-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
203 lines (149 loc) · 5.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# -*- coding: utf-8 -*-
"""
Muse LSL Example Auxiliary Tools
These functions perform the lower-level operations involved in buffering,
epoching, and transforming EEG data into frequency bands
@author: Cassani
"""
import os
import sys
from tempfile import gettempdir
from subprocess import call
import matplotlib.pyplot as plt
import numpy as np
from sklearn import svm
from scipy.signal import butter, lfilter, lfilter_zi
NOTCH_B, NOTCH_A = butter(4, np.array([55, 65]) / (256 / 2), btype='bandstop')
def epoch(data, samples_epoch, samples_overlap=0):
"""Extract epochs from a time series.
Given a 2D array of the shape [n_samples, n_channels]
Creates a 3D array of the shape [wlength_samples, n_channels, n_epochs]
Args:
data (numpy.ndarray or list of lists): data [n_samples, n_channels]
samples_epoch (int): window length in samples
samples_overlap (int): Overlap between windows in samples
Returns:
(numpy.ndarray): epoched data of shape
"""
if isinstance(data, list):
data = np.array(data)
n_samples, n_channels = data.shape
samples_shift = samples_epoch - samples_overlap
n_epochs = int(
np.floor((n_samples - samples_epoch) / float(samples_shift)) + 1)
# Markers indicate where the epoch starts, and the epoch contains samples_epoch rows
markers = np.asarray(range(0, n_epochs + 1)) * samples_shift
markers = markers.astype(int)
# Divide data in epochs
epochs = np.zeros((samples_epoch, n_channels, n_epochs))
for i in range(0, n_epochs):
epochs[:, :, i] = data[markers[i]:markers[i] + samples_epoch, :]
return epochs
def compute_band_powers(eegdata, fs):
"""Extract the features (band powers) from the EEG.
Args:
eegdata (numpy.ndarray): array of dimension [number of samples,
number of channels]
fs (float): sampling frequency of eegdata
Returns:
(numpy.ndarray): feature matrix of shape [number of feature points,
number of different features]
"""
# 1. Compute the PSD
winSampleLength, nbCh = eegdata.shape
# Apply Hamming window
w = np.hamming(winSampleLength)
dataWinCentered = eegdata - np.mean(eegdata, axis=0) # Remove offset
dataWinCenteredHam = (dataWinCentered.T * w).T
NFFT = nextpow2(winSampleLength)
Y = np.fft.fft(dataWinCenteredHam, n=NFFT, axis=0) / winSampleLength
PSD = 2 * np.abs(Y[0:int(NFFT / 2), :])
f = fs / 2 * np.linspace(0, 1, int(NFFT / 2))
# SPECTRAL FEATURES
# Average of band powers
# Delta <4
ind_delta, = np.where(f < 4)
meanDelta = np.mean(PSD[ind_delta, :], axis=0)
# Theta 4-8
ind_theta, = np.where((f >= 4) & (f <= 8))
meanTheta = np.mean(PSD[ind_theta, :], axis=0)
# Alpha 8-12
ind_alpha, = np.where((f >= 8) & (f <= 12))
meanAlpha = np.mean(PSD[ind_alpha, :], axis=0)
# Beta 12-30
ind_beta, = np.where((f >= 12) & (f < 30))
meanBeta = np.mean(PSD[ind_beta, :], axis=0)
feature_vector = np.concatenate((meanDelta, meanTheta, meanAlpha,
meanBeta), axis=0)
feature_vector = np.log10(feature_vector)
return feature_vector
def nextpow2(i):
"""
Find the next power of 2 for number i
"""
n = 1
while n < i:
n *= 2
return n
def compute_feature_matrix(epochs, fs):
"""
Call compute_feature_vector for each EEG epoch
"""
n_epochs = epochs.shape[2]
for i_epoch in range(n_epochs):
if i_epoch == 0:
feat = compute_band_powers(epochs[:, :, i_epoch], fs).T
# Initialize feature_matrix
feature_matrix = np.zeros((n_epochs, feat.shape[0]))
feature_matrix[i_epoch, :] = compute_band_powers(
epochs[:, :, i_epoch], fs).T
return feature_matrix
def get_feature_names(ch_names):
"""Generate the name of the features.
Args:
ch_names (list): electrode names
Returns:
(list): feature names
"""
bands = ['delta', 'theta', 'alpha', 'beta']
feat_names = []
for band in bands:
for ch in range(len(ch_names)):
feat_names.append(band + '-' + ch_names[ch])
return feat_names
def update_buffer(data_buffer, new_data, notch=False, filter_state=None):
"""
Concatenates "new_data" into "data_buffer", and returns an array with
the same size as "data_buffer"
"""
if new_data.ndim == 1:
new_data = new_data.reshape(-1, data_buffer.shape[1])
if notch:
if filter_state is None:
filter_state = np.tile(lfilter_zi(NOTCH_B, NOTCH_A),
(data_buffer.shape[1], 1)).T
new_data, filter_state = lfilter(NOTCH_B, NOTCH_A, new_data, axis=0,
zi=filter_state)
new_buffer = np.concatenate((data_buffer, new_data), axis=0)
new_buffer = new_buffer[new_data.shape[0]:, :]
return new_buffer, filter_state
def get_last_data(data_buffer, newest_samples):
"""
Obtains from "buffer_array" the "newest samples" (N rows from the
bottom of the buffer)
"""
new_buffer = data_buffer[(data_buffer.shape[0] - newest_samples):, :]
return new_buffer
def ApEn(U, m, r) -> float:
"""Approximate_entropy."""
def _maxdist(x_i, x_j):
return max([abs(ua - va) for ua, va in zip(x_i, x_j)])
def _phi(m):
x = [[U[j] for j in range(i, i + m - 1 + 1)] for i in range(N - m + 1)]
C = [
len([1 for x_j in x if _maxdist(x_i, x_j) <= r]) / (N - m + 1.0)
for x_i in x
]
return (N - m + 1.0) ** (-1) * sum(np.log(C))
N = len(U)
return abs(_phi(m + 1) - _phi(m))