generated from oceanhackweek/ohwyy_proj_template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNEWbackground_points_code.qmd
80 lines (60 loc) · 2.46 KB
/
NEWbackground_points_code.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
title: "background_points"
format: html
editor: visual
---
## Code for creating background points
## Hallie's function
```{r}
get_enviro_data <- function(var) {
#This is an example! Not the final!
layercodes <- var
env <- sdmpredictors::load_layers(layercodes, equalarea = FALSE)
#Crop
env <- st_as_stars(env)
extent <- st_bbox(c(xmin = vars$lonmin, xmax = vars$lonmax, ymin = vars$latmin, ymax = vars$latmax), crs = st_crs(env))
rc <- st_crop(x = env, y = extent)
return(rc)
}
```
## Use Hallie's function to get background points
```{r}
library(stars)
library(sf)
library(sdmpredictors)
library(dplyr)
library(mapview)
bbox <- list(lonmin = -71, lonmax = -64, latmin = 42, latmax = 45)
var <- c("BO_nitrate")
get_enviro_data <- function(var, bbox, nsamp = 1000, save_csv = FALSE, file_path = "background_points.csv") {
# Load the specified environmental layers
env <- sdmpredictors::load_layers(var, equalarea = FALSE)
# Convert to stars object
env_stars <- st_as_stars(env)
# Create a bounding box with CRS
extent <- st_bbox(c(xmin = bbox$lonmin, xmax = bbox$lonmax, ymin = bbox$latmin, ymax = bbox$latmax), crs = st_crs(env_stars))
bbox_sf <- st_as_sfc(extent)
# Crop the environmental data to the bounding box
cropped_env <- st_crop(env_stars, bbox_sf)
# Generate random background points within the bounding box
set.seed(42) # For reproducibility
random_points <- st_sample(bbox_sf, size = nsamp)
# Convert points to a data frame and then to an sf object
random_points_sf <- st_as_sf(as.data.frame(st_coordinates(random_points)), coords = c("X", "Y"), crs = st_crs(env_stars))
# Crop the points to the extent of the environmental layer
cropped_points <- st_intersection(random_points_sf, st_as_sf(cropped_env, as_points = FALSE, merge = TRUE))
# Optionally save cropped points to CSV
if (save_csv) {
write.csv(st_coordinates(cropped_points), file = file_path, row.names = FALSE)
}
# Return the cropped environmental data and cropped background points
return(list(cropped_env = cropped_env, background_points = cropped_points))
}
result <- get_enviro_data(var = var, bbox = bbox, nsamp = 1000, save_csv = TRUE, file_path = "cropped_background_points.csv")
# Access the cropped environmental data
cropped_env <- result$cropped_env
# Access the cropped background points
background_points_sf <- result$background_points
# Visualize the cropped background points
mapview(background_points_sf, col.regions = "gray")
```