-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid_search.py
273 lines (224 loc) · 10.2 KB
/
grid_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from ragatouille import RAGTrainer, RAGPretrainedModel
import os
import json
from argparse import ArgumentParser
from itertools import product
import numpy as np
import io
import re
import sys
import ctypes
import pytrec_eval
from datetime import datetime
import shutil
parser = ArgumentParser()
parser.add_argument('--doc_maxlen', type=int, default=256)
parser.add_argument('--top_k', type=int, default=10)
parser.add_argument('--fold_start', type=int, default=0)
parser.add_argument('--fold_end', type=int, default=5)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--learning_rate', type=float, default=5e-6)
parser.add_argument('--mode', choices=['grid_search', 'train', 'without_ft'])
args = parser.parse_args()
def copy_checkpoint(src_dir, dest_dir):
os.makedirs(dest_dir, exist_ok=True)
for item in os.listdir(src_dir):
s = os.path.join(src_dir, item)
d = os.path.join(dest_dir, item)
if os.path.isfile(s):
shutil.copy2(s, d)
def train(fold, annotated_pairs, full_corpus, learning_rate, batch_size):
trainer = RAGTrainer(model_name=f"ColBERT_{fold}", pretrained_model_name="colbert-ir/colbertv2.0", language_code="en")
trainer.prepare_training_data(
raw_data=annotated_pairs,
data_out_path='data/',
all_documents=full_corpus,
num_new_negatives=10,
mine_hard_negatives=True,
hard_negative_model_size='small',
pairs_with_labels=True,
positive_label=1,
negative_label=0
)
model_path = trainer.train(
batch_size=batch_size,
nbits=2, # How many bits will the trained model use when compressing indexes
maxsteps=500000, # Maximum steps hard stop
use_ib_negatives=True, # Use in-batch negative to calculate loss
dim=128, # How many dimensions per embedding. 128 is the default and works well.
learning_rate=learning_rate, # Learning rate, small values ([3e-6,3e-5] work best if the base model is BERT-like, 5e-6 is often the sweet spot)
doc_maxlen=args.doc_maxlen, # Maximum document length. Because of how ColBERT works, smaller chunks (128-256) work very well.
use_relu=False, # Disable ReLU -- doesn't improve performance
warmup_steps="auto", # Defaults to 10%
)
time_now = datetime.now().strftime('%Y-%m/%d')
directory = os.path.join('.ragatouille/colbert/none', time_now)
folders = os.listdir(directory)
folders_with_mtime = [(folder, os.path.getmtime(os.path.join(directory, folder))) for folder in folders]
latest_folder = max(folders_with_mtime, key=lambda x: x[1])[0]
ckpt_path = os.path.join(directory, latest_folder, 'checkpoints/colbert')
print(f'fold: {fold}\ncheckpoint: {ckpt_path}')
with open('train_log.txt', 'a') as output_file:
output_file.write(f'{fold}\t{ckpt_path}\t{learning_rate}\t{batch_size}\n')
copy_checkpoint(src_dir=ckpt_path, dest_dir=f'checkpoints/fold_{fold}')
return ckpt_path
def pipeline(fold, query_info_dict, dataset_info_dict, learning_rate, batch_size, merge_valid=False):
full_corpus, document_ids = [], []
for dataset_id, info in dataset_info_dict.items():
full_corpus.append(info)
document_ids.append(dataset_id)
data = {}
with open(os.path.join(f'fold_{fold}', 'train.json'), 'r') as f:
train_qrels = json.load(f)
data.update(train_qrels)
if merge_valid:
with open(os.path.join(f'fold_{fold}', 'valid.json'), 'r') as f:
valid_qrels = json.load(f)
data.update(valid_qrels)
annotated_pairs = []
for query_id, rel_dict in data.items():
query_info = query_info_dict[query_id]
for dataset_id, rel in rel_dict.items():
dataset_info = dataset_info_dict[dataset_id]
rel = 1 if rel > 0 else 0
annotated_pairs.append([query_info, dataset_info, rel])
ckpt_path = train(fold=fold, annotated_pairs=annotated_pairs, full_corpus=full_corpus, learning_rate=learning_rate, batch_size=batch_size)
RAG = RAGPretrainedModel.from_pretrained(ckpt_path)
RAG.index(
collection=full_corpus,
document_ids=document_ids,
index_name=f"fold_{fold}",
split_documents=False,
use_faiss=True,
)
return RAG
def grid_search():
query_info_dict = {}
with open('query_info.json', 'r') as f:
data = json.load(f)
for item in data:
query_info_dict[item['id']] = item['content']
dataset_info_dict = {}
with open('dataset_info.json', 'r') as f:
data = json.load(f)
for item in data:
dataset_info_dict[item['id']] = item['content']
param_combinations = list(product(*[
[1e-5, 5e-6], # learning rate
[8, 16], # batch_size
]))
param_names = ['learning rate', 'batch size']
best_params = None
best_score = -np.inf
for params in param_combinations:
learning_rate, batch_size = params
scores = []
for fold in range(args.fold_start, args.fold_end):
RAG = pipeline(fold, query_info_dict, dataset_info_dict, learning_rate, batch_size, merge_valid=False)
run_dict = {}
with open(os.path.join(f'fold_{fold}', 'valid.json'), 'r') as f:
valid_qrels = json.load(f)
for query_id, rel_dict in valid_qrels.items():
query_info = query_info_dict[query_id]
search_result = RAG.search(query=query_info, k=args.top_k, force_fast=True)
run_dict[query_id] = {x['document_id']: x['score'] for x in search_result}
metric = 'ndcg_cut_10'
evaluator = pytrec_eval.RelevanceEvaluator(valid_qrels, [metric])
eval_result = evaluator.evaluate(run_dict)
scores += [x[metric] for x in eval_result.values()]
print(f'fold: {fold}, params:{params}, NDCG@10: {np.mean(scores)}')
mean_score = np.mean(scores)
with open('grid_search_metric.txt', 'a') as outfile:
outfile.write(f'{params}\t{mean_score:4f}\n')
print(f'params: {params}, mean NDCG@10: {mean_score}')
if mean_score > best_score:
best_score = mean_score
best_params = dict(zip(param_names, params))
print(f"best params: {best_params}")
print(f"best avg NDCG@10: {best_score}")
def train_with_best_params():
learning_rate, batch_size = args.learning_rate, args.batch_size
print(f'learning_rate: {learning_rate}, batch_size: {batch_size}')
query_info_dict = {}
with open('fold_100/query_info_all.json', 'r') as f:
data = json.load(f)
for item in data:
query_info_dict[item['id']] = item['content']
dataset_info_dict = {}
with open('dataset_corpus_info.json', 'r') as f:
data = json.load(f)
for item in data:
dataset_info_dict[item['id']] = item['content']
metrics = ['map_cut_5', 'ndcg_cut_5', 'P_5', 'recall_5', 'map_cut_10', 'ndcg_cut_10', 'P_10', 'recall_10']
eval_results = {}
for fold in range(args.fold_start, args.fold_end):
RAG = pipeline(fold, query_info_dict, dataset_info_dict, learning_rate, batch_size, merge_valid=True)
run_dict = {}
with open(os.path.join(f'fold_{fold}', 'test.json'), 'r') as f:
test_qrels = json.load(f)
for query_id, rel_dict in test_qrels.items():
query_info = query_info_dict[query_id]
search_result = RAG.search(query=query_info, k=args.top_k, force_fast=True)
run_dict[query_id] = {x['document_id']: x['score'] for x in search_result}
with open(os.path.join(f'fold_{fold}', 'search_result.json'), 'w') as f:
json.dump(run_dict, f)
evaluator = pytrec_eval.RelevanceEvaluator(test_qrels, metrics)
eval_result = evaluator.evaluate(run_dict)
eval_results.update(eval_result)
results = {}
for metric in metrics:
results[metric] = sum([x[metric] for x in eval_results.values()]) / len(eval_results)
for metric in metrics:
print(f'{metric}: {results[metric]:.4f}', end='\t')
print()
def search_without_ft():
fold = 100
query_info_dict = {}
with open('fold_100/query_info_all.json', 'r') as f:
data = json.load(f)
for item in data:
query_info_dict[item['id']] = item['content']
dataset_info_dict = {}
with open('dataset_corpus_info.json', 'r') as f:
data = json.load(f)
for item in data:
dataset_info_dict[item['id']] = item['content']
full_corpus, document_ids = [], []
for dataset_id, info in dataset_info_dict.items():
full_corpus.append(info)
document_ids.append(dataset_id)
RAG = RAGPretrainedModel.from_pretrained('colbert-ir/colbertv2.0')
RAG.index(
collection=full_corpus,
document_ids=document_ids,
index_name=f"fold_{fold}_without_ft",
split_documents=False,
use_faiss=True,
)
run_dict = {}
with open(os.path.join(f'fold_{fold}', 'test.json'), 'r') as f:
test_qrels = json.load(f)
for query_id, rel_dict in test_qrels.items():
query_info = query_info_dict[query_id]
search_result = RAG.search(query=query_info, k=args.top_k, force_fast=True)
run_dict[query_id] = {x['document_id']: x['score'] for x in search_result}
with open(os.path.join(f'results', 'fold_100_ColBERTv2_without_ft.json'), 'w') as f:
json.dump(run_dict, f)
metrics = ['map_cut_5', 'ndcg_cut_5', 'P_5', 'recall_5', 'map_cut_10', 'ndcg_cut_10', 'P_10', 'recall_10']
eval_results = {}
evaluator = pytrec_eval.RelevanceEvaluator(test_qrels, metrics)
eval_result = evaluator.evaluate(run_dict)
eval_results.update(eval_result)
results = {}
for metric in metrics:
results[metric] = sum([x[metric] for x in eval_results.values()]) / len(eval_results)
for metric in metrics:
print(f'{metric}: {results[metric]:.4f}', end='\t')
print()
if __name__ == "__main__":
if args.mode == 'grid_search':
grid_search()
elif args.mode == 'train':
train_with_best_params()
elif args.mode == 'without_ft':
search_without_ft()