forked from bbc/cnn-fractional-motion-compensation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
103 lines (92 loc) · 4.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# BSD 3-Clause License
#
# Copyright (c) 2021 BBC
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may
# be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
# BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
# THE POSSIBILITY OF SUCH DAMAGE.
from model_scratch import ScratchCNN, ScratchActCNN, ScratchBiasCNN, ScratchAllCNN, ScratchOneCNN, SRCNN
from model_shared import SharedCNN
from model_competition import CompetitionCNN
from utils import import_path, frac_positions
from itertools import product
import tensorflow as tf
import os
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='CNN Subpixel Motion Interpolation')
parser.add_argument('-c', '--config', type=str, default=None, required=True, help='Config filepath')
parser.add_argument('-a', '--action', type=str, default=None, required=True, help='train or test')
parser.add_argument('-g', '--gpu', type=int, default=0, help='CUDA device number')
parser.add_argument('-gf', '--gpu_fraction', type=float, default=1.0, help='Fraction of GPU usage')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
# import config file details
model_cfg = import_path(args.config)
# create directories where necessary
os.makedirs(model_cfg.checkpoint_dir, exist_ok=True)
os.makedirs(model_cfg.results_dir, exist_ok=True)
os.makedirs(model_cfg.graphs_dir, exist_ok=True)
# loop through all fractional shifts and QPs the network has to be trained for
combined = 1 if model_cfg.model_name == "sharedcnn" or model_cfg.model_name == "competitioncnn" else 0
frac_xy = ["all"] if combined else frac_positions()
qp_list = [27] if combined else [22, 27, 32, 37]
# prepare dictionaries that will store the corresponding filters
for frac, qp in product(frac_xy, qp_list):
model_cfg.fractional_pixel = frac
model_cfg.qp = qp
tf.reset_default_graph()
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_fraction)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
# initialise the specified cnn model
if model_cfg.model_name == "scratchcnn":
cnn_model = ScratchCNN(sess, model_cfg)
elif model_cfg.model_name == "scratchcnn_activation":
cnn_model = ScratchActCNN(sess, model_cfg)
elif model_cfg.model_name == "scratchcnn_bias":
cnn_model = ScratchBiasCNN(sess, model_cfg)
elif model_cfg.model_name == "scratchcnn_all":
cnn_model = ScratchAllCNN(sess, model_cfg)
elif model_cfg.model_name == "scratchcnn_onelayer":
cnn_model = ScratchOneCNN(sess, model_cfg)
elif model_cfg.model_name == "srcnn":
cnn_model = SRCNN(sess, model_cfg)
elif model_cfg.model_name == "sharedcnn":
cnn_model = SharedCNN(sess, model_cfg)
elif model_cfg.model_name == "competitioncnn":
cnn_model = CompetitionCNN(sess, model_cfg)
else:
raise ValueError("Invalid model name specified!")
# train or test the model
if args.action == "train":
if not os.path.exists(model_cfg.dataset_dir):
raise ValueError("Invalid training dataset directory specified!")
cnn_model.train()
elif args.action == "test":
if not os.path.exists(model_cfg.test_dataset_dir):
raise ValueError("Invalid testing dataset directory specified!")
cnn_model.test()
else:
raise ValueError("Invalid action specified!")