-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
48 lines (37 loc) · 1.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
from minbpe.regex import RegexTokenizer
from typing import List, Dict
# Initialize the tokenizer
tokenizer = RegexTokenizer()
tokenizer.load("modelsV3-regex-new-testament-only/regex.model")
def process_text(text: str) -> str:
# Get token IDs
token_ids = tokenizer.encode(text)
# Build formatted output
output = []
output.append("Token Details:")
output.append("-" * 50)
for token_id in token_ids:
# Get the bytes for this token
token_bytes = tokenizer.vocab[token_id]
# Convert bytes to string representation, replacing invalid chars
token_text = token_bytes.decode("utf-8", errors="replace")
output.append(f"Token ID: {token_id}")
output.append(f"Token Bytes: {str(token_bytes)}")
output.append(f"Token Text: {token_text}")
output.append("-" * 50)
# Add decoded text at the end
decoded_text = tokenizer.decode(token_ids)
output.append(f"\nFull decoded text: {decoded_text}")
return "\n".join(output)
# Create Gradio interface
demo = gr.Interface(
fn=process_text,
inputs=gr.Textbox(label="Enter text to tokenize", lines=3),
outputs=gr.Textbox(label="Token Information", lines=10),
title="Hindi Text Tokenizer",
description="Enter Hindi text to see its token representation using Byte Pair Encoding",
examples=[["उज्जियाह से योताम उत्पन्न"], ["नमस्ते दुनिया"]],
)
if __name__ == "__main__":
demo.launch()