OutputVector[0] >= refBinDistr.BinBorder)
{
bin1SampleIdxs[bin1SamplesPos++] = i;
}
else
{
bin0SampleIdxs[bin0SamplesPos++] = i;
}
}
//Determine distributions of 0 and 1 for one fold
int datasetBin0Count = Math.Max(1, refBinDistr.NumOf[0] / numOfFolds);
int datasetBin1Count = Math.Max(1, refBinDistr.NumOf[1] / numOfFolds);
//Datasets creation
bin0SamplesPos = 0;
bin1SamplesPos = 0;
for (int foldIdx = 0; foldIdx < numOfFolds; foldIdx++)
{
SampleDataset fold = new SampleDataset();
//Bin 0
for (int i = 0; i < datasetBin0Count; i++)
{
fold.AddSample(SampleCollection[bin0SampleIdxs[bin0SamplesPos]]);
++bin0SamplesPos;
}
//Bin 1
for (int i = 0; i < datasetBin1Count; i++)
{
fold.AddSample(SampleCollection[bin1SampleIdxs[bin1SamplesPos]]);
++bin1SamplesPos;
}
foldCollection.Add(fold);
}
//Remaining samples
for (int i = 0; i < bin0SampleIdxs.Length - bin0SamplesPos; i++)
{
int foldIdx = i % foldCollection.Count;
foldCollection[foldIdx].AddSample(SampleCollection[bin0SampleIdxs[bin0SamplesPos + i]]);
}
for (int i = 0; i < bin1SampleIdxs.Length - bin1SamplesPos; i++)
{
int foldIdx = i % foldCollection.Count;
foldCollection[foldIdx].AddSample(SampleCollection[bin1SampleIdxs[bin1SamplesPos + i]]);
}
}//Only 1 binary output
else
{
//There is more than 1 binary output -> classification
//Investigation of the output data metrics
//Collect bin 1 sample indexes and check one truth consistency
List<int>[] outBin1SampleIdxs = new List<int>[numOfOutputs];
for (int i = 0; i < numOfOutputs; i++)
{
outBin1SampleIdxs[i] = new List<int>();
}
for (int sampleIdx = 0; sampleIdx < Count; sampleIdx++)
{
int numOf1 = 0;
for (int outFeatureIdx = 0; outFeatureIdx < numOfOutputs; outFeatureIdx++)
{
if (SampleCollection[sampleIdx].OutputVector[outFeatureIdx] >= binBorder)
{
outBin1SampleIdxs[outFeatureIdx].Add(sampleIdx);
++numOf1;
}
}
if (numOf1 != 1)
{
throw new ApplicationException($"Inconsistency on data index {sampleIdx.ToString(CultureInfo.InvariantCulture)}. Output vector has {numOf1.ToString(CultureInfo.InvariantCulture)} feature(s) having bin value 1.");
}
}
//Determine max possible number of folds
int maxNumOfFolds = Count;
for (int outFeatureIdx = 0; outFeatureIdx < numOfOutputs; outFeatureIdx++)
{
int outFeatureMaxFolds = Math.Min(outBin1SampleIdxs[outFeatureIdx].Count, Count - outBin1SampleIdxs[outFeatureIdx].Count);
maxNumOfFolds = Math.Min(outFeatureMaxFolds, maxNumOfFolds);
}
//Correct the number of folds to be created
if (numOfFolds > maxNumOfFolds)
{
numOfFolds = maxNumOfFolds;
}
//Create the folds
for (int foldIdx = 0; foldIdx < numOfFolds; foldIdx++)
{
foldCollection.Add(new SampleDataset());
}
//Samples distribution
for (int outFeatureIdx = 0; outFeatureIdx < numOfOutputs; outFeatureIdx++)
{
for (int bin1SampleRefIdx = 0; bin1SampleRefIdx < outBin1SampleIdxs[outFeatureIdx].Count; bin1SampleRefIdx++)
{
int foldIdx = bin1SampleRefIdx % foldCollection.Count;
int dataIdx = outBin1SampleIdxs[outFeatureIdx][bin1SampleRefIdx];
foldCollection[foldIdx].AddSample(SampleCollection[dataIdx]);
}
}
}//More binary outputs
}//Balanced binary output
return foldCollection;
}
/// <summary>
/// Splits dataset to two parts.
/// Keeps the samples order and IDs.
/// </summary>
/// <param name="numOfSamplesInSecondDataset">Required number of samples in the second part.</param>
/// <param name="firstDataset">The first part dataset.</param>
/// <param name="secondDataset">The second part dataset.</param>
public void Split(int numOfSamplesInSecondDataset, out SampleDataset firstDataset, out SampleDataset secondDataset)
{
if(numOfSamplesInSecondDataset <= 0)
{
throw new ArgumentException($"Requested number of samples in second part dataset has to be GT 0. Received: {numOfSamplesInSecondDataset}.", nameof(numOfSamplesInSecondDataset));
}
if (numOfSamplesInSecondDataset >= Count)
{
throw new ArgumentException($"Requested number of samples in second part dataset has to be LT total number of samples: {Count}. Received {numOfSamplesInSecondDataset}.", nameof(numOfSamplesInSecondDataset));
}
firstDataset = new SampleDataset(SampleCollection.GetRange(0, Count - numOfSamplesInSecondDataset));
secondDataset = new SampleDataset(SampleCollection.GetRange(Count - numOfSamplesInSecondDataset, numOfSamplesInSecondDataset));
return;
}
/// <summary>
/// Prepares input and output feature filters.
/// </summary>
/// <param name="taskType">Network's output task type.</param>
/// <param name="inputFilters">Prepared input filters.</param>
/// <param name="outputFilters">Prepared output filters.</param>
public void PrepareFeatureFilters(OutputTaskType taskType,
out FeatureFilterBase[] inputFilters,
out FeatureFilterBase[] outputFilters
)
{
if(!IsUniform)
{
throw new InvalidOperationException($"Dataset is not uniform so method can not be performed.");
}
//Input filters
FeatureFilterBase[] iFilters = new FeatureFilterBase[FirstInputVectorLength];
for (int i = 0; i < iFilters.Length; i++)
{
iFilters[i] = new RealFeatureFilter(FeatureFilterBase.FeatureUse.Input);
}
Parallel.For(0, iFilters.Length, featureIdx =>
{
for (int sampleIdx = 0; sampleIdx < SampleCollection.Count; sampleIdx++)
{
iFilters[featureIdx].Update(SampleCollection[sampleIdx].InputVector[featureIdx]);
}
});
inputFilters = iFilters;
//Output filters
FeatureFilterBase[] oFilters = new FeatureFilterBase[FirstOutputVectorLength];
for (int i = 0; i < oFilters.Length; i++)
{
oFilters[i] = (taskType == OutputTaskType.Regression) ? (FeatureFilterBase)new RealFeatureFilter(FeatureFilterBase.FeatureUse.Output) : (FeatureFilterBase)new BinFeatureFilter(FeatureFilterBase.FeatureUse.Output);
}
Parallel.For(0, oFilters.Length, featureIdx =>
{
for (int sampleIdx = 0; sampleIdx < SampleCollection.Count; sampleIdx++)
{
oFilters[featureIdx].Update(SampleCollection[sampleIdx].OutputVector[featureIdx]);
}
});
outputFilters = oFilters;
return;
}
/// <summary>
/// Creates new dataset from this dataset, prepares in/out filters and standardize data.
/// </summary>
/// <param name="taskType">Network's output task type.</param>
/// <param name="inputFilters">Prepared input filters.</param>
/// <param name="outputFilters">Prepared output filters.</param>
/// <param name="centered">Specifies whether to center value between -1 an 1, so min value is -1 and max value is 1. If false, 0 is not the interval center but represents the average value and -1 or 1 represents the magnitude.</param>
public SampleDataset CreateStandardized(OutputTaskType taskType,
out FeatureFilterBase[] inputFilters,
out FeatureFilterBase[] outputFilters,
bool centered
)
{
PrepareFeatureFilters(taskType,
out inputFilters,
out outputFilters
);
double[][] stdInputs = new double[SampleCollection.Count][];
double[][] stdOutputs = new double[SampleCollection.Count][];
for (int i = 0; i < SampleCollection.Count; i++)
{
stdInputs[i] = new double[FirstInputVectorLength];
stdOutputs[i] = new double[FirstOutputVectorLength];
}
FeatureFilterBase[] iFilters = inputFilters;
FeatureFilterBase[] oFilters = outputFilters;
Parallel.For(0, iFilters.Length, featureIdx =>
{
for (int sampleIdx = 0; sampleIdx < SampleCollection.Count; sampleIdx++)
{
stdInputs[sampleIdx][featureIdx] = iFilters[featureIdx].ApplyFilter(SampleCollection[sampleIdx].InputVector[featureIdx], centered);
}
});
Parallel.For(0, oFilters.Length, featureIdx =>
{
for (int sampleIdx = 0; sampleIdx < SampleCollection.Count; sampleIdx++)