-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathdomain.ml
547 lines (446 loc) · 17.6 KB
/
domain.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# 2 "domain.ml"
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* KC Sivaramakrishnan, Indian Institute of Technology, Madras *)
(* Stephen Dolan, University of Cambridge *)
(* Tom Kelly, OCaml Labs Consultancy *)
(* *)
(* Copyright 2019 Indian Institute of Technology, Madras *)
(* Copyright 2014 University of Cambridge *)
(* Copyright 2021 OCaml Labs Consultancy Ltd *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
open! Stdlib
[@@@ocaml.flambda_o3]
external runtime5 : unit -> bool @@ portable = "%runtime5"
exception Encapsulated of string
module Runtime_4 = struct
module DLS = struct
module Access = struct
type t = Access
let for_initial_domain = Access
end
let[@inline] access f =
try f Access.Access with
| exn ->
let bt = Printexc.get_raw_backtrace () in
let exn_string = Printexc.to_string exn in
Printexc.raise_with_backtrace (Encapsulated exn_string) bt
let unique_value = Obj.magic_portable (Obj.repr (ref 0))
let state = Obj.magic_portable (ref (Array.make 8 unique_value))
let init () = ()
type 'a key : value mod portable contended = Key of (int * (Access.t -> 'a))
[@@unboxed]
[@@unsafe_allow_any_mode_crossing "runtime4 only"]
let key_counter = Obj.magic_portable (ref 0)
let new_key' ?split_from_parent:_ init_orphan =
let key_counter = Obj.magic_uncontended key_counter in
let idx = !key_counter in
key_counter := idx + 1;
Key (idx, init_orphan)
(* If necessary, grow the current domain's local state array such that [idx]
* is a valid index in the array. *)
let maybe_grow idx =
let state = Obj.magic_uncontended state in
let st = !state in
let sz = Array.length st in
if idx < sz then st
else begin
let rec compute_new_size s =
if idx < s then s else compute_new_size (2 * s)
in
let new_sz = compute_new_size sz in
let new_st = Array.make new_sz (Obj.magic_uncontended unique_value) in
Array.blit st 0 new_st 0 sz;
state := new_st;
new_st
end
let set (_ : Access.t) (Key (idx, _init)) x =
let st = maybe_grow idx in
(* [Sys.opaque_identity] ensures that flambda does not look at the type of
* [x], which may be a [float] and conclude that the [st] is a float array.
* We do not want OCaml's float array optimisation kicking in here. *)
st.(idx) <- Obj.repr (Sys.opaque_identity x)
let get access (Key (idx, init)) =
let st = maybe_grow idx in
let v = st.(idx) in
if v == Obj.magic_uncontended unique_value then
let v' = Obj.repr (init access) in
st.(idx) <- (Sys.opaque_identity v');
Obj.magic v'
else Obj.magic v
end
(******** Callbacks **********)
(* first spawn, domain startup and at exit functionality *)
let first_domain_spawned = Atomic.make false
let first_spawn_function = ref (fun () -> ())
let before_first_spawn f =
if Atomic.Contended.get first_domain_spawned then
raise (Invalid_argument "first domain already spawned")
else begin
let old_f = !first_spawn_function in
let new_f () = old_f (); f () in
first_spawn_function := new_f
end
let at_exit_key = DLS.new_key' (fun (_ : DLS.Access.t) -> (fun () -> ()))
let at_exit' access f =
let old_exit : unit -> unit = DLS.get access at_exit_key in
let new_exit () =
(* The domain termination callbacks ([at_exit]) are run in
last-in-first-out (LIFO) order in order to be symmetric with the domain
creation callbacks ([at_each_spawn]) which run in first-in-fisrt-out
(FIFO) order. *)
f (); old_exit ()
in
DLS.set access at_exit_key new_exit
let do_at_exit () =
let f : unit -> unit = DLS.get DLS.Access.for_initial_domain at_exit_key in
f ()
(* Unimplemented functions *)
let not_implemented () =
failwith "Multi-domain functionality not supported in runtime4"
type !'a t
type id = int
let spawn' _ = not_implemented ()
let join _ = not_implemented ()
let get_id _ = not_implemented ()
let self () = not_implemented ()
let cpu_relax () = not_implemented ()
let is_main_domain () = not_implemented ()
let recommended_domain_count () = not_implemented ()
end
module Runtime_5 = struct
module Raw = struct
(* Low-level primitives provided by the runtime *)
type t = private int
(* The layouts of [state] and [term_sync] are hard-coded in
[runtime/domain.c] *)
type 'a state =
| Running
| Finished of ('a, exn) result [@warning "-unused-constructor"]
type 'a term_sync = {
(* protected by [mut] *)
mutable state : 'a state [@warning "-unused-field"] ;
mut : Mutex.t ;
cond : Condition.t ;
}
external spawn : (unit -> 'a) @ portable once -> 'a term_sync -> t @@ portable
= "caml_domain_spawn"
external self : unit -> t @@ portable
= "caml_ml_domain_id" [@@noalloc]
external cpu_relax : unit -> unit @@ portable
= "caml_ml_domain_cpu_relax"
external get_recommended_domain_count: unit -> int @@ portable
= "caml_recommended_domain_count" [@@noalloc]
end
let cpu_relax () = Raw.cpu_relax ()
type id = Raw.t
type 'a t = {
domain : Raw.t;
term_sync : 'a Raw.term_sync;
}
module DLS = struct
module Access = struct
type t = Access
let for_initial_domain = Access
end
let[@inline] access (f : Access.t -> 'a @ portable contended) =
try f Access.Access with
| exn ->
let bt = Printexc.get_raw_backtrace () in
let exn_string = Printexc.to_string exn in
Printexc.raise_with_backtrace (Encapsulated exn_string) bt
module Obj_opt : sig @@ portable
type t
val none : t
val some : 'a -> t
val is_some : t -> bool
(** [unsafe_get obj] may only be called safely
if [is_some] is true.
[unsafe_get (some v)] is equivalent to
[Obj.obj (Obj.repr v)]. *)
val unsafe_get : t -> 'a
end = struct
type t = Obj.t
let none = Obj.magic_portable (Obj.repr (ref 0))
let some v = Obj.repr v
let is_some obj = (obj != Obj.magic_uncontended none)
let unsafe_get obj = Obj.obj obj
end
type dls_state = Obj_opt.t array
external get_dls_state : unit -> dls_state @@ portable = "%dls_get"
external set_dls_state : dls_state -> unit @@ portable =
"caml_domain_dls_set" [@@noalloc]
external compare_and_set_dls_state : dls_state -> dls_state -> bool @@ portable =
"caml_domain_dls_compare_and_set" [@@noalloc]
let create_dls () =
let st = Array.make 8 (Obj.magic_uncontended Obj_opt.none) in
set_dls_state st
let init () = create_dls ()
type 'a key = int * (Access.t -> 'a) Modes.Portable.t
let key_counter = Atomic.make 0
type key_initializer : immutable_data =
KI: 'a key * ('a -> (Access.t -> 'a) @ portable) @@ portable -> key_initializer
[@@unsafe_allow_any_mode_crossing "CR with-kinds"]
type key_initializer_list : immutable_data = key_initializer list
let parent_keys = Atomic.make ([] : key_initializer_list)
let rec add_parent_key ki =
let l = Atomic.Contended.get parent_keys in
if not (Atomic.Contended.compare_and_set parent_keys l (ki :: l))
then add_parent_key ki
let new_key' ?split_from_parent init_orphan =
let idx = Atomic.fetch_and_add key_counter 1 in
let k = idx, { Modes.Portable.portable = init_orphan } in
begin match split_from_parent with
| None -> ()
| Some split -> add_parent_key (KI(k, split))
end;
k
(* If necessary, grow the current domain's local state array such that [idx]
* is a valid index in the array. *)
let rec maybe_grow idx =
(* CR ocaml 5 all-runtime5: remove this hack which is here to stop
the backend seeing the dls_get operation and failing on runtime4 *)
if not (runtime5 ()) then assert false else
(* end of hack *)
let st = get_dls_state () in
let sz = Array.length st in
if idx < sz then st
else begin
let rec compute_new_size s =
if idx < s then s else compute_new_size (2 * s)
in
let new_sz = compute_new_size sz in
let new_st = Array.make new_sz (Obj.magic_uncontended Obj_opt.none) in
Array.blit st 0 new_st 0 sz;
(* We want a implementation that is safe with respect to
single-domain multi-threading: retry if the DLS state has
changed under our feet.
Note that the number of retries will be very small in
contended scenarios, as the array only grows, with
exponential resizing. *)
if compare_and_set_dls_state st new_st
then new_st
else maybe_grow idx
end
let set (type a) (_ : Access.t) (idx, _init) (x : a) =
let st = maybe_grow idx in
(* [Sys.opaque_identity] ensures that flambda does not look at the type of
* [x], which may be a [float] and conclude that the [st] is a float array.
* We do not want OCaml's float array optimisation kicking in here. *)
st.(idx) <- Obj_opt.some (Sys.opaque_identity x)
let[@inline never] array_compare_and_set a i oldval newval =
(* Note: we cannot use [@poll error] due to the
allocations on a.(i) in the Double_array case. *)
let curval = a.(i) in
if curval == oldval then (
Array.unsafe_set a i newval;
true
) else false
let get (type a) access ((idx, init) : a key) : a =
let st = maybe_grow idx in
let obj = st.(idx) in
if Obj_opt.is_some obj
then (Obj_opt.unsafe_get obj : a)
else begin
let v : a = init.portable access in
let new_obj = Obj_opt.some (Sys.opaque_identity v) in
(* At this point, [st] or [st.(idx)] may have been changed
by another thread on the same domain.
If [st] changed, it was resized into a larger value,
we can just reuse the new value.
If [st.(idx)] changed, we drop the current value to avoid
letting other threads observe a 'revert' that forgets
previous modifications. *)
let st = get_dls_state () in
if array_compare_and_set st idx obj new_obj
then v
else begin
(* if st.(idx) changed, someone must have initialized
the key in the meantime. *)
let updated_obj = st.(idx) in
if Obj_opt.is_some updated_obj
then (Obj_opt.unsafe_get updated_obj : a)
else assert false
end
end
type key_value : value mod portable contended =
KV : 'a key * (Access.t -> 'a) @@ portable -> key_value
[@@unsafe_allow_any_mode_crossing "CR with-kinds"]
let get_initial_keys access : key_value list =
List.map
(fun (KI (k, split)) -> KV (k, (split (get access k))))
(Atomic.Contended.get parent_keys)
let set_initial_keys access (l: key_value list) =
List.iter (fun (KV (k, v)) -> set access k (v access)) l
end
(******** Identity **********)
let get_id { domain; _ } = domain
let self () = Raw.self ()
let is_main_domain () = (self () :> int) = 0
(******** Callbacks **********)
(* first spawn, domain startup and at exit functionality *)
let first_domain_spawned = Atomic.make false
let first_spawn_function = Obj.magic_portable (ref (fun () -> ()))
let before_first_spawn f =
if Atomic.Contended.get first_domain_spawned then
raise (Invalid_argument "first domain already spawned")
else begin
let old_f = !first_spawn_function in
let new_f () = old_f (); f () in
first_spawn_function := new_f
end
let do_before_first_spawn () =
if not (Atomic.Contended.get first_domain_spawned) then begin
Atomic.Contended.set first_domain_spawned true;
let first_spawn_function = Obj.magic_uncontended first_spawn_function in
!first_spawn_function();
(* Release the old function *)
first_spawn_function := (fun () -> ())
end
let at_exit_key = DLS.new_key' (fun (_ : DLS.Access.t) -> (fun () -> ()))
let at_exit' access f =
let old_exit : unit -> unit = DLS.get access at_exit_key in
let new_exit () =
f (); old_exit ()
in
DLS.set access at_exit_key new_exit
let do_at_exit () =
let f : unit -> unit = DLS.get DLS.Access.for_initial_domain at_exit_key in
f ()
let _ = Stdlib.do_domain_local_at_exit := do_at_exit
(******* Creation and Termination ********)
let spawn' f =
do_before_first_spawn ();
let pk = DLS.access (fun access -> DLS.get_initial_keys access) in
(* [term_sync] is used to synchronize with the joining domains *)
let term_sync =
Raw.{ state = Running ;
mut = Mutex.create () ;
cond = Condition.create () }
in
let body () =
match
DLS.create_dls ();
let access = DLS.Access.Access in
DLS.set_initial_keys access pk;
let res = f access in
res
with
(* Run the [at_exit] callbacks when the domain computation either
terminates normally or exceptionally. *)
| res ->
(* If the domain computation terminated normally, but the
[at_exit] callbacks raised an exception, then return the
exception. *)
do_at_exit ();
res
| exception exn ->
(* If both the domain computation and the [at_exit] callbacks
raise exceptions, then ignore the exception from the
[at_exit] callbacks and return the original exception. *)
(try do_at_exit () with _ -> ());
raise exn
in
let domain = Raw.spawn body term_sync in
{ domain ; term_sync }
let join { term_sync ; _ } =
let open Raw in
let rec loop () =
match term_sync.state with
| Running ->
Condition.wait term_sync.cond term_sync.mut;
loop ()
| Finished res ->
res
in
match Mutex.protect term_sync.mut loop with
| Ok x -> x
| Error ex -> raise ex
let recommended_domain_count = Raw.get_recommended_domain_count
end
module type S = sig
module DLS : sig
module Access : sig
type t : value mod external_ global portable many unique
val for_initial_domain : t @@ nonportable
end
type 'a key : value mod portable contended
val access
: (Access.t -> 'a @ portable contended) @ local portable
-> 'a @ portable contended
@@ portable
val new_key'
: ?split_from_parent:('a -> (Access.t -> 'a) @ portable) @ portable
-> (Access.t -> 'a) @ portable
-> 'a key
@@ portable
val get : Access.t -> 'a key -> 'a @@ portable
val set : Access.t -> 'a key -> 'a -> unit @@ portable
val init : unit -> unit
end
type !'a t
val spawn' : (DLS.Access.t -> 'a) @ portable once -> 'a t @@ portable
val join : 'a t -> 'a @@ portable
type id = private int
val get_id : 'a t -> id @@ portable
val self : unit -> id @@ portable
val cpu_relax : unit -> unit @@ portable
val is_main_domain : unit -> bool @@ portable
val recommended_domain_count : unit -> int @@ portable
val before_first_spawn : (unit -> unit) -> unit @@ nonportable
val at_exit' : DLS.Access.t -> (unit -> unit) -> unit @@ portable
val do_at_exit : unit -> unit @@ nonportable
end
let runtime_4_impl = (module Runtime_4 : S)
let runtime_5_impl = (module Runtime_5 : S)
let impl = if runtime5 () then runtime_5_impl else runtime_4_impl
module M : S = (val impl)
include M
module Safe = struct
module DLS = struct
include DLS
exception Encapsulated = Encapsulated
let new_key ?split_from_parent f =
let split_from_parent =
match split_from_parent with
| None -> None
| Some split_from_parent ->
Some (fun a ->
let f = split_from_parent a in
(fun (_ : Access.t) -> f ()))
in
let f = (fun (_ : Access.t) -> f ()) in
new_key' ?split_from_parent f
;;
end
let spawn' = spawn'
let spawn f = spawn' (fun _ -> f ())
let at_exit' = at_exit'
let at_exit f = DLS.access (fun access -> at_exit' access f)
end
module DLS = struct
type 'a key = 'a Safe.DLS.key
let new_key ?split_from_parent f =
let split_from_parent =
match split_from_parent with
| None -> None
| Some split_from_parent ->
Some (Obj.magic_portable (fun x -> Obj.magic_portable (fun () -> split_from_parent x)))
in
Safe.DLS.new_key ?split_from_parent (Obj.magic_portable f)
;;
let get key = Safe.DLS.get (Obj.magic () : Safe.DLS.Access.t) key
let set key value = Safe.DLS.set (Obj.magic () : Safe.DLS.Access.t) key value
let init = Safe.DLS.init
end
let spawn f = Safe.spawn (Obj.magic_portable f)
let at_exit f = Safe.at_exit (Obj.magic_portable f)
let () = DLS.init ()
let _ = Stdlib.do_domain_local_at_exit := do_at_exit