-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbts_main.py
346 lines (276 loc) · 15.6 KB
/
bts_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# Copyright (C) 2019 Jin Han Lee
#
# This file is a part of BTS.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>
from __future__ import absolute_import, division, print_function
import os
import argparse
import time
import datetime
import sys
from average_gradients import *
from tensorflow.python import pywrap_tensorflow
from bts_dataloader import *
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
def convert_arg_line_to_args(arg_line):
for arg in arg_line.split():
if not arg.strip():
continue
yield arg
parser = argparse.ArgumentParser(description='BTS TensorFlow implementation.', fromfile_prefix_chars='@')
parser.convert_arg_line_to_args = convert_arg_line_to_args
parser.add_argument('--mode', type=str, help='train or test', default='train')
parser.add_argument('--model_name', type=str, help='model name', default='bts_eigen')
parser.add_argument('--encoder', type=str, help='type of encoder, desenet121_bts or densenet161_bts', default='densenet161_bts')
parser.add_argument('--dataset', type=str, help='dataset to train on, kitti or nyu', default='kitti')
parser.add_argument('--data_path', type=str, help='path to the data', required=False)
parser.add_argument('--gt_path', type=str, help='path to the groundtruth data', required=False)
parser.add_argument('--filenames_file', type=str, help='path to the filenames text file', required=False)
parser.add_argument('--input_height', type=int, help='input height', default=480)
parser.add_argument('--input_width', type=int, help='input width', default=640)
parser.add_argument('--batch_size', type=int, help='batch size', default=4)
parser.add_argument('--num_epochs', type=int, help='number of epochs', default=50)
parser.add_argument('--learning_rate', type=float, help='initial learning rate', default=1e-4)
parser.add_argument('--end_learning_rate', type=float, help='end learning rate', default=-1)
parser.add_argument('--max_depth', type=float, help='maximum depth in estimation', default=80)
parser.add_argument('--do_random_rotate', help='if set, will perform random rotation for augmentation', action='store_true')
parser.add_argument('--degree', type=float, help='random rotation maximum degree', default=5.0)
parser.add_argument('--do_kb_crop', help='if set, crop input images as kitti benchmark images', action='store_true')
parser.add_argument('--num_gpus', type=int, help='number of GPUs to use for training', default=1)
parser.add_argument('--num_threads', type=int, help='number of threads to use for data loading', default=8)
parser.add_argument('--log_directory', type=str, help='directory to save checkpoints and summaries', default='')
parser.add_argument('--checkpoint_path', type=str, help='path to a checkpoint to load', default='')
parser.add_argument('--pretrained_model', type=str, help='path to a pretrained model checkpoint to load', default='')
parser.add_argument('--retrain', help='if used with checkpoint_path, will restart training from step zero', action='store_true')
parser.add_argument('--fix_first_conv_blocks', help='if set, will fix the first two conv blocks', action='store_true')
parser.add_argument('--fix_first_conv_block', help='if set, will fix the first conv block', action='store_true')
parser.add_argument('--fix_densenet', help='if set, will fix densenet ', action='store_true')
if sys.argv.__len__() == 2:
arg_filename_with_prefix = '@' + sys.argv[1]
args = parser.parse_args([arg_filename_with_prefix])
else:
args = parser.parse_args()
if args.mode == 'train' and not args.checkpoint_path:
from bts import *
elif args.mode == 'train' and args.checkpoint_path:
model_dir = os.path.dirname(args.checkpoint_path)
model_name = os.path.basename(model_dir)
import sys
sys.path.append(model_dir)
for key, val in vars(__import__(model_name)).items():
if key.startswith('__') and key.endswith('__'):
continue
vars()[key] = val
def get_num_lines(file_path):
f = open(file_path, 'r')
lines = f.readlines()
f.close()
return len(lines)
def get_tensors_in_checkpoint_file(file_name,all_tensors=True,tensor_name=None):
varlist=[]
var_value =[]
reader = pywrap_tensorflow.NewCheckpointReader(file_name)
if all_tensors:
var_to_shape_map = reader.get_variable_to_shape_map()
for key in sorted(var_to_shape_map):
varlist.append(key)
var_value.append(reader.get_tensor(key))
else:
varlist.append(tensor_name)
var_value.append(reader.get_tensor(tensor_name))
return (varlist, var_value)
def build_tensors_in_checkpoint_file(loaded_tensors):
full_var_list = list()
var_check = set()
# Loop all loaded tensors
for i, tensor_name in enumerate(loaded_tensors[0]):
# Extract tensor
try:
tensor_aux = tf.get_default_graph().get_tensor_by_name(tensor_name+":0")
except:
print(tensor_name + ' is in pretrained model but not in current training model')
if tensor_aux not in var_check:
full_var_list.append(tensor_aux)
var_check.add(tensor_aux)
return full_var_list
def sum_gradients(clone_grads):
averaged_grads = []
for grad_and_vars in zip(*clone_grads):
#tf.logging.info("after clone_grads"+str(grad_and_vars))
grads = []
var = grad_and_vars[0][1]
try:
for g, v in grad_and_vars:
assert v == var
grads.append(g)
grad = tf.add_n(grads, name = v.op.name + '_summed_gradients')
except:
import pdb
pdb.set_trace()
averaged_grads.append((grad, v))
tf.summary.histogram("variables_and_gradients_" + grad.op.name, grad, ['model_0'])
tf.summary.histogram("variables_and_gradients_" + v.op.name, v, ['model_0'])
tf.summary.scalar("variables_and_gradients_" + grad.op.name+\
'_mean/var_mean', tf.reduce_mean(grad)/tf.reduce_mean(var), ['model_0'])
tf.summary.scalar("variables_and_gradients_" + v.op.name+'_mean',tf.reduce_mean(var), ['model_0'])
tf.logging.info("after clone_grads2")
return averaged_grads
def train(params):
with tf.Graph().as_default(), tf.device('/cpu:0'):
global_step = tf.Variable(0, trainable=False)
num_training_samples = get_num_lines(args.filenames_file)
steps_per_epoch = np.ceil(num_training_samples / params.batch_size).astype(np.int32)
num_total_steps = params.num_epochs * steps_per_epoch
start_learning_rate = args.learning_rate
end_learning_rate = args.end_learning_rate if args.end_learning_rate != -1 else start_learning_rate * 0.1
learning_rate = tf.train.polynomial_decay(start_learning_rate, global_step, num_total_steps, end_learning_rate, 0.9)
opt_step = tf.train.AdamOptimizer(learning_rate, epsilon=1e-3)
print("Total number of samples: {}".format(num_training_samples))
print("Total number of steps: {}".format(num_total_steps))
if args.fix_first_conv_blocks or args.fix_first_conv_block:
if args.fix_first_conv_blocks:
print('Fixing first two conv blocks')
else:
print('Fixing first conv block')
dataloader = BtsDataloader(args.data_path, args.gt_path, args.filenames_file, params, args.mode,
do_rotate=args.do_random_rotate, degree=args.degree,
do_kb_crop=args.do_kb_crop)
dataloader_iter = dataloader.loader.make_initializable_iterator()
iter_init_op = dataloader_iter.initializer
tower_grads = []
tower_losses = []
reuse_variables = None
with tf.variable_scope(tf.get_variable_scope()):
for i in range(args.num_gpus):
with tf.device('/gpu:%d' % i):
image, depth_gt, focal = dataloader_iter.get_next()
model = BtsModel(params, args.mode, image, depth_gt, focal=focal,
reuse_variables=reuse_variables, model_index=i, bn_training=False)
loss = model.total_loss
tower_losses.append(loss)
reuse_variables = True
if args.fix_densenet or args.fix_first_conv_blocks or args.fix_first_conv_block:
trainable_vars = tf.trainable_variables()
#print(args.fix_densenet, "tranable_vars:", trainable_vars)
if args.fix_densenet:
g_vars = [var for var in
trainable_vars if 'densenet' not in var.name]
elif args.fix_first_conv_blocks:
g_vars = [var for var in
trainable_vars if ('conv1' or 'dense_block1' or 'dense_block2' or 'transition_block1' or 'transition_block2') not in var.name]
else:
g_vars = [var for var in
trainable_vars if ('dense_block1' or 'transition_block1') not in var.name]
else:
g_vars = None
grads = opt_step.compute_gradients(loss, var_list=g_vars)
grads = [(tf.clip_by_value(grad, -0.0001, 0.0001), var) for grad, var in grads]
tower_grads.append(grads)
#sum_gradients( tower_grads)
with tf.variable_scope(tf.get_variable_scope()):
with tf.device('/gpu:%d' % (args.num_gpus - 1)):
grads = average_gradients(tower_grads)
apply_gradient_op = opt_step.apply_gradients(grads, global_step=global_step)
total_loss = tf.reduce_mean(tower_losses)
tf.summary.scalar('learning_rate', learning_rate, ['model_0'])
tf.summary.scalar('total_loss', total_loss, ['model_0'])
summary_op = tf.summary.merge_all('model_0')
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
summary_writer = tf.summary.FileWriter(args.log_directory + '/' + args.model_name, sess.graph)
train_saver = tf.train.Saver(max_to_keep=200)
total_num_parameters = 0
for variable in tf.trainable_variables():
total_num_parameters += np.array(variable.get_shape().as_list()).prod()
print("Total number of trainable parameters: {}".format(total_num_parameters))
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
coordinator = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coordinator)
if args.pretrained_model != '':
vars_to_restore = get_tensors_in_checkpoint_file(file_name=args.pretrained_model)
tensors_to_load = build_tensors_in_checkpoint_file(vars_to_restore)
loader = tf.train.Saver(tensors_to_load)
loader.restore(sess, args.pretrained_model)
# Load checkpoint if set
if args.checkpoint_path != '':
restore_path = args.checkpoint_path
train_saver.restore(sess, restore_path)
if args.retrain:
sess.run(global_step.assign(0))
start_step = global_step.eval(session=sess)
start_time = time.time()
duration = 0
should_init_iter_op = False
if args.mode == 'train':
should_init_iter_op = True
for step in range(start_step, num_total_steps):
before_op_time = time.time()
if step % steps_per_epoch == 0 or should_init_iter_op is True:
sess.run(iter_init_op)
should_init_iter_op = False
_, lr, loss_value = sess.run([apply_gradient_op, learning_rate, total_loss])
print('step: {}/{}, lr: {:.12f}, loss: {:.12f}'.format(step, num_total_steps, lr, loss_value))
duration += time.time() - before_op_time
if step and step % 100 == 0:
examples_per_sec = params.batch_size / duration * 100
duration = 0
time_sofar = (time.time() - start_time) / 3600
training_time_left = (num_total_steps / step - 1.0) * time_sofar
print('%s:' % args.model_name)
print_string = 'examples/s: {:4.2f} | loss: {:.5f} | time elapsed: {:.2f}h | time left: {:.2f}h'
print(print_string.format(examples_per_sec, loss_value, time_sofar, training_time_left))
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, global_step=step)
summary_writer.flush()
if step and step % 500 == 0:
train_saver.save(sess, args.log_directory + '/' + args.model_name + '/model', global_step=step)
train_saver.save(sess, args.log_directory + '/' + args.model_name + '/model', global_step=num_total_steps)
print('%s training finished' % args.model_name)
print(datetime.datetime.now())
def main(_):
params = bts_parameters(
encoder=args.encoder,
height=args.input_height,
width=args.input_width,
batch_size=args.batch_size,
dataset=args.dataset,
max_depth=args.max_depth,
num_gpus=args.num_gpus,
num_threads=args.num_threads,
num_epochs=args.num_epochs)
if args.mode == 'train':
model_filename = args.model_name + '.py'
command = 'mkdir ' + args.log_directory + '/' + args.model_name
os.system(command)
args_out_path = args.log_directory + '/' + args.model_name + '/' + sys.argv[1]
command = 'cp ' + sys.argv[1] + ' ' + args_out_path
os.system(command)
if args.checkpoint_path == '':
model_out_path = args.log_directory + '/' + args.model_name + '/' + model_filename
command = 'cp bts.py ' + model_out_path
os.system(command)
else:
loaded_model_dir = os.path.dirname(args.checkpoint_path)
loaded_model_name = os.path.basename(loaded_model_dir)
loaded_model_filename = loaded_model_name + '.py'
model_out_path = args.log_directory + '/' + args.model_name + '/' + model_filename
command = 'cp ' + loaded_model_dir + '/' + loaded_model_filename + ' ' + model_out_path
os.system(command)
train(params)
elif args.mode == 'test':
print('This script does not support testing. Use bts_test.py instead.')
if __name__ == '__main__':
tf.app.run()