-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreport.py
89 lines (64 loc) · 2.6 KB
/
report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# %%capture
# !git clone https://github.com/nikitakapitan/nlphub.git
# !pip install datasets transformers evaluate accelerate
# !mv nlphub/report.yaml .
# >>> Customize report.yaml
#!python nlphub/report.py --config report.yaml
"""This script produce a report for every model listed X for every dataset listed.
Pseudo-code.
FOR DATASET in DATASETS:
FOR MODEL IN MODELS:
create PIPE(TASK, MODEL)
create BENCHMARK(PIPE, DATASET)
run BENCHMAR.RUN()
return METRICS (results.json)
"""
import os
import yaml
import json
import argparse
import logging
import time
from datasets import load_dataset
from transformers import pipeline
from nlphub import ClassificationBenchmark
device = 'cuda'
# Initialize logging
if not os.path.exists('/content/logs/'):
os.makedirs('/content/logs/')
logging.basicConfig(filename=f"logs/report_{time.strftime('%Y-%m-%d_%H-%M-%S')}.log", level=logging.INFO)
def main(config_path):
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
logging.info("Input Configurations:")
logging.info(yaml.dump(config))
report = {}
for dataset_name in config['DATASET_NAMES']:
if dataset_name=='clinc_oos':
dataset = load_dataset(dataset_name, 'plus', split='test')
else:
dataset = load_dataset(dataset_name, split='test')
for model_name in config['MODEL_NAMES']:
# truncation : crop input text to model max_length | device=0 : first available GPU
pipe = pipeline(config['TASK'], model=model_name, truncation=True, device=0)
BenchmarkClass = {
'text-classification' : ClassificationBenchmark,
'question-answering' : None,
'ner' : None,
}[config['TASK']]
metrics_config = {k:v for d in config['METRICS'] for k, v in d.items()} # cast list[dict] -> dict
benchmark = BenchmarkClass(pipe, dataset, metrics_config)
metrics = benchmark.run_benchmark()
if dataset_name not in report:
report[dataset_name] = {}
report[dataset_name][model_name] = metrics
with open('results.json', 'w') as f:
results = {}
results['report'] = report
results['config'] = config
json.dump(results, f, indent=4)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Performance benchmark')
parser.add_argument('--config', type=str, required=True, help='Path to the Yaml config file')
args = parser.parse_args()
main(args.config)