-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_train.py
122 lines (99 loc) · 3.7 KB
/
build_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from argparse import ArgumentParser
import os
import random
import json
random.seed(42)
parser = ArgumentParser()
parser.add_argument('--qrels', required=True)
parser.add_argument('--save_to', required=True)
parser.add_argument('--hn_file', type=str, required=True)
parser.add_argument('--n_sample', type=int, default=30)
parser.add_argument('--shard_size', type=int, default=45000)
parser.add_argument('--merge_valid', type=int, default=0)
args = parser.parse_args()
def run():
with open('query_info_encoded.json', 'r') as f:
query_info_dict_encoded = json.load(f)
with open('dataset_info_encoded.json', 'r') as f:
dataset_info_dict_encoded = json.load(f)
with open(os.path.join(args.qrels, 'train.json'), 'r') as f:
train_qrels = json.load(f)
with open(os.path.join(args.qrels, 'valid.json'), 'r') as f:
valid_qrels = json.load(f)
with open(os.path.join(args.qrels, 'test.json'), 'r') as f:
test_qrels = json.load(f)
if args.merge_valid == 1:
train_qrels.update(valid_qrels)
valid_qrels = test_qrels
train_qrels = {k: v for k, v in train_qrels.items() if sum(v.values()) > 0}
# build train
counter = 0
shard_id = 0
f = None
save_to_train = os.path.join(args.save_to, 'train')
os.makedirs(save_to_train, exist_ok=True)
hn_dict = {}
with open(args.hn_file, 'r') as hn_f:
for line in hn_f:
if line:
query_id, dataset_id, _ = line.strip().split('\t')
if query_id not in hn_dict.keys():
hn_dict[query_id] = []
if dataset_id not in train_qrels[query_id].keys():
hn_dict[query_id].append(dataset_id)
for query_id, rel_dict in train_qrels.items():
pp, nn = [], []
for dataset_id, rel in rel_dict.items():
if rel == 0:
nn.append(dataset_info_dict_encoded[dataset_id])
else:
pp.append(dataset_info_dict_encoded[dataset_id])
# supplement negative data
if len(nn) == 0:
nn = [dataset_info_dict_encoded[x] for x in hn_dict[query_id]]
random.shuffle(nn)
train_example = {
'query': query_info_dict_encoded[query_id],
'positives': pp,
'negatives': nn[:args.n_sample],
}
counter += 1
if f is None:
f = open(os.path.join(save_to_train, f'split{shard_id:02d}.json'), 'w')
f.write(json.dumps(train_example) + '\n')
if counter == args.shard_size:
f.close()
f = None
shard_id += 1
counter = 0
if f is not None:
f.close()
# # build query
# save_to_query = os.path.join(args.save_to, 'query')
# os.makedirs(save_to_query, exist_ok=True)
# f = open(os.path.join(save_to_query, f'train.query.json'), 'w')
# for query_id in train_qrels.keys():
# encoded = {
# 'text_id': query_id,
# 'text': query_info_dict_encoded[query_id]
# }
# f.write(json.dumps(encoded) + '\n')
# f.close()
# f = open(os.path.join(save_to_query, f'dev.query.json'), 'w')
# for query_id in valid_qrels.keys():
# encoded = {
# 'text_id': query_id,
# 'text': query_info_dict_encoded[query_id]
# }
# f.write(json.dumps(encoded) + '\n')
# f.close()
# f = open(os.path.join(save_to_query, f'test.query.json'), 'w')
# for query_id in test_qrels.keys():
# encoded = {
# 'text_id': query_id,
# 'text': query_info_dict_encoded[query_id]
# }
# f.write(json.dumps(encoded) + '\n')
# f.close()
if __name__ == "__main__":
run()