|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "0d3ffc27", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Visualizing Snowflake Tables" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "markdown", |
| 13 | + "id": "6b83277d", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "\n", |
| 17 | + "This is a brief but complete example of how to visualize graphs represented by tables in Snowflake, using the Graph Visualization for Python library for Neo4j." |
| 18 | + ] |
| 19 | + }, |
| 20 | + { |
| 21 | + "cell_type": "markdown", |
| 22 | + "id": "168b2f0ec9520f4a", |
| 23 | + "metadata": {}, |
| 24 | + "source": [ |
| 25 | + "## Setup\n", |
| 26 | + "\n", |
| 27 | + "We will start by installing the necessary Python library requirements." |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": null, |
| 33 | + "id": "39e8a71b", |
| 34 | + "metadata": {}, |
| 35 | + "outputs": [], |
| 36 | + "source": [ |
| 37 | + "%pip install snowflake-snowpark-python # Requires Python version <= 3.11\n", |
| 38 | + "%pip install neo4j-viz" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "markdown", |
| 43 | + "id": "c91214441edff2d", |
| 44 | + "metadata": {}, |
| 45 | + "source": [ |
| 46 | + "We can now proceed to set up our connection to Snowflake by initializing a new session.\n", |
| 47 | + "Please not that you may need more or fewer connection parameters depending on your Snowflake configuration." |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "code", |
| 52 | + "execution_count": null, |
| 53 | + "id": "801d0bed", |
| 54 | + "metadata": {}, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "import os\n", |
| 58 | + "\n", |
| 59 | + "from snowflake.snowpark import Session\n", |
| 60 | + "\n", |
| 61 | + "# Configure according to your own setup\n", |
| 62 | + "connection_parameters = {\n", |
| 63 | + " \"account\": os.environ.get(\"SNOWFLAKE_ACCOUNT\"),\n", |
| 64 | + " \"user\": os.environ.get(\"SNOWFLAKE_USER\"),\n", |
| 65 | + " \"password\": os.environ.get(\"SNOWFLAKE_PASSWORD\"),\n", |
| 66 | + " \"role\": os.environ.get(\"SNOWFLAKE_ROLE\"),\n", |
| 67 | + " \"warehouse\": os.environ.get(\"SNOWFLAKE_WAREHOUSE\"),\n", |
| 68 | + "}\n", |
| 69 | + "\n", |
| 70 | + "session = Session.builder.configs(connection_parameters).create()" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "markdown", |
| 75 | + "id": "5ff57d28a917c569", |
| 76 | + "metadata": {}, |
| 77 | + "source": [ |
| 78 | + "Now can we create a new Snowflake database where we can put our little example tables.\n", |
| 79 | + "If you already have a database you want to use, you can skip this step." |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "execution_count": null, |
| 85 | + "id": "41ad4289420a9b36", |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "session.sql(\n", |
| 90 | + " \"CREATE DATABASE IF NOT EXISTS nvl_example DATA_RETENTION_TIME_IN_DAYS = 1\"\n", |
| 91 | + ").collect()\n", |
| 92 | + "session.sql(\"USE DATABASE nvl_example\").collect()" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "markdown", |
| 97 | + "id": "365a1c31", |
| 98 | + "metadata": {}, |
| 99 | + "source": [ |
| 100 | + "## Creating tables\n", |
| 101 | + "\n", |
| 102 | + "Next we will create a new table for the nodes in our graph, that will represent products of various categories." |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": null, |
| 108 | + "id": "d935b3d4", |
| 109 | + "metadata": {}, |
| 110 | + "outputs": [], |
| 111 | + "source": [ |
| 112 | + "session.sql(\n", |
| 113 | + " \"CREATE OR REPLACE TABLE products (id INT, name VARCHAR, category INT)\"\n", |
| 114 | + ").collect()\n", |
| 115 | + "\n", |
| 116 | + "session.sql(\"\"\"\n", |
| 117 | + "INSERT INTO products VALUES\n", |
| 118 | + "(1, 'Product 1', 1),\n", |
| 119 | + "(2, 'Product 1A', 1),\n", |
| 120 | + "(3, 'Product 1B', 1),\n", |
| 121 | + "(4, 'Product 2', 2),\n", |
| 122 | + "(5, 'Product 2A', 2),\n", |
| 123 | + "(6, 'Product 2B', 2),\n", |
| 124 | + "(7, 'Product 3', 3),\n", |
| 125 | + "(8, 'Product 3A', 3),\n", |
| 126 | + "(9, 'Product 3B', 3),\n", |
| 127 | + "(10, 'Product 4', 4),\n", |
| 128 | + "(11, 'Product 4A', 4),\n", |
| 129 | + "(12, 'Product 4B', 4)\n", |
| 130 | + "\"\"\").collect()" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "markdown", |
| 135 | + "id": "cf08716eb4275659", |
| 136 | + "metadata": {}, |
| 137 | + "source": [ |
| 138 | + "Some of the products, are \"subproducts\" of certain parent products.\n", |
| 139 | + "We now create a table that encodes these \"PARENT\" relationships between the products." |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "code", |
| 144 | + "execution_count": null, |
| 145 | + "id": "be2ac16d3bd41e6", |
| 146 | + "metadata": {}, |
| 147 | + "outputs": [], |
| 148 | + "source": [ |
| 149 | + "session.sql(\n", |
| 150 | + " \"CREATE OR REPLACE TABLE parents (source INT, target INT, type VARCHAR)\"\n", |
| 151 | + ").collect()\n", |
| 152 | + "\n", |
| 153 | + "session.sql(\"\"\"\n", |
| 154 | + "INSERT INTO parents VALUES\n", |
| 155 | + "(2, 1, 'PARENT'),\n", |
| 156 | + "(3, 1, 'PARENT'),\n", |
| 157 | + "(5, 4, 'PARENT'),\n", |
| 158 | + "(6, 4, 'PARENT'),\n", |
| 159 | + "(8, 7, 'PARENT'),\n", |
| 160 | + "(9, 7, 'PARENT'),\n", |
| 161 | + "(11, 10, 'PARENT'),\n", |
| 162 | + "(12, 10, 'PARENT')\n", |
| 163 | + "\"\"\").collect()" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "markdown", |
| 168 | + "id": "a28bd5aa", |
| 169 | + "metadata": {}, |
| 170 | + "source": [ |
| 171 | + "## Fetching the data\n", |
| 172 | + "\n", |
| 173 | + "Next we fetch our tables from Snowflake and convert them to pandas DataFrames.\n", |
| 174 | + "Additionally, we rename the most of the table columns so that they are named according to the `neo4j-viz` API." |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": null, |
| 180 | + "id": "deb6353193e2338b", |
| 181 | + "metadata": {}, |
| 182 | + "outputs": [], |
| 183 | + "source": [ |
| 184 | + "products_df = (\n", |
| 185 | + " session.table(\"products\")\n", |
| 186 | + " .to_pandas()\n", |
| 187 | + " .rename(columns={\"ID\": \"id\", \"NAME\": \"caption\"})\n", |
| 188 | + ")\n", |
| 189 | + "parents_df = (\n", |
| 190 | + " session.table(\"parents\")\n", |
| 191 | + " .to_pandas()\n", |
| 192 | + " .rename(columns={\"SOURCE\": \"source\", \"TARGET\": \"target\", \"TYPE\": \"caption\"})\n", |
| 193 | + ")" |
| 194 | + ] |
| 195 | + }, |
| 196 | + { |
| 197 | + "cell_type": "markdown", |
| 198 | + "id": "950e0e76cfcaf3d6", |
| 199 | + "metadata": {}, |
| 200 | + "source": [ |
| 201 | + "## Rendering the visualization\n", |
| 202 | + "With only one command we can now create a `VisualizationGraph` from these tables representing nodes and relationships.\n", |
| 203 | + "In order to enhance the visualization, we will also be utilizing the `color_nodes` function, which will assign a distinct color to each product category." |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "code", |
| 208 | + "execution_count": null, |
| 209 | + "id": "2322065c", |
| 210 | + "metadata": {}, |
| 211 | + "outputs": [], |
| 212 | + "source": [ |
| 213 | + "from neo4j_viz.pandas import from_dfs\n", |
| 214 | + "\n", |
| 215 | + "VG = from_dfs(products_df, parents_df)\n", |
| 216 | + "\n", |
| 217 | + "# Using the default Neo4j color scheme\n", |
| 218 | + "VG.color_nodes(\"CATEGORY\")" |
| 219 | + ] |
| 220 | + }, |
| 221 | + { |
| 222 | + "cell_type": "markdown", |
| 223 | + "id": "da39f29deb1569e2", |
| 224 | + "metadata": {}, |
| 225 | + "source": [ |
| 226 | + "Let us now render our graph, using only default render options." |
| 227 | + ] |
| 228 | + }, |
| 229 | + { |
| 230 | + "cell_type": "code", |
| 231 | + "execution_count": null, |
| 232 | + "id": "e8b0f4c6", |
| 233 | + "metadata": {}, |
| 234 | + "outputs": [], |
| 235 | + "source": [ |
| 236 | + "VG.render()" |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "markdown", |
| 241 | + "id": "ac4c5e35a602ede2", |
| 242 | + "metadata": {}, |
| 243 | + "source": [ |
| 244 | + "You can scroll to zoom in and out in the visualization, and click-and-drag nodes to move them." |
| 245 | + ] |
| 246 | + }, |
| 247 | + { |
| 248 | + "cell_type": "markdown", |
| 249 | + "id": "8aa5576fa3b25383", |
| 250 | + "metadata": {}, |
| 251 | + "source": [ |
| 252 | + "## Cleanup\n", |
| 253 | + "\n", |
| 254 | + "Lastly, we clean up the example database we created." |
| 255 | + ] |
| 256 | + }, |
| 257 | + { |
| 258 | + "cell_type": "code", |
| 259 | + "execution_count": null, |
| 260 | + "id": "c6eb218e892d420e", |
| 261 | + "metadata": {}, |
| 262 | + "outputs": [], |
| 263 | + "source": [ |
| 264 | + "session.sql(\"DROP DATABASE IF EXISTS nvl_example\").collect()\n", |
| 265 | + "session.close()" |
| 266 | + ] |
| 267 | + } |
| 268 | + ], |
| 269 | + "metadata": { |
| 270 | + "language_info": { |
| 271 | + "name": "python" |
| 272 | + } |
| 273 | + }, |
| 274 | + "nbformat": 4, |
| 275 | + "nbformat_minor": 5 |
| 276 | +} |
0 commit comments