@@ -117,10 +117,9 @@ def median(in_files):
117
117
"""
118
118
import numpy as np
119
119
import nibabel as nb
120
- from nipype .utils import NUMPY_MMAP
121
120
average = None
122
121
for idx , filename in enumerate (filename_to_list (in_files )):
123
- img = nb .load (filename , mmap = NUMPY_MMAP )
122
+ img = nb .load (filename )
124
123
data = np .median (img .get_data (), axis = 3 )
125
124
if average is None :
126
125
average = data
@@ -146,12 +145,11 @@ def bandpass_filter(files, lowpass_freq, highpass_freq, fs):
146
145
from nipype .utils .filemanip import split_filename , list_to_filename
147
146
import numpy as np
148
147
import nibabel as nb
149
- from nipype .utils import NUMPY_MMAP
150
148
out_files = []
151
149
for filename in filename_to_list (files ):
152
150
path , name , ext = split_filename (filename )
153
151
out_file = os .path .join (os .getcwd (), name + '_bp' + ext )
154
- img = nb .load (filename , mmap = NUMPY_MMAP )
152
+ img = nb .load (filename )
155
153
timepoints = img .shape [- 1 ]
156
154
F = np .zeros ((timepoints ))
157
155
lowidx = int (timepoints / 2 ) + 1
@@ -264,12 +262,11 @@ def extract_noise_components(realigned_file,
264
262
from scipy .linalg .decomp_svd import svd
265
263
import numpy as np
266
264
import nibabel as nb
267
- from nipype .utils import NUMPY_MMAP
268
265
import os
269
- imgseries = nb .load (realigned_file , mmap = NUMPY_MMAP )
266
+ imgseries = nb .load (realigned_file )
270
267
components = None
271
268
for filename in filename_to_list (mask_file ):
272
- mask = nb .load (filename , mmap = NUMPY_MMAP ).get_data ()
269
+ mask = nb .load (filename ).get_data ()
273
270
if len (np .nonzero (mask > 0 )[0 ]) == 0 :
274
271
continue
275
272
voxel_timecourses = imgseries .get_data ()[mask > 0 ]
@@ -334,11 +331,10 @@ def extract_subrois(timeseries_file, label_file, indices):
334
331
"""
335
332
from nipype .utils .filemanip import split_filename
336
333
import nibabel as nb
337
- from nipype .utils import NUMPY_MMAP
338
334
import os
339
- img = nb .load (timeseries_file , mmap = NUMPY_MMAP )
335
+ img = nb .load (timeseries_file )
340
336
data = img .get_data ()
341
- roiimg = nb .load (label_file , mmap = NUMPY_MMAP )
337
+ roiimg = nb .load (label_file )
342
338
rois = roiimg .get_data ()
343
339
prefix = split_filename (timeseries_file )[1 ]
344
340
out_ts_file = os .path .join (os .getcwd (), '%s_subcortical_ts.txt' % prefix )
@@ -359,9 +355,8 @@ def combine_hemi(left, right):
359
355
"""
360
356
import os
361
357
import numpy as np
362
- from nipype .utils import NUMPY_MMAP
363
- lh_data = nb .load (left , mmap = NUMPY_MMAP ).get_data ()
364
- rh_data = nb .load (right , mmap = NUMPY_MMAP ).get_data ()
358
+ lh_data = nb .load (left ).get_data ()
359
+ rh_data = nb .load (right ).get_data ()
365
360
366
361
indices = np .vstack ((1000000 + np .arange (0 , lh_data .shape [0 ])[:, None ],
367
362
2000000 + np .arange (0 , rh_data .shape [0 ])[:, None ]))
0 commit comments