-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfine_tune_csvlogger.py
234 lines (200 loc) · 10.2 KB
/
fine_tune_csvlogger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import logging
import torch
import numpy as np
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, EarlyStopping, Callback
from pytorch_lightning.loggers import CSVLogger # Import CSVLogger
from utils.data_processing import load_data, preprocess_data, setup_logging_and_dataset, prepare_transformations, setup_data_module, show_dataset_info
from utils.model import setup_model
from utils.trainer_utils import setup_task_and_trainer
from utils.helpers import load_config, parse_args, get_optimizer_class, get_scheduler_class
from utils.logging_utils import setup_logging
import schnetpack as spk
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def freeze_layers(model, freeze_embedding=True, freeze_interactions_up_to=0, freeze_all_representation=False):
schnet = model.representation
num_interactions = len(schnet.interactions)
if freeze_all_representation:
for param in schnet.parameters():
param.requires_grad = False
logging.info("Froze all representation layers (embedding and interactions)")
for module in model.output_modules:
for param in module.parameters():
param.requires_grad = True
logging.info("Output modules remain trainable")
else:
if freeze_embedding: # add because during printing found there is embedding layer, chatgpt
for param in schnet.embedding.parameters():
param.requires_grad = False
logging.info("Froze embedding layer")
if freeze_interactions_up_to > 0:
actual_frozen = min(freeze_interactions_up_to, num_interactions)
for i in range(actual_frozen):
for param in schnet.interactions[i].parameters():
param.requires_grad = False
logging.info(f"Froze first {actual_frozen} of {num_interactions} interaction blocks")
if freeze_interactions_up_to > num_interactions:
logging.warning(f"Requested to freeze {freeze_interactions_up_to} blocks, but model has only {num_interactions}")
def log_trainable_layers(model):
logging.info("Trainable layers after freezing:")
for name, param in model.named_parameters():
logging.info(f"{name}: {param.requires_grad}")
def print_layer_info(model):
print("Layer Information:")
print(f"{'Layer Name':<50} {'Shape':<20} {'Trainable':<10}")
print("-" * 80)
for name, param in model.named_parameters():
print(f"{name:<50} {str(param.shape):<20} {param.requires_grad:<10}")
class SaveBestModelPt(Callback): # not able to save the model as we are doing in training, so grok suggestion
def __init__(self, save_dir):
super().__init__()
self.save_dir = save_dir
self.best_val_loss = float('inf')
def on_validation_end(self, trainer, pl_module):
current_val_loss = trainer.callback_metrics.get("val_loss", float('inf'))
if current_val_loss < self.best_val_loss:
self.best_val_loss = current_val_loss
save_path = os.path.join(self.save_dir, "model.pt")
torch.save(pl_module.model.state_dict(), save_path)
logging.info(f"Saved best model (.pt) with val_loss={current_val_loss:.4f} to {save_path}")
def check_architecture_compatibility(state_dict, model):
pretrained_keys = set(state_dict.keys())
model_keys = set(dict(model.named_parameters()).keys())
missing_in_model = pretrained_keys - model_keys
extra_in_model = model_keys - pretrained_keys
if missing_in_model:
logging.warning(f"Pre-trained model has keys not in fine-tuning model: {missing_in_model}")
if extra_in_model:
logging.warning(f"Fine-tuning model has extra keys not in pre-trained model: {extra_in_model}")
return len(missing_in_model) == 0 and len(extra_in_model) == 0
def main(args):
config = load_config(args.config)
set_seed(config['settings']['general']['seed'])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f"Using device: {device}")
# not tested properly
script_dir = os.path.dirname(os.path.abspath(__file__))
folder = os.path.abspath(os.path.join(script_dir, config['settings']['logging']['folder']))
logging.info(f"Using output directory: {folder}")
# some permision error, Verify folder exists and is writable
try:
os.makedirs(folder, exist_ok=True)
logging.info(f"Verified or created directory: {folder}")
except PermissionError as e:
logging.error(f"Permission denied for {folder}: {e}")
raise
except OSError as e:
logging.error(f"Error creating {folder}: {e}")
raise
data = load_data(config)
use_last_n = config['settings']['data'].get('use_last_n', None) # to select sample of data
atoms_list, property_list = preprocess_data(data, use_last_n=use_last_n if use_last_n is not None else len(data["R"]))
new_dataset, property_units = setup_logging_and_dataset(config, atoms_list, property_list)
show_dataset_info(new_dataset)
transformations = prepare_transformations(config)
custom_data = setup_data_module(
config,
os.path.join(folder, config['settings']['general']['database_name']),
transformations,
property_units
)
nnpot, outputs = setup_model(config)
# just to make sure fodler has checkpoints
fine_tune_checkpoint = config['settings']['fine_tuning'].get('pretrained_checkpoint')
if not fine_tune_checkpoint or not os.path.exists(fine_tune_checkpoint):
raise FileNotFoundError(f"Pre-trained checkpoint not found at {fine_tune_checkpoint}")
logging.info(f"Loading pre-trained model from {fine_tune_checkpoint}")
checkpoint = torch.load(fine_tune_checkpoint, map_location=device)
state_dict = checkpoint['state_dict']
# facing error but resolve by deepseek but we need to study this,
for key in state_dict:
if 'postprocessors.1.mean' in key:
if state_dict[key].shape == torch.Size([]):
state_dict[key] = state_dict[key].reshape(1)
logging.info(f"Reshaped {key} from scalar to torch.Size([1])")
optimizer_name = config['settings']['training']['optimizer']['type']
scheduler_name = config['settings']['training']['scheduler']['type']
optimizer_cls = get_optimizer_class(optimizer_name)
scheduler_cls = get_scheduler_class(scheduler_name)
fine_tune_lr = config['settings']['fine_tuning'].get('lr', 1e-4) # if user want to change the learning rate
# preapre the same architecture
task = spk.task.AtomisticTask(
model=nnpot,
outputs=outputs,
optimizer_cls=optimizer_cls,
optimizer_args={"lr": fine_tune_lr},
scheduler_cls=scheduler_cls,
scheduler_args={
"mode": "min",
"factor": config['settings']['training']['scheduler']['factor'],
"patience": config['settings']['training']['scheduler']['patience'],
"verbose": config['settings']['training']['scheduler']['verbose']
},
scheduler_monitor=config['settings']['logging']['monitor']
)
if not check_architecture_compatibility(state_dict, task.model):
logging.warning("Architecture mismatch detected. Fine-tuning may be suboptimal.")
task.load_state_dict(state_dict, strict=False)
task.to(device)
print_layer_info(task.model)
freeze_embedding = config['settings']['fine_tuning'].get('freeze_embedding', True)
freeze_interactions_up_to = config['settings']['fine_tuning'].get('freeze_interactions_up_to', 0)
freeze_all_representation = config['settings']['fine_tuning'].get('freeze_all_representation', False)
freeze_layers(task.model, freeze_embedding, freeze_interactions_up_to, freeze_all_representation)
log_trainable_layers(task.model) # if True mean that we are training that layers
# Use YAML-configured subdirectories merged with logging.folder
folder = config['settings']['logging']['folder']
best_model_subdir = config['settings']['fine_tuning'].get('best_model_dir', "fine_tuned_best_model")
checkpoint_subdir = config['settings']['fine_tuning'].get('checkpoint_dir', "fine_tuned_checkpoints")
log_name = config['settings']['fine_tuning'].get('log_name', "fine_tune_logs")
best_model_dir = os.path.join(folder, best_model_subdir)
checkpoint_dir = os.path.join(folder, checkpoint_subdir)
os.makedirs(best_model_dir, exist_ok=True)
os.makedirs(checkpoint_dir, exist_ok=True)
callbacks = [
ModelCheckpoint(
dirpath=checkpoint_dir,
save_top_k=1,
monitor=config['settings']['logging']['monitor'],
filename="fine_tuned-{epoch}-{val_loss:.4f}"
),
SaveBestModelPt(save_dir=best_model_dir),
LearningRateMonitor(logging_interval='epoch')
]
# we should add in tranining also
early_stopping_patience = config['settings']['fine_tuning'].get('early_stopping_patience', 0)
if early_stopping_patience > 0:
callbacks.append(
EarlyStopping(
monitor="val_loss",
patience=early_stopping_patience,
mode="min",
verbose=True
)
)
logging.info(f"Enabled EarlyStopping with patience={early_stopping_patience}")
# Add CSVLogger like in trainer_utils.py
csv_logger = CSVLogger(save_dir=folder, name="csv_logs", version="")
tensorboard_logger = pl.loggers.TensorBoardLogger(save_dir=folder, name=log_name)
logger = [tensorboard_logger, csv_logger]
trainer = pl.Trainer(
callbacks=callbacks,
logger=logger, # same as we do in training
default_root_dir=folder,
max_epochs=config['settings']['training']['max_epochs'],
accelerator=config['settings']['training']['accelerator'],
precision=config['settings']['training']['precision'],
devices=config['settings']['training']['devices']
)
logging.info("Starting fine-tuning")
trainer.fit(task, datamodule=custom_data)
if __name__ == '__main__':
args = parse_args()
setup_logging()
logging.info(f"{'*' * 30} Fine-Tuning Started {'*' * 30}")
main(args)