-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathw207_project_v4.py
316 lines (250 loc) · 15.6 KB
/
w207_project_v4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB
import sklearn.ensemble as ske
from sklearn.model_selection import train_test_split
from sklearn import tree, linear_model
from sklearn.feature_selection import SelectFromModel
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn import metrics
datatypes = {'ProductName': str, 'EngineVersion': str, 'AppVersion': str, 'AvSigVersion': str, 'IsBeta': np.int64,
'RtpStateBitfield': np.float64, 'IsSxsPassiveMode': np.int64, 'DefaultBrowsersIdentifier': np.float64,
'AVProductStatesIdentifier': np.float64, 'AVProductsInstalled': np.float64, 'AVProductsEnabled': np.float64,
'HasTpm': np.int64, 'CountryIdentifier': np.int64, 'CityIdentifier': np.float64, 'OrganizationIdentifier': np.float64,
'GeoNameIdentifier': np.float64, 'LocaleEnglishNameIdentifier': np.int64, 'Platform': str, 'Processor': str,
'OsVer': str, 'OsBuild': np.int64, 'OsSuite': np.int64, 'OsPlatformSubRelease': str, 'OsBuildLab': str,
'SkuEdition': str, 'IsProtected': np.float64, 'AutoSampleOptIn': np.int64, 'PuaMode': str, 'SMode': np.float64,
'IeVerIdentifier': np.float64, 'SmartScreen': str, 'Firewall': np.float64, 'UacLuaenable': np.float64,
'Census_MDC2FormFactor': str, 'Census_DeviceFamily': str, 'Census_OEMNameIdentifier': np.float64,
'Census_OEMModelIdentifier': np.float64, 'Census_ProcessorCoreCount': np.float64,
'Census_ProcessorManufacturerIdentifier': np.float64, 'Census_ProcessorModelIdentifier': np.float64,
'Census_ProcessorClass': str, 'Census_PrimaryDiskTotalCapacity': np.float64,
'Census_PrimaryDiskTypeName': str, 'Census_SystemVolumeTotalCapacity': np.float64,
'Census_HasOpticalDiskDrive': np.int64, 'Census_TotalPhysicalRAM': np.float64, 'Census_ChassisTypeName': str,
'Census_InternalPrimaryDiagonalDisplaySizeInInches': np.float64,
'Census_InternalPrimaryDisplayResolutionHorizontal': np.float64,
'Census_InternalPrimaryDisplayResolutionVertical': np.float64, 'Census_PowerPlatformRoleName': str,
'Census_InternalBatteryType': str, 'Census_InternalBatteryNumberOfCharges': np.float64,
'Census_OSVersion': str, 'Census_OSArchitecture': str, 'Census_OSBranch': str, 'Census_OSBuildNumber': np.int64,
'Census_OSBuildRevision': np.int64, 'Census_OSEdition': str, 'Census_OSSkuName': str,
'Census_OSInstallTypeName': str, 'Census_OSInstallLanguageIdentifier': np.float64,
'Census_OSUILocaleIdentifier': np.int64, 'Census_OSWUAutoUpdateOptionsName': str,
'Census_IsPortableOperatingSystem': np.int64, 'Census_GenuineStateName': str, 'Census_ActivationChannel': str,
'Census_IsFlightingInternal': np.float64, 'Census_IsFlightsDisabled': np.float64, 'Census_FlightRing': str,
'Census_ThresholdOptIn': np.float64, 'Census_FirmwareManufacturerIdentifier': np.float64,
'Census_FirmwareVersionIdentifier': np.float64, 'Census_IsSecureBootEnabled': np.int64,
'Census_IsWIMBootEnabled': np.float64, 'Census_IsVirtualDevice': np.float64, 'Census_IsTouchEnabled': np.int64,
'Census_IsPenCapable': np.int64, 'Census_IsAlwaysOnAlwaysConnectedCapable': np.float64, 'Wdft_IsGamer': np.float64,
'Wdft_RegionIdentifier': np.float64,
'HasDetections': np.int64}
full_features = pd.read_csv("./csv/train.csv", dtype=datatypes, index_col="MachineIdentifier")
#full_features = pd.read_csv("./csv/train.csv", dtype=datatypes, nrows=200000, index_col="MachineIdentifier")
full_labels = full_features["HasDetections"]
# Dropping labels ["HasDetections"] from training dataset
full_features = full_features.drop(["HasDetections"], axis=1)
print (full_features.shape)
# Checking the columns with the most NULL values
print((full_features.isnull().sum()).sort_values(ascending=False).head(10))
full_features = full_features.drop(['PuaMode','Census_ProcessorClass','DefaultBrowsersIdentifier','Census_InternalBatteryType','Census_OSEdition','Census_IsFlightingInternal'], axis=1)
string_columns = []
for colname in full_features.dtypes.keys():
if full_features[colname].dtypes.name == "object":
string_columns.append(colname)
print (string_columns)
full_features[string_columns].head(10)
def df_replacevalues(df, colname, oldvalues, newvalues):
# First, we need to get the most frequent value of the column
topvalue = df[colname].value_counts().idxmax()
# Replace NaN values with the popular value
df[colname].fillna(topvalue, inplace=True)
# We need to make sure no other value than oldvalues exists
indexes = df[~df[colname].isin(oldvalues)].index
# If the "Garbage" values are more than 1%, then raise an error
if len(indexes) > len(df) / 100:
raise Exception("Not all neccessary values are present in oldvalues array")
# Replace "Garbage" with the top value
df.loc[indexes,[colname]] = topvalue
print ("Previous values", df[colname].unique())
df[colname] = pd.to_numeric(df[colname].replace(oldvalues, newvalues), errors='raise', downcast='integer')
print ("New values", df[colname].unique())
colname = "ProductName"
oldvalues = ['win8defender','mse','mseprerelease','windowsintune','fep','scep']
newvalues = [i+1 for i in range(len(oldvalues))]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Platform"
oldvalues = ['windows10','windows7','windows8','windows2016']
newvalues = [10,7,8,2016]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Processor"
oldvalues = ['x64','arm64','x86']
newvalues = [i+1 for i in range(len(oldvalues))]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "OsPlatformSubRelease"
oldvalues = ['rs4','rs1','rs3','windows7','windows8.1','th1','rs2','th2','prers5']
newvalues = [504,501,503,507,508,201,502,202,405]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "SkuEdition"
oldvalues = ['Pro','Home','Invalid','Enterprise LTSB','Enterprise','Education','Cloud','Server']
newvalues = [55,52,0,71,70,20,90,80]
df_replacevalues(full_features, colname, oldvalues, newvalues)
print(full_features["SmartScreen"].value_counts())
print(full_features["SmartScreen"].unique())
colname = "SmartScreen"
oldvalues = ['Off','off','OFF','On','on','Warn','Prompt','ExistsNotSet','Block','RequireAdmin']
newvalues = [0,0,0,1,1,2,3,4,5,6]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_MDC2FormFactor"
oldvalues = ['Desktop','Notebook','Detachable','PCOther','AllInOne','Convertible','SmallTablet','LargeTablet','SmallServer','LargeServer','MediumServer','ServerOther','IoTOther']
newvalues = [i+1 for i in range(len(oldvalues))]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_DeviceFamily"
oldvalues = ['Windows.Desktop','Windows.Server','Windows']
newvalues = [i+1 for i in range(len(oldvalues))]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_PrimaryDiskTypeName"
oldvalues = ['HDD','SSD','UNKNOWN','Unspecified']
newvalues = [1,2,3,3]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_ChassisTypeName"
oldvalues = ['Notebook', 'Desktop', 'Laptop', 'Portable', 'AllinOne', 'MiniTower', 'Convertible', 'Other', 'UNKNOWN', 'Detachable',
'LowProfileDesktop', 'HandHeld', 'SpaceSaving', 'Tablet', 'Tower', 'Unknown', 'MainServerChassis', 'MiniPC', 'LunchBox',
'RackMountChassis', 'SubNotebook', 'BusExpansionChassis']
newvalues = [1,2,1,1,3,4,5,6,-1,7,8,9,10,11,12,-1,13,2,14,15,1,16]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_PowerPlatformRoleName"
oldvalues = ['Mobile', 'Desktop', 'Slate', 'Workstation', 'SOHOServer', 'UNKNOWN', 'EnterpriseServer', 'AppliancePC', 'PerformanceServer', 'Unspecified']
newvalues = [1,2,3,2,4,-1,5,6,7,-1]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_OSArchitecture"
oldvalues = ['amd64', 'x86', 'arm64']
newvalues = [1,3,2]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_OSBranch"
oldvalues = ['rs4_release', 'rs3_release', 'rs3_release_svc_escrow', 'rs2_release', 'rs1_release', 'th2_release', 'th2_release_sec', 'th1_st1', 'th1', 'rs5_release', 'rs3_release_svc_escrow_im', 'rs_prerelease', 'rs_prerelease_flt', 'rs5_release_sigma']
newvalues = [i+1 for i in range(len(oldvalues))]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_OSSkuName"
oldvalues = ['CORE', 'PROFESSIONAL', 'CORE_SINGLELANGUAGE', 'CORE_COUNTRYSPECIFIC', 'EDUCATION', 'ENTERPRISE', 'PROFESSIONAL_N', 'ENTERPRISE_S', 'STANDARD_SERVER', 'CLOUD', 'CORE_N', 'STANDARD_EVALUATION_SERVER', 'EDUCATION_N', 'ENTERPRISE_S_N', 'DATACENTER_EVALUATION_SERVER', 'SB_SOLUTION_SERVER', 'ENTERPRISE_N', 'PRO_WORKSTATION', 'UNLICENSED']
newvalues = [i+1 for i in range(len(oldvalues))]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_OSInstallTypeName"
oldvalues = ['UUPUpgrade', 'IBSClean', 'Update', 'Upgrade', 'Other', 'Reset', 'Refresh', 'Clean', 'CleanPCRefresh']
newvalues = [i+1 for i in range(len(oldvalues))]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_OSWUAutoUpdateOptionsName"
oldvalues = ['FullAuto', 'UNKNOWN', 'Notify', 'AutoInstallAndRebootAtMaintenanceTime', 'Off', 'DownloadNotify']
newvalues = [i+1 for i in range(len(oldvalues))]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_GenuineStateName"
oldvalues = ['IS_GENUINE', 'INVALID_LICENSE', 'OFFLINE', 'UNKNOWN', 'TAMPERED']
newvalues = [i+1 for i in range(len(oldvalues))]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_ActivationChannel"
oldvalues = ['Retail', 'OEM:DM', 'Volume:GVLK', 'OEM:NONSLP', 'Volume:MAK', 'Retail:TB:Eval']
newvalues = [i+1 for i in range(len(oldvalues))]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_FlightRing"
oldvalues = ['Retail', 'NOT_SET', 'Unknown', 'WIS', 'WIF', 'RP', 'Disabled', 'OSG', 'Canary', 'Invalid']
newvalues = [i+1 for i in range(len(oldvalues))]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "Census_FlightRing"
print (full_features[colname].value_counts())
print (colname, full_features[colname].value_counts().keys())
print (full_features[["ProductName","EngineVersion","AppVersion","AvSigVersion","Platform","Processor","OsVer","OsPlatformSubRelease","OsBuildLab","SkuEdition","SmartScreen","Census_MDC2FormFactor","Census_DeviceFamily","Census_PrimaryDiskTypeName","Census_ChassisTypeName","Census_PowerPlatformRoleName", "Census_OSVersion","Census_OSArchitecture","Census_OSBranch","Census_OSSkuName","Census_OSInstallTypeName","Census_OSWUAutoUpdateOptionsName","Census_GenuineStateName", "Census_ActivationChannel","Census_FlightRing"]].head(10))
versions = ['EngineVersion','AppVersion','AvSigVersion','OsVer','OsBuildLab','Census_OSVersion']
newcolumnnames = []
for colname in versions:
data = full_features[colname].str.split(r"\.|-",expand=True) # Split if '.' or '-'
for i in range(data.shape[1]):
newcolumnname = "%s_%d" % (colname, i+1)
newcolumnnames.append(newcolumnname)
full_features[newcolumnname] = data[i]
print(full_features[newcolumnnames].head(10))
colname = "OsBuildLab_3"
oldvalues = ['amd64fre', 'x86fre', 'arm64fre']
newvalues = [1,3,2]
df_replacevalues(full_features, colname, oldvalues, newvalues)
colname = "OsBuildLab_4"
oldvalues = ['rs4_release', 'rs3_release_svc_escrow', 'rs3_release', 'rs2_release', 'rs1_release', 'th2_release_sec', 'th1', 'winblue_ltsb_escrow', 'th2_release', 'rs1_release_inmarket', 'winblue_ltsb', 'win7sp1_ldr', 'rs3_release_svc', 'rs1_release_1', 'win7sp1_ldr_escrow', 'rs1_release_sec', 'th1_st1', 'rs5_release', 'rs1_release_inmarket_aim', 'rs3_release_svc_escrow_im', 'th2_release_inmarket', 'rs_prerelease', 'rs_prerelease_flt', 'win7sp1_gdr', 'winblue_gdr', 'th1_escrow', 'win7_gdr', 'winblue_r4', 'rs1_release_inmarket_rim', 'rs1_release_d', 'winblue_r9', 'winblue_r5', 'win7_rtm', 'win7sp1_rtm', 'winblue_r7', 'winblue_r3', 'winblue_r8', 'rs5_release_sigma', 'win7_ldr', 'rs5_release_sigma_dev', 'rs_xbox', 'rs5_release_edge', 'winblue_rtm', 'win7sp1_rc', 'rs3_release_svc_sec', 'rs_onecore_base_cobalt', 'rs6_prerelease', 'rs_onecore_sigma_grfx_dev', 'rs_onecore_stack_per1', 'rs5_release_sign', 'rs_shell']
newvalues = [i+1 for i in range(len(oldvalues))]
df_replacevalues(full_features, colname, oldvalues, newvalues)
versions = ['EngineVersion','AppVersion','AvSigVersion','OsVer','OsBuildLab','Census_OSVersion']
full_features = full_features.drop(versions, axis=1)
for colname in full_features.columns:
full_features[colname] = pd.to_numeric(full_features[colname], errors='coerce')
topvalue = full_features[colname].value_counts().idxmax()
full_features[colname].fillna(topvalue, inplace=True)
print(full_features.head(10))
# Let's see some details of the loaded data
print(full_features.describe())
# Shuffle the data
#np.random.seed(0)
shuffle = np.random.permutation(np.arange(full_features.shape[0]))
train_features, test_features, train_labels, test_labels = train_test_split(full_features.values[shuffle], full_labels.values[shuffle], train_size=0.90)
print (train_features.shape, test_features.shape, train_labels.shape, test_labels.shape)
scaler = StandardScaler()
scaler.fit(train_features)
normalized_train_features = scaler.transform(train_features)
normalized_test_features = scaler.transform(test_features)
# Code source: Gaël Varoquaux
# Andreas Müller
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
h = .02 # step size in the mesh
names = [ #"Nearest Neighbors",
#"Linear SVM",
#"RBF SVM",
#"Gaussian Process",
"Decision Tree",
"Random Forest",
"Neural Net",
"AdaBoost",
"Naive Bayes",
"QDA"]
classifiers = [
#KNeighborsClassifier(3),
#SVC(kernel="linear", C=0.025),
#SVC(gamma=2, C=1),
#GaussianProcessClassifier(1.0 * RBF(1.0)),
DecisionTreeClassifier(max_depth=10),
RandomForestClassifier(max_depth=10, n_estimators=20, max_features=5),
MLPClassifier(alpha=1, max_iter=1000),
AdaBoostClassifier(),
GaussianNB(),
QuadraticDiscriminantAnalysis()]
results = {}
print('Testing algorithms using normalized original dataset...\n')
# iterate over classifiers
for name, clf in zip(names, classifiers):
clf.fit(normalized_train_features, train_labels)
score = clf.score(normalized_test_features, test_labels)
print("%s : %f %%" % (name, score*100))
results[name] = score
winner = max(results, key=results.get)
print()
print(f'Winning algorithm is {winner} with a {results[winner]*100}% accuracy')